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GLOBAL UNIQUENESS IN GEOMETRIC
SINGULAR PERTURBATION THEORY*

NElL FENICHELt

Abstract. Estimates are developed for the order of contact of center manifolds. It follows from these
estimates that global center manifolds have arbitrarily order of contact, even if they are not differentiable.
These results give the geometric justification for a large class of uniqueness results in singular perturbation
theory.

The purpose of this paper is to present a global uniqueness result for order of
contact of center manifolds. This result is the geometric form of the uniqueness of
asymptotic expansions in singular perturbation theory.

Center manifolds are invariant manifolds characterized by neutral growth condi-
tions. In [F1], global center manifolds appear as the basic construct in geometric
singular perturbation theory. In singular perturbation theory the characterization in
terms of neutral growth means that center manifolds are filled with orbits which have
no transition layers.

Following [F1], we use global center manifolds to study the geometry of singular
perturbation theory. The existence of the center manifolds reflects the presence of
distinct time scales. The global center manifolds of interest are not unique and may not
be smooth, but they have uniqueness and smoothness properties which are useful for
computations and estimates. It is shown in [F1] that certain invariant subsets of global
center manifolds are unique, and that over those invariant sets certain formal deriva-
tives are unique. Under appropriate conditions there are center manifolds with any
desired finite degree of smoothness, and the unique formal derivatives are ordinary
derivatives of the nonunique smooth realizations. In [F1] it is shown that the derivatives
of center manifolds and related structures are the coefficients of asymptotic expansions
of the inner solutions and outer corrections of singular perturbation theory. It therefore
is desirable to have a better understanding of how the unique asymptotic expansions
are derived from nonunique geometric structures.

The main technical result of this paper is a contraction inequality from which we
derive an estimate for the order of contact of center manifolds. Order of contact is the
geometric structure corresponding to asymptotic expansions in analysis, so our estimate
is a powerful uniqueness theorem for asymptotic expansions.

1. Uniqueness results for center manifolds. The simplest uniqueness properties of
center manifolds are local and algebraic. If the graph of a center manifold of a C
system is represented near an equilibrium point p as the graph of a C function, then all
derivatives of the function up to order r are uniquely determined at p. The local
algebraic uniqueness of center manifolds has been known for some time, and has been
used in applications in bifurcation theory and in singular perturbation theory. See, for
example, [F2], Ruelle and Takens [R-T], Lanford [L], Hassard and Wan [H-W], [F3],
and [F4]. The method appears to be much older than the references. See Segre [S1].
Wan proved a complete local algebraic uniqueness theorem for invariant manifolds
[W]. As a special case, the local algebraic uniqueness of center manifolds is completely
resolved.
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Sijbrand [$2] proved a strong local uniqueness theorem for center manifolds. By a
detailed analysis which involves the Jordan canonical form of the linearization of a
system, rather than just the eigenvalues of the linearization, he estimated the transcen-
dentally small terms in the distance between center manifolds. Sijbrand’s result is much
stronger than the local algebraic results.

[F1, Thm. 9.1] includes a global uniqueness result which asserts that any two C
center manifolds agree to order r over specified invariant sets. The invariant sets
include all equilibrium points and also many nonequilibrium points, so this theorem is
much stronger than the local algebraic results. See, for example the computation of
asymptotic expansions in [F1] for the Flatto-Levinson theorem IF-L]. The uniqueness
result of [F1] is almost an algebraic uniqueness theorem, in the sense that it is proved
by showing that the derivatives of a center manifold satisfy equations which have
unique solutions. By passing to an infinite dimensional space of sections of a derived
tangent bundle, one could regard the global uniqueness theorem as a local uniqueness
theorem in an infinite dimensional space. The method of proof is analytic, however,
and the proof cannot be reduced to algebra in a finite dimensional setting.

Subject only to some natural restrictions, there always exist global center mani-
folds with any desired degree of smoothness. In applications to singular perturbation
theory this usually means that it is enough to compute formally using a sufficiently
smooth center manifold. The selection of a smooth center manifold is not satisfying,
however, as there generally is no fundamental reason to select one center manifold
rather than another. When a unique computation depends on an arbitrary selection, an
explanation is required.

In this paper we prove a global uniqueness theorem which requires only mild

regularity of the center manifolds. We show that center manifolds have contact of
specified order over specified invariant sets, even if the center manifolds are not

sufficiently smooth for the results of [F1] to be applicable. Even in the local case, the
estimate which underlies our proof is interesting, as it gives good estimates for the
distances between nonunique center manifolds. In the local case, however, the results of
Sijbrand are stronger.

2. Asymptotic expansions and order of contact of functions. We recall the usual
definition of asymptotic expansion of functions. This definition is local and geometric.
Functions f(x) and g(x) defined for x near 0 agree to order N at 0 if the graphs of f
and g have contact of order N at 0. This definition is equivalent to the estimate

as I 1- 0.
A function f(x) defined near 0 has an asymptotic expansion to order N at 0 if there is a

polynomial which agrees with f to order N at 0, or equivalently if there is a polynomial
whose graph has contact of order N with the graph of f(x) at 0. Note that the
preceding definitions do not require any differentiability. For sufficiently smooth
functions the local geometric definition of asymptotic expansion is equivalent to a local
algebraic definition. Smooth functions f(x) and g(x) have the same asymptotic expan-
sion to order N at 0 if and only if they have the same derivatives to order N at 0.

3. An estimate for order of contact of center manifolds. Consider a system of
differential equations with an equilibrium point at the origin,

x’=f(x,y)--ax+
(1) y’-g(x,y)-by+
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where x Rm, y Rn, the eigenvalues of a lie on the imaginary axis, and the eigenvalues
of b lie in the left half plane. A center manifold for (1) at the origin is any invariant
manifold tangent to the x-axis at the origin.

Let C:y u(x) and D:y v(x) be two center manifolds for (1) at the origin. That
is, let C and D be invariant manifolds for (1) which are tangent to the x-axis at the
origin. To make our estimate as general as possible, we do not require that u and v be
differentiable; instead we require that u and v be uniformly Lipschitz continuous near
the origin.

Let

Let

d(r)-suplu(x)-v(x)l, S(r).
To estimate the order of contact of C and D we will estimate d(r) as r 0. The
following lemma contains our main estimate. It asserts that d(r) decays faster than r as
r ----- 0oLEMMA. There is a constant < 1, such that for any x with , <x< 1, there exists r
such that

(2) d(xr)<-,d(r)

for all r, O<_r<-r.
COROLLARY. d(r) vanishes to arbitrarily high order as r O.
Proof of the corollary. It is sufficient to show that

(3) d(r)/rlgx/lgr

is bounded as r-0, because logX/logr can be made arbitrarily large by taking r

sufficiently close to 1. Fix a small value r, and apply (2) repeatedly with r-r, rr,
r2r, and so on. Combining the firstj such inequalities yields

(4) d(xJr) <-XJd(r).
We now interpolate (4). For any r_<r 0, selectj such that

if,
j+ <_ r/r o , lg j

Then d(r) <-d(xJr) <-Xd(r) and

j+ --> log( r/r)/log
SO

(5) d( r ) -<X-d( r )( r/r )log X/log g,

By taking x close to for fixed h, the exponent in (5) may be made arbitrarily large.
This completes the proof of the corollary.

Proof of the lemma. Let (F, G) denote the time map of (1), the solution of (1) for
time unit:

(6) X=F(x,y)=Ax+,(x,y), Y=G(x,y)--By+(x,y),

where the eigenvalues of A are on the unit circle, the eigenvalues of B are in the left half
plane, and q, and q denote higher order terms at the origin. Note that A and B are just
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exponentials of a and b. Select any h which is less than but greater than the real parts
of all of the eigenvalues of B. Let x be any number in the interval ;k <x < 1. By a linear
coordinate transformation in a small neighborhood of the origin we can make IIA-11
arbitrarily close to 1, and we can make IIBII strictly less than X. Then by restricting to a
possibly smaller neighborhood of the origin, we can make the norms of and
together with their first derivatives, less than a small pre-assigned value e. In addition,
we can make the Lipschitz constants of u and v uniformly bounded by 1. In our choice
of e and IIA- ll we require

x<(llA-lll-2e) -l
and X>IIBII+4e.

The center manifolds C and D are invariant under the flow (1) and hence also
under the map (6). Points of the form (x,u(x)) are mapped to points of the form
(X,u(X)), and points of the form (Xo, V(Xo)) are mapped to points of the form
(X, v(X)). Hence we have the invariance conditions

and

X=F(x,u(x)), u(X)-a(x.u(x))

X=F(xo,V(Xo)), v(X)=G(xo,V(Xo))

for the graphs of u and v, respectively. Note that u(O)=O, v(O)=O, q,(O, 0)=0, and
q40,0)=0.

Let r be given, and let (X,u(X)) be a point in C with IIXI]<_r. Then we can solve
for a unique point (x,u(x)) in C, the pre-image of (X,u(X)) under (6), with
Similarly, given (X, v(X)) in D we can solve for a pre-image (x0, V(Xo)) in D. This is
just a Lipschitz version of the inverse function theorem, and is proved using a contrac-
tion mapping. We find

x+(x,u(x))=Xo+(Xo,(Xo)),
SO

IIx- xoll 2 IIx- xoll+ llu(x ) -v(x

and hence IIx-xoll <-2ed(r) if e is sufficiently small. Also,

.(x)-v(X)-u(x)-v(x0)++(x..(x))-+(x0.v(0)).
so

But

Ilu(X)-v(X)llllBIl(llu(x)-V(xo)ll)
+(llX-xoll+

Ilu(x)-v(xo)llllu(x)-v(x)ll+ II(x)-v<xo)ll
<d(r)/llX-Xoll

<_(l+2e)d(r),
so Ilu(X)-v(X)ll<-Xd(r) if e is sufficiently small. Taking the supremum over IIXIl-<xr
yields d(xr)<_Xd(r). This completes the proof of the lemma.
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4. Extensions of the estimate. The estimates of the previous section were derived
only in the simplest case, for a center manifold at an equilibrium point where the
normal flow is attracting. We now sketch a number of extensions. All are based on the
same geometric construction.

i. Suppose the matrix a of (1) has eigenvalues on the imaginary axis and also in the
right half plane. Then A- has eigenvalues on and inside the unit circle. The norm of
A- may be chosen arbitrarily close to 1, and so x also may be chosen arbitrarily close
to 1. With these remarks, the derivation of the estimate of the lemma is unchanged.
Hence the estimate and the theorem are applicable to a center unstable manifold at an
equilibrium point.

ii. By reversing the flow of time, we may apply the same estimate to the case in
which a has eigenvalues on the imaginary axis and also possibly in the left half plane,
and b has eigenvalues in the right half plane. Thus the estimate is applicable to. a center
manifold at an equilibrium point at which the normal flow is repelling, or to a center
stable manifold at an equilibrium point.

iii. Consider (1) again, and suppose that the eigenvalues of a lie on the imaginary
axis and possibly in the right half plane, and that the eigenvalues of b lie in the left half
plane. Recall from [F1 that a set V is called negatively invariant under a flowp -p. if
V is carried into itself under the flow for backward time. This means that the flow for
forward time carries V to a set which contains V. The estimates of [F1, Thm. 9.1] show
that in a sufficiently small neighborhood of an equilibrium point, any compact nega-
tively invariant set must be contained in every center unstable manifold. Let C and D
be center manifolds in a small neighborhood of the origin, as in the previous section.
Let V be a small compact negatively invariant set, so that V is contained in both C and
D. Then the points in V can be represented either in the form (x, u(x)) or (x, v(x)),
where x ranges over a small set S near the origin in Rm. Let

S(r, V)- {Xo: p(xo,S)<r),
where p is the usual Euclidean distance. Define

d(r, v)-sup{llu(x)-v(x)ll}, xS(r, V).

Then the estimate (2) goes through unchanged, with d(r, V) in place of d(r), and
log,/log x may be made arbitrarily small by taking V sufficiently small.

iv. By working in local coordinate patches, the same construction may be carried
over to the global center stable manifolds and center unstable manifolds of [F1]. It
follows that the center stable manifolds and center unstable manifolds have the ex-
pected order of contact, even if they do not satisfy the differentiability hypotheses of
[F1, Thm. 9.1(iv)].

[FI]
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AN ASYMPTOTIC DECOMPOSITION METHOD
APPLIED TO MULTI-TURNING POINT PROBLEMS*

n. GrGOLD+

Abstract. An asymptotic decomposition technique is developed. It is designed and used for 2 by 2 first
order singularly perturbed linear differential systems. A new set of decoupled linear integral equations is
introduced in the process of the asymptotic analysis. Its usefulness is demonstrated with multi-turning point
problems. An adiabatic theorem in quantum mechanics is proved in a general case of degenerate energy
levels.
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Key words..singularly perturbed, turning point, asymptotic expansions

1. Introduction. In this paper a new asymptotic decomposition method is intro-
duced. The method is capable of handling second order linear differential equations
and first order 2 by 2 singular linear differential systems. The method is able to
produce a "fine" asymptotic decomposition due to the fact that the entries of a
simplifying transformation are shown to satisfy a new set of decoupled linear integral
equations. This is in contrast to a method developed by Sibuya [14], favored also by
Wasow [17], in which entries of the simplifying transformation are shown to satisfy a
nonlinear Riccati differential equation. The advantages of a linear integral equation
over a nonlinear integral equation are many. The "global" existence of a olution as
well as other properties are more transparent. Many properties follow easily from the
corresponding resolvent series of a linear integral equation. The same cannot be
claimed for a nonlinear Riccati equation. In particular, the calculation of the coeffi-
cients in the asymptotic expansions of a solution may become more laborious.

Examination of Theorem 4.6 in [}4 reveals "that higher order asymptotic terms" in
a solution of an integral equation are a by-product of repeated integrations in the
resolvent series. Thus, unlike Sibuya [14] and Wasow [18], we do not need to duplicate
those calculations by finding "higher order asymptotic terms" directly from the Riccati
differential equation. In order to have a unified theory for second order singular
differential equations as well as for singular 2 by 2 first order differential systems, we
adopted matrix formulation, a favorite of many authors. See e.g. Wasow [17], Sibuya
[14]. We believe that anything that can be done by the Liouville transformation (see,
e.g. Olver [7, Ch. 6]) for second order singular differential equations can also be done
by a suitable matrix transformation. The latter method has the potential of being
applied to n by n first order singular linear differential systems. This point, however,
will be demonstrated elsewhere.

Though the Borel-Ritt theorem is nice (see e.g. Wasow [17, p. 41]), we do not feel
it is an indispensable tool in the theory of asymptotic expansions of solutions of linear
differential equations. In fact, the use of the Borel-Ritt theorem (see Sibuya [14],
Wasow [17]) restricts the theory to applications in cases where only an infinite asymp-
totic expansion in power series is possible. Unfortunately, this may not be the rule but
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rather the exception in many applied mathematics problems (see e.g. Van Dyke [15,
Chap. III]). The Borel-Ritt theorem introduces a new function which is not explicitly
given but becomes a part of the desired solution. Thus, for the purpose of approxima-
tion of a solution, one may be losing accuracy. Therefore, we avoided the use of the
Borel-Ritt theorem.

The main purposes of this paper are threefold. The first is to present the decou-
pling of the entries of the simplifying transformation by obtaining four basic integral
decomposing equations. The second is to demonstrate their usefulness by tackling
singularly perturbed problems with multi-turning points on an interval [a,b]. As a
consequence, we are able to free from restrictions, the type and number of turning
points occurring in a singularly perturbed 2 by 2 system discussed by Wasow [16]. The
third purpose is to obtain a proof for the adiabatic approximation theorem in quantum
mechanics for a general degenerate case. Friedrichs [2] discussed a special degenerate
case which restricted the type and number of turning points occurring in that theorem.

The order of the article will be as follows. Following the discussion, we introduce a
few notations and conventions. In 2 we introduce some matrix identities which will
produce, in 3, the decoupled integral decomposing equations needed for asymptotic
decomposition. In 4, we prove an asymptotic decomposition theorem. We define when
an integral can be put on a "zero uniform scale on [a,b]". This is utilized in the proof
of the asymptotic decomposition theorem with "multi-turning points". The method of
proof demonstrates that it is not always essential to reduce the investigation of a
singularly perturbed linear differential system with turning points to another one with a
coefficient matrix which has distinct eigenvalues. Section 5 shows how the method of
stationary phase (see e.g. Olver [7, p. 96]) could be generalized in a certain manner. This
is used in integrals which can be put on a "zero uniform scale". Sections 4 and 5
provide the necessary extensions to the results in Wasow [16]. Section 6 combines a
well-known theorem of Rellich [9] with our method to provide uniform approximations
of solutions of "Hamiltonian systems" occurring in quantum mechanics. Finally, in 6,
we use Friedrichs’ setting from [2] to prove an adiabatic theorem in quantum mecha-
nics. For a source of 2 by 2 first order differential systems occurring in physics, the
reader may consult Feynman [1, 9,10,11].

We now introduce a few notations and conventions.
Notation 1.1. Let V(r) be a 2 by 2 matrix function. Assume its entries vjk(r ),

k,j 1, 2, are Riemann or Lebesgue integrable on [a, hi. The symbol

(1.1)

represents a 2 by 2 matrix function on [a, b] with entries

(1.2) vkj(r)dr, k,j =1,2.
kj

The lower limits of integration ak are certain numbers which belong to [a, b].
Assumption 1.2. Unless otherwise stated, given a matrix differential equation

(1.3) Y’=AY,

or

(1.4) Z’ =AZ- ZB + M,
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on an interval [a,b], we assume that:
i) All matrices involved are 2 by 2 matrices, denoted in general by Roman or

Greek capital letters.
ii) All entries of A,B,M, are piecewise smooth functions on [a, b] for each fixed

value of parameters/ e-1. The parameter/ varies in a set

(1.5) /_>/0>0, (or0<e=<e0), /0(ore0) a fixed positive number.

iii) Given an integral equation

(1.6) Z=M(x)+ fA(x,t)Z(t)B(x,t)dt
for the unknown matrix Z(x), we assume M(x) is a continuous matrix function of x on
[a,b] for each fixed value of a parameter/. We assume for each fixed x,/, that the
entries of A(x, t), B(x, t) are piecewise smooth functions on a, b ].

2. Some identities. In this section we derive a few needed identities. We sum-
marize them in the following lemma.

LEMMA 2.1. Assume the function q(x) and the entries of f(x), R(x) are piecewise
smooth functions on [a, b] for each fixed value of a parameter , I >= to. Let the differen-
tial equation

(2.1) Y’= (/ +R ) Y

be taken into

(2.2)

by the transformation

(2.3) Y=(I+e)w.
I is the 2 by 2 identity matrix. Then the matrix function P satisfies the differential equation

(2.4) P’ qfP Pqe + RP+ R.

Denote by d# (x, s) the matrix solution of the initial value problem

(2.5) tI)’=+e, d#(s,s)=I, s[a,b].
Assume that P(x) is a piecewise smooth matrix function which solves the integral equation

(2.6) P Po + FP,

with

fx(2.7) Po "= d(x,s)R(s)d-l(x,s) ds=FI

where F is an integral operator defined by

fx(2.8) FP "= d(x,s)R(s)P(s)d-l(x,s)ds.

Then P is a piecewise smooth solution of the differential equation (2.4).
Let

(2.9) X= (x,j.), k,j= 1,2,
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and denote

[ 1Xlx 0
(2.10) D[X]’= 0 x22

(2.11) OF[Xl.=[O x]X21 0

Denote

(2.12) /)(x,’q)" (x,’rl)R(’rl)(-l(x,’rl).
Then the integral equation (2.6) can be rewritten as with

=fx(2.13) Po(x) k (X, "/’1) d’rl,

and

(2.14) Ft’ f k ( x ,rl ) ( ( x ,rl ) P ( ,rl ) ( ( x ,rl ) aq’l

In addition, assume that

(2.15)
and that

(2.16)

Then

(2.17)

"= diag{ Xl(X),X2(x)}

0 rl2(X ) ]D[RI=0, R=
r21 (x) 0

0

k(x,’r)
r21(r)exp (’2- Xl) dS

r12 ( "r)exp q ( X X 2) ds

0

and therefore
(2.18) DIal=0.
D[P and OF[P], respectively, satisfy the integral equations

(2.19)

D[P]--S
x k(x,’rl)If" k(x,’r2)d’r2ldq’l--Sx k(x,’rl)Ifrl k(x,’r2)D[P]d’r2]d’rl,

(2.20)

=fx )Of[,]{I-1OF[P] /(x,’rl)dq"1-1- (x, q’2 q’2 (x,q’2)dq’2 d’rl-

Proof. The integral equation (2.6) follows from (2.4) by use of a well-known
method. See e.g. Wasow [17, p. 169]. The identities (2.13) and (2.14) follow in an
obvious manner. If P is a solution of (2.6), then it is also a solution of

(2.21) P=FI+F2I+F2p, Po=FI.
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Substitute in (2.21)

(2.22) P=[PI+OF[I

and utilize the following fact: If the matrices X, Y, are such that

(2.23) D[X]=0, D[Y]=0,

then

(2.24) OF[ XY OF[ XY O.

If

(2.25) D[X]=0, OF[Y]=O,

then

(2.26) D XY D YX O

Therefore (2.21) splits into two independent equations, (2.19), (2.20). Actually each
element of P satisfies an integral equation which does not involve the other three
elements of P. The integral equations for D[P] and OF[P] do not reveal this. Our next
aim is to prove this point and to find the corresponding integral equations. This is
accomplished in the following section.

3. Decoupled decomposing equations. We will use the following:
Notation 3.1. Let

(3.1)
x

e(x,r)’=exp (Xl-X2)ds

and let

Zx(3.2) e-l(x, r) =e( r,x) =exp

We proceed to the next lemma.
LENN 3.2. Let p, v,k= 1,2, be the elements of P. Let the assumptions of Lemma

2.1 hold. Thenp satisfy the following integral equations:

(3.3) Pll(X)= rl
r12(r1)r21(r2)e(r2,rl)dr2dr

11 21

11 21

(3.4) p(x)= r()r()e(,%)d%d
22 12

+ r2(rx)rz(r2)e(x,%)p(%)dr2drx,
22 12

(3.5)
12

+ r12(l)r21(2)e(x,l)P12(2)d2d
12 22
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(3.6) P21 ( X ) /’21 ( rl ) e ( rl ,x ) d
21

+ r21(’r1)r12(’r2)e(’r1,x)P21(’r2)d’r2d’r1.
21 11

Choose in (3.3)-(3.6)

(3.7) all"-" 021 a22"- a12.

Then po,(x) are solutions of Volterra integral equations

(3.8)
vk

with

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

v,k=l,2,

x

glx (x, q’2) "= /’21(’/’2) r12 (q’l) e (q’2,7’1) d’rl,

21

K22 (x, ’r2) "= r12 (’1"2) r21(’r1)e(q’1,’r2)d’rl,

n 22(x, 0:12) "= K22(x,2)d’g2
12

X

K12(x, 2) /’21(’/’2) rl2(’rl)e(x,’rl)d’rl,

12

fxK21(x, 2) "= r12 (r2) r21(’rl)e(rl,X)d’rl,
r2

n ( x, ) r( "q ) e ( "q ,x ) d’q.
21

Moreover, let pk, v,k 1, 2, satisfy the integral equations (3.3)-(3.6) or the integral
equations (3.8) with (3.9)-(3.16). Then, the matrix

(3.17) P= (Po,), v,k=l,2

satisfies the matrix integral equation (2.6).
Proof. We will need a few identities for the elements of the matrices which appear

in (3.3)-(3.6). Let

(3.18) al k(x,rl)f1 k ( x, "r2 ) d’r2 d’r1.

Then

(3.19)

fa /’12 ( "r1) /’21( "r2 ) e ( "r2 "r1) d’r2 d’r1
11 21

0 fa
x

r21( q’1) r12 q’2 ) e q’l "r2 ) d’r2 d’rl
22 12



ASYMPTOTIC DECOMPOSITION METHOD 13

Denote

(3.20) .fx [4 k(x,r) f,lk(x,r2)O[Pldr2
By repeating a calculation similar to the one above, we obtain

(3.21)

f
x

far1 r12 (,rl) r21(,r2 ) e (,r2, ,r1) P11( ,r2 ) dr2 d,r 0
tll 21

0 r21 (-1) r2 ( r2)e( r, z2) P22 (r2) dr2d’q
22 12

Since

(3.22) D[ P =JI + J2,

we obtain (3.3), (3.4). In order to find equations for Pxg., P21, we first compute terms in
(2.20). Let

(3.23) J3 "= @,x,r2)OF[Pl-(x,%)

Then
0 e(x,r2)P12(r2) ](3.24) J3= e(r2,x)p21(z2) 0

Put

(3.25) J4 :=

Let

fx r12( $2) P21(.r2) d,r2 0
11

0 r21(z2)P12(r_)d%
22

(3.26)
Then

(3.27)

Js’= fX k(x,rl)J4drl

0 fa
x

fa"rx
r12(’r1)r21(,r2)e(x,,r1)P12(,r2)d,r2d,r1

12 22

fX f7"1
r21(’r1)r12(’r2)e(’r1,x)P21(’r2)d’r2d’r 0

21 11

Therefore by

(3.28) =fxOF[P R ( X, "i" ) d’r -- J5we obtain (3.5), (3.6). Inverting the order of integration in (3.3)-(3.6) together with

(3.7) leads to (3.8) with (3.9)-(3.16).
Reversing the order of operations in the steps which led to the set of integral

equations above implies the last conclusion of the lemma.
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It is worth noting that because of Lemma 3.2 we are able to reduce a matrix
integral equation to four decoupled equations for its entries.

Moreover, this special splitting involves a double integral in (3.3)-(3.6) so that the
resulting kernels in (3.8) are expected to show "desirable qualities of increased smooth-
ness".

It does not appear to be possible to obtain a similar decoupling for an n by n linear
differential system. However, the insight that will be gained by this specific decoupling
for n 2 and the use of the scheme (2.21) for n > 2 will be shown to be very useful.

It has long been recognized that the problem of diagonalizing a system of 2 by 2
linear differential equations can be reduced to solving a certain system of uncoupled
integral equations. This can be done in a variety of manners. However we deal here
with a singular differential system. The type of decoupling could be crucial for the
ultimate goal of a successful asymptotic decomposition.

We now proceed to the next section.

4. Multi-turning points with piecewise smooth coefficients. The previous decom-
position equations are able to handle a variety of turning point problems. Consider the
singularly perturbed system

(4.1) y,= [ill(x) rl2(X) ]y, y,= d

r21(x ) i.2(x) dx’

with ,1(x ), , 2 (X ), real functions defined on a, b ], and r12(x), r2(x), piecewise smooth
functions on [a, b].

We will be concerned with the asymptotic behaviour of a fundamental solution of
(4.1) to be denoted by Y,

(4.2) Y= Y(x,l) as/x- + o.

that

(4.3)

(4.4)

(4.5)

satisfy

(4.6)

iii) With

(4.7)

First we introduce the following assumption.
Assumption 4.1. Let q(r) C(a,b), p(r) C2(a,b).
i) Assume there exist continuous functions gL(#), gR(/) defined for/t__>/ 0 such

a<=gL(tx)<=gR(l)<=b, lim gz(/x)=a, lim gR(t)=b.

ii) The quantities

J,(a,g(l)) "= Sup
a<x<gL(p,) faX q( r)exp ilxp ( r )

JR ( gR ( IX ) b ) Sup
gR(l)x<b

q(r) (exp ittp( r)) dr,

lim [J(a,gz(t))+J(gR(l),b)]=O.

J=J( gL(tt ),g(tx))

:= Sup [1 q(z)
g,(<=zz<=g,( p’(z)

d q(r)
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we have that

(4.8) lim t-lJ(gL(l),gR(l))=0.

Next we introduce
DFINITION 4.2. We say that the integrals

(4.9) IR IR(x, b I)" fx q()(expilp())d,

(4.10) I=I(a,x,l)’= q()[expipp()] de

are on a zero uniform scale on [a,b] if assumption 4.1 holds. We will also need the
following assumption.

Assumption 4.3. The interval [a, b] can be written as a union of intervals

N

(4.11) [a,b]= [.J [aj,aj+l], ax=a, OtN+l=b,
j=l

N an integer, such that on each interval aj, aj/ 1], J 1,. ., N, the integrals

(4.12) IR=fxJ+lrok()(exp+_ilp(z))dz, v,k, =1,2, v=/=k,

(4.13) eL= r()(exp+_itp())d, v,k, =1,2, v=/=k,

can be put on a zero uniform scale, the mappingp(z) is given in (4.12), (4.13) by

f (Xl(t)-X2(t))dt"

Moreover, for v= 1, k= 2 the sign in (4.12), (4.13) is taken to be minus and for
v 2, k= 1 the sign in (4.12), (4.13) is taken to be plus.

Let Assumption 4.3 hold. For each subinterval [a,a+x], j= 1,..-,N denote the
quantities gL, gR, J,a,b, (defined in Assumption 4.1) by gLs, gRj, Jj, aj, ctj+l, respec-
tively. Put

N

(4.15) gl(/x)’= E [JLj(aj,gLj(l-))+l--ljj(g.j(l-),ggj(l-))+Jgj(ggj(l),aj+)]
j=l

Define g21(/) in a similar manner. It can be easily verified that

(4.16)

and

(4.17)

By (3.13), (3.15) we have

(4.18)

(4.19)

In12 (x, a)[< g12 (),

Inu,(x,a)l=< g2(#).

[Kx=(x,=)lZ

IKel(X, )lz
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Also,

(4.20)

(4.21)

(4.22)

(4.23)

Igxl(X, )IZ Ir21() Ig19. (t),

Ig2 (x, 2)IZ Irlz (x) [g2x (Ix),
x

Inlx(x,a)l<=gl2() Ir21(z)l

In(x,a)lS g21(, )

Let Assumptions 4.1 and 4.3 hold.
We would like to verify if each of the integral equations in (3.8).possesses a

solution

(4.24) p,n,(x)=p,,(X,l), ,,k= 1,2,

with the following properties.
For each fixed/, pk(x,/) is a piecewise smooth function of x and

(4.25) lim p,,,(x,) 0

uniformly for a =< x =< b. With (3.8), it turns out that

(4.26) )Ipl(x)lZgl(tx)+ [r=(=)[ d= g2()llP=ll,

where Ilp1211 is to be interpreted as follows. If f(x) is a mapping on [a,b], then Ilfll is
defined by

(4.27) Ilfll Sup If(x)[-
a<x<b

Therefore, if

(4.28) 12"’- gl2()fab [?’21(’r)[ d’r<l,

the integral equation (3.8) with v= 1, k=2 possesses a unique solution p12(x,/) such
that

(4.29) [Ip12(x t)][<"-1__12()

Similarly, with , 2, k 1, (3.8) possesses a solution P21(x,/.t) such that

(4.30) [[pal( X, ) l[__< 1_21(/ )

if

(4.31) 21(/./,) "= g21(P,)fab Ir()[ dr< 1.
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Also from (3.8), with ,= k= 1, it turns out that if (4.28) holds then (3.8) possesses
a solutionp11(x,/) such that

(4.32) [IP11(x  )tl< 12()
---1__12()

Similarly, if (4.31) holds, then (3.8) with ,= k= 2 possesses a solutionp.2(x,/ ) with

(4.33) 21(11)Ilp  _(x, )llz 1_21(P, )

It can easily be verified that if r12(x), /’21(X), Xl(X), X2(X) are piecewise smooth on
[a, b] then the solutions of (3.8) are continuous with piecewise continuous derivatives
with respect to x.

The previous discussion shows that in order to obtain

(4.34) lim p,k(x,/) =0, ,,k= 1,2,

uniformly for a =< x _< b we also need the following assumption.
Assumption 4.4. The functions rx2(), r2x() satisfy on a, b

(4.35)

(4.36) 12(/.) < 1, 21(/.) < 1, />_/x 0.

However, (4.34) may not be the only information that we would like to have about
p,,(x,l). Actually (4.34) tells us that a first approximation to p,,(X,l) may be taken to
be 0.

In order to obtain "higher order terms" of uniformly valid approximations, we
deviate from a practice in the literature (see e.g. Wasow [17, Chap. IV, VII]). Instead of
calculating "higher order terms of asymptotic expansions" from the differential equa-
tion for

(4.37) P= (p,), ,,k= 1,2,

we demonstrate how to extract higher order terms from the integral equations (3.8).
To this end, we take a closer look at the infinite resolvent series of a Voltera

integral equation. We rewrite (3.8)
X

(4.38) pmk(X)=nmk(X)+ Kmk(x,’r2)Pmk(’r2)d’r2, m,k=l,2.

It is well known that if the series s

(4.39) S’= E T"nmk
,=0

with

(4.40) Tnmg=nm(X),
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and

(4.41)

mk Kmk(tl,t2)’’" Km(t-l,t)nmk(t)dtdt-l dtl,

v=l,2,...,

are convergent, then

(4.42) p,,,,(x)=S

is a solution of (4.38).
It is easily shown that for re=l, k=2 or for m=2, k=l we obtain with

(4.18)-(4.21) and with (4.41),

(4.43) ITnmkl<__gmk(la,)[,mk()] gmk(IX)] +1
b
lr,m(t)ldt v 0,1,

Therefore, each expression Tn is a "generalized asymptotic term of order v" in amk

"generalized asymptotic expansion" of p,,k(x). Similarly, it is easily shown that

(4.44) ITnll<= g12(t*)
b
lr2(r)ldt [12(/)] v+l,

and

(4.45) IT"n fab
"+

221 -< g21(]g) Ir21(t)ldt [21(#)] v+l.

Thus, we obtain higher order terms in "generalized expansions" of P11(x,) and
P22(x,/,). Let us adopt a definition for these circumstances.

DEFINITION 4.5. We say that

(4.46) S "= E f(/)
v=0

is a converging generalized power type expansion off(/) in the neighborhood of/=
if

i)

(4.47) f(/) E ();
v=O

ii) there exists a sequence of positive gauge functions g.(#) such that

(4.48)

(4.49) lim
g+l(/*) 0,

with

(4.50) g() [q(/,)] , v= 1,2, .
A definition of a generalized asymptotic expansion can be found e.g. in Olver [7, p. 25].
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However, we demanded here a strict additional requirement of convergence of the
series in (4.47).

The following theorem has been established.
THEOREM 4.6. With the notation of this section and with Assumptions 4.1, 4.3 and

4.4, the differential system (4.1) possesses a fundamental solution

(4.51) Y(x,)=(l+P)diagexpi Xl(t)dt,expip X(t)dt

for I >__ p o, and a <_ x <_ b. We have

The entries p,(x, l) are continuous with piecewise continuous derivatives on a, b] for
each fixed P,>-o. Moreover, the entries pm(X,) possess convergent generalized power
type expansions

(4.53 E
e---’O

The convergence in (4.53) is absolute and uniform with respect to x[a,b]. The terms

Tn, are subject to the inequalities (4.43), and the terms p(x,l) are subject to the
inequalities (4.29), (4.30), (4.32), (4.33).

Proof. The theorem is a consequence of the previous discussion.
Theorem 4.6 provides a differential proof and an extension to the results given in

Wasow [16].
There is a widespread belief in the theory of asymptotic expansions which roughly

states that "asymptotic expansions are preferable to (slowly) converging expansions".
This statement is true only in a fight context. For example, an approximation to
exp(-) for/ > 0,/x large, by the use of a power series expansion about 0 may be a
practical handicap. An asymptotic expansion may turn out to be far more superior.
However, in this setting formula (4.53) combined with (4.29)-(4.33) point out the
following. Though the entries of the matrix P in (4.51) are given by an absolutely
converging series, each entry of P has a "converging generalized power type expansion"
acfording to Definition 4.5.

Therefore, the "order" of accuracy provided by each term Tn,k in (4.53) is no
worse then the order of accuracy which may be provided by the , term in a generalized
asymptotic expansion of Pmk" In this case I have not come across anything to disprove
the following statement. "The provided approximation to Pink given by prank:

Pink T rt k
,0

may be better then an asymptotic approximation of order (n / 1)."
It is also worth noticing that it is possible to use integration by parts or some other

method to extract from pnmk an asymptotic expansion of order (N/ 1) in cases where it
is available. This could be ,done without using direct substitution in the differential
system (4.1) or (2.4). The series in (4.53) are of a double nature. They are absolutely
convergent and at the same time they provide a generalized asymptotic expansion.

We now turn to an example which clarifies the relation between the method of
stationary phase and our definition of an integral which is on a zero uniform scale on
[a,b].
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5. An example. Adopt the notation of 4 and consider on [0,1]

(5.1)

with

It,= It, (O, x, p, ) ,rS- l(exp ilx,rm+ ) d,r

3>0, m+l>0.

(5.12)

or

(5.11)

we have

(1),(5.10) O< =<x_<l

For

(The reason for specifying as above will be apparent later.) Let

(5.9) /___[x(8-l-m) (l/p,)(-l-m)! f(x(m+l) + (m+l)
+

1//,)

(5.5)

However, for

(5.6)

we find with

(5.7) gr(/)

that

g.(/,)=0, gR(/*)--1, IJ(0,1)l=<tx-lg.

3-1-m<O,

ga(/,)--1, 0<1<(m+1-3) -1,

(5.8) 4(1,1)---0.

/,>1,

(1)(8-1-m)lnx <= ( 8-1-m)lln -1)
1(8-1-m)

xS m . -

for some constant K. This corresponds to the case where IL is on zero uniform scale on
[0,1] with

(5.3) -l-m>_O,

then by integration by parts, it turns out that

(5.4) Iz.(O,x,lx) <_ lx-lK
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Therefore,

(5.13) = (m+l--- x -"+ +

and

(5.14)
(rod- 1)/1-/(m+l-)

Thus, IL(0, X,/) can be put on a zero uniform scale on [0,1].
We notice that with

(5.15) l=(m+l) -1

we obtain that

(5.16) IL= O( lI
-(m+ l)-I )

holds uniformly for 0__<x_< 1 in complete agreement with the method of stationary
phase. (See e.g. Olver [7], pp. 98-108.) Consider now a differential system (4.1) on [0, 2]
with

s-l, 3>0, 0=<t<l,(5.17) ra2(t)=r21(t)=
0, 1 <t=<2,

(5.18) kl(t) _,2(t) (m+ 1)t
2

O<t<2, m+l-8>O.

Then, by using the notations of 4, and utilizing (5.1)-(5.15) we have

(1),(5.19) N=2, gLl(P,)= , gm(/)=l, >1,

(5.20) Jn(O,gL(l))<_- Jm(1,1)=O, O</<(m+l-3) -,
2

(5.21) t J( qL ( ) l )
(m + 1)/xi-(m+l-)

(5.22) g2()=l, gR2() =2,

(5.23) JL2(1,1)=O=Ja2(2,2),
(s.24)

Therefore,

(5.25)

(5.26)

1(1) ’ 2
g21(/x)=g12(/*)=" " +

(m+ 1)1-/(m+l-)’

fo2 [r12(t)ldt fo2 [r2l(t)ldt fo t_ldt=_

0<1<(m+1--3) -1



22 H. GINGOLD

If we choose in accordance with (5.15), we end up with

_1(1(5.27) g_(/x)=(i-l+2(m+l) )

Consequently, for some/ > 0 we have for/ >/,

(5.28) 12() 21()=-1( -1-I-2(m + 1) -) I )
(m+1)-1

Let

(5.29) /0= max{1,/l}.

It can be easily verified that we may choose

(5.30) /.tl [-1(-I
__
2(m+ 1)-1)] 8-:(m+l)+, >0.

The differential system (4.1) with entries specified by (5.17), (5.18) possesses a funda-
mental solution

(5.31) Y(x,tx)=(I+P)diag{O.5ixm+l, -0.5it.txm+l), t>_o.

The desired properties of P are described in Theorem 4.6.
We turn to the next section.

6. Applications to quantum mechanics. Consider the differential system

d
(6.1) ieY’=n(z)Y, Y’-

d’r’

with e a small positive parameter. We need the following
Assumption 6.1. H() is an analytic 2 by 2 Hermitian matrix function of the real

variable , a __< " =< b. The case b- a is not excluded.
By use of a theorem of Rellich [9] it turns out that there exists a unitary transfor-

mation U(’) with the following properties: U() is an analytic function of " in [a,b]
such that

(6.2) u-l(’r)H(’r)U(’r)=(’r), U-l(’r) U*(’r), ((’)=diag(Xl(’),,2(’)}.

k ("r), 2 (q’), the eigenvalues of H(z), are real analytic functions of in a, b ]. It can be
easily verified that the transformation

(6.3) Y= U(’r)Z
takes the differential system (6.1) into

(6.4) ieZ’= [()-ieU*()U’()] Z.

Moreover, if we demand that the transformation

(6.5) Z=(I+P)W

takes the differential system (6.4) into

(6.6) ieW’ f ( "r ) W,
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then (I + P) must satisfy the differential system

(6.7) ie(I+P)’=(f(z)-ieU*(r)U’(r))(I+P)-(I+P)2(r).

2(r) is to be specified in the sequel. Two situations may occur.
Case I.

(6.8) ,(z)" Xl(’r) X2(T), a’rb.

Then, we notice that in (6.7) we have

(6.9) (I+P)’= -U*(z)U’(r)(I+P),

since

with f’= (,

(6.10)

With the initial value

((*)(I+ P)=-(I+ P)(*).

(6.11) (I+P)(a)=I

a solution of (6.9) is obtained which is an analytic invertible matrix function of on
[a, b]. (This solution is independent of e.)

Therefore, a fundamental solution of (6.1) is given by

(6.12) Y(,)=U(r)(I+P(,)) exp -ie -1 X(s)ds I

Case II. The identity (6.8) does not hold. Therefore, there is a finite number of
points tl,.. -,t such that

(6.13)
(6.14)

a<=t <t2< <tN<_b,

Xl(’r)--X2(’r)--(’r-- tj)m’hj(’r), j=l,-..,N.

mj are some integers and

(6.15) hj.(r) 4:0

for in the neighborhood of tj.. Let us now conform to the notation in the integral
equations (3.8)-(3.16). By c,k we denote the elements of U*U’.

(6.16) (c,k)" U*U’, v, k= 1,2.

In (3.8) we pick

(6.17) a=a, v,k=l,2.

Then we have

(6.18)

nt(r,a)= -v(’q) exp ie-[X(s)-Xa(s)-ie(vn(s)-v(s))] ds dr
rl

"a(’q)exp -ie-(t(s)-X(s)ds) d,
rl
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with

(6.19) :(1) ’= -2(’q)exp (1)11(s)--022())ds.

Similarly,

(6.20) n21(r,a)= 21(q’l) exp -i,-l(Xl(S)-X2(s))ds d’r

with

(6.21) F21(r) "= o2x(rx)exp (vn(s)-v22(s))ds.

In agreement with that notation we define

(6.22)

(6.23)
n(r)" diag{ Xl,X2 }, X=X()-ievxx(),

0 --iev12(’r)]R(r)’=
_iev2,(z 0

r:=-v12(r), r21(r)=-v:l(r)

(6.24) k-=ie.
We plug k, ’1, 2, rx2, r21, into (3.8) and further rearrange the terms.

There result for Pk, u,k= 1,2, four equations similar to the original ones (3.8).
However, from now on, e(x, r) in (3.1) is defined by

(6.25) e(x,z)’= exp-ie-xf (Xl(S)-X2(s))ds),
and r12(), r21() in (3.8) are replaced by x(Z), 21(), defined by (6.19), (6.21),
respectively. The previous discussion leads us to the following theorem.
THOM 6.2. With the previous notation and with Assumption 6.1 the differential

system (6.1)possesses a fundamental solution on [a,b] (b-a= is not excluded) as

follows: In Case I

P() continuous on a, b ]. In Case II there exists eo > O, such that for 0 < e < eo

(6.28) Ile(z)llzKedS Keg< 1,

uniformly for a b. K and d are positive constants independent of , e. Moreover, g
b- a < , then

(6.29) d m)n {(ms+ 1) -1,1) j=l N.
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Proof. We first show that (I+ P()) is well defined in the neighborhood of -=b if
b . By use of Assumption 6.1 it turns out that

(6.30) IIu*u’ll- o(
Therefore (4.35) holds for 12(z), 21(r). For Case II with/=e-1, we proceed to show
that for the system (6.4) all conditions of Theorem 4.6 are fulfilled. Due to (6.14), by
repeating the arguments of 5 one can show that Assumption 4.3 is satisfied. The
integrals (4.12), (4.13) are being defined in this case with r,k replaced by k ’: k,,, k 1, 2, given by (6.19), (6.21) and with

f"(6.31) p(’)" (Xl(t) ,2(t))dt.

Moreover, there exists a finite number of appropriate subintervals [an, an+ 1] such that

n= N1
[a,b]= U [ctn,an+l].

n=l

N1, is some natural number, N > N, where M so given by (6.13). On each subinterval
[an,Ctn+X]

li/ (In(x,a)[+ In2(x,a)l)=0

uniformly for ctn=<x =< an+ 1, n 1,..-,N1. This follows by use of techniques given in
4 and 5. The problem then boils down to the evaluation of integrals of the form (5.1).
We may choose= 1 and as one of the numbers (mj+ 1)-,j 1,...,N, if It.l < .
(6.32) g12(P,)<=K-d=Ked, 0<e=<e0<l.
Without loss of generality, we may also assume that we have

(6.33) g2(t)<__Ked, 0<e=<e0<l.
Without loss of generality, we may assume that

(6.34) 12()’--’ gl2(/’t)fab 1’21(’r2)ld’r2<=Ked(fab [r21(’r)l d’r) <1,
and

for 0 < e _< e0 < 1. By virtue of (6.30) this is so even if an end point of [a, b] is infinite.
Thus,

(6.36) IIP() I1__<g < 1

for some constant/, and 0 < e =< e0 < 1, uniformly for a =< z =< b. The results follows.
The adiabatic approximation theorem (see e.g. Messiah [6, Chap. XVII]) attracted

a considerable amount of attention. It has been. rigorously proven by Kato [4] for a
general Hamiltonian with noncoalescing eigenvalues. Friedrichs [2], [3] discussed the
theorem. For a 2 by 2 Hamiltonian with a special type of coalescing zeros Friedrichs
proved the adiabatic approximation theorem. We intend now to give a proof of the
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above theorem for a 2 by 2 Hamiltonian with very general type of degeneracy of its
("energy levels") eigenvalues.

We will use the setting used by Friedrichs [2]. Accordingly, the differential system
(6.1) is subject to assumption 6.1 with 0 =< =< 1 and e is a "stretching" variable. Given
the initial value problem

(6.37) ieY’= H() Y, Y(O) U(O).

The proof of an adiabatic theorem which follows is accomplished by showing that
uniformly for 0 < =< 1
(6.38) n(r)Y(r)-- Y(r)((r) ase0.

The interpretation is that "if a Hamiltonian system started to evolve from an
initial ’eigenstate’, then asymptotically it will continue to evolve into the same ’eigen-
state’." An "eigenstate" of the Hamiltonian H(r) is to be identified with an eigenvector
of H(’).

To prove (6.38) we invoke Theorem 6.2 with [a,b]=[O,1] and we use (6.26) or
(6.27). If H(-) possess identical eigenvalues then by (6.26) we have for the left-hand
side of (6.38)

(6.39) H(’r) Y(’r)= H(’r)U(’r)(I+ P(’r))(exp(--i-lf X(S)ds )I).
Since

(6.40) (’) =X(’)I
then

(6.41) H()U(’) X(’)U(’).
For the right-hand side of (6.38) we have

(6.42) Y(’) ( (,) U( ,)( l + P( ))(exp(\ \
ie -1f k(s)ds/]]1] k (’).

Thus in the case of identical eigenvalues, (6.38) is actually an identity.
If H(r) does not possess identical eigenvalues, then by (6.27) we have

(6.43) H()Y()=H()U()(I+P(z))(exp(-ie-lff(s)ds)).
Consequently, by the asymptotic nature of P we have

(6.44) H(-)Y(-)-- H(-)U()(exp(-ie-lfo f(s)ds

By (6.2) we conclude that

(6.45) H(,)Y(,)- U()((’)(exp -ie-lfo*(s)ds)).
Since the diagonal matrices ((s) and 2(s) commute, we conclude that (6.38)

holds.
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7. Concluding remarks. The analysis presented in this work demonstrates that it is
possible to obtain "global results" with multi-turning point problems.

Uniformly valid asymptotic formulas can be obtained in a full neighborhood of a
turning point on the real line.

It is not necessary to always use "lateral connection formulas".
"Central connection formulas" may be superior in certain important applications.

Formula (6.27) may be considered a special case of a central connection formula.
Therefore, methods related to the construction of central connection formulas should
be considered important. See Wasow [19] for "connection problems".

Acknowledgment. Acknowledgment is due to Professor A. Levine from the Physics
Department with whom I had useful clarifying discussions.
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FINITE DETERMINATION OF BIFURCATION PROBLEMS*

PETER B. PERCELLf AND PETER N. BROWN"
Abstract. A CO theory of finite determination of bifurcation problems is presented in this paper which

supplements a corresponding Coo theory of Golubitsky and Schaeffer. Finite determination of both bifurca-
tion diagrams and stability properties of branches is considered. CO finite determination of bifurcation
diagrams is shown to follow from an analytic-geometric nondegeneracy condition which is modelled on a
criterion of Kuo, rather than an algebraic condition of the type found in the Coo theory. The class of
"quasi-homogeneous" bifurcation problems, which contains bifurcation problems previously studied by
McLeod and Sattinger and Landman and Rosenblat using more classical methods, is introduced and shown
to admit a simplified and computable nondegeneracy condition which suffices to ensure finite determination
of the bifurcation diagram. The results of the CO theory are compared with those of the C theory and are
found to be a distinct improvement in some cases.

Two different notions of equivalence of bifurcation problems are used in the results on finite determina-
tion of bifurcation diagrams. Contact equivalence is used primarily because it appears in the Coo theory. BD
equivalence (i.e. existence of an ambient, parameter-preserving homeomorphism of bifurcation diagrams) is a

simpler and more fundamental concept of equivalence. Furthermore, it permits the possibility that each
coordinate function of a bifurcation problem may have its own "order of determination".

1. Introduction. Here a bifurcation problem is considered to be a family of maps

parameterized by R such that G(0, 0) 0, or, more compactly, a map

(It is assumed that infinite dimensional bifurcation problems have already been re-
duced to finite dimensional ones by some device such as the Lyapunov-Schmidt
reduction.) The first feature of interest in the present context is the variation of the set
of zeros of G(.,X) with the parameter ,; the set G-l(0) is called the bifurcation
diagram. Second, ifp=n and G(.,X) is thought of as a family of vector fields, then the
zeros of G(.,X) are steady state solutions of the differential equations +/-=G(x,X)
whose asymptotic stability properties are of interest. Roughly, two bifurcation prob-
lems are equivalent if their bifurcation diagrams are locally homeomorphic in a neigh-
borhood of the origin, and a bifurcation problem G is finitely determined if some
Taylor polynomial of G has the property that every other bifurcation problem with that
Taylor polynomial is equivalent to G. The theory developed in this paper is entirely
local in the sense that bifurcation problems are considered only on small neighbor-
hoods of the origin.

By the implicit function theorem, in order for the bifurcation diagram of G to
actually bifurcate at the origin it is necessary that

rank[ Gx(0, 0)] <p,
where Gx denotes the partial derivative of G with respect to the variable x R n. On the
other hand, again by the implicit function theorem, even when there is true bifurcation
at the origin, the bifurcation diagram of G is well behaved away from the origin if

rank[G(u)] =p whenever G(u)=0 and u=(x,h)4:O.
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This leads one to propose (1.1) as the basic nondegeneracy condition for bifurcation
diagrams. In fact, [}[}4 and 5 are devoted to consideration of two rather general classes
of bifurcation problems ("quasi-homogeneous" and real analytic) for which (1.1) is
sufficient to guarantee CO finite determination of the bifurcation diagram.

However, (1.1) alone is clearly not always adequate as a Criterion for finite
determination. For example,

G(x,X) (e-(1/x2)(x--k) xO,
0, x=0,

is a C bifurcation problem which satisfies (1.1), but all its Taylor polynomials are
identically zero. A somewhat more delicate inadequacy is found in the example

H satisfies (1.1) and is equal to its Taylor polynomial of degree 3, so one might hope
that every bifurcation problem whose Taylor polynomial of degree 3 equals H is
equivalent to H. But this is not true because

X2- X2X q- k4-- ( X X2/2)2
"+" -34X4

is zero only at the origin, while H is zero on the curves x 0 and x X2. (It will follow
from Theorem 4.1 that the Taylor polynomial of degree 4 for H does qualitatively
determine bifurcation diagrams for all perturbations of order greater than 4.)

Our full nondegeneracy condition and criterion for Co finite determination of
bifurcation diagrams, which contains and refines condition (1.1), will be stated in {}3. It
is a version of a condition of Kuo [3]. Buchner, Marsden and Schecter [7] have obtained
results similar to those proved below using a blowing-up construction and techniques
from algebraic geometry. There, however, no special emphasis is placed on requiring
the equivalence to preserve the value of the bifurcation parameter )t. The bifurcation
problems x3- Xx=0 and x)t--0 would be considered equivalent in [7], but not here.
However, if one constructs the theory presented here without the above restriction on
)t, then the two theories are essentially the same. The interested reader should compare
the results in 2 and 3 below with those obtained in [7, 1].

In the case p=n, the basic nondegeneracy condition for stability properties of
bifurcating branches is simply that no eigenvalue of Gx(u) be purely imaginary when
G(u)=0 and u=0.

The rest of the paper is organized as follows. Section 2 contains necessary defini-
tions, notation and minor technical preliminaries. Section 3 is devoted to the statement
and proof of our basic result. In {}4 the class Of "quasi-homogeneous" bifurcation
problems is introduced and used to show that our basic result contains classical results
such as those of McLeod and Sattinger [6]. Section 5 deals with real analytic bifurction
problems. In 6 our CO theory of finite determination of bifurcation diagrams is
compared with the C theory of Golubitsky and Schaeffer [1]. Finally, .in 7 several
results on finite determination of stability properties of bifurcating branches are pre-
sented.

2. Preliminaries. We begin by presenting notation and .concepts needed from
linear algebra. The standard inner product on a Euclidean space R" is denoted by. (., )
and the associated norm by I1.11..( m, N P) denotes the set of all linear maps from R
to N p and is identified with the collection of p x rn matrices; GL(IR P) denotes the set of
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invertible linear maps from R p to itself. For A Za(R,, R p), let

d(A) inf( II-G4]I -P, II-ll- 1},
with the convention that all vectors are columns and the superscript "t" is used to
denote a transpose. Clearly d(A)>0 if and only if rankA =p. When A L’(R’,R P)
and rankA =p, let A / denote the pseudo-inverse ofA which in this situation is given by

a +--at(aat) -1.

Obviously AA /= I, where I is the identity map of P. Also, if B GL(g P), then it can
verified by a short computation that

(2.1) A+B-I=(BA) +.
Furthermore, when A .oq’(R , P) and rankA =p,

-1(2.2) d(A)=lla+ll

since [d(A)] z equals the smallest eigenvalue of AA and IIa+ll 2 equals the largest
eigenvalue of (A +)A +=(AAt) -1. For A .a(R,, R,), let o(A) denote the spectrum of
A, and let Ind(A) denote the index ofA which is the triple (a,b,c) with a,b and c the
number of eigenvalues of A with positive, negative and zero real part, respectively.

The basic notation connected with nonlinear functions which we shall need is the
following. The notation

F: (n m, 0) (n P, 0)

means that F is a map from R to ’ whose domain contains a neighborhood of the
origin and that F(0)= 0. Iff and g are real-valued functions defined on a neighborhood
of 0 R ", then

f(u)=o(g(u))

means that

[f(u)/g(u)]-oO as u0,

while

means that [f(u)/g(u)] is merely bounded. For G: R,1 R.kR p, G, denotes
the partial derivative of G with respect to xi R", and G’ denotes the total derivative of
G.

Next we give precise definitions for various notions of equivalence between bifur-
cation problems. Let

be continuous maps. We say that G and ( are [C] BD equivalent (BD for bifurcation
diagram) if there are a neighborhood Vc " R of the origin and a map

(n" n’,0)
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of the form

(2.3)

which is a homeomorphism [C diffeomorphism] onto its image such that

(O-(O) C V) d-(O)(V).
We call G and ( [Cr] contact equivalent if there exist a neighborhood V of the origin in
"xz, a map

(v,0)-, (r"xr’,0)
which is a [C] BD equivalence between G and and a continuous [C] map

such that

v.
Now, supposep n and let

o, (n"x (n",0)
be C maps. We say that G and are [C’] 5"equivalent (Safor stability) if there exists a
[C’] BD equivalence q, with domain Vbetween G and such that

Ind(Gx(u))=Xnd(.(ck(u))) when u(G-(O) (0}) V.

Note that, because of the form (2.3) imposed on q, these equivalences can be thought of
as equivalences between two families of maps parameterized by .

The following "multi-exponent" notation is introduced in order to be able to
recognize that each coordinate function of a bifurcation problem G may have its own
"order of determination". For p > 0 and v R m, let

V= diag(V, ,V),
where the right-hand side is the mm diagonal matrix with the diagonal entries
Ox, ., p"-. In this context we call v R a multi-exponent. For v " a multi-expo-
nent, let

max(Ivil’i 1,... ,m }.
We call a multi-exponent v R m a constant exponent when v v and then we
identify it with a single real number also denoted by u. For example, in the expression
pl-v, where P-R m, the 1 represents (1,.- .,1) R m.

Now we are in a position to rigorously define the finite determination concepts. If

O: (" ’, 0) -, ( , 0)

is a C2 bifurcation problem and u is a multi-exponent, we say that G is [C r] BD,
respectively contact or 5a, u-determined if G and G+ P are [C] BD, respectively contact
or 5a, equivalent for every C2[Cmax’-)] perturbation
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such that, with u= (x,,)R" R and p-- Ilull,

and

(Note that if r>= I1, then requiring that IIl-p(u)ll o(1) is redundant.) A bifurcation
problem is called [C r] BD (respectively contact or 6a, finitely determined) if it is [C BD
(respectively contact or, v-determined) for some multi-exponent , R P.

The last concept we shall need is that of a horn neighborhood of a bifurcation
diagram (compare with [3]). For a bifurcation problem

a" (rnxl,O)---)(P,O),

a multi-exponent , p and a constant i > 0, let

n(a,,) (u"x ’. II-a(u)ll< , where p= Ilull> 0).

3. Finite determination of the bifurcation diagram. This section contains the
fundamental result of the paper which is a precise statement of our nondegeneracy
condition for bifurcation problems together with a proof that it refines the crude
nondegeneracy condition (1.1) sufficiently to ensure BD ,-determination and contact
I,l-determination.

D.FINITION. Let G: (Rnz,0)( P,0) be a C map and ,Nt P be a multi-ex-
ponent. We say that G is ND(,) (nondegenerate of order ,) if there exist e > 0, 8 > 0 and
a neighborhood U of the origin inn for which, with Ilull,

(3.1) d(p-"G(u))>_e wheneveru=-(x,X)H(G,,,8)cU.

Remark. If G is ND(,), then G is also ND(II). To see this, note that we may
assume that diam .U< 1. Then clearly

n(a, I1,) n vc /(a, ,) n .
Furthermore,

a( ol-,ax( U)) _a(o-%(u)),
because, for a R p a unit vector,

I1/01 -’’ax(u )11 II( 0-’’) ’oX-ax( u

a Ilo=-’=’,ll’d(p-=Gx(u))

>__d(1-%(.)).
THEOREM 3.1. Suppose G: (NXNt,0)-(N’,0) is a C map and vNP is a

multi-exponent such that G is ND(v). Then G is BD v-determined. Furthermore, if v is a
constant ,exponent, then G is contact ,-determined. (In particular, by the remark, G is

contact Ivl-determined even when v is not a constant exponent.)
Proof. Suppose P: (R R t, 0)- (N ’, 0) is a C: map such that

(3.2) IIo-P(u)l[--o(1) and Ilol-ex(u)ll-o(1).



FINITE,DETERMINATION OF BIFURCATION PROBLEMS 33

We must construct a BD equivalence between G and (= G+ P, and with the added
assumption that v is a constant exponent improve it to a contact equivalence.
Throughout the construction of q,, W is a neighborhood of the origin in Rn 0t which
we shall assume is shrunk as necessary and J [0,1] is the unit interval in

Let F: n R g p be defined by

F(u,s)=G(u)+sP(u), u O " X R t, s O

The homeomorphism will be found by following integral curves of a vector field " on0 0 x R from s 0 to s 1, where ’(u, s) is such that for (u, s) W J,

(3.3) F’(u,s).(u,s)=O when F(u,s)=O,

(3.4) (’(u,s), A)= 0, A (o} r’ (o)  rnr’ r,

(3.5) ((u,s),O)=l, O= (O, O,1) lnx llx .
Note that (3.3) means that " is tangent to F-l(0), (3.4) means that the , coordinate is
constant along integral curves of " and (3.5) means that the s coordinate equals time
along interval curves of ’. For.Wc U sufficiently small,

(3.6) d(o-F(u,s))>=e/2 for(u,s)(H(G,u,8)W)J,

because if a 0 P and Ilall 1, then

I1 /0x- gx(u,s)ll=ll v- Gx(u)+s  ox- Px(u)ll

_>_e-o(1),

when (u,s)(H(G,v,8)U)J, by (3.1) and (3.2). In particular, Fx(u,s ) has rankp
when (u,s)(H(G,v,8)rq W)J. Let

be the vector field defined by

(u,s) (-[(Fx(u,s))+(F,(u,s))] ’,0,1)’
=(--[(Fx(u,s))+(P(u))] t,0,1) t.

Then clearly

(3.7) F’(u,s).(u,s)=O for (u,s)(H(G,v,8)NW)J

and " satisfies (3.4) and (3.5). Furthermore, by (3.2) and (3.6),

(3.8) II (u, )-oll=o(llull) uniformlyinsJ,
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since, by (2.1) and (2.2),

II( u, )-o11--II(Fx(U,))+< P( u))ll

Let " $$ be a C "bump function" such that 0(y)l for all yP,
(y)= 1 if IlYll 1/2 and (y)=0 if IlYII 1, and then let

X(U)=(p-G(u)/8) when u0.

Then 0X(u)l for all u0, X(u)=l if uH(G,,8/2), X(u)=0 if uH(G,,8)
and X is C2. Finally, let be the vector field on WJ defined by

O, u=O.

Clearly f is C on (W- (O})xJ and, by (3.8),

(3.9) Ilff(u,)-oll=o(llull) uniformlyinsJ,

so is differentiable, but not necessarily C, on all of WJ. By (3.7) and the properties
of X,

(3.10) F’(u,s).(u,s)=O when (u,s)(H(G,v,8/2)W)J.

Thus, by choosing W small enou, we can ensure that satisfies (3.3), since if
F( u, s) 0 and u 0, then

-(O(u)+V(u))=o
so

II#-"O(u)ll_< IIp-"P(u)ll=o(1).

It is obvious that " satisfies (3.4) and (3.5).
In order to be able to define by following integral curves of ’, we must check

uniqueness. Integral curves through points not on the s-axis are unique because " is C
on (W- {0})J. By (3.9) there exists >0 such that

so if

when ( u,s ) WJ,

(3.11) (u(t),s(t))

is an integral curve of ’I(W- (0))J, then

Ilu’(t) I1(u(t),s(t))-ollz llu(t) II.



FINITE DETERMINATION OF BIFURCATION PROBLEMS 35

Therefore

in other words

[d )]/[[u(t)[[ __< +1._(2+1)__< _(l[u(t)l[2 2
2

Thus, for o < t in the domain of the curve (3.11),

(2 + 1)( tx- to) =< ln([[u (tx)[[2/liu (to)[[ 2) _< (- + 1)( tl- to),

so

exp [- (702 + 1)(tt- to)] <= [[U(tl)[[/[[U(to)[[ =< exp[(2 + 1)(tt- to)

hence, with /= exp[(2 + 1)/2],

(3.12)

This implies that the s-axis itself is the only trajectory of ’ through each of its own
points.

Now, using (3.12), choose Vc W to be a neighborhood of the origin small enough
so that if

" VXJ--> WXJ

is determined by letting +(u,t) be the integral curve of ’ which passes through
(u,0) when t=0, then p is defined on all of VJ and p is a homeomorphism onto a
neighborhood of {0} Jc WJ. Note that, by (3.5), p has the form

and, by (3.12),

(3.13) when ( u,s ) VJ.

At last, we define q,: V W by letting q,(u)=q(u, 1). Then is clearly a homeomor-
phism onto its image and, by (3.3) and (3.4), it is a BD equivalence between G F(., 0)
and 0 F(., 1).

Before upgrading the equivalence between G and ( to a contact equivalence, we
must study the effect of q, in greater detail. In particular, letting

P,(u)=4(,k(u))-G(u) for u V,

we shall need to know that

(3.14) llp-Pq,(u)ll= o(1)
and that, for y and V sufficiently small,

(3.15) P,(u)=0 when uH(O,v,y)fq V.
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For (u,s) VJ, let

and

Then

Q+(u,s)=F(+(u,s))-G(u)

0--- Q, ( u,s )] F’( p( u,s)).f((u,s))

[-x((u,s))] ’((u,s)),
so, since Q,(u, O) O,

IIo-v,<u,t)l[<- o- [Q<u,s)] ds

Thus, by (3.2) and (3.13),

(3.16) Ilo-au.)ll=o<a) uniformlyinsJ.

Ts proves (3.14) because Q+(u, 1)= P,(u). Since

F( (.. )) a( (u,))+e( (.. )).
it follows from (3.2), (3.13) and (3.16) that if uH(G,,e) V, then

<nr+ o(1).

uniformly for s J. Therefore, for and V sufficiently small,

(3.17) (u,s)(H(G,,8/2)W)XJ when

This proves (3.15) because, by (3.10), F is constant on trajectories of which remain in
(H(G,,8/2) W)XJ, so

e(u)=F((u,))-F((u,O))=O whenun(a,,r)V.

Finally we construct a matrix valued map wch completes a contact equivalence.
For u V and o P, let

0: v(p,
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be defined by

(3.18) O(u)(v)= {0,(<(u)’>/llo(u)ll=)&(u)’
When G(u)4O an P(u)4:0, O(u) is just a rank one linear transformation designed so
that

O(u)(O(u))=&(u).
By (3.15) and (3.18), 0(u)=0 for u in H(G,v, y)& V, which is a neighborhood of
[GI(V-{0))]-1(0), so O is continuous on V-{0}. By (3.14), (3.18) and the extra
hypothesis that v is a constant exponent,

for u V-H(G, v, ), so/9 is also continuous at the origin. (This is the only place the
extra hypothesis is used in the proof.) Since O is continuous on V and O(O)= O, we can
shrink V so that

I+O(u)GL( v) whenuV,

where I is the identity map of v. Let

,(u)=(I+O(u)) -1 foruV.

Then

is clearly continuous and

since

(I+O(u))(G(u))=G(u)+P,(u)=r(,(u)).

4. Quasi-homogeneous bifurcation problems. In this section we show that for
"quasi-homogeneous" polynomial bifurcation problems the basic nondegeneracy condi-
tion (1.1), checked only at points on the unit ball, is sufficient to ensure finite de-
termination with the order v of determination depending only on the degree of quasi-
homogeneity. This result is a generalization of results of McLeod and Sattinger [6, 3
and 6] and Landman and Rosenblat [4, 4, 6 and 7]. It is interesting to note that (4.3)
below contains in a unified form the three apparently different sets of nondegeneracy
conditions listed as hypotheses in [6, Thms. 3.1 and 6.1] and [4, Thms. 4.1 and 4.4].

DEFINITION. Let G: (, 0) ( v, 0) be a map and let / and v be
multi-exponents such that

(4.1) min( p,i: l<i<m}=l.

We say that G is quasi-homogeneous of degree (t, v) if

G(ou)=oG(u) for uR and o>0.
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Remark. Note that the above definition could have been formulated with (4.1)
replaced by the weaker condition that min(iti} > 0. However, min{ It i} >= 1 is necessary
for the next theorem and whenever G is quasi-homogeneous of degree (it, v) with (4.1)
replaced by min( It ) > 0, one can rescale by setting o 6 for e min( It i) so that both
(4.1) and (4.2) hold with tt and v replaced by = It/e and = v/e. The advantage of the
definition as it has been formulated is that it minimizes the order of determination in
the next theorem.

THEOREM 4.1. Suppose G: (IR"Rt, O)(RP, O) is a polynomial mapping and It
gt and vgt p are multi-exponents such that G is quasi-homogeneous of degree

(it, v). If

(4.3) rank[Gx(v)] =p whenever G(v)=0 and Ilvl[=l,

then G is ND(v), so G is BD v-determined and contact Ivl-determined.
Proof. By (4.3) and compactness of the unit sphere in Rn R t, there exists e > 0

and/J > 0 such that

(4.4) d(Gx(v))>=e whenever [Io(o)ll< and Iio11=1.
We shall show that G is ND(v) by proving that if U is the open unit ball in Rn
then G, v, e,/J and U satisfy (3.1).

Suppose u H(G, v, )n U. Since 0 < p II ull < 1, there exists a o R such that

(4.5) 0<o<1 and IIo-ull=a.
Let

(4.6) v=o-u.

Then

(4.7) p__<o

since, by (4.1), (4.5) and (4.6),

/o Ilull/o IIo-oll=< Iloll--- 1.
Note that, by (4.1),

(4.8) min { v." 1 __<j_<p ) >= 1,

since G(0)= 0, and, by (4.2),

(4.9) Gx( o’v ) oGx( v )o-,
where It-- (j,n) II" X R t. Then IIG(v)II < since, by (4.2), (4.6), (4.7) and (4.8),

IIa( o)11 IIa(o-u)I1= IIo- =a (u)llz II0-a ( u)ll< ,
so, by (4.4), d(Gx(v))> e. Thus, for a a unit vector in R P and
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by (4.1), (4.5), (4.6), (4.7), (4.8) and (4.9),

o (:-"G()) .
Example 4.2. Let G" ( x R, 0) (, 0) be defined by

It i easy to check that, with F=(2, 3,1) and =(3, 4), G atifie the hypothee of the
last theorem. Therefore i BD (3, 4)-determined and comact 4-detened. Thi
ample of the type of bifurcation poblem teated by Landman and Roenblat [4, 6].

The to example in 6 ae ample of the type of bifurcation woblem considered
by McLeod and Sattinge [6].

5. Real analytic biturcation problem. The elt of thi ection i that fo
analytic bifurcation poblem the basic nondegeneacy condition(1.1) i indeed the key
to comact finite determination, o the ole of the extra detail in ND() i imply to pick
om an ode of contact detenation. The idea of uin the Lojaieicz inequality
p. S9] to pove ch a elt i ell known (e.g. [2] and [3]).

(5.1) rank G ( u)] p whenever G (u) 0 and u, O,

then G is contact finitely determined.
Proof. Consider the real analytic function

:(u) IIG(u)il + det[(Gx(u))(Gx(u
It follows immediately from (5.1) that f(u) can vanish only when u=0. Therefore if U
is a closed ball centered at the origin and contained in the domain of f, then there exist
constants > 0 and > 0 such that

llG(u)ll+dt[(G(u))(G(u)) ’] IIuII for u U,

by the Lojasiewicz inequality. Thus

det[(G(u))(G(u))’] (/2)llull wnuH(G,/2,)U,

But [d(G(u))] is just the smallest eigenvalue of (G(u))(G(u))’ and llGx(u)ll 2 is its
largest eigenvalue, so

[.(G( u))] det (a())(a())’]/II1 f )11<-
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Hence if e=( inf,llGx(u)lll-P), v=/2 + 1 and8 X//2, then

d(Gx(u))>= llull when uH(G,v,8)nU.

The conclusion now follows from Theorem 3.1. []

6. Comparison with Co finite determination results. In this section we shall com-
pare the results of the previous sections with a slightly improved version of the result on
finite determination obtained by Golubitsky and Schaeffer in [1]. For G: (Rn R t, 0)
(R P, 0) a C map, we let ’G denote the set of all maps H: R X P of the form

H(u)= r(u).G(u)+Gx(u).R(u ),

where

(6.1) T: nxI(P,P) and R: (n)Rl, o)--)(n,o)

are C maps. This differs from the ’G of [1] in that we require that R(0)= 0. With this
notation, the C finite determination result of [1] can be rewritten in the following
somewhat strengthened form.

THEOREM 6.1. If G: (NnX N t, 0)(N ’, 0) is a C map and is a positive integer
such that

(6.2) QG whenever QC(NI"Nt, N ") and Q(u)-- o(llull ),
then G is .C contact.,-determined.

The content of the next theorem is simply the unsurprising result that condition
(6.2) which is strong enough to ensure .C contact ,-determination is stronger than our
condition which ensures Co contact ,-determination.

THEOREM 6.2. If G: (N"X N z, 0)(N P, 0) is a C map and u is a positive integer
such that (6.2) is satisfied, then G is ND(;,).

Proof. We shall give a proof by contradiction. Suppose G is not ND(;,). Then there
are nonzero sequences ( u } c I" X and { a } c II ’ such that

o-- Ilull o, I1 11--1,

(6.3) p-G(u) 0,

(6.4) atp-"G( u) O.

We may assume that there is a unit vector R p such that a 2. At this point the
cases , even and , odd must be handled separately.

If , is even, let Q(u)--Ilull. Then, by (6.2), there exist C maps T and R as in
(6.1) such that

(6.5) Q(u)= T(u).G(u)+Gx(u).R(u ).

When multiplied on the left by O-"at, (6.5) becomes

(6.6) otter [ottT(u)] [p-’G(u)] -k- [ottol-’Gx(U)] [o-IN(u)].
But at__., 1 while, by (6.3) and (6.4), the right-hand side of (6.6) converges to 0
(because p-IR(u) is bounded since R(0)= 0). This is a contradiction.
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If v is odd, let Q(u)=llull +x, so that Q is again C. Then each component of
Q(u) is a summation of polynomials in the components of u, and hence Q(u) has the
basic form

wherej/ {1,...,n+ 1} for each k, Pk C(RnxRI, R P), and P/(u)= O(llull). There-
fore, by (6.2) P/(u) IG for each k, and so there exist C maps T/ and R as in (6.1)
such that

Hence,

(6.7) Q(u)= ujkT(u)).G(u)+Gx(u). ( ujkRk(u))
k k

r(u)..O(u)+Ox(u).R(u),

where T and R are C maps such that Z(u)=O(llull) and R(u)=O(llull2). Multiplying
(6.7) on the left by O -t"+ 1)Ct/ this time leads quickly to a contradiction as in the first
case. t3

In [1], the main emphasis of the C theory developed there is concerned with
finding a universal unfolding of a bifurcation problem. However, if one is only inter-
ested in equivalence of bifurcation diagrams, then condition (6.2) and the notion of C
contact finite determination are sometimes unnecessarily restrictive, as the following
simple examples indicate.

Example 6.3. Consider G: ( ,0) ( , 0) defined by

It is easy to verify that G satisfies the hypotheses of Theorem 4.1, with (1,1,1) and
v=(2,2), so G is C contact 2-deterned. However, G is not C contact finitely
deterned. In particular, the result of 5 for real analytic bifurcation problems is false
with a conclusion of C contact finite determination. To see that G is not C contact
v-deterned for any v, note that if H G has the form H(u) (0, h (x))t, then
h(x)=(x)llxll . (This can be shown by finding an appropriately simple set of genera-
tors for G.) Thus (O,x) is not in G for any integer , so (6.2) cannot be satisfied for
any . But for general G it can be shown that if G is C contact -determined, then
(6.2) holds with v replaced by v + 1. fi

Examp& 6.4. Next consider H: ( 2 R, 0) ( 2, 0) defined by

Again it is easy to check that H satisfies the hypotheses of Theorem 4.1, ts time with
(1,1, 2) and (3, 3), so H is C contact 3-deterned. Here the shortcong of the

C theory is that H is only C contact 4-determined, so the degree of C contact
deternation is gher than is necessary for the puwose of capturing the qualitative
structure of the bifurcation diagram. To see that H is not C contact 3-determined,
note that, for example, ( 2 2 0)t is not in G, so a perturbation of H by ts fourthXIX2
order term gives an H wch is not C contact equivalent to H. fi
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7. Results on 5 finite determination (for p= n). It is clear that nondegeneracy
alone is insufficient to ensure 5 finite determination because there is nothing in our
nondegeneracy conditions to prevent eigenvalues of Gx(U) from being purely imagin-
ary. In this section we shall consider several cases in which 5 finite determination
follows from a nondegeneracy condition combined with a condition which keeps the
spectrum of Gx(u) away from the imaginary axis

o= {zC: Rez=0}.

First we present a lemma which gives a useful formulation of what is needed to prove
g-determination when G is ND(u).
Ln 7.1. Suppose G: (R"xRt,0)(R",0) is a C map and" is a multi-

exponent such that G is ND(g). If there exist > O, > 0 and a neighborhood U of the
origin in"such that, with E(R",R") and p=[[u[[,

(7.1) O(Gx(u)+E)J= when uH(G,u,6)Uand [[0-E[[<V,
then G is g-determined.

Proof. Let P: (R" R t, 0) (R ", 0) be a C: map such that

]]p-"P(u)]=o(!) and

Then there exists a neighborhood Wc U of the origin for which

(7.2) Iloi-,sPx(u)l]< y when (u,s) wJ,

where J[0,1]. Note that we may assume, by mang them smaller if necessary, that
the 8 and W here have all the properties of those in the proof of Theorem 3.1.
Therefore, by the proof of Theorem 3.1, there exists a BD equivalence : V W
between G and G+ P. Furthermore, with

F(u,s)=G(u)+sP(u) and : VxJ WXJ

as in the proof of Theorem 3.1,

s Fx(+(u,s)), sJ,

is a continuous path in (",") from Gx(u) to ((u)) when u V. But, by (7.1)
and (7.2),

o(Fx(+(u,s)))nY= when (u,s) [(G-(O) (O))n V] XJ,

since if w is defined by (w, s) q ( u, s), then

and, by (3.17),

wH(G,v,6/2) WcH(G,,,6) U.

Thus q, is actually an 5’equiva]ence, i.e.,

Ind(Gx(u))=Ind(x(Ch(u))) when u(G-(O) (0))("1V,
because a(Fx(b(u,s))) depends continuously on s (so eigenvalues of Fx(+(u,s)) cannot
migrate across oCas s varies without lying on oCfor some s J). E]
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The next lemma is just a minor technical observation which will be used in some of
our proofs later.

LEMMA 7.2. If G: (R" Rt, 0)(Rn, 0) is ND(v) and e, i and U are such that (3.1)
holds, then, for E.’(, ),

II  (u)- ell 1 whenever u H(G, v, ) n U and I1. 1-  EII .

II0x-"EII/d(0x-ax(u)).
A very simple and natural condition which keeps the spectrum of a nonsingular

matrix off otis that the matrix be symmetric. The following lemma will be used to prove
our first 6a v-determination result, in which the condition added to nondegeneracy is
just that Gx(u) be symmetric. This result covers the important class of gradient vector
fields.

LEMMA 7.3. Let A.(R , ). If there exists Q .,q( , ) such that

(7.3) QA +AtQ is positive definite,

then

o(A)no= .
Proof. We shall prove the contrapositive. Suppose that o(A)no=/= . Then there

exist fl and a nonzero v C such that

Av= iflv,

which is equivalent to

t= iflt,

where is the complex conjugate of v. Thus, for all Q

t(QA +AtQ)v itQv itQv=O.

It follows that there is no Q for which (7.3) holds.
THEOREM 7.4. Suppose G: (Rt,0)(,0) is a C2 map and v is a

multi-exponent such that G is ND(v). If Gx(u ) is symmetric for all u , i.e.
G(., ,) is a gradient vectorfieM on for each ;k t, then G is 6av-determined.

Proof. Since G is ND(v), there exist e > 0, i> 0 and U such that (3.1) holds. We
shall show that the theorem is a consequence of Lemma 7.1 by applying Lemma 7.3 to

A=Gx(u)+E whenuH(G,v,8)nUand II X- ell< 
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in order to verify that (7.1) holds if 3,=e. It suffices to show that if Q=G(u)-, then

(7.3) holds. Note that, since G(u) is symmetric,

+A’Q +

Thus QA +AtQ is symmetric. Furthermore, by Lemma 7.2,

Therefore QA +AtQ is positive definite.
For nonsingular real 2 2 matrices the trace can be used to keep eigenvalues off

J; if A (2,R2) is nonsingular, then o(A)J if and only if detA >0 and
trA 0. In the next theorem a nondegeneracy condition on the trace is used to control
o(6(u)).

THEOM 7.5. Suppose G: (R2X R ,0)(R 2, 0) is a C2 map and v is a constant
exponent such that G is ND(v.). If there exist e > 0, # > 0 and a neighborhood U of the
origin in R : such that

(7.4) Itr( x(U))l  l u[I whenun(G,v,)Vanddet(G(u))>O,
then G is v-determined.

Proof. We may assume that (3.1) holds with the same e, 8 and U. The theorem will
be proved by showing that (7.1) holds if e/2. Supppose that

uH(G,u,)U and

Note that

because

and, by Lemma 7.2,

sgn(det(G(u) +E )) sgn(det(G ( u )))

Gx(u)+E=Gx(u)(I+ Gx(u)-lE)

det(I+Gx(U)-tE)>O.
Therefore, if det(G ( u )) < 0, then det(Gx( u ) +E) < 0 so the two eigenvalues of G ( u ) +E
are real and of opposite sign. On the other hand, if det(G (u)) > 0, then det(Gx(u) +E)
> 0, so G (u)+E can have purely imaginary eigenvalues only if tr(G (u) +E ) 0. But

tr(Gx(u)+E)=tr(Gx(u))+trE=tr(Gx(u))[1 +(trE)/tr(Gx(u))]
which cannot be zero because, by (7.4), tr(G(u))4= 0 and

[(trE)/tr(Gx(u))l<_2llEll/ltr(Gx(u))[< 1.

Thus, whatever the sign of det(Gx(u)) happens to be,
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For a restricted class of quasi-homogeneous bifurcation problems there is a
straightforward and computable condition which is sufficient to guarantee 6 finite
determination. This class includes our examples in 4 and 6, all the problems consid-
ered by McLeod and Sattinger [6] and some of the problems considered by Landman
and Rosenblat [4].

THEOREM 7.6. Suppose G: (RnR/,0)(Rn,0) is a polynomial mapping and =
(, 1) and , are multi-exponents such that G is quasi-homogeneous of
degree (l, ). If

v- is a constant exponent

and

(7.6) whenever G(v)=0 and 11o11=1,

then G is 5a,-determined.

Proof. Clearly (7.6) implies (4.3), so, by Theorem 4.1, G is ND(,). Since o(G(v)+
B) depends continuously onv" and BZa(-, ,), otis closed and the set of
zeros of G on the unit sphere in nz is compact, there exists i > 0 and 3’ > 0 such
that

(7.7) o(Gx(v)+B)nd;= f whenever II(o)II<S, IIll=1 and IIll<v.
Let U be the open unit ball in nR t. Once again we shall prove the theorem by
showing that (7.1) holds.

Suppose that uH(G,,S)nU and IIP-’EIl</. Let o and c"x be
defined by (4.5) and (4.6). Then, as in the proof of Theorem 4.1, (4.7), (4.8) and (4.9)
hold and IIG(o)II < . But, by (4.6) and (4.9),

Gx( u) +E= Gx( Ov) +e=o’Gx( V)O-+ E=o" Gx( v) +o-’eo] o-

where" -" means "is silar to". Thus, by (7.5),

where k o I-1 and B o-"Eo. Therefore, by (7.7),

since, by (4.1), (4.5), (4.7) and (4.8),

IIo- Eoll= Iio1- eo- IIo - EII

Naively, one might expect, for a C bifurcation problem G and a constant
exponent v for wch G is ND(), that an apparently strong nondegeneracy condition
on the real parts of the eigenvalues of G(u) such as "there exist e > 0, 8 > 0 and a
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neighborhood U of the origin such that

min([ReX[" XO(Gx(U)))>=[111"-1
when uH(G,,8)C3U"

would be enough to make it easy to prove that G is 6a,-determined. Unfortunately, the
eigenvalues of a matrix can be extremely sensitive to perturbations of the matrix,
especially if the Jordan form of the matrix is not diagonal. Thus, if one uses the known
perturbation theory for eigenvalues of a general matrix together with Lemma 7.1, all
one can conclude from this strong condition keeping o(Gx(u)) away from o is the
disappointing result that G is 6" finitely determined with an order of determination
possibly much larger than ,. However, it is our feeling that it should be possible to
obtain a better result from essentially the same hypotheses with a deeper study of the
significance of the assumption that G is ND(,).
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RESTRICTED QUADRATIC FORMS AND
THEIR APPLICATION TO BIFURCATION AND STABILITY

IN CONSTRAINED VARIATIONAL PRINCIPLES*

JOHN H. MADDOCKSf

Abstract. The subjects of this investigation are the abstract properties and applications of restricted
quadratic forms. The first part of the presentation resolves the following question: if L is a self-adjoint linear
operator mapping a Hilbert space H into itself, and S is a subspace of H, when is the quadratic form (u, Lu)
positive for any nonzero uS? In the second part of the presentation, restricted quadratic forms are further
examined in the specific context of constrained variational principles; and the general theory is applied to
obtain information on stability and bifurcation. Two examples are then solved: one is finite-dimensional and
of an illustrative nature; the other is a longstanding problem in elasticity concerning the stability of a buckled
rod. In addition to being a valuable analytical tool for isoperimetric problems in the calculus of variations,
the tests described are amenable to numerical treatment.

1. Introduction. This presentation has two main parts. The first describes condi-
tions determining whether a quadratic form is positive when restricted to a given
subspace of its domain of definition. The second motivates the inquiry by a description
of how the discussed property arises naturally in applications. In particular, bifurcation
and stability phenomena are considered within the context of constrained variational
principles.

The question of restricted positivity is precisely formulated and answered in 2,
where the main development is given in the form of a sequence of lemmas leading to
Theorems and 2 and a corollary. The relevance of 2 to bifurcation and stability in
constrained variational problems is explained in 3. Two types of bifurcation are
identified dependent upon whether the constraints play an active or passive role. In 4
and 5, the theory of [}2 is applied to two examples of the general type introduced in 3.
The problem of 4 is set in three dimensions and is used to illustrate the underlying
geometrical nature of Theorem 2. The example worked in 5 describes applications to
the isoperimetric calculus of variations.

The remainder of this section describes connexions between this paper and previ-
ous work. The development of [}2 parallels that of M. R. Hestenes as it appears in
Hestenes (1951), and is reported in Gregory (1980, 2.2). The presentation here differs
in that results are described in terms of a self-adjoint linear operator associated with a
quadratic form, whereas Hestenes discusses the quadratic form per se. Consideration of
the operator formulation allows an explicit statement of theorems that is not possible in
terms of quadratic forms. In particular, the characterization of relative nullity given in
Theorem seems to be new; it is this result that allows Theorem 2 and its corollary to
be applied in specific problems.

Results on quadratic forms are of two main types, namely conjugate or focal point
theorems, and index theorems. This paper is concerned with index theorems. Bolza
(1904) obtained a theory of constrained conjugate points within the specific context of
the theory of the isoperimetric calculus of variations, but the tests entailed are complex.
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Force Office of Scientific Research.

fInstitute for Mathematics and Its Applications, Minneapolis, Minnesota 55455. This research was conducted
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Other results of index type in the isoperimetric calculus of variations were obtained by
Birkhoff and Hestenes (1935). They considered the following problem: given an uncon-
strained problem in the calculus of variations and an extremal that is not a minimum,
can a finite set of isoperimetric constraints be added to the problem so as to make the
extremal into a constrained minimum? In a sense this problem is inverse to the one
treated here; we consider variational problems subject to given constraints, and de-
termine which extremals are constrained minima. Hestenes (1951) and Gregory (1980),
describe both focal point and index theorems, but only the former theory appears to
have been applied to any extent (see Gregory (1980) for further details). The method of
intermediate problems for eigenvalues (see, for example, Weinstein and Stenger (1972))
can also be regarded as a focal point theory for constrained quadratic forms.

The problem of primary concern here, as in the works cited above, is the de-
termination of the properties of a quadratic form that is defined on an infinite-dimen-
sional space, but is restricted to a subspace. For applications the case in which the
subspace has (in a certain sense) finite codimension is of particular interest. Although
the results of 2 are not dependent on this delimitation, we present a proof of Theorem
2 in the special case which is considerably simpler than that given in the comparable
result of Hestenes.

The results of Hestenes are not well known, even in the highly special case of the
whole space being finite-dimensional. For example, the results of Morse (1971a, b),
(1973, p. 172) are easy consequences of the work of Hestenes (1951, Theorem 15.2). The
specialization of Theorem 2 to finite dimensions actually extends the results of Morse.
See also Cottle (1974), and Bellman (1960, 5) for discussion of the finite-dimensional
problem.

The following two references are given for completeness; they discuss restricted
quadratic forms but have no direct bearing on this work: Bogntr (1974), Uhlig (1979).

2. Quadratic forms. In this section we consider quadratic forms Q(u) of the type

O(u)=(u,Lu), uC%

where is a real Hilbert space with inner-product (-, ), (R) is a dense subspace of ,
and L is a linear operator from @ to . The following three hypotheses on L are made
throughout:

HI. L is self-adjoint and Fredholm.
H2. L has a finite number o- of orthonormal eigenvectors -, i= 1,-.-,o-,

corresponding to negative eigenvalues.
H3. L is positive on the orthogonal complement of span (- } @kerL.
Here kerL denotes the null space of L. The (-) will be referred to as the negative

eigenvectors. By the statement that L is Fredholm it is meant that the equation

Lu=h

has a solution if and only if h is orthogonal to ker L. By the statement that L or Q is
positive on a set $ (R) (as in H3, for example), it is meant that

(2.1) Q(u)=(u,Lu)>0 Yule, uv0.

L or Q being nonnegative is defined similarly.
It should be understood that in H3, and in the sequel, the orthogonal complement

of a set means the orthogonal complement with respect to .,. ), but in the set (R); that
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is, the orthogonal complement of a set C (R) is defined by

(2.2) S’-
In either the case of being of finite dimension, or being infinite-dimensional

and L being bounded, the dense subspace @ can be identified with . If L is
unbounded this is not possible. In this last case the quadratic form Q(u) can actually
be defined on a larger space than the domain of definition of L. The theory is standard,
but not relevant to the results presented here; further details can be obtained from
Kato (1976, Chap. VI), for example.

The following notion of orthogonality will be useful.
DEFINITION 1. Two vectors Ul, U 2 0 are termed L-orthogonal if

(u,,Lu)=O.
Remarks. (a) As L is self-adjoint the relation is symmetric.
(b) Any vector is L-orthogonal to any element of ker L.
(c) If one of the vectors involved is an eigenvector not in ker L, then orthogonality

and L-orthogonality are equivalent.
(d) The concept of L-orthogonality extends to sets in the obvious way.
To motivate the treatment adopted below, consider the following theorem, which is

due to Hestenes (Gregory (1980, p. 62, Thm. 1)):
THEOREM (Hestenes). Let Q(u) be a quadratic form on a Hilbert space . Then

there exist three subspaces _, 0, and + such that (a) --_@o@}C+, the sum
being direct; (b) the three subspaces are mutually orthogonal and Q-orthogonal; (c) if the
zero vector is excepted, Q(u) is negative on _, zero on }o, and positive on +.

Remarks.
(i) The definition of Q-orthogonality is directly analogous to Definition of

L-orthogonality.
(ii) The theorem is intuitive whenever Q(u) can be written in the form (u, Lu)

with L satisfying HI, H2 and H3; for

_
is the span of the negative eigenvectors of L,

0 is the kernel of L, and + is the orthogonal complement of

_
and 0-

(iii) Notice that

_
does not contain all vectors u that .make Q(u) negative.

However,

_
is maximal in the sense that if u is orthogonal to %_, then Q(u) is

nonnegative.
(iv) Any closed subspace of % forms another Hilbert space, so can itself be

decomposed in the above manner. Remark (ii) is again relevant if the self-adjoint
operator L is replaced by the usual restriction of L to , which operator is also
self-adjoint.

The above theorem will not be used directly, but the first essential idea is that a
"maximal" negative subspace

_
can be associated with any given subspace . In

particular, if
Because of Remark (iv) above, the tests to be presented also provide information about
the spectrum of the restriction of the operator L to , but this viewpoint will not be
stressed in the sequel.

The second essential idea, detailed in Theorem 2, is that the sizes of the maximal
negative and nonpositive subspaces of a subspace are intimately connected with the
sizes of the corresponding subspaces in the L-orthogonal complement of . Thus
knowledge of Q(u) on one subspace provides information about Q(u) on the L-orthog-
onal complement. We shall be particularly concerned with a case arising in many
applications, namely one subspace having finite dimension.
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The simple result stated in Lemma will be repeatedly exploited in the sequel.
LEMMA 1. Any subspace of 6 with finite dimension n has a mutually L-orthogonal

basis. That is, there is a basis ( ui, i- 1,. ., n ) such that

< ui,Luj > -O i:/:j.

Proof. Consider any basis (vi, i-1,...,n}. Since L is self-adjoint, the nXn matrix
A (ai.}, where

aij- < vi, Lvj >,
is symmetric. Therefore there exists an orthogonal n Xn matrix P-{pj.} such that
PrAP is diagonal. The set

{ Ui" Ui-- pjivj}
J

is a basis because P is nonsingular. Also, this basis is mutually L-orthogonal by
construction. 73

The next definition generalizes the properties of span {f-} relevant in the study of
constrained quadratic forms.

DEFINITION 2. For any subspace $ C (R), a maximal negative subspace of $, denoted
631L($), satisfies the following two properties:

Negativity: V nonzero u 63L, Q(u)<0, and
Maximality: Vv that are L-orthogonal to 631L, Q(u) _>0.

Remarks. (a) 63E need not contain all vectors u that make Q(u)<0.
(b) The maximality condition given is equivalent to:
If v $ and v $ e3E(s), then 631L@ span{v } is not a negative subspace. The proof of

equivalence is by contradiction, and is straightforward once e3IL is shown to have finite
dimension (vide infra), and Lemma is invoked.

(c) Consideration of the example described in [}4 shows that maximal negative
subspaces need not be unique. However, we do have the following two lemmas.

LEMMA 2. span{,7- } is a maximal negative subspace of @.
Proof. Negativity is trivial. Maximality is also clear; for if

(w,Ll: )-O-hi(w,: >, i-1,. .,o-,

then H3 implies that (w, Lw ) is positive. 73

LEMMA 3. Each maximal negative subspace of C_ 6 has the same finite dimension,
denoted d-[ ].

Proof. Note that if n is greater than m, then any subspace of dimension n contains
a vector L-orthogonal to any subspace of dimension m. Hypothesis H3 then implies
that any negative subspace has a dimension less than o-. Similarly, the existence of two
maximal negative subspaces of with different dimensions contradicts the maximality
of one of the subspaces. 73

Remark. The nonnegative integer d-[$] is known as the signature or index of the
quadratic form Q on the subspace $. For completeness we give the following char-
acterization theorem (Hestenes (1 95 1, p. 547)).

THEOREM (Hestenes). The index of Q(u) on is given by either:
(i) the dimension of a maximal subspace of on which Q(u) <O, u :/: 0;
(ii) the least integer k such that Q(u)>_O on the Q-orthogonal complement of a

subspace of with dimension k;
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(iii) the least integer k such that Q(u)>_O on the orthogonal complement of a

subspace of with dimension k;
(iv) the least integer k such that there exist k linear forms Kl(U),...,Kk(u)such that

Q(u)>_O whenever K(u)-O (a- 1,...,k).
The usual definition of index is (i); by remark (b) above this is equivalent to

Definition 2.
DEFINITION 3. For any subspace C_, a maximal nonpositive subspace of ,

denoted )L2($), satisfies the following three properties:
Nonpositivity" Vu gL6)( ), Q( u) <-O,
Maximality" If v satisfies v %2() @kerL and if v is L-orthogonal to gL2( $ ),

then
O(v)>0.

Thirdly,
&2(g) Cl kerL- ( 0 }.

Remarks. (a) This definition is directly analogous to Definition 2. The maximality
condition cannot apply to elements of 9L2($) because it is possible for an element of
3L2($) to be L-orthogonal to the set. The third condition could be omitted, but it
allows us to distinguish between Q(u) vanishing because u ker L, and Q(u) vanishing
because u is orthogonal to Lu.

(b) The maximality condition is equivalent to: if v G S and v 3L2($)@ker L,
then 9L2() (9 span{v} is not a nonpositive subspace.

(c) The proof of Theorem (vide infra) demonstrates that any maximal negative
subspace of S can be extended to a maximal nonpositive subspace. However, not all
maximal nonpositive subspaces can be obtained in this way.

LEMMA 4. Each maximal nonpositive subspace of $ has the same finite dimension,
d-()+d()say.

Proof. The proof is analogous to that of Lemma 3. []

Remark. As a maximal negative subspace satisfies all the conditions for a nonposi-
tive subspace except maximality, it is clear that

d(g)_>0.

The next two lemmas are not necessary for the succeeding development, but are
given to provide some familiarity with d-($) and d(). Lemma 5 is actually a
particular case of Theorem 1. Lemma 6 provides a constructive method for calculation
of d-() and dO() in problems where $ is finite dimensional.

LEMMA 5. d(@)=0.
Proof. span(-} is both a maximal negative and a maximal nonpositive subspace

of @. VI
LEMMA 6. Let@ hae finite dimension n, let (vi, i-1,...,n) be any basis of ,

and let the n )< n matrix W be defined by

Then

and

d-($) number of negative eigenvalues of W,

dO() (multiplicity of zero as an eigenvalue of W) dim(kerL A ).
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Proof. The proof of Lemma demonstrates that there is an orthogonal matrix
P- (p,j.} such that the set

is a mutually L-orthogonal basis for . Clearly the space

span(u/" (ui,Lui) <0)
is a maximal negative subspace of with dimension equal to the number of negative
eigenvalues of diag((ui, Lui))-Pr(v,,Lvj)P-PrWP. But as the eigenvalues of a
matrix are invariant under orthogonal equivalence this gives the required expression for
d-($). The expression for dO() can be derived similarly because

span(u,"

Theorem is of interest because it provides an alternative characterization of
d(S). It is also used in the derivation of Theorem 2.

If d is a subspace of , the preimage of ( under L will be denoted L-Z(d). Recall
that the orthogonal complement x of a subspace c@, connotes the orthogonal
complement in 0.

THEOREM 1. Let the subspace C_, be closed in o. Then

(2.3) d(E)-dim(EtqL-(E+/-)A(kerL)+/-).

Proof. Let () denote the subspace EL-(E-L)N(kerL)-, and let (.) be
any maximal negative subspace of E. We prove that 3L()@(E) is a maximal
nonpositive subspace of E. Equation (2.3) is a consequence of this fact because the sum
of IL and is direct, and because

d 0( ) dim[ 31L@ dim

To see that the sum is direct note that any x satisfies x and Lx +/-. Conse-
quently Q(x) vanishes and therefore x(). It is also clear that
(0}, and that )]L@ is a nonpositive subspace.

It remains to prove that@ is maximal, that is, to demonstrate that

(2.4) If xis L-orthogonal to ]L@, and xlL@@kerL, then (x,Lx) >0.

The maximality of as a negative subspace implies that any such x satisfies (x, Lx ) >_

0, so we obtain the maximality of )]L@ after reaching a contradiction on the assump-
tion (x, Lx)--0. Note that because L is Fredholm, and because is closed in @, any
x can be written as a sum

x=p+q, wherep fqL-’() and qL-’(+/-).

Moreover, q @ker L, so that:

if x @ kerL, thenp @ @kerL;
if x is L-orthogonal to3, so is p;

and, by choice ofp and q,

( x,Lx ) ( p,Lp ).
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A contradiction on the assumption that :ip fqL-1() satisfying the hypotheses of
(2.4) and (p, Lp)=0, is therefore sufficient to obtain the desired maximality. Let
{ui, i= 1,...,d-()} be a mutually L-orthogonal basis of )IL() (the existence of
which is guaranteed by Lemma 1). As p EL-l(), Lp , so

where

f=-Lp- E aiui,

is an element of E that is L-orthogonal to IL(E). Hence

flp+f,

is. L-orthogonal to 31L(). But

( flp+f,L(flp+f)) f12 ( p,Lp ) + 2fl ( Lp,f) + (f Lf),
which equals

fl2 ( p,Lp } +2 ( Lp,Lp ) 2fl ( LP,
But by hypothesis this expression is

(2.5) 2fl ( Lp,Lp ) + (f Lf).
Also, p kerL, so that (Lp,Lp)-[[Lpll2>0. Therefore,/3R can be chosen’ such that
(2.5) is negative, contradicting the maximality of

Remarks (a). Elements of fq L-l(-) are termed Q-transversals of by Hestenes
(1951). His definition is that x is a Q-transversal of E if it is Q-(or L-) orthogonal to the
whole of . Theorem can be viewed as proving that Efq L-l(E+/-) coincides precisely
with theset of all Q-transversals of E. The dimension of ENL-l(E+/-) is called the
nullity of Q on E. The dimension d[], is called the relative nullity of Q on
(Gregory (1980, {}2.2)), and characterizes those Q-transversals not in kerL.

(b) For operators L satisfying H1 the subspace L-l() coincides with the subspace
(L+/-)+/-. Theorems and 2 could be restated accordingly.

The next result relates the properties of the quadratic form Q(u) on the orthogonal
complement of a closed subspace E, to the properties of Q(u) on the L-preimage of

THEOREM 2. For any subspace

d[ +/-]- dim[+/- fq L-l()q (kerL) +/-] -d[L-l()],(2.6)
and

(2.7) d-[e+/-l+d-[L-’(e)] + d[L-’(@)]-o-.
Proof. The first equality in (2.7) is an immediate consequence of Theorem 1. The

second equality in (2.6) is also implied by Theorem because the Fredholm property of
L provides the following identity,

+/- C1L-’()CI(kerL)+/--L-’()CIL-’[{L-’())+/-] C1 (kerL) +/-

Equation (2.7) is consequent upon the following argument. Consider the subspace

(2.8), c01L[ +/-1 @3L[L-’(C)].
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The sum is direct; for if x 3L[ +/- ], then x +/- and (x, Lx ) <0, which is incompati-
ble with Lx. Notice also that E+/- and L-(E) are mutually L-orthogonal. The
subspace (2.8) is therefore a nonpositive subspace of , for if u L[E+/-] and v
[L- ()], then

+
It can be shown that (2.8) is actually a mammal nonpositive subspace of . As

(2.8) has dimension d-[ + d-[L- ()] + d 0[L- ()], Lemmas 2, 4 and 5 combined
then imply (2.6). The proof is silar to that of Theorem and depends on the
following decomposition. Because is closed and L is Fredholm, can be written as
the sum of the four subspaces

Rather than proceed with the proof in general, we present a more illuminating,
and simpler proof for the special case arising in the application considered subse-
quently, namely having finite dimension. The above argument is retained to the
extent that (2.8) being a nonpositiv subspac implies the inequality

(2.9) d-[eXl+d-[L-l(e)]+d[L-l(e)]o-,
but maximality arguments are not used to obtain equality. Instead, the opposite
inequality is proven by our demonstrating the estence of a negative subspace of x
with dimension (o--d -[L-()]-d[L-()]).

First decompose L-() as

%kerL,

where % is orthogonal to kerL. As is of finite dimension, so is %. Denote the
dimension of % by m, and let {}, i= 1,...,m be an L-orthogonal basis for % (the
existence of which is guaranteed by Lemma 1). According to Lemma 6 we may assume
that

Let f denote the remaining (m d-[L-()]-d[L-()]) elements of the basis,
wch satisfy

Consider the subspace spanned by the ; and the negative eigenvectors , and
notice that

(2.11) span(;,? )- span(;)span(? ).
The sum is direct because any nonzero vector common to both subspaces would make
Q simultaneously positNe and negative. Accordingly, (2.11) has dimension (o-+m-
d-[L-()]_ d0[L-()]).

Now, by definition, and are orthogonal to ker L, so in order that an element
v of (2.11) be in it need only satisfy the m orthogonality relations

(v,C,i) =0,
Consequently, there exists a subspace of (2.11), with dimension (o--d-[L-()]-
d[L-()]), that is contained in . This subspace is next shown to be a negative
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subspace, thus completing the proof of (2.7), and Theorem 2, in the case of being of
finite dimension.

Let ,9 be an arbitrary element of subspace (2.11) satisfying (2.12). The vector v can
be expressed in the form

where span(- ). By the L-orthogonality of the r/i, equations (2.12) imply that

(2.13)

Furthermore, the L-orthogonality of the /f implies that

J J

which, because of (2.13), can be written as

(2.14) { v,Lv ) (,L) a) ( rlf ,Lrl; 5.
J

But span{-}, so that (,L)<0, which combined with (2.10) demonstrates the
right-hand side of (2.14) to be negative, as was required.

Remarks. (a) Gregory (1980, Thm. 16, p. 71) presents a result that has close
connexions with Theorem 2, and attributes it to unpublished work of M. R. Hestenes.
In that work the results are stated in terms of the index, nullity and relative nullity of
the quadratic form Q, and the operator L does not appear explicitly. The two theorems
coincide in many cases, but it is not clear that they are always equivalent. Theorem 2
above, certainly has a more explicit form, which is suitable for the applications de-
scribed in 4, 5. We believe the simpler proof for the case of E being of finite
dimension, to be completely new.

(b) The apparent asymmetry in (2.7) between E+/- and L-() is nebulous because
of (2.6): the result applies to any closed subspace and its L-orthogonal complement.

(c) It has nowhere been assumed that kerL is finite.
The usefulness of the dimensions d- and d o in applications is apparent from the

following lemma and corollary.
LEMMA 7. For any subspace C_,
(i) Q is nonnegative on iff d-[ ]-O,
(ii) Q is positive on iff d-[ d 0[ dim[ fq kerL] 0.
Proof. Immediate from definitions of d-[] and dO[ ].
COROLLARY 1. For any closed subspace EC_,
(i) Q is nonnegative on +/- iff d-[L-()]+d 0[L- l()]_ o-,
(ii) Q ispositive on +/- iffd-[L-()]-o-, and dim[+/- fqkerL]-0
Proof. Immediate from Theorem 2 and Lemma 7.
The implicit belief motivating Corollary is that in many applications will have

small dimension, so that Lemma 6 can be practicably applied to determine d- and d o

of L-(). It is also reasonable to expect that the number o- can be estimated by one
of the many standard techniques applying to self-adjoint eigenvalue problems. There-
fore, if kerL is also known--for example, if L is nonsingular--then Corollary can be
used to ascertain the properties of Q over the (possibly infinite) subspace +/-.
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3. Bifurcation and stability. We now describe the way in which restricted quadratic
forms arise in constrained variational principles. In such problems the solutions sought
are stationary points or extremals of a functional

(3.1) F(u,X): 3CNIN

subject to constraints

Here u is a variable in a real Hilbert space 3C, and ;k is a bifurcation parameter or
possibly a vector of bifurcation parameters. The theory of Lagrange undetermined
multipliers (see e.g. Hestenes (1966)) demonstrates that, provided certain smoothness
assumptions are made, constrained extremals of (3.1) are solutions of the extended
gradient system

(3.3) Fu+ ,. 3u=0,
(3.4) 13 0,

where , is an m-vector (,f Lagrange multipliers, and the subscript u denotes Gateaux
differentiation with respect to u. We shall assume that a branch of solutions
(u*(X),,*(X)) to (3.3) and (3.4) exists. Two related questions are then addressed: for
which ?t does the stationary point realize a minimum, and for which X can other
extremals bifurcate from the given solution?

Whether an extremal is a constrained local minimum is typically of interest
because this property often coincides with stability of the extremal regarded as an
equilibrium configuration of an underlying dynamical system. For each X, an extremal
u* is said to be a strict constrained local minimum of (3.1) if there is a neighbourhood U
of u* in (3C such that /v U satisfying constraints (3.2), and u 4 u*,

F(u)>F(u*).
A necessary condition for (3.5) to be satisfied is:

(3.6) If u@\(0} satisfies {u,T )=0, i= 1,...,m, then (u,Lu) >0.

Here T/ is defined as the ith component of Gu(u*,X ), L: is the linear
self-adjoint operator

(3.7) L(u*,v*,X)=Fuu(U*,X)+v*.Guu(U*,X),

6 denotes the domain of definition of L, and (.,.) is the inner-product on 3C. The
connexion between conditions (3.5) and (3.6) is discussed by, for example, Hestenes
(1966). In many applications criterion (3.6) is also a sufficient condition for (3.5) to
hold; however, this is not always the case. We do not pursue this point further in
abstract, but the example of 4 is representative of a category of problems in which
condition (3.6) is both a necessary and sufficient test for an extremal to be a strict
constrained local minimum.

Condition (3.6) can be rephrased as a requirement that the quadratic form
u, Lu) be positive-definite on the subspace (span{T/})+/-. Then, provided that the

operator L satisfies Hypotheses to 3, Corollary gives necessary and sufficient
conditions for (3.6) to hold. In particular, Corollary always provides necessary
conditions for an extremal to be a strict constrained local minimum, and Corollary is
also a sufficient test whenever (3.6) is.
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We now.turn to. the second point of .inquiry, namely, when can there be bifurcation
from the extremal (u*(,), ,(?))? Equation (3.3) and (3.4) are of the form

(3.8)

where f: RmR Rmis a gradient (or potential) map, so that all the theory of
bifurcation in variational problems is applicable. In particular, a necessary condition
for there to be bifurcation is that the linearization of f be singular, and relatively
simple additional, tests make this condition both necessary and sufficient (see, for
example, Rabinowitz (1976) and references therein).

By the statement that the linearization of is singular we mean that there is a
nontrivial solution (ti,/’) of the system

(uu( U*) + .*Ouu( U*) ) a +.u( U*) O u(U*)a=0.

But, in the notation of (3.6) and (3.7), these equations are
m

(3.9) L+ /,iT,.-0,
i--1

(3.10) (T/,t) =0, i=l,...,m,

whose solutions can be classified in the following way.
We distinguish between two categories of solutions: Type in which/’=0, and

Type 2 in which/,4:0. Now (3.9) implies that aL-(span(T/}), and equation (3.10)
implies that ti (span{T})-L so the number of linearly independent solutions of Type
is

dim[kerL A (span( T/})+/-],
and the number of linearly independent solutions of Type 2 is

(3.11) dim[(span(T/)) +/-
L- l(span(T/)) fq (ker L)+/-].

By Theorem 1, quantity (3.11) equals

d [(span(T)) +/-].
A comparison with the results of 2 reveals that--as might have been expected a priori
there is a candidate bifurcation point whenever there is a nontrivial vector u satisfy-
ing the constraints that also makes Q(u) vanish. Of greater interest is that the operator
L is not singular at a bifurcation point of Type 2, and that L can be singular without
there being a candidate bifurcation point. We remark that a Type 2 bifurcation cannot
occur unless there is at least one negative eigenvalue of L

The constraints play different roles in the two types ofbifurcation. At bifurcation
points of Type the vector of multipliers , remains constant to first order along
bifurcating branches, and the bifurcating branches are also solutions of the uncon-
strained bifurcation problem obtained by our retaining equation (3.9) and discarding
equation (3.10). At bifurcation points of Type 2 the vector , does not remain constant
on bifurcating branches, and bifurcating branches do not satisfy the corresponding
unconstrained problem. These observations are important in many engineering appli-
cations where typically the Lagrange multipliers represent the reactions of boundary
supports. These reactions can often be found without explict knowledge of the solution,
in which case the problem is said to be statically determinate. Only bifurcations of Type
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are possible in a statically determinate problem, whereas bifurcations of Type 2 are to
be expected whenever a problem ceases to be statically determinate. The examples of
{}{}4 and 5 illustrate these points.

4. An example in finite dimensions. The first example we describe is a finite-di-
mensional problem having its origins in an idealized model for bending of a beam in
the plane. The system is illustrated in Fig. 1. Three rigid rods of lengths 1,/ and are
connected by two elastic joints whose equal stiffnesses are normalized to unity. The
extreme ends of the linkage are free to rotate, but are constrained to lie on a given line.
The position of one end-point is fixed, but the other end-point is free to move under
the action of a compressive load X. Any configuration is determined by the angles O, 02
and/93 between the three rods and the line joining the end-points.

FIG. 1. The model considered in 4. Three rigid rods of lengths 1,/z and are connected by springs and
subjected to a compressive load h.

Equilibrium configurations are determined by the requirement that they realize
stationary values of the potential energy

)_ )2(4.1) 1/2(02 01 +1/2(03 02 +X(cos01+/cos02+cos03)
subject to the constraint

(4.2) sin01 +/.t sin02 + sin 03 0.

The first two terms of (4.1) are the energy stored in the springs and the remaining terms
correspond to work done by the external load X. Constraint (4.2) guarantees that the
end-points lie on the line O-0.

The equilibrium equations are

0--02+ COS0-X sin 01 =0,
(4.3) -01 + 202--03 + VCOS 02-- sin 02 0,

O2+ O + cos 03 X sin O 0,

where is a Lagrange multiplier. Addition of the three equations (4.3) implies that

cos 0 +/cos0+ cos 03) 0.
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Therefore, if the distance between the end-points

(4.4) COS01 "-[-/ COS 02 +COSO

is nonzero, then the problem is statically determinate, with v-0.
We consider "stability" properties of solutions with the form

(4.5) 0=--03=0, 02=0, r=O,

where O satisfies

(4.6) O-hsinO=0, and 0<O<rr.

Such a solution exists for each ,> 1. Observe that on this branch of equilibria
decreases as , increases. We adopt the following conventions: an extremal is said to be
stable if condition (3.6) is satisfied, to beneutrally stable if condition (3.6) holds only if
equality is allowed, and to be unstable otherwise.

As anticipated, it can be shown for this particular problem that condition (3.6) is
sufficient as well as necessary for a solution of (4.3) to be a strict constrained local
minimum. The salient special features of this example are firstly that the space C(-R 3)
is finite-dimensional, and secondly that (4.1) and (4.2) both have continuous second-
order partial derivatives with respect to O,/t2 and t]

3. Theorems derived, for example,
by Hestenes (1975, Chapter 3) then imply the desired sufficiency of (3.6). Conse-
quently, Corollary can be applied to determine precisely when constrained extremals
are stable.

In this example, condition (3.6) becomes

(4.7)
(1- ,cos O) 0

hrLh-hr -1 (2- X/) -1 h>O

0 (1-Xcos O)

for all nonzero h R such that

(4.8) h" [cos O,/, cos O 0.

Here the matrix L is obtained by linearization of (4.3) about the particular solution
under consideration. Similarly, (4.8) is the linearization of constraint (4.2). The opera-
tor L obviously satisfies Hl-H3.

The number of negative eigenvalues of L is easily ascertained from the characteris-
tic polynomial. Details are omitted as the calculation is straightforward once the
following two observations are made. Because O and h are related by (4.6) it can be
shown (i) that

(1 X cos O) >0,

and (ii) that/x* R can be defined by

2 cos O(4.9) /* sup
o_<o<, (1 -,cosO) whence/* - 0.48.

The conclusions finally reached are as follows. If/>/*, then, for all h,L has one
negative eigenvalue and is nonsingular; that is, in the notation of 2,

(4.10) o-=1 and kerL=(0}.
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Whereas, if/ </*, there exist t and X2 such that, for t <<2,

(4.11) o---0 and kerL=(0};
for X-X or X-X2,

(4.12) o--0 and dim[kerL]-l;

and for X [X,X 2] (4.10) holds. We remark that the parameter value X corresponds to
the negative eigenvalue crossing through zero, and that X 2 corresponds to the same
eigenvalue becoming negative again. It is also easily shown that the value of corre-
sponding to any X X, X 2] is negative.

The highly exceptional behaviour when/=/* deserves mention. In this case there
is precisely one value of X at which the otherwise negative eigenvalue touches zero. It
can be shown by explicit construction that at this critical point there occurs multiple
bifurcation from a simple eigenvalue. Standard bifurcation results are not contradicted
as any transversality hypothesis fails. Although the model here described is similar to
that of Bauer, Keller and Reiss (1975), the two examples exhibit intrinsically,different
behaviours.

Whenever (4.11) holds we have immediately that the extremal is stable. In other
cases Corollary is required. Once it is noticed that l/X[1, 1, 1] is a solution of
L1 [cos t9, , cos O], and that (l, LI ) l/X, then Lemma 6 can be invoked to
obtain the conclusions of the following table:

d-[ L- l(e)], dO[ L- (e)]
(4.13) 1>0 0

1=0 0
/<0 0 0

Consider the case/>#*, so that (4.10) holds. When (4.13) is also taken into account,
Corollary implies that the extremal is stable when/>0, is neutrally stable when/=0,
and is unstable when/<0. Figures 2 (a), (b) and (c) depict equilibria satisfying (4.5)
and (4.6) with positive, zero, and negative respectively. Of course, if

all configurations satisfying (4.5) and (4.6) have/positive. Notice that the extremal
with zero is a bifurcation point of Type 2, and corresponds to the system becoming

(a) 1>0, stable. (b) 0, bifurcation point. (c) 1< 0, unstable if ll sufficiently small.

FIG. 2. Various equilibria of (4.3). The quantity is the distance (with sign) between the end-points of the
linkage. The stability of equilibria with l< 0 and It] large depends upon the relative lengths of the middle and end
rods.
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statically indeterminate. If/x</x* the conclusions are unaltered whenever l_>0. How-
ever, extremals with l<0 are unstable only when , [,1,?2], which is the range on
which either (4.11) or (4.12) replaces (4.10). As ! exists for all , 4: 0, the Fredholm
property of L demonstrates the kernel of L to be orthogonal to the constraint, and so
the extremals corresponding to ,--?l or ,--,

2 can be shown to be bifurcation points
of Type 1. A partial bifurcation and stability diagram for the case/ </* is sketched in
Fig. 3. The stabilities of the secondary branches and of the trivial solution are given
without justification; they are easily checked.

indicates stable branch

indicates unstable branch

FIG. 3. Bifurcation diagram for (4.3), with /x</*. The diagram is symmetric about the A-axis. Not all
solutions are shown. At o, /-0.

The geometry of this simple example helps clarify the theory presented in 2.
Trivially, there exist three orthonormal eigenfunctions of L, and the statements made
here can all be verified by expansion in terms of this basis. Assume for the moment that
one eigenvalue is negative and that the other two are positive. Then there is a conical
surfacemas drawn in Fig. 4--defined by

(4.14) Q(u)- (u, Lu)-0.

X2

h-l-

Xl

X3
FIG. 4. A schematic illustration of Theorem 2 in the case =R3, and o- 1. The axes are the eigenvectors

of the self-adjoint operator L; the cone K is defined by the surface (x, Lx) =0; the vector h is arbitrary and could
lie inside the cone. Theorem 2 states that the plane h+/- and the cone K intersect nontrivially if and only if the
vector 1, such that L’rl-h, does not lie in the interior of the cone. Any line in the intersection of h+/- and K is a
maximal nonpositive subspace of h+/-
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The closed cone K whose surface is defined by (4.14) has the following properties:
(a) The negative eigenvector is the axis of K.
(b) For any vector u external to K, Q(u) is positive
(c) For any vector v internal to K, Q(v) is negative, and span(v} is a maximal

negative subspace of R 3. Moreover, there is no nontrivial w L-orthogonal to v for which
Q(w) vanishes. Consequently, span(v} is also a maximal nonpositive subspace of R 3.

(d) If x is a vector in the surface of K, then span{x} is a maximal nonpositive
subspace of 3.

The introduction of one linear constraint restricts our attention to a planar sub-
space of 3, h+/- say. When h+/- intersects the interior of K, Q is indefinite on h+/-; when
h+/- is tangent to K, Q is nonnegative, but not positive, on h+/-; and when h+/- does not
intersect K, Q is positive on h-. However, the subspace h+/- can be alternatively defined
as the subspace L-orthogonal to 1, where

Ll-h.
By property (c) above, Q is positive on h+/- whenever 1 is in the interior of K. By
property (d), Q is nonnegative on h+/- whenever 1 is in the surface of K. And, although
it is not as clear geometrically, Corollary states that Q is indefinite on h+/- whenever
IK.

The final point of interest is the behaviour when the negative eigenvalue ap-
proaches zero. As this happens, the cone K narrows until the eigenvalue touches zero, at
which time the cone degenerates to a line which forms the kernel of L.

5. An example from the calculus of variations. One of the main motivations for
this work is the case commonly arising in continuum mechanics where (3.1) and (3.2)
take the form of integrals and is a space of functions satisfying given boundary
conditions. The minimization problem is then of the classic isoperimetric type in the
calculus of variations: equation (3.3) corresponds to the weak form of the Euler-
Lagrange equation, L is in effect the operator arising in Jacobi’s accessory equation,
and condition (3.6) is the property characterizing an extremal as a minimum, namely
that the second variation be positive on a set of admissible variations satisfying the
linearized constraints.

The example presented in this section is another idealization of a buckled rod. We
now adopt the model of a continuous inextensible line that resists bending according to
a nonlinearly elastic law, The system to be considered (cf, Fig. 5) consists of a uniform
rod whose end-points are constrained to lie apart by a specified distance and whose
ends are clamped so that the tangents to the rod at its end-points coincide with the line
between the ends. Any configuration is determined once the angle 0, defined in Fig. 5a,
is specified as a function of arc-length s.

Rather than becoming embroiled in technical aspects of the calculus of variations
and the theory of second-order self-adjoint boundary-value problems, we choose to
make a formal presentation. A prime on a function denotes differentiation with respect
to its argument.

The problem is to minimize

fo’W(O’)
subject to two constraints

(5.2) fosin Ods-O
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(a)/>0 (b) <0

O(s)/ O(s)

r/:zo
/2

FIG. 5. Buckled equilibria of a uniform elastic rod. Equilibria with 1>0 are stable; equilibria with 1<0 are
unstable.

and

(5.3) folcos O ds
where 0(s) satisfies the boundary conditions

(5.4) 0(0)- 0(1)-0.

The function W: RR measures the stored elastic energy per unit arc-length, and in
accord with normal practice W is assumed to be C: (i.e. twice continuously differentia-
ble) and to satisfy

(5.5) W(x)-W(-x), W(0):0 and W"(x)>0.

A consequence of (5.5) and the smoothness of W, is that

w’(0)-0.

We also make an additional convexity assumption, namely that

(5.6) W"(x) x

Both (5.5) and (5.6) are satisfied in the linearly elastic case, wlaere---after normali-
zation-

w(o,)-ko
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Constrained extremals satisfy the Euler-Lagrange equation

d
.7) ---W’(O’) , sin 0+ v cosO= O,

where both and , are Lagrange multipliers. Physical considerations show that is the
compressive force exerted by the boundary supports. We determine stability properties
of the branch of solutions O(s) that satisfy: O(s-1/2) is an odd function; IOl<r; O has
one interior zero; and O’ has two interior zeros. Two such extremals are depicted in
Fig. 5. Because of (5.2), (5.3) and (5.5), integration of (5.7) shows that for such a
solution if :/:0, then ,-0. We also assume that increases as is decreased, so that

(5.8)
d
d-<o.

This assumption is physically realistic as it means that a greater compressive force
is required to obtain a lesser distance between the end-points of the rod. Given
constitutive hypothesis (5.6), inequality (5.8) can actually be proven (see Maddocks
(1984)).

The problem can be formulated as a minimization problem over the Hilbert space
E2 in the following manner:

A functional f: 2 I-->R I,.J ( + OO } .is defined by

f( O ) lfo W( O’) ds if 0[0,1] and W(O’)E’(O, 1),

otherwise.

Here the elements of are those functions in the Sobolev space 1 that vanish
weakly at s-0 and s-1. The existence of weak solutions to the Euler-Lagrange
equations for a constrained extremal of f subject to constraints (5.2) and (5.3) can be
proved. It can be further shown that these solutions actually satisfy (5.7) which is the
strong form of the Euler-Lagrange equations.

It is then necessary that condition (5.9) below be satisfied if an extremal 0 is a
strict constrained local minimum. Moreover, the theory of [}2 can be applied to the
quadratic form (u, Lu), where (.,.) is the E2-inner-product, and the operator L:
CE2 is defined in (5.10) below. Trivially the space C02[0, 1] of twice continuously
differentiable functions that vanish at 0 and is dense in E2[0, 1]. We remark in passing
that the space C 0 is sufficiently large as to make the necessary condition (5.9) below
relevant in the classic calculus of variations; this is because the strict convexity of W
implies that L has a maximal closed extension defined on the space 0[0, 1]N 2[0, 1],
and because the eigenvalues of L and its extension coincide. In the language of the
calculus of variations, Legendre’s strengthened condition is satisfied, and consideration
of "weak" (or smooth) variations is sufficient. The criterion for stability is whether

{W"(O’)u’:-,cosOu:} ds>O

(5.9) for those u(s ) C satisfying

f01 f01cos 0 u ds 0 and sin 0 u ds O.
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In order to apply the theory of [}2, condition (5.9) is recast in terms of the operator
L, defined by

(5.10) Lu------
d

W" ’) } ,cosOu(o u’-

and the formal E2-inner-product. Because of the boundary conditions (5.4), condition
(5.9) becomes

for any u C g satisfying

and

( u, Lu >0,

(cosO,u)--O

(sin O, u ) O.

The operator L is next shown to be nonsingular and to have one negative eigen-
value. The result employed to reach this conclusion is:

The number of negative eigenvalues of L subject to boundary conditions (5.4), is
given by the number of zeros interior to (0, 1) of the solution v to the one point
boundary value problem

(5.11) Zv--O, v(0)--0, v’(0)=l.

This result can be obtained from standard Sturm-Liouville comparison theorems.
That L has at least one negative eigenvalue is then a consequence of the Sturm

separation theorem. For O(s) satisfies (5.7) with t,--0, so differentiation with respect to
s demonstrates that LO’-0; and by choice of O there are two interior zeros of O’. That
L is nonsingular, and has only one negative eigenvalue is implied by contradictions
arising from comparison of solutions to (5.11) having two zeros in (0, ], with the
solution

to

t(s) = , sin O

d lW’(O)t,)r
t(O) (1)O’ -(w(o’)o’+XcosO)t=0, -t -0.

Verification of this identity is straightforward given that tO satisfies (5.7). The formula
arises in the study of stability of planar buckled rods subjected to perturbations out of
their plane of deformation (Maddocks (1984)). Comparison techniques can be applied
because of assumption (5.6), and because the properties of tO imply that vanishes only
at zeros of 19. In the notation of [}2 the conclusion is that

(5.12) o-=1 and kerL=(0}.
Lemma 6 is now invoked. Note that

x-aO’- 1/ and y--O
are solutions of

Lx cos O and Ly sin O,
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respectively. Here a R can be chosen so that x satisfies boundary conditions (5.4), for
O’(s-1/2) is an even function. That y is a solution can be seen from differentiation of
(5.7) with respect to X. Boundary conditions (5.4) are satisfied by y because each
member of the family of solutions O(s,X) satisfies the boundary conditions. Further-
more,

cos 0 ds- a sin 0 l/X- l/,

cos 0 0xds- sin 0 ds- O,

{y,Ly)= sinO Oxds- dX cosOds--l,

and by assumption (5.8)

d
l>0.
d,

The matrix IV,of Lemma 6 is therefore diagonal; and the conclusions shown in the table
follow immediately.

d-[-’(e)] d[
t>O 0
/=0 0
1<0 0 0

After an application of Corollary it can therefore be concluded that extremals
satisfying 1>0 (such as that illustrated in Fig. 5a) are stable, that the extremal satisfying
l---0 is a candidate bifurcation point of Type 2, and that extremals satisfying <0 (such
as Fig. 5b) are unstable.

These results are directly analogous with those of 4; the rod being uniform
corresponds to the parameter/ being one. Were the rod not uniform we could not
obtain the instability result, for 19’ would no longer be a solution of the accessory
equation. There could therefore be a region corresponding to negative in which the
accessory equation has no negative eigenvalue. Further study of stability in rod prob-
lems has been made by Maddocks (1984).

6. Conclusion. The theory developed in 2 comprehensively describes the proper-
ties of restricted quadratic forms. The key concepts are maximal negative and maximal
nonnegative subspaces; Theorem 2 and Corollary are stated in terms of dimensions of
these subspaces, and it is these results that allow new work in applications. One
interesting feature revealed in the treatment is that a restricted nonnegative quadratic
form can fail to be positive on its subspace because of an element u kerL with the
property that u is orthogonal to Lu. This behaviour cannot occur with an unrestricted
quadratic form of the same type. The connexions between the theory of 2, and the
results of M. R. Hestenes are described in the introduction.

We remark that whenever the Hilbert space is finite dimensional the operator L
has, by necessity, a finite number, o+ say, of positive eigenvalues. A maximal positive
subspace of dimension d+ can then be defined, and various results can be added to the
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theory of [}2. For example, if is any subspace, then

"Jl- (d-[L-l()].-l-d[L-l()]--t-d+[L-l()]}..--o-.-.o+
Connexions between the theory of [}2 and necessary conditions for bifurcation in

constrained variational problems were described in the account of [}3. Such connexions
are strong; two types of bifurcation can be distinguished, and, according to Corollary 1,
bifurcation of either type from a stable extremal necessitates loss of stability. However,
it is not immediately clear that a loss of stability implies the presence of bifurcation.
General arguments demonstrate that the implication is true; nevertheless an equivalent
result, namely that the principle of exchange of stability applies in constrained prob-
lems, is not proven here.

The main application of the theory of 2 is probably the use of Lemma 6 and
Corollary 1 to determine stability in constrained variational problems. The results here
presented combine well with a numerical treatment. The method described in 2
requires only an estimate for the number of eigenvalues, some knowledge of the kernel,
and calculation of solutions to amusually smallmnumber of linear nonhomogeneous
problems of the form

(6.1) Lrli-- T, i--1,. .,n.

Here the T are known. Furthermore, a high degree of accuracy is easily obtained
because of the following observation. The n-vector [rti] whose elements are the solutions
to (6.1) is an extremal of the matrix-valued variational principle

(6.2)

moreover

The only information required is contained in the matrix W, and if the are calculated
to first-order accuracy, then W can be found to second-order accurary by use of (6.2).
A direct numerical attack would entail computation of all negative eigenvalues and
their eigenfunctions; the example of 4 could be used to demonstrate the saving in
labour achieved by our invoking Lemma 6 and Corollary 1.

Although the finite-dimensional example of {}4 is included primarily for illustrative
purposes, it is also of interest in itself, for the behaviour of the finite-dimensional model
supports conjectures about continuous rods. The secondary bifurcation and associated
restabilization that occurs, appears to be typical of planar buckling of nonuniform
rods, but such an explicit analysis is not possible in the continuous case.

The results of {}5 are also of interest in the context of the stability of rods. Similar
systems have been discussed by Maddocks (1984), but in that work the rod is subject to
one constraint and a prescribed load. The system of {}5 arises when the prescribed force
is replaced by a prescribed displacement. It transpires that for the example considered,
the stabilities in the two versions coincide. This result is of practical importance; in
engineering terms dead and hard loadings are equivalent.

As shown in 5 the theory described provides a genuine analytical tool in the
isoperimetric calculus of variations. As previously mentioned, there is a prior theory,
described by Bolza (1904, Chapter 6), that determines whether a constrained second-
variation is positive; but verification of the conditions entailed is much more complex
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than the test presented in [}2. For example, Born (1906) attempted to apply the results
of Bolza to determine stability in a simplified version of the example treated in {]5, but
was unable to reach any conclusion.
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STABILITY AND ASYMPTOTIC ESTIMATES IN
NONAUTONOMOUS LINEAR DIFFERENTIAL SYSTEMS*

GUSTAF SODERLINDy AND ROBERT M. M. MATTHEIJ :

Abstract. A new theory is presented, in which a generalized kinematic similarity transformation is used
to diagonalize linear differential systems. No matrices of Jordan form are needed. The relation to Lyapunov’s
classical stability theory is explored, and asymptotic estimates of fundamental solutions are given. Finally,
some possible numerical applications of the presented theory are suggested.

1. Introduction. In this paper, we consider linear systems of ordinary differential
equations

(1.1) 2=A(t)x + g(t), XC:-R

to model the propagation of perturbations in a general nonlinear system

(1.2) y=f(t,y),

where y R and f: I ". If z satisfies the perturbed equation

(1.2’) .=f(t,z)+g(t),

we note that the difference x= z-y satisfies (1.1), where A(t) is the "average Jacobian"

A(t) =f01J(t,y + Ox ) dO.

Here the m rn matrix J(., ) is the partial derivative offwith respect to its second
argument. Although a linearization is not necessary in order to establish (1.1), the
matrix A(t) depends, by construction, not only on but also upon x and y. This limits
the validity of (1.1) as a model for the error propagation in (1.2), since A(t) may not be
uniformly bounded with respect to x. However, with the additional requirement that f
satisfies the Lipschitz condition

IIf(t,z)-f(t,y)ll<-tllz-Yll Vt,y,z

one easily shows that

(1.3) II-d(t)llL
We note that the Lipschitz condition can be relaxed; it is sufficient that the

condition holds over a convex domain D c R m, i.e. whenever y, z D.
Under mild conditions, the homogeneous problem 2=A(t)x has a continuously

differentiable fundamental solution matrix , i.e.

(1.4)
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Using this operator, the solution of (1.1) can, in terms of some given initial condition
x(0), be written

(1.5) x(t) (t)-(0)x(0)+(t)f0t-( ’)g(’) d’.

We remark that if is a fundamental matrix over the semi-infinite interval [0, m),
then - exists on any finite subinterval of [0, z).

The object of the paper is to estimate the solution x given by (1.5). In particular,
we are interested in asymptotic estimates and stability, i.e. we want to find estimates of
IIx(t)ll as well as of II(t)-(0)ll. We will derive these estimates for a monotonic but
otherwise unspecified norm. In particular cases we will consider the HOlder norms.

The estimates for global error propagation that we obtain are similar to corre-
sponding results derived by using the logarithmic norm, [6], [8] and [20]. Although the
latter estimates are sharp for "short-range" error propagation, our estimates are gener-
ally better for large t. Thus, they can be viewed as a complement to the traditional
logarithmic norm bounds on the error.

In 2, basic concepts will be introduced and classical results reviewed. In 3 we
consider various choices of a fundamental solution. The fundamental solution will then
be decomposed into a normalized direction matrix and a size matrix which satisfies a
differential equation kinematically similar to (1,1) [11]. We also prove a new diagonali-
zation theorem, demonstrating that any matrix can be brought to diagonal form using a
(time-dependent) transformation of Lyapunov type. This result is of fundamental
importance since it allows a unified treatment of all linear systems, whether A be
constant, defective Or time-dependent. It is particularly useful in the latter case, when a
Jordan form no longer has a clear meaning. It should be noted that the techniques
presented here are of equal importance to initial value problems and boundary value
problems.

In 4 we derive the asymptotic error estimates for IVP’s by considering the
Lyapunov transformation and its adjoint equation. Finally, in 5 we consider some
applications of the presented theory.

2. Differential inequalities and logarithmic norms. "Classical" estimates of the
solution to (1.1) are obtained from the differential inequality

d

Due to the Lipschitz constant IIAII being positive, these estimates are in practice useless,
since they fail to provide information about the actual growth or decay rate in (1.1).
The situation was greatly improved by the introduction of logarithmic norms [8], [6],
[20]. In terms of the logarithmic norm of the matrix A, defined by

III + hAll-1(2.1) /[A] lim
h--,0+ h

solutions to (1.1) can be estimated from
d(2.2) Ilxl[-< a (t)] Ilxll/ Ilgll,

More precisely, we can state the following lemma [20].

XSince Ilxll may be only piecewise differentiable, the derivative of Ilxll is to be interpreted as a right-hand
derivative.
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LEMMA 1. Let x(t) be a solution of +/-=A(t)x + g(t). Then iIx()ll6(t), where the
scalar function satisfies the differential equation

(2.2’) 6=t[A(t)l+ Ilg(t)ll

with the initial condition j(0)= Ilx(0)l I.
While the Lipschitz constant is always positive, the logarithmic norm may be

negative. This implies that sufficient conditions for classical stability notions can easily
be expressed in terms of/[A], see e.g. [6]. Instead of going into details, we shall only
summarize some useful basic properties of the logarithmic norm that can be found
elsewhere in the literature (see [8] and [20]).

We define the spectral abscissa of a matrix A by

(2.3) a[ A] max Re(

where X1," ",m are the eigenvalues of A.
LEMMA 2. Let A and B be square matrices. Let be a nonnegative real number and z

be a complex number. Then
a) a[A]</[A];
b)/[vA]= v[A],
c)/[A + zll #[A]+ Re(z);
d) -IIAII-< #[A]-< IIAII;
e) t[A +B]<_#[A]+#[B].

Furthermore, if A is a diagonal matrix and the norm [1" [I is monotonic, [1]; then
f) [a]=a[a].
LEMMA 3. Let A be a constant quadratic matrix. Then
a) Ile’ll_< CiliA]t;
b)/[A]= limb_.0+ loglleAhll/h.
If A depends on t, we can derive nonautonomous counterparts to the statements in

Lemma 3’
LEMMA 3’. Let d be a continuously differentiable fundamental solution satisfying

(1.4). Then
a) 11(t)-(,)11_< expftl[A(s)]ds;
b)/[A(t)] limb_.0+ logll(t + h)-l(t)ll/h.
Proof. Part a) follows immediately from (1.5) and Lemma 1. In part b), note that

d(t + h)=d(t)+hd(t)+o(h)=(I+ hA(t))e(t)+o(h). Hence d(t + h)d-(t)=I+
hA(t)+o(h), and, as a consequence of (2.1),

(2.4) lim
IId(t+h)O-l(t)ll-1

.-.0+ h =.[A(t)I.

We also obtain

d(2.5)
t’--ft’

=t[A()l.

It follows that II(t / h)-x(t)ll 1 + hl[A(t)]+o(h) as h 0+. The result then fol-
lows by taking logarithms and letting h 0 +. []

The significance of Lemma 3b) and 3’b) is that error bounds obtained by using
Lemma 1 are sharp (with respect to the particular choice of norm) for short term error
propagation. However, over long intervals, the logarithmic norm may sometimes give
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gross overestimates. We illustrate these matters by considering the nonautonomous
homogeneous equation

(2.6)
c=A ( )x,
[]x(O)ll 1 (unit initial error).

By Lemma 1,

IIx(h)ll<_(h)--exp t[A(s)] ds.

Since x(h)= (I)(h)(I)- l(0)x(0), (h) must clearly majorize II(h)(I)- l(0)ll, which is the
largest possible value of IIx(h)ll given that IIx(0)ll-1. By (2.5), the Maclaurin expan-
sions of (h) and II(I)(h)(I)-X(0)[I agree to first-order terms in h. The minimal margin is
therefore

h h ) -1(0)II o (h)

as h--+0+, showing that Lemma 1 indeed yields sharp results for short-term error
propagation.

Estimates of the asymptotic behavior based on the logarithmic norm give useful
results only if the vector norm has been chosen with extreme care. Consider, for
example, the constant coefficient system

-1(2.7) :t=
0

with the matrix exponential

10

(2.8) eAt-- [ e-tO lO(e-t--e-2t) ]-2t

It is immediately clear that for any choice of norm and initial condition, the asymptotic
behavior of the solution is IIx(t)ll-" e -t. Yet, if we choose the maximum norm, we find

that/xoc[A]= 9. Thus Lemma 1 yields t(t)=e 9t, whereas

(2.8’) Iletllo lie-t- lOe-2t.

These bounds are illustrated in Fig. 1.

et[A]t

t

FIG. 1.

In a constant coefficient system it is a fairly straightforward task to construct a
norm giving useful asymptotic estimates. Thus if T-IAT is diagonal, we can define
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Ilxllr=llT-xll, from which we can derive Ir[A]=a[A]. We now generalize this
technique to defective and time-dependent systems by using a local nonsingular coordi-
nate transformation

(2.9) x(t)=T(t)y(t).

We want to estimate the solution in terms of a given monotonic norm II’llp, the global
norm of the solution. We define a local (time-dependent) norm II’llr by

(2.10) llx(t)ll = IIz-l(t)x(l)ll = llY(t)ll -
We first estimate Ilxllr, then these results are transformed back to estimates with
respect to the fixed global norm. The following inequalities are readily established:

(2.11) Ilx lip -<

From the definition of the logarithmic norm (2.1) it follows that

(2.12.) r[a]= p[T-laT ].

When (2.9) is applied to (1.1), we obtain the differential equation

(2.13) =(T-1AT T-l)y + T-lg,

from which we derive the differential inequality

d
(2.14) llyIlp Ne T-AT

While (2.2) still remains valid for the fixed time-independent global norm, (2.14) clearly
shows that for the local norm (cf. (2.12)),

d(2.14’) llxllrNr[A T-1]][XIT+ Ilgllr-

Note the term T-1, wNch accounts for the time-dependence of the local norm.
Estimates of Ilxllr can now be obtained by applying Lemma 1 to (2.13), and then
transformed back to estimates of Ilxllp by means of (2.11). We shall see that we can
choose the coordinate transformation (2.9) in such a way that r[A- T-1] is signifi-
cantly smaller than p[A], thereby pertting estimates with better asymptotic proper-
ties. The price to be paid for tNs advantage is that we lose shaness for short-term
error propagation.

Before concluding tNs section, we point out that the following inequality,

d ]IITII ,(2.15)  IlTll    [T-
which follows directly from the identities = TT-I T-1T, is sometimes useful in
deriving the asymptotic estimates.

3. Kinematic eigenvalues and the Lyapunov anstormation. Throughout the paper
we shall assume that the matrix function A(t) satisfies the following assumptions:

Assumption A1. A(t) is uniformly bounded with respect to t, i.e. IIA(t)lp L, Vt.
Assumption A2. There exists a continuously differentiable fundamental solution

matrix satisfying A, Vt.
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It follows from A1 that no solution to the homogeneous problem : Ax can grow
faster than exp(Lt). Similarly, no homogeneous solution can decay faster than
exp(-Lt). In order to measure the asymptotic behavior of solutions, it is therefore
convenient to use the concept of characteristic exponents or type numbers, [4, p. 50],
[11] and [17, p. 165].

DEFINITION. The generalized Euclidean characteristic exponent of a vector function
f(t) is defined by

(3.1) X (f) li---- lgllf( )ll 2.
to

If f and g are vector functions and 3’ is a scalar function of t, then it is clear from
the definition that the generalized characteristic exponent satisfies the following rules:

(3.2) X (f+ g ) < max( X (f), X ( g ))

with equality if X (f) 4: X (g), and

(3.3) x(YU) < X(Y) + x(f).
DElqYITIOrq. Let X(f) x(g)= X0. If for some nonzero constants , and y2 we have

X(ef+e2g)<Xo,

we call f and g exponentially linearly dependent. Otherwise they are exponentially
linearly independent.

Example. Consider the constant coefficient system

1 0
x,

with fundamental solutions

e e- sinh cosh

xI, serves well as a fundamental solution when is small, but away from the origin its
columns rapidly become almost linearly dependent. In fact, they are exponentially
linearly dependent. The columns of , on the other hand, are orthogonal for all t. We
remark that given a fundamental matrix , one can construct a new fundamental
solution by postmultiplying by any constant nonsingular matrix M. It should also be
noted that since -1 exists for all t, the columns of are linearly independent in such
a way that every time-dependent linear combination (t)y(t)4:0 if y(t)4:0 for all t.
This "spatial" linear independence is much stronger than the "functional" linear
independence q(t)y 0 for every constant vector y.

DEFINITION. Let (qh, q2,-. ",t/)m) where q: .....) m, be a fundamental matrix.
is said to be normal in the sense of Lyapunov [17, p. 169], [4, p. 52] if

m

E X(q’2) is minimal.
j=l

Clearly, in the previous example, is normal with EX(2)= 0, whereas xI,, with Zx(b2)
2 is not normal.
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In the following analysis we shall be concerned with the following particular
choice of "Assumption A3. is normal, and its columns have been permuted so that can be
partitioned columnwise into

(3.4) (I) II)l, (I)2, (I)q l<_q<m,

where for everyj, each column in the submatrix j has the same generalized character-
istic exponent Xj. The characteristic exponents are assumed to be arranged in descend-
ing order, i.e. X>X+ 1.

It can be shown that a normal fundamental matrix always exists, and so Assump-
tion A3 is always satisfied for some fundamental matrix. Unless otherwise stated, in the
sequel we will deal exclusively with fundamental matrices satisfying A3.

Remark. Observe that if satisfies A3, then so does =M, where M is a
nonsingular block lower triangular matrix partitioned conformally with (3.4), i.e.

0

detMj 0.

Any result induced by A3 therefore remains qualitatively, but not necessarily quantita-
tively, the same for and .

PROI’OSITION 4. Let b satisfy Assumption A3. Then the columns within each subma-
trix dpj are exponentially linearly independent.

Proof. Suppose there is a nonzero vector , for which X(’)< X- Then we can
construct a new fundamental matrix by replacing an arbitrary column in . by .7.
We then have

m m

j--1 j--1

thus contradicting the assumption that is normal. D
We shall now decompose into a direction matrix T and a diagonal size matrix D,

(3.6) = TD

where T= (t1, t2,. ,tin) has columns of unit Euclidean norm,

(3.7) tft=l.
Then, since q,j= tjdj, we have

(3.8)

The following properties of T and D immediately follow from Assumption A2 and the
differentiability of the Euclidean norm"

PROPOSITION 5. T and D are nonsingular and continuously differentiable.
Now, since =A, we obtain D+ Tb=ATD, or

=AT- T)D-1.
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Denote the diagonal matrix bD-1 by A. Then

(3.9) =AT- TA,

(3.10) b=AD.

Thus we have proved the following diagonalization theorem"
THEOREM 6. For every matrix function A ) satisfying Assumptions A1 and A2 there

exists a continuously differentiable nonsingular matrix T such that A T-1AT- T-lJ" is

diagonal. Moreover, under Assumption A3, a possible choice of T is given by (3.6)-(3.8).
COROLLARY 7. For every matrix function A(t) satisfying Assumptions A1 and A2

there exists a continuously differentiable nonsingular matrix T such that the differential
equation

is decoupled by the coordinate transformation x= Ty into a system of scalar differential
equations

(3.12) p=A(t)y+ T-(t)g(t).

The fundamental solutions and D, associated with (3.11) and (3.12), respectively, are
related by the same transformation, i.e., TD.

A coordinate transformation x= Ty is called a Lyapunov transformation, [10, p.
117], under the conditions that

(i) T is uniformly bounded,
(ii) is continuous and uniformly bounded,
(iii) T-1 is uniformly bounded.

We shall see that the direction matrix T obtained by the decomposition (3.6) satisfies
conditions (i) and (ii) but not always (iii). Thus it is well-known that a defective matrix
cannot be transformed to diagonal form with a transformation T satisfying (iii) over a
semi-infinite interval. However, there are only two reasons for considering condition
(iii). Firstly, T may not become singular for any finite t. By Proposition 5 this cannot
occur in our case. Secondly, if any uniform upper bound of T-1 appears in some
estimate of the solution, it clearly has to be finite. However, such a bound will not be
needed in our estimates. Thus (iii) is unnecessarily restrictive, and unless otherwise
stated, we shall replace that condition by the weaker requirement

(iii’) T- exists on every finite interval,
which, according to Proposition 5 is always satisfied. We call the resulting transforma-
tion, satisfying (i), (ii) and (iii’), a generalized Lyapunov transformation. In particular, we
shall refer to (3.9) as a diagonalizing Lyapunov transformation (boundedness of J" will be
established in Propositions 9 and 10). The systems (3.11) and (3.12) are said to be
kinematically similar (of. [11] and [4, p. 54]), and we call the diagonal elements Xi(t of
A(t) the kinematic eigenvalues ofA with respect to T. Let

(3.13) ST=T-1.

Then S and T provide the left and right kinematic eigenvalues of A. We remark that T
and A are not unique unless we specify exactly which normal fundamental matrix tI) is
to be used for the construction of T. Asymptotic properties, however, are uniquely
determined as we shall see in Propositions 11 and 12.
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We,now illustrate our results by considering the defective system

(3.14) 2=
0 -1

x, t>O,

which has a fundamental matrix

dp= e-tO te-t]-t

It is easily verified that

1 -t1
V/i + t,2

(3.14’) T=
1

St=
0

vq+t:
0 vq+t

corresponding to

-1 0 -t 0
(3.14") A 0 1 + D-- 1/1 + 2 e -t

l+t 2

Note that the kinematic eigenvalues are not constant despite the fact that the original
system has constant coefficients. This is a consequence of the diagonalizing Lyapunov
transformation being time-dependent. Also note that the fundamental matrices and
D both exhibit asymptotic growths e-t and re-t.

it is clearly seen that Sr is not uniformly bounded with respect to t. We expressly
state that this is not a deficiency of the presented theory. It merely reflects the fact that
for any choice of fundamental matrix , the space spanned by its columns collapses as

oo. This property is inherited by the kinematic eigensystem T which is aligned with
the directions of the linearly independent solutions sj. Finally, we point out that there
are nonautonomous systems with distinct eigenvalues that behave in a similar way.
Thus, for instance, the system

1 x, t>_O2=
0 -1 +l+t

has a fundamental matrix

dp
e-t t2

0 (l+t)e-t

It is clear that for any choice of , Sr will be O(t) as t--, oo. This "pseudodefective"
behavior is due to the two eigenvalues of A approaching a defective pair as oo.

The kinematic eigenvalues and eigenvectors have a number of interesting proper-
ties:

PROPOSITION 8. The kinematic eigenvalue kj is equal to the Rayleigh quotient formed
by the corresponding kinematic eigenvector tj and A, i.e.

(3.15) X2=tfAt2.
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Proof. Differentiating (3.7), we find that t2rt’2=0. By (3.9), i2=At2- t2h2. Thus,
O= tAt2- Xj.

PROPOSITION 9. All kinematic eigenvalues satisfy the inequalities

(3.16)

Proof. For all x with xrx 1 we have that -ttz[-A]<_xrAx </2[A]. The inequali-
ties then follow from (3.15) and part d) of Lemma 2. []

PROPOSITION 10. ’ is uniformly bounded with respect to t.

Proof. The result immediately follows from equation (3.9) and the boundedness of
A, Tand A. [2]

PROPOSITION 11. The characteristic exponents are preserved by the diagonalizing
Lyapunov transformation, i.e. if ( TD, then X(ok2) X(d2).

Proof.

X((k2) libra 1 l logd22=x(dj).
oo 7 tli-.m 7

PROPOSITION 12. X (ok2) can be expressed as the "infinite average"

7 f0’x’
Proof. By (3.10), dj ,2dj. Integrating yields

dj(t) exp fothj(s ) ds dj(O).

Hence Proposition 11 gives

x(d2)=.iim lfot, (s)ds--x(2)
t’)

J

DEFINITION. The kinematic spectral abscissa of A with respect to T is defined by

(3.18) ar[A =maxX2.
J

We then have
PROPOSITION 13. Let II’llp be monotonic and let II’IIT be defined by (2.10) where T is a

diagonalizing Lyapunov transformation. Then

OT[A]=IT[A-- "Z-1] p A ].

Proof. From (2.12) we obtain tT[A- T-1]=tp[T-1AT- T-I’]=/p[A] by (3.9).
Since II’llp is monotonic, Lemma 2f) gives/,[A]= ar[A].

It is clear that ar[A has strong implications as to the stability of (1.1). Not only is
the kinematic spectral abscissa closely related to the characteristic exponents, but it
appears explicitly in (2.14) and (2.14’). Thus we have uniform stability if aT[A]<0 and
uniform asymptotic stability if aT[A]<-a<0 for all t. We note that these results
cannot be concluded from corresponding conditions for the spectral abscissa a[A] if the
system is nonautonomous. These questions will be further discussed in 4.
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An interesting consequence of Theorem 6 is
THEOREM 14 (exponential representation theorem). Every fundamental solution ad-

mits the exponential representation

(3.19) *(t)*-l(’r) T(tlexpf,’A(sldsSr()
whenever Assumptions A1 and A2 are satisfied.

Proof. Take M so thatM satisfies A3. Then

dp(t)d-l(,r)=*(t)mm-ld#-l( ,) T(t)D(t)D-I( )Sr(,r).
Since b AD, (3.19) follows from

and the representation

D(t) expftA (s) dsD(),

(3.21) (I) (t) T(t)D(t).
Remark. Note that (3,.19) is a generalization to the nonautonomous case of the

corresponding formula in the diagonalizable constam coefficient case. Thus, if there
exists a static similarity transformation that takes A to diagonal form,

O=AT- TA
where T- Sv and A TASr, then

e,4(t-r)= TeA(t-)S T.
It is clearly seen that this formula appears as a special case in Theorem 14. In the
nonautonomous case, however, it is well known that

d ( ) cb ( ) exp f,tA ( s ) ds

if and only if A commutes with its derivative, i.e. whenA A 0. The importance of
Theorem 14 is that we indeed still have an exponential representation, even if the
commutativity condition is not satisfied. It should be noted that this is made possible
by the kinematic similarity transformation to diagonal form, and the Lyapunov-type
relation = TD, where the fundamental solution D associated with the decoupled
system (3.12) always has an exponential representation (3.20). We finally remark that
the kinematic diagonalization is a transformation of global character; the case when A
is defective locally requires no special attention and no matrices of Jordan form are
needed.

We shall now turn to the question of how the matrix T-’x= ST behaves for
increasing t. We have already seen that globally defective or pseudo-defective systems
will (in general) cause an O(t) growth for some power/3>0, due to the inherent
structure of the problem. In Theorem 14, however, we would like to avoid any exponen-
tial growth of ST in (3.19), or any exponential linear dependence in the columns of T,
so that the exponential behavior is due to A only.

Introduce the notation det, - det T, o det ST and 8 = det D.
LEMMA 15 [4. p. 53]. "X(j)>’X()>_. -X(-1).
Proof. Since 1 =qbqb -1, we have 0<X()+X(-x) from which the last inequality

follows. For the first inequality, note that qb 8 X() -< X(z) + X(8). However, the
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normalization of the columns of T gives I,llx(,)0. Since 8-HI1.112, we find
that X (8.)-< EX(.), thus completing the proof. []

In order to show that Sr does not grow exponentially, we have to show that
X(O)_< 0. Since o,= 1, we obtain

(3.22) O<-X(’)+X(o).
However, X(’)_< 0, and it follows that S r does not grow exponentially if and only if
x()=x(o)=0.

DEFINITION. Under Assumption A1, the system +/- Ax is said to be regular if there
exists at least one fundamental solution satisfying

(3.23) EX() -X(O-’)-
It is clear that a fundamental solution satisfying (3.23) must be normal, and,

without loss of generality, we may assume that it has the form described in Assumption
A3. We now have

THEOREM 16. Let the system J dx be regular and let T be a diagonalizing Lyapunov
transformation with inverse S. Let z det T and o det S r. 7hen X() X(o) O. In
other words: the columns of T are exponentially linearly independent and ST does not grow
exponentially as increases.

Proof. Note that o=-x=-lIIIl,jll. Hence

(3.24) X(O) < X (q-) +EX (q.).
Since the system is regular, (3.23) gives X(o)<O. (3.22) together with X()<0 then
yields X(z)=X(o)=O. rq

PROPOSITION 17. The system c Ax is regular only if

(3.25) t-olim It fottrA ( s )ds

exists.

Proof. It is well known [5, p. 67] that q satisfies the differential equation +=
trA(t) q,. Hence

X(q,) lim l__f0ttrA(s)ds.
t--*

Similarly, k q’- satisfies the adjoint equation -trAr(t)p, from which we derive

X(q_l) _1 fot_ trA(s)ds=- lim _1 fottrA(.s)ds.
t--, t--- oQ

Since a regular system has X(q) -X(q,-1), the existence of the limit (3.25) follows.

PROPOSITION 17’. The system .9 Ay is regular if and only if

(3.26) tolim l__t f0ttr A (s) ds

exists.

Proof. The "if" part follows from the decoupled structure of the system j, Ay. It
is clearly seen that a scalar system d ,d is regular if and only if X (d) X(d- 1).
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THEOREM 18./f :t Ax is regular, then so is the transformed system j; Ay, and

(3.27) lim -1 fottrA ( s ) tr A ( s ) ds O.
t---, o

Proof. From t- l’r and Theorem 16 it follows that X (8 1) < X( 1). Hence,
if A is regular,

X()EX(fj)=X() -X(b-1). -X(-l).

By Lemma 15 we must have X()> X(8-1), and so the regularity of the transformed
system follows. Thus we have X()=X(8), where (cf. Proposition 12) X() and X(8)
are given by the limits (3.25) and (3.26) respectively. Alternatively, (3.27) may be
derived from the two adjoint differential equations

"/’= (trA trA),, 6=(trA-trA)o
together with X() X(o) 0. ra

Remark. Note that trA is equal to the sum of the eigenvalues of A. Thus (3.27)
states that the kinematic eigenvalues of A are "close" to the eigenvalues in the infinite
average.

If A is permitted to grow exponentially, it is simple to construct problems where
Sr grows exponentially, see e.g. [7, p. 12]. However, under Assumption A1, we have
found that regularity is a sufficient condition for S r to grow at most at a polynomial
rate. Necessary conditions are still an open question, and at present we are not aware of
any system where Sr does grow exponentially. Indeed, in Lyapunov’s classical, example
of an irregular system, [4, pp. 53-54], we actually have a uniformlybounded S r. "One
should note, however, that the class of regular systems is very wide. Thus, for instance,
all systems with constant or periodic coefficients fall in this class. Irregular systems
have fundamental solutions containing elements with a quite odd behavior, e.g. like
exp(t sin log t).

4. Asymptotic estimates and condition numbers. We shall derive asymptotic esti-
mates by applying the theory of [}3 to the differential inequalities in [}2. We begin by
giving an estimate for I[(t)tI)-1(0)lip, i.e. we consider the homogeneous problem (2.6).

LEMMA 19. Let II’llp and II’llq be dual Hilder norms (i.e. 1.//p + l/q= 1) and assume
that A is a rank one matrix, A uvT. Then

(4.1) IIA --Ilull, llollq-

Proof.

sup Ilaxll --sup Ilu  xllp=,llul[ sup IoTxl.

By H61der’s inequality, IvTxlllVllq[lXllp with equality for some x. Hence IlAllp--
IlUllpllVllq.

THEOREM 20. Let I1" lip and [[.[[q be dual HOlder norms. In addition to Assumptions A1
and A2, assume that X(I)> X(qj) forj> 2. Then, as

(4.2) 11,I, (t),-1(0)lip ][tl(t)llpl[s(O)[[q exp fotkl(S ) ds,

where ands are the first column and row, respectively, of the matrices T and S r.
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Proof. From the exponential representation in Theorem 14, we see that (t)-l(0)
can be written as a sum of rank one matrices,

m

(4.3) (t)--l(0) E tj(t)sf(O)exp fotk (s)dsj
j"l

If X(q,)>X(qj) for j>2, then by Proposition 12, the terms 2 through m will be
exponentially small compared to the first term of the sum in the right-hand side of
(4.3). Hence, for large t,

(t)-(O)-t(t)s(O)exp fot.l(S)ds,
and the result follows by application of Lemma 19. rn

Remark. The most important application of Theorem 20 is to systems satisfying

(4.4) )kl(t) > X(t), t>O, 2<j<m.

We then have X(ql)> X(q2) forj> 2 if and only if (4.4) holds uniformly with respect to
t. It is worth noting, however, that Theorem 20 and its proof remain valid for systems
satisfying the weaker requirement

(4.5) m ft,l(S)--kj(S)dS= +X), 2<j<m,
"0

although the dominated terms may no longer be exponentially small. Thus (4.4) does
not have to hold uniformly in t, and Theorem 20 can also be applied in the defective
case. Also note that if (4.4)-(4.5) hold, then the asymptotic behavior is determined
(sharply) by the kinematic spectral abscissa, ar[A]=)t1. Finally, note that sr is only
evaluated at 0 in the estimate (4.2), showing that a uniform upper bound of Sr is
not needed.

We now illustrate Theorem 20 by returning to the problem (2.7). A can be brought
to diagonal form by a static similarity transformation 0 =AT- TA, with

1 s’= (1 10)X=-I, tl= 0

Thus (4.2) yields the asymptotic estimate

Iletll --IItllllSrlllext- lle -t

in agreement with (2.8’). For the defective system (3.14), we obtain kinematic eigenval-
ues (3.14") that (after permutation) satisfy (4.5). The kinematic spectral abscissa is

1 + t/(1 + t-), corresponding to the left kinematic eigenvector (0 V/i- ) appearing
in the second row of Sr in (3.14’). Evaluating this vector at t--0, we obtain (0 1).
Hence, for the Euclidean norm we have

Ile/ll= 1,1. v/1 / e-’= v/1 / e-’ te -t,

a result which is asymptotically sharp for large t.
Next, we turn to estimates of Ilxllp. if x Ty is a diagonalizing Lyapunov transfor-

mation, then by Corollary 7 we have

(4.6) y=Ay+ Srg.
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Ilyllp can be estimated from (2.14) or by application of Lemma 1, i.e. Ilyllp_< , where

(4.7) il ar[A]r/+

with the initial condition r/(0)-- [[y(0)llp. Integration of (4.7) yields

(4.8) Ily(t)llp<-[[y(O)ll exPfota [A(s)] ds

+ f0t{exp ftoT[a(s)]ds)llsT(’r)g(’r)llpd’r.
Using (2.11) to transform this estimate into an estimate for IIx(t)llp, we get

(4.9) IIx(t)ll  IIz(t)ll [la (O)x(O)llpexP

+ [[T(t)llPfot{exp ftotT[A(s)] ds)llsT(’r)g(’r)llpd’r
whereas direct application of Lemma I to (1.1) gives

(4.9’) Ilx(t)l[p_< [[x(0)[[pexp fotp[A(s)] dS+ fot(exp ftp[A(s)] ds)llg(’r)llpd’r.
Note that in (4.9), Sr(,)g(,) is the kinematic spectral projection of g(,) onto the

local coordinate system at time ’, having the columns of T(,) as basis vectors. By
applying (4.9) to the homogeneous case, we readily establish the following (usually
cruder) alternative to the result of Theorem 20,

(4.10) [l(t)-l(0)llp < [IT(t)llpllST(O)[lpexp fotOtr[A(s)] ds

whereas (4.9’) or Lemma 3’a) yields

(4.10’) [[(/)-x(0)l[p_.< exp fotp[A(s)] ds.

Note that the bound (4.10) holds without the special assumptions of Theorem 20 or
restrictions like (4.4)-(4.5). Although for a given norm it is usually superior to (4.10’)
for asymptotic purposes, it should be clear that (4.10) does not necessarily give the
optimal exponential behavior unless some restrictions of the mentioned type are im-
posed. Thus,

lim lfotX(s)dsX ( ll ( ) dp- l(o) llp ) maxx(i)= mixa

l for (s)ds= lim
l for [A(s)] ds_< lim maxi - ar

The advantage, however, is that ar[A is, in principle, a computable quantity; the
characteristic exponents, on the other hand, are in practice virtually impossible to
compute.

As for the stability properties of the homogeneous problem, we can state the
following theorems. We leave the first theorem without proof since the uniform
boundedness of T implies that the bounds (4.10) and (4.10’) have the same generic
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structure, and the corresponding results are well known in the case of the logarithmic
norm, [6, p. 59].

THEOREM 21. Let ar[A be the kinematic spectral abscissa of A with respect to the
diagonalizing Lyapunov transformation T. Then the zero solution of +/- A(t)x is

a) stable iflimt__, far[A(s)]ds< ;
b) asymptotically stable if limt__, fdotT[a (s )] ds x
c) uniformly stable if ar[A(t)]<O for t>0;
d) uniformly asymptotically stable if aT[A(t)] < a < 0 for > O.
THEOREM 22. Let T be a diagonalizing Lyapunov transformation, and assume that

at[A] < 0 for all > O. Then the quadratic form xT(TTT)-lx is a Lyapunov function for
the system Jc=A(t)x provided that T-1 is uniformly boundedfor > O.

Proof. Note that x= Ty gives p= A(t)y. Define

V( y ) yry Ilyll.
By assumption, ar[A]=/2[A]<0, implying that V(y) is a Lyapunov function for the
y-system, i.e. l?< 0. Transforming back, y T- ix now gives

V(y) xrT-rT-Ix xr(TTr) -1
X,,

and the theorem is proved. [3

Remark. A time-dependent function V(t,x) is a Lyapunov function if 17< 0 along
the solution under consideration, and if there are positive definite time-invariant func-
tions U(x), W(x) such that U(x) < V(t, x) < W(x). Therefore, we have to require that
T- be uniformly bounded in this application.

Quantitatively, (4.10) is superior to (4.10’) for large enough to make

Ilz(t)llp[Isr(o)l[pexp Ltar[a(s)] -tp [a(s)] ds <_ 1

or, equivalently, when

(4.11) logllT(t)ll[lsY(o)[lp <_L[A(s)]-,[A(s)] ds.

In the constant coefficient diagonalizable case, (4.11) reduces to

log Xp T] _< (p[A]-o[A ])t
where p[T] is the condition number of the eigenvector matrix with respect to I[’[[p- In
2 we saw that the logarithmic norm gives sharp estimates initially, but in this case

(4.10) is preferable for >_ t*, where

logxp[T]
Ip[Al--a[Al

The quantity in the denominator is called the logarithmic inefficiency of the norm I1" lip,
[20]. In the general case we may, because of the normalization of the columns of T,
think of IIsl12 as a condition number of the corresponding column tj in T. It follows
that [ISrllp is an indication of the local conditioning of the Lyapunov transformation.
We therefore suggest that the matrix (3.5) be taken to minimize xp[T] in a suitable way.
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The significance of this is clearly seen in the problem

[1 0 ]1 x, t>O,
l-t+ 1

which has fundamental solutions

1 xT/--- 1 t"0 ----e 0 t+l e

Although both matrices satisfy Assumption A3, the first one gives T= Sr= 1, whereas
the latter choice yields a matrix Sr which grows like O(t) as t--, o.

It is possible to derive differential inequalities where the condition number does
appear explicitly. Indeed, in a closely related context, albeit with somewhat different
aims, it has been proposed by Dahlquist (private communication) to consider the
quantity =llTIIpllYllp directly. Thus if x= Ty, then IlXllp_< . Upon differentiation of ,
one obtains

d dIly lip Zllp + [1Zi[p "- Ily lip.

The derivatives are, as usual, interpreted as right-hand derivatives. Using (2.15) for the
first term and (2.14) for the second, we find

(4.12) <-- (lip[ z- laz- z-lt }- llp Z- lJ" ) -]- ":, T Ilgll,,

with the initial condition f(0)= p[T(O)]llx(O)llp. Thus, if T is a diagonalizing Lyapunov
transformation,

(4.12’) 4 _< ( a]+ + Z Ilgll .

In general, the term #e[T-12/"] will prevent us from obtaining estimates with the
desired exponential behavior, and so (4.12) is best suited for transformations other than
the diagonalizing Lyapunov transformation considered in this paper. Comparing (4.12’)
and (4.7), we see that in both cases, a small re[T is needed in order to avoid a too
large amplification of the forcing term g(t) when it is projected onto the columns of T.
In the case of a diagonalizing Lyapunov transformation suitably chosen to minimize

Op[T], a large or growing xe[T (such as in the defective case) merely reflects an
inherent "ill-conditioning" of the differential system that is inevitable. We repeat that
this is not a consequence of our transformation technique; the equations (3.11) and
(3.12) appearing in Corollary 7 are completely equivalent. Thus nothing can be gained
by forcing Sr to be uniformly bounded at the price of transforming the system to a
rather artificial time-dependent Jordan form. Instead we suggest that one interpret
xe[T as a condition number indicating how well one can distinguish different homoge-
neous solutions asymptotically as oz. Formally, one may impose conditions that
would define T and A uniquely, but at present it is not clear what additional properties
the "best possible" diagonalizing Lyapunov transformation should possess. Knowing
that any transformation of this type does give the optimal exponential behavior in
terms of the generalized characteristic exponents, we leave this question open.
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5. Applications. In this final section, we shall hint at some possible areas of
application of the presented theory. First, we shall briefly discuss how the kinematic
spectral abscissa can be computed.

The practical computation of ar[A] is based on the matrix differential equation
(3.9). Note that the structure of (3.9) admits a convenient incorporation of a shift.
Thus, if

(5.1) =A+flI, =A+flI,
then

(5.2)
In order to compute at[A], we have to compute the maximum kinematic eigen-

value and the corresponding kinematic eigenvector (X and t say). By (5.2) these
quantities satisfy

(5.3) il=(-XlI)t
together with the normalization requirement (3.7), i.e.

(5.4) tt= l.

An approximation to )tl= X fl is obtained by discretizing (5.3), for instance by
the backward Euler method, in which case one gets

(5.5) tl,n+l-tl,n---h(n+l-Xl,n+ll)tl,n+l.
Here h is the time-step, and the subscript n indicates an approximation at time t. Next,
we rearrange (5.5) to obtain

hXl,n+ltl,n+l -(I-hzn+l)tl,n+X + 11, n.

This formula is the basis for the iteration

(5.6) hkl+1 tk+l
,n+ 11,n+ (I-- hn+ x)t/ q- tl,1,n+l n"

In each iteration, 5,e/ and /

"l,n+l l,n+ are defined by imposing (5.4). Under mild assump-
tions, the iteration converges with an appropriate shift ft. Note that (5.6) is essentially a
power iteration, but with an inhomogeneous term taking the time-dependence of the
kinematic eigenvector into account. Several other discretizations and iterations are also
possible. This is currently being investigated and will be reported elsewhere. Finally, we
point out that the mentioned technique is good only for the computation of approxima-
tions to the dominant kinematic eigenpair, i.e., we cannot compute the whole T matrix
this way. However, this is not the purpose of our analysis. Moreover, if a full transfor-
mation were to be computed, one might expect some numerical difficulties. As an
alternative, one may consider the possibility of using orthogonal transformation
matrices. Thus, if

(5.7) b= OR
is the QR factorization of a fundamental matrix , it is easily verified that

(5.8) O=AQ QU, JR= UR,

where R and U are upper triangular matrices. (5.8) can then be regarded as a kinematic
Schur form of the matrix A, but note that the diagonal elements of U are, in general,
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not equal to our kinematic eigenvalues. We remark that the existence of the transforma-
tion (5.8) is a classical result, cf. [4, p. 54].

Because of the strong relation between ar[A and the stability of the system, one
of the most important numerical applications of the presented theory is to monitor the
mathematical stability of the problem when it is solved numerically. It is well known,
[9] and [14], that frequently used numerical methods for solving stiff initial value
problems may sometimes produce erroneous results. This is a consequence of the
difference between mathematical stability on the one hand and numerical stability on
the other hand. Thus most methods for stiff problems are numerically stable also in
large portions of the right half-plane. As a result, the numerical method sometimes
follows a (mathematicially) unstable particular solution without ever detecting this
instability. However, by numerically computing ar[A] along the approximate particular
solution, such instabilities are easily detected. We therefore propose that ar[A be
computed so as to implement a stability check in stiff codes that would increase their
reliability. Also note that once ar[A is computed, it is simple to find an approximation
to the integral

which gives information about the global stability properties, cf. Theorem 21.
A second possible application is to estimate the global truncation error in the

numerical integration. Instead of solving a variational equation of the type (3.11), we
consider a kinematically similar system (3.12). If av[A]= kl, then

(5.9) 9)1 av[A]y + slg

defines the asymptotically dominant component in the y-system. Since

m

x= E
j=l

we see that tly is the global error component in the direction with the least damping in
the x-system. This component can be estimated from the scalar equation

(5.10)

If the global error components in the other directions can be neglected, then

and, in particular, Ilxll=-. It is clear, however, that / is neither a bound nor an
estimate of the global error, but rather a "global error indicator" which is not very
robust. In some preliminary computations we have, nevertheless, obtained some fairly
reasonable results by solving

(5.10’)

instead of (5.10). The norms are dual HOlder norms, and (5.10’) corresponds to project-
ing the local error vector g entirely onto the direction. While (5.10’) still does not give
more than an indication of the global error, it is more robust and only involves
quantities associated with kl (sl satisfies the adjoint of (5.3)). To obtain a global error



88 GUSTAF SODERLIND AND ROBERT M. M. MATTHEIJ

bound, we need maxillsirllq or IlSrllp, and at present we have not been able to compute
these quantities (cf. (4.7)).

We would finally like to give an example showing that the presented theory is also
useful for problems not satisfying Assumption A1, i.e. when the matrix A is no longer
uniformly bounded with respect to or other parameters. The application of our
technique to such problems can be justified, although the theory is considerably more
complicated. Thus the limits defining the characteristic exponents may not exist, and it
is also questionable whether one may consider a linear equation (1.1) as a model for the
error propagation in a nonlinear equation (1.2).

We consider the following very simple turning point problem

(5.11) eu" + 2u’ + 0. u=0

over the interval (-oo, o). We are especially interested in how well it is possible to
distinguish the two linearly independent solutions of (5.11). In particular, we would like
to compute the condition number of the transformation matrix T as , + and
at the turning point t=0. To this end, we rewrite (5.11) as the first-order system

(5.12) ’f-u" 0 -2t/e u’"
Introduce

lft(5.13) E(t)=e-t=/, I(t)= oE(r)dr"
The factor - appears in (5.13) to normalize I so that I(o)=1. It is now easily
verified that (5.12) has a fundamental solution matrix

(5.14)

Since E--+0 as o, we see that the T matrix associated with (5.14) has a rapidly
growing inverse S r. We therefore try to improve this behavior by considering another
fundamental matrix M. Indeed, for

1 0]
we obtain

a fundamental solution having much better properties. Thus, when (5.14’) is decom-
posed into its direction matrix T and size matrix D, we get

1-I I

(1-I)2+E 2 V/I2+ E 2

r=
-E E

(1-I)2+E 2 1/I2+ E 2
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and

(5.16) D=[(,l_I)2+E20 VlI2+E20 ].
After some limit calculations, one obtains Table 1, valid uniformly with respect to e.

ST

TABLE
-c

10] Vf 10[0 1 --[ 2 2

o] o
1 3 1

The size functions dll and d22 in (5.16) are illustrated in Fig. 2.

dll

FG. 2

In Fig. 2 we see that our turning point problem has a dichotomy, [7], in a very
general sense. From the table it is clear that the direction matrix T is well behaved. At
the turning point this local coordinate system rapidly flips an angle of rr/2 from one
orthogonal system to another. This change takes place quicker as e 0, and conse-
quently is not uniformly bounded with respect to e. The kinematic eigenvalues with
respect to T are 0(e-1/2) in a neighborhood of the turning point 0.

We remark that the special scaling with respect to e used to derive the first-order
system (5.12) is necessary to obtain these good results (an alternative would be to
choose a linear combination M that depends in a nonuniform way on e). Our interpre-
tation of this is that a proper minimization of x[T] implies a proper scaling with respect
to the perturbation parameter.

We shall now demonstrate the importance of directional well-conditioning for
boundary value problems, and apply some results from [15] to this turning point
problem. Consider the BVP

(5.17) 3=Ax + g, a < <b,

(5.18) Max ( a ) +Max (b) c,
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where c is a vector and Ma, Mb are square matrices which are normalized such that
max(llMallp, llMllp)= 1. It was shown in [15] that the sensitivity of the solution x with
respect to the boundary condition (5.18) can be quantified by the following condition
number (ll’llp is a HOlder norm)

(5.19) CN max[l(t)O-[l,
where

(5.20) Q= MaP( a) +Mb(b ).
One should realize that CNp is independent of the actual choice for and that CNI
does not have to be greater than 1. In order to have a more workable quantity, it was
suggested in [15] to use the following estimate for CNp,

(5.21)

This estimate is meaningful only if we make the following (not restrictive) assumption.
Let (t) T(t)D(t) be such that

(i) maxa<_,<_blldg(t)lll-maXa<_<_blldz(s)lll, j, l;
(ii) max<_t<_bll(t)llp- 1.

We obtain
THEOmM 23.

1 1 (1)/_maxa<_t<_bllsr(t)llp maxa<_t<_bllr(t)llp n yp< CNp<_ yp.

Proof. The second inequality is an immediate consequence of our normalization
assumption and the fact that II(t)O-Xllp<_ll(t)llpllQ-Xllp. To show the first inequal-
ity, let z be a maximizing vector of Q-1, i.e. IIO-Xzllp=’/pllzllp. Definey:= Q-lz; then

(5.22) II(t)Q- zll, IlT(t)D(t) yllp glbp(T(t))ll(t) yllp.

Now we have

(5.23) maxllD(t)Yl]P>t max]d"(t)[’llYll>t maxldi’(t)l[
l )1let/\IlYll o

(where is arbitrary). Finally, from D(t)= T-l(t)cb(t), we derive

(5.24) mtax Idii(t)[ > mtax {glbp(Z-(t))ll(t)[Ip }.
Substituting (5.24) into (5.23) and this into (5.22) where we now take the max over all
yields

CNp> [m}tnglbp(T-X(t))][rn}tnglbp(T(t)) 1) 1/ Ilzlle- VPllzllp’
since glbp(T-1)= 1/llTllp and glbp(T) l/llT-llp the result immediately follows, ul

Note that whereas CNI is independent of the choice of , ’e is not. It appears that
,p is a sharper estimate the less "skew" the direction matrix T is. For a useful estimate
3’p, we therefore have to choose a such that the basis solutions have fairly well
separated directions (if this is at all possible). The preceding turning point problem
provides a nice example to demonstrate this. To this end, let a, b] 1,1] and assume
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that e is sufficiently small to let the asymptotic behavior (t + o) be valid already for
+ 1. As boundary condition we consider

1 0(0
(here x (u, u’), cf. (5.12)).

Choosing according to (5.14) results in

(5.26) Q--(0 0 1 1 1 1

Hence 3% = 2. Although this bound seems small, it may not be a sharp estimate for
CN, for as we can see from (5.14) we have maxtllS(t)ll--ex/e, implying that the
lower bound in Theorem 23 tends to zero as e 0. On the other hand, if we chooseM
as in (5.14’), we obtain

10)(5.26) Q--(0 0

Hence 3% = 1. Moreover, it follows from (5.15) (see also Table 1) that maxtllSr(t)ll
maxtl[T(t)[[ = 3. Hence

1
(5.27) - <_ CN Z 1.
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SEPARATION OF VARIABLES FOR THE HAMILTON-JACOBI
EQUATION ON COMPLEX PROJECTIVE SPACES*

C. P. BOYER’, E. G. KALNINS AND P. WINTERNITZ

Abstract. The additive separation of variables in the Hamilton-Jacobi equation and the multiplicative
separation of variables in the Laplace-Beltrami equation are studied for the complex projective space CP
considered as a Riemannian Einstein space with the standard Fubini-Study metric. The isometry group of
CP is SU(n + 1) and its Cartan subgroup is used to generate n ignorable variables (variables not figuring in
the metric tensor). A one-to-one correspondence is established between separable coordinate systems on S
and separable systems with n ignorable variables on C P. The separable coordinates in CP are char-
acterized by 2n integrals of motion in involution: n of them are elements of the Cartan subalgebra of
SU(n + 1) and the remaining n are linear combinations of the Casimir operators of n(n+ 1)/2 different su(2)
subalgebras of su(n + 1). Each system of 2n integrals of motion in involution, and hence each separable
system of coordinates on CP, thus provides a completely integrable Hamiltonian system. For n= 2 it is
shown that only two separable systems on CP exist, both nonorthogonal with two ignorable variables,
coming from spherical and elliptic coordinates on S2, respectively.

1. Introduction. The purpose of this paper is to discuss the problem of separation
of variables for the Hamilton-Jacobi equation

(1.1) giJSx,SxJ=e

on a complex projective space Cp n with respect to the standard Fubini-Study metric.
Indeed we will prove that every separable coordinate system on CP with n ignorable
coordinates comes from a separable coordinate system on the real projective space R P
or equivalently on the real sphere S. Conversely, every orthogonal separable coordi-

nate system on S induces a nonorthogonal separable coordinate system on CP with n
ignorable coordinates. Moreover, we prove that for CP 2 these are all possible separable
coordinates.

Also of interest is the separation of variables problem for the Laplace-Beltrami
equation

(1.2) A-E,

A-g-’/a ___.g’/agij __._
OX, Ox, J

g-det(gij)"

Since CP n (with the standard metric) is a Riemannian Einstein space, the separation of
variables problem for (1.2) is equivalent to that for (1.1).

Recall [1], [2] that on any pseudo-Riemannian manifold M a local coordinate
system (x i} is said to be a separable coordinate system for (1.1) if it is possible to find a
solution IV of (1.1) depending on n-parameters X 1,"" ,X,, satisfying

(1.) ==(xi,X,..-,X,), det _.,i, 0
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where the function W is independent of xj for vj. This is sometimes referred to as
additive separation as opposed to multiplicative separation [3]-[5] of (1.2).

There are two natural types of coordinates [1]-[5]: (1) Ignorable coordinates x for
which Ox.gij=0. (2) Essential coordinates x for which Oxogijv0. Ignorable coordi-
nates are naturally associated with abelian infinitesimal isometries [6]. In terms of these
two types of variables additive separation can be characterized by the equations

(1.4)
xaxbS---’O for arab,

Oox.S= 0 for all a, ct,

OxxoS=O for alla,fl,

where a,b indicate essential coordinates and a, fl indicate ignorable coordinates. The
pseudogroup 62 of coordinate transformations which leaves invariant this system of
equations is given by

(1.5) xta--Sa(xa), x’a--XAxB+Xf(xa )
a

where det(A)v0. Such transformations thus preserve separation; hence we say that
two coordinate systems {x’i) and {x i} are equivalent if they can be related by a
transformation in 62. By abuse of language a separable coordinate system will mean an
equivalence class of separable coordinate systems.

On a Riemannian manifold every separable coordinate system (x;} can be brought
to the canonical form [2]

(1.6) (giJ)-[abH20 gab
0 ]

by a member of o, where ab is the Kronecker delta and the functions H and gat are
specified as follows: (1) The quadratic form Q-Y,aH2(dx)2 is in Sttickelform, i.e. H
satisfies

xlnH 0.lnHi20lnH/2+ OxlnH2OxlnH+ 0xlnH 0xlnH-0

for j 4:k. (2) Each function ga# is a Sttickel multiplier, i.e. the quadratic form ga#Q is
also in Stiickel form for all a, fl. The subpseudogroup c which preserves canonical
forms is given by the transformations (1.5) withf constant. All our coordinate systems
will be in canonical form.

Suppose G acts on M as a group of isometrics with action q,: G M-M. Then if
(x) is a coordinate system about pM, then q*(x) is a coordinate system about
-t(p). Furthermore, if {x i) is a separable, so is *(xi}. In fact (x i) and 4*(xi) are
conjugate and we deal with conjugacy classes under G. Thus separable coordinate
systems are classified up to equivalence under 62 G.

It is classical [7] that associated with every orthogonal separable coordinate system
there is an n-dimensional vector space of locally defined second order contravariant
symmetric C tensor fields Al,.-.,A, one of which is the metric itself and which
mutually commute with respect to the induced Lie bracket [3]. Recently [1, 2] this has
been extended to nonorthogonal separable coordinate systems where both first and
second order tensor fields must be allowed. Furthermore, practical criteria have been
given to determine precisely which tensor fields give rise to separation of variables [2],
[8]. Up to now this is purely local; however, we will say that a separable coordinate
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system {x} is globally admissible if the locally defined tensor fields A1,’-’,A extend to
global Coo tensor fields on M.

For the purpose of separation of variables it is convenient to consider the cotan-
gent bundle T*(M) with its canonical symplectic structure [9]. Let SP(M) denote the
vector space of pth-order symmetric contravariant Coo tensor fields on M and let S(M)
denote the direct sum S(M)-- pSP(M). Every tensor field in S(M) defines a unique
Coo function on T*(M) which is a polynomial in the canonical coordinates Pi associ-
ated with a coordinate system (x} on M and vice-versa. The Lie bracket operation in
S(M) goes over to the Poisson bracket operation in COO(T*(M)). The contravariant
metric g goes over to the Hamiltonian H0 for geodesic motion or what we call the free
Hamiltonian, and tensor fields which commute with H0 become constants of the motion.
Constants of the motion which commute under Poisson bracket are said to be in
involution. Since constants of the motion will be globally defined functions in
COO(T*(M)) if and only if the corresponding tensor fields are globally defined on M, a
globally admissible separable coordinate system gives a completely integrable Hamilto-
nian system [9], [10].

Now let the Lie group G act on M as isometries and denote by the Lie algebra of
G. Let 6L() denote the universal enveloping algebra [11] of . U() has a canonical
filtration.-- D (2)D (l)D 0. Denote by gr its associated graded algebra and by
’Lp--’(P)/’L(P-) the elements of degree p. 6Lp is naturally identified with the sym-
metric tensors SP(). The Lie algebra homomorphism of into the Coo vector fields on
M induces a homomorphism of gr into S(M). We will be particularly interested in
L2 S2(M). Recall [12] that a separable coordinate system {x i} is class one if the
corresponding tensor fields A,-..,A lie in the image of 2(), and class two other-
wise. It follows that every class one coordinate system is globally admissible. It is
known [8] that all coordinate systems on the n-sphere S are class one and hence
globally admissible. Similarly since the isometry group SO(n+ 1) of S passes to the
quotient--real projective space R pn, all coordinate systems on R pn are class one and
globally admissible.

An example of a space with coordinate systems which are not globally admissible
is given by the torus T obtained as the quotient space of R by the integer lattice. Here
the tensor fields associated with, for example, spherical coordinates on R n, do not pass
to globally defined tensor fields on T and thus spherical coordinates are not globally
admissible on Tn. Likewise SO(n) does not define global isometries on Tn.

There are two motivations for our work. First a study of separable coordinate
systems on Riemannian manifolds with a large group G of isometries leads through the
intimate connection [12], [13] between these coordinates and second order elements of
6"0() to an algebraic understanding of special function theory. Our article constitutes a
first step towards this understanding in spaces of nonconstant curvature.

Second, C p is of considerable interest in physics. For n--2 C P2 has recently
been used as a model for a gravitational instanton [14], [15].

2. The geometry of complex projective spaces. Let us begin by considering the
complex manifold C n+l and the standard complex coordinates (0} /- 1,- .,n + 1.
On C n+ there is a flat hermitian metric/ given in local coordinates by

n+l

(2.1)
/:1

The real part g-Re/ of/ is just the standard flat Riemannian metric on C n+ ,. 2n+ 2

and the imaginary part Im/ of / is just the standard K/ahlerian 2-form on C"+ .
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Consider the sphere S2n+l in C n+ defined by

(2.2) E I’o1:-.
If 0 is the complex vector in C n+l whose components are 0, and we identify the
tangent space to C ,+1 at with C ,+1 itself, then the tangent space T,o(S 2"+ l) to S2n+

at 0 can be identified with the set {/jT,(C"+1): (0,)-0). Moreover, the flat
Riemannian metric on R 2,+2 pulls back to the standard metric on S2"+ .

Recall that the complex projective plane CP n is the set of complex lines through
the origin (0} in C "+1. Two points z,z’C"+l-(0} are equivalent if there is a
;kC-(0} such that z’-z. Then CP is the quotient manifold C+1-(0} P--CP n.
Every complex line through 0 intersects the sphere Sz’+ in a great circle. These circles
can be obtained as the orbits of the free circle group action on S2"+1 by

(2.3) oo eiao

and the space of orbits is just CP. This gives the well-known Hopf fibration

(2.4) S --) S 2n/l Cp

giving S2"+1 as a principal bundle over C P" with group U(1) --S 1.
Just as the tangent space to the sphere at a point can be determined by the

condition (e0,)-0, the tangent space to CP at a point [0]CP" (here [e0] denotes
the equivalence class determined by e0C ,+l_ (0}) can be identified with the set

(2.5) v.(c .+’- (0})-
Alternatively this is the set of Tto(S 2n+ 1) such that

(i,/j) 0,

But io is a vector tangent to the great circle determined as the intersection of the
projective line [0] with S2"+. Thus the tangent space Tt,oI(CP" ) is precisely the set of
vectors tangent to S2n+1 and orthogonal to the great circle determined by [0].

We can now put a metric on CP by requiring that the distance between two
points on CP be measured by the corresponding distance between two great circles on
$2+ 1. That is, for any tangent vectorsi T,,,(S 2"+ ), we put

(2.6) h (q./., ,//.,2 ) ](L /2)

where +/- is the component of which is hermitian orthogonal to 0. It is easily verified
that (2.6) depends only on rr,i, i- 1,2. in local coordinates if we put

(2.7) .+l (1 + [z[2)-1/2 2)--1/2
where Izl=-Izl + +lzf, we obtain the usual Fubini-Study metric [16] on C Pn, viz.

+ + izl )- i,.

where we are employing standard vector notation.
Consider again the Hopf fibration (2.4). The isometry group of S2"+1 (with the

usual metric) is the orthogonal group O(2n + 2). A necessary condition for an isometry
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b of S2n+l to project to an isometry on C P" is that q, lie in the centralizer C(U(1)) in
O(2n+2). But a straightforward computation using local coordinates 0 on S2n+l

shows that
C(U(1)) U(n+ I) U(1) SU(n+ I).

As is well known SU(n+ I) is the isometry group for the metric (2.8) on (3 Pn. (In fact
an effective action is given only by the group SU(n+ I)/;7+, but we will usually
suppress the 7/,+ and consider SU(n+ I) as the isometry group of CP".) We will be
interested in the maximal torus T"+C U(n+ l)C O(2n+2). On the coordinates (o the
action of Tn+l is given by

(2.9) o ei’i,

i-- 1,...,n+ 1. Notice that T"+l is a maximal torus both for U(n+ 1) and O(2n + 2).
Let us introduce polyspherical coordinates on S2n+1 by writing

(2.10) oi--sie iai, 0<si<oo, 0<cti<2cr.
The surface defined by eti-0 is an n-sphere S" given by

(2.11) (si)2- 1.
i--0

Furthermore, we recover the whole coordinate domain by the action of T
Now consider the circle group action given by (2.3). Its induced action on S" is the
discrete group 7/2- Thus the Hopf fibration of S2n+ induces the fibration of S" over
the real projective space 7/2 S" --, R P" and we get the commutative diagram

7/2 S

S .._.) S2n+l

(2.12)

RP" CP"

This diagram is fundamental in understanding the underlying geometry. The Fubini-
Study metric on C P" pulls back under (i o r)* to the standard metric on S ". However,
by (2.6) h pulls back under r not to the standard metric on S2"+ but to a degenerate
symmetric two form on S2"+ whose null space consists precisely of those tangent
vectors on S2n+ that are tangent to the great circles that are the orbits of S in (2.12).
This degenerate two form then pulls back under to the standard metric on S ".

3. Hamiltonian systems. In this section we discuss the relation between the free
Hamiltonian on C P" and a singular Hamiltonian on R P" with a certain inverse square
potential. This relation is an example of a general procedure in classical mechanics
known as reduction of the phase space. Although this procedure is classical, it has only
recently been understood in its proper context in the work of Marsden and Weinstein
[17] and Kazhdan, Kostant, and Sternberg [18]. In the latter work this technique was
used to obtain completely integrable Hamiltonian systems. Our interest is the classical
method of reduction of the phase space by ignorable coordinates and then using
separation of variables in the reduced system to give certain completely integrable
Hamiltonian systems.
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We briefly outline the reduction technique. For a more detailed treatment we refer
to the literature [9], [17], [18]. Let P be a symplectic manifold and its closed
nondegenerate 2-form. Let a Lie group G act on P by symplectic diffeomorphisms, i.e.
G leaves f invariant. Suppose further that this action is Hamiltonian, that is that for
every , the Lie algebra of G, the corresponding vector field # on P satisfies

(3.1) #.la= -d,
for some globally defined C functions q, on P. Now define the moment map:
:P* (the dual of ) by {(x),) =(x) where , ) is the pairing between and

*. Now the map is G-equivariant, i.e. intertwines the G-action on P with the
co-adjoint action of G on *. Pick a point u* and assume that -(u) is an
embedded submanifold of P. Denote by G the isotropy subgroup of G under the
co-adjoint action. Suppose that G, acts freely and properly on -(u) so that the
quotient map "lru:-l(u)-->dP-l(u)/G is a submersion. Then Pu---l(u)/Gu is a
symplectic manifold in a natural way. It is called the reduced phase space. Furthermore
if H is a Hamiltonian on P which is invariant under G, then the reduced Hamiltonian
H on Pu is obtained by

(3.2) r*u H,= i*,H

where i,: -(u)--,P is the inclusion map. This brief description of reduction is that of
Marsden and Weinstein [17], whereas the reduction technique of [18], is more general in
that one chooses a co-adjoint orbit (9 of * rather than a point u. In the case considered
below the two techniques coincide since the group G is abelian.

Let us see how reduction applies in our case. The symplectic manifold in question
is P T*(C P"), the contangent bundle of C P". The symplectic 2-form is f] dO where
0 is the canonical 1-form on T*(CP"), G--T the maximal torus in SU(n+ 1) and its
action on P is Hamiltonian since P is a cotangent bundle. We can characterize
T*(CP") in homogeneous coordinates (o, .,ton+l) by using the Hopf fibration.
Identifying T,oI(CP) and Tt,,I(C P") canonically by using the metric on CP, T*(C pn)
can be identified with set of points ([0],p) satisfying

(3.3) Itola-1, to.p+.fi=0, o.p-o.p-O.

The moment map " T*(C P") * is given in homogeneous coordinates by

(3.4) Oi([ o ],p) 0pg- 0gp; (no sum)
where t*--iN is the dual of the Lie algebra t, of Tn. Notice that E;-0, so (x) is in
t,* C t*,+ and we can check that is G-equivariant. Now pick a regular point (d has
rank n) u-(iu,...,iu,+)t*, uN, with E’___+d ug-0 and look at -(u). We may
choose uv0 for all i= 1,...,n+ so on -(u) we have 0iva0. -(u) is a 3n-dimen-
sional manifold. The isotropy subgroup G of G--T, is T itself since G= T, is a
maximal torus. Moreover, since to 4:0 on -(u), T, acts freely and properly there, so
P, -(u)/T, is a manifold. A point of Pu can be represented by

lOi--Si real s-s= 1, s-s,

(3.5) pi=Yi+ iu (U fixed),
s’y=O.

But this is just the cotangent bundle of the real projective space N p minus the n +
copies of N pn- obtained by putting s=O.
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Consider the free Hamiltonian on T*(Cp n) given in local projective coordinates

Zi-- tDi/On+ 1, COn+ 1:5/=0, by

(3.6) H=4(1
Let us write the reduced Hamiltonian H in terms of the coordinates (si,Yi) on R 2n+2.
From (3.5) Pu is the immersed submanifold of R2n+2 given by the set ([s],yi) which
satisfies

s.s-1, s.y-0, si=/=0

where [s] denotes the equivalence class under the equivalence relation ss’ if and only
if s’- +-s. The reduced Hamiltonian is easily found to be

nl nl Ui2 n+l

(3.7) Hu= Yi2+ --, X ui--O"
i--1 i--1 S/2 i--1

The fact that this Hamiltonian does not extend to a regular Hamiltonian on all of
T*(P) reflects the fact that the moment map (3.4) is singular along the surface
w=pi-0 as well as the fact that the coordinates (2.10) break down at si-0. These, of
course, are general features of reduction by angular ignorable coordinates.

A completely analogous argument can be given to find the reduction for T*(S2n+ 1)
and we will again obtain the Hamiltonian (3.7) on the reduced manifold Pu but without
the constraint u-0 by starting with the free Hamiltonian on S2"+ .

Let us now consider the reduction corresponding to the Hopf fibration. On
T,(S2,+ l) the moment map is

(3.8) O( w,p ) o .p- w.p.

So -(0) is just the set of (w,p)C 2 which satisfy (3.3). But the circle group S acts
freely and properly on -(0). Moreover, d-(O)/S is just T*(CP n) and the free
Hamiltonians on S2+1 and CP are related by (3.2). This completes the our discussion
of the reduction technique applied to the commutative diagram (2.12).

4. Constants of the motion. We are interested in all elements of S2(su(n+ 1))
which commute (with respect to the induced Lie bracket) with the maximal torus. For
any x,yS2(su(n+ 1)) put xy if x=--ymodS2(to). Let : denote the equivalence class
of x. Define -{xS2(su(n+ 1))’[x,h]-0, ht}. Since tn is abelian, [x,h]-0
implies y, h 0 if x ,-y. Moreover, S2(tn ) C (. Set

(4.1) -/S2(t,).
We wish to determine C. To do so consider the root space decomposition [11] of

su(n+ 1), viz. A-t@r+ @r-. It is more convenient to work with u(n+ 1)(R)C and
then construct the corresponding real form su(n + 1) by considering traceless skew-
Hermitian matrices. Consider the matrices Ej defined by putting a in the th row and
jth column, and zeros elsewhere. A basis for t is given by iEJ, j- 1,..., n + with the
one relation E + +n+-0.+ There are precisely n(n+ 1)/2 A subalgebras gener-
ated by El-E/, Ej, Eij, l<_i <j<-n+ 1. Let A’iJ denote these subalgebras. We are
interested in the real forms su(2)ig Let c;j. denote the corresponding Casimir invariant
[11] of su(2)j and ?ij .i.ts class in C. Denote by C the free vector space spanned by c;,
<_i <j<_n+ 1. Let A]J denote these subalgebras. We are interested in the real forms

su(2). Let c denote the corresponding Casimir invariant [11] of su(2)j, and ?ij its
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class in C. Denote by C the free vector space spanned by cij, <_i<j<_n+ 1. Let
su(k+ 1) be the compact real form corresponding to the Ak algebra generated by Ej,
1 <_i<j<_k+ 1, and let c2(su(k+ 1)) denote its Casimir invariant. Then

(4.2) c2(su(k+ 1))= E cij modSZ(t.)
<_i<j<_k+

LEMMA 1. As_ a vector space C has dimension n(n + 1)/2 and the set {?j) is a basis

for C. Thus CC.
Proof. Since c ---- Ej 63Emod S2(tn) _where 63 denotes symmetric tensor product,

it is enough to show that Ej63E/ span C and that there are no _relatins-_ The last
statement is clear since as vector spaces C C U2(su(n+ 1)). Now let XC and choose a
lifting X of the form

fl’E; (DE/.
jk jk
lm

X must satisfy [Eft X]-0, i-1,- .,n, and ts is independent of the choice of lifting.
The Lie bracket relations are ven by

(4.3) [ Ej, E] SjE/- SilEf
One readily sees that fl-0 and that the only nonvanisng a’s are a. This gives the
desired result.

Now consider the Lie algebra homomosm su(n + 1) C(T*(CP)) sending
su(n+ 1)C(T*(CP)). Lie brackets in su(n+ 1) go over to Poisson brackets
on C(T*(CP)). Ts induces a homomosm of U(su(n+ 1)) C(T*(CP)) with
multiplication in U going over to symmetric multiplication in C(T*(C P)). In partic-
ular, we are interested in the image of U(su(n + 1)) S2(su(n + 1)). Let C C

C(T*(CP)) denote the subspace consisting of homogeneous polynomials in the p’s
of degree 2. Denote by S2(su(n + 1)) the image of S(su(n + 1)) in C. We can check
that ts map is injective.

Denote by the images of c in S2(su(n+ 1)) and by the image of C. On real
projective space RP consider the isometry group SO(n+ 1) and its Lie algebra
so(n+ 1). Let (L} with i<jn+ 1, be the basis for the Lie algebra so(n+ 1) of
functions on T*(R P) given by

(4.4) -s,y-sy,
where (s,yi) are given by Q.5)z Using the notation of (3.2) and (3.5), we have

A Further-LEMMA 2. For eve AC there is a AC(P) such that iuA- u.
more,

where Y," +
i=1 Ui Oo

Proof. By Lemma any ( is invariant under the action of the maximal torus.

"flu AThus i*A(q) depends only on "fl(q); hence there is an A C(Pu) such that i*uA- *

To verify (4.5) let (0t, .,0"+ ) be homogeneous coordinates on C "+ t. The Lie algebra
u(n+ 1) of functions on T*(C "+) is spanned by

L,=oP,-o’P,+c.c, ,=i(wP,+co’e)+c.c
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where c.c denotes complex conjugate and (oa’,P) are the standard coordinates on
T*(C n+ 1). On C pn choose projective coordinates which without loss of generality we
take as zi=oJ/o+ , i= 1,...,n. Then for <_i <j<_n fixed we get functions on T*(CP)
given by

Sij--i(ziPs+zJPi)+c.c

Sii-SjJ:i(ziPi-zaps)+C.c
2

These generate an su(2) subalgebra for each =/=j= 1,.-.,n. In terms of this basis the
Casimir operator is

(4.6) i j Ti2s- Si2jot- ( Sii- )
2

Writing zS=(sS/s+)ei% j= 1,...,n and (sl)2+ +(s+)2= 1, a short computa-
tion gives

S

Restricting to -I(U) by setting P, u and by performing a straightforward computa-
tion using the formulas above gives the desired result.

Notice that the free Hamiltonian on S" is

u0- 2
<_i<j<_n+

whereas the free Hamiltonian on CP n is just

H=c2(su(n+l))= 2
<_i<j<_n+

(nbij-2(n-1) 2 p2+ 2 P P,O/i
i=1 i<j

Thus performing the double sum over -<i <j_<n + in the formula of Lemma 2 gives
precisely (3.2) with the Hamiltonian (3.7).

Assuming the previous notation we have:
LEMMA 3. is a constant of the motion with respect to the Hamiltonian H if and only

ifA is a constant of the motion with respect to the reduced Hamiltonian Hu. Furthermore,
two such constants of the motion ,4, J are in involution if and only if the corresponding pair
A u, B are in involution.

Proof. This follows directly from

i*(A,B) =r*u {Au,Bu).

5. Basic theorems about separable coordinates. It is clear that an understanding of
the separable coordinate systems on CP" entails an understanding of the separable
coordinates on R P" or equivalently S ". A study of all separable coordinate system on
S" is-currently in progress and we will here state and use a theorem whose proof will
appear elsewhere.
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On T*(Sn) the subset of functions spanned (over R) by the functions (4.4) form a
subalgebra of C(T*(Sn)) under Poisson bracket isomorphic with o(n + 1). By abuse of
notation we will denote this subalgebra by o(n + 1). Since the manifold S is class one
[8], all second order constants of the motion are in S2(o(n+ 1)). Let (R)CS2(o(n+ 1))
be the subspace spanned by diagonal elements I/2., <_i<j<_n+ 1. 63 has dimension
n(n+ 1)/2. The free Hamiltonian H-’i<jli2j defines a nondegenerate definite
bilinear form on o(n+ 1). The point is that for separation of variables on S n, it is
enough to study @. On Sn we can strengthen Theorem 6 of [8]"

THEOREM 1. Necessary and sufficient conditions for the existence of an orthogonal
separable coordinate system {x i} for the H. J. equation (1.1) on S are that there are n

functions A , ,An o, one of which, say, A , is the free Hamiltonian H, which are
(1) linearly independent ( locally);
(2) in involution.
Remarks. (1) The conditions (4) and (5) of [8, Thm. 6] are automatically satisfied

on S n. (2) This theorem is not valid on the complex sphere nor on real hyperboloids.
Let us now use the reduction of {}2 to formulate a theorem relating the separation

of variables on Cpn and S2n+l with respect to the free Hamiltonians with the separa-
tion on S" with respect to the reduced Hamiltonian H,. More precisely, the separation
takes place on the open set UCR pn defined by taking s>0. Since the Lie algebras of
infinitesimal isometries on Cpn and S2n+l are the compact forms su(n+ 1) and o(2n+
2), respectively, the maximal abelian subalgebras are unique up to conjugacy and have
dimensions n and n + 1, respectively. Thus we apply the reduction technique of section
2 to arrive at

THEOREM 2. The Hamilton-Jacobi equation (1, 1) on CPn(sZn+ 1) with the free
Hamiltonian admits a separable coordinate system {xi, aJ}, i= 1,...,n, j= 1,...,n (re-
spectively n + 1) with n (respectively n+ 1) ignorable coordinates (aM) if and only if the
corresponding coordinates (x i) on U separate the H. J. (1.1) on U with the reduced
Hamiltonian (3.7) (with the relation XT__--+l1Ui’-’O in the case of cpn).

Remarks. If the separable coordinates on U are orthogonal, then the corresponding
separable coordinates are orthogonal on S2n+ but never on C

We now state our main result.
THEOREM 3. Necessary and sufficient conditions for the existence of a separable

coordinate system {x i} on C pn with n ignorable coordinates are that there are n-functions
I, ,n one of which, say, , is the free Hamiltonian that are

1) linearly independent ( locally);
2) in involution.

Furthermore, there is a bijective correspondence between orthogonal separable coordinate
systems on U and separable coordinate systems on CP with n ignorable coordinates.

Before giving the proof of this theorem we will give some geometric background.
Let x be an orthogonal separable coordinate system for the free Hamiltonian H0

on S n. Then all constants of the motion A,...,A, are in @. The condition that
A,...,An be linearly independent (locally) means that A,..-,A span an n-plane in
n(n+ 1)/2-space. Clearly, changing the Ai’s by any GL(n,) transformation does not
alter the coordinate system. We have thus determined a point of the Grassmanian
G(n, n(n + 1)/2) of n-planes in n(n + 1)/2 space. Using I/ as a basis for 63, we write

(5.1) aa- X Ola’Iijij 2

i<j

where the sums run over <-i<j<-n+ 1, a= 1,. .,n. We will view (a/} as coordinates
in (nZ(n+ 1))/2.
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Since we are dealing with the free Hamiltonian Ho= c2(o(n + 1)), we fix A = H0.
in terms of the coordinates on R"2(’+ 1)/2, this is given by the linear equations

ij= for all <_i<j<n+(5.2a) a

’Sin order to determine a separable coordinate system the A must be in involution
under Poisson bracket. Since A is just the Casimir operator of o(n + 1), (Aa,A) = 0
for all a= 2,. .,n. The remaining conditions (Aa,Ab)-0, a,b-2,...,n are equivalent
to a system of first order partial differential equations which upon using (5.1) can be
expressed as the quadratic equations

(5 2b) X(,,ij,ik ij jk)--O.a tb b

where the sum is taken over the cyclic permutations on (i,j,k), and <-i <j<k<_n + 1.
Proof of Theorem 3. Let {-l =,J2,"" ",n} be n functions in ( which satisfy 1)

and 2) of the theorem. Let us write

X(r)Ci j
i<j

twhere a()j has rank n. By Lemmas 2 and 3 there are n functions Ar(U) A, r= 1, n
which are in involution and A(u)=H for all u+l satisfying Xi=l u=0. More-

J has rank n they are locally linearly independent for all u, in particularover, since tX(r
at u=0. But then AI(0)--H0, the free Hamiltonian on UCS, and A(0)63 by (4.5).
So by Theorem 1, there corresponds an orthogonal separable coordinate system
But we claim that {x) also separates the Hamiltonian H. To see this we change our
point of view and consider A(u) as functions on T*(S2+1) with n+ ignorable
coordinates ixJ, and P=u and drop the traceless condition on u. Again applying
Theorem there is a separable coordinate system (x,txJ}, i= 1,..’,n,j= 1,...,n+ on
$2+ 1. By Theorem 2 the (x) then separate Hu on U. Once more by Theorem 2 there is
a separable coordinate system (xi, otJ), i,j= 1,...,n, on CP with n ignorable coordi-
nates.

Conversely, given a separable coordinate system {x,aj} on CP with n ignorable
coordinates, the corresponding coordinates {x} on U separate H for all u , and in
particular they separate Ho. Thus by Theorem there are n linearly independent
elementsA of wch are in involution. We write

A- airJli, rank airj= n.
i<j

Define At(u) by

where

If we can show that the Ar(u)’s are in involution, then we can use Lemmas 2 and 3 to
get n linearly independent elements of which are in involution and thus prove the
theorem (including the last statement). We formulate this as a lemma.

LEMMA 4. The set {Ar(U)}, r- 1,..., n is in involution for all u n + if and only if
the set (Ar(O)} is in involution.
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Proof. The "only if" part is trivial. As before we consider UCR n+l and use
cartesian coordinates {si}, i= 1,...,n + in R n+ and {si,yj} in T*( n+ 1). We must

show that

ij kl 2Or O ([i/2j., Vkl] .qt_ [Vij,it])--0.
Now a straightforward computation gives

where

_
vi ,ik2t] ti jklilAf, tjikljl..[." ti jlkik_[., tjilkjk

SkYi--SSiY).tijk sf U s3i
U (2

Defining uijki--tijki--tji, we are reduced to showing that

(5.3) 2(_i2_i. .i2.2,,
Otr as Uijki+r s "jikj) 0"

But an explicit computation shows that

Ujikj=
Sfi --ULJ--Uisk S

2Ijk

which satisfies

(5.4) UijkiAI- Ujikj= O.

That {At(0)} are in involution implies that {&r} satisfies equations (5.2). Combining
equations (5.4) With (5.2) implies the equality (5.3) and proves the lemma.

We end this section with two corollaries to Theorem 3.
COROLLARY. Every separable coordinate system on CP with n ignorable coordinates

is class one and thus globally admissible.
COROLLARY. For every orthogonal separable coordinate system on the sphere S the

locally definedfunctions 1/si2 are Stickel multipliers for i- 1,...,n+ 1.
Remark. As mentioned in 1, by a separable coordinate system we actually mean

an equivalence class of separable systems, equivalent under P G (where G is the
isometry group). However the statement of Theorem and its subsequent applications
require a specific choice of representative, namely one for which A @.

6. Explicit examples ot separable coordinates.
A. General n. In this case we discuss two examples; the most and the least

degenerate coordinate systems. The most degenerate is given by spherical coordinates
on S n, viz.

s sin.-. sinn- sin,
s2- sin. cos cosn,
s3 sin t"" cos

(6.1)

sn sin cos

Sn+ COS t 1.
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The separated equations on CP are

(6.2)

P.- ui, _<i -<n

+* sin2,
+cos-

p2 +n+COS2qbntn--I sin2n

p,2, +
sin2h, cos2tl

n--It

This corresponds to the group reduction SU(2) c--. C SU(n) c SU(n + 1), and the
corresponding Casimir invariants (4.2) give the relevant constants of the motion;

(6.3)

The solutions of (5.2b) are given by

ij ( 1, i<_j<_k,a,,+_-
O, otherwise.

The least degenerate system is given by the general Jacobi elliptic coordinates on
S n, viz.

1-in I(xJ-- ei)j=(6.4) s/2- _<i_<n +
IIji( eJ-- ei)

where the constants e satisfy e <(x <e2< <x"<e"+. These are known to sep-
arate variables [7] on S ".

B. n 2. It is well known [19], [20] that there are precisely two separable coordi-
nate systems on S 2, spherical and elliptical coordinates. Thus by Theorem 3 we get two
separable coordinate systems on CP 2. We will now show that these are all the separa-
ble coordinate systems on CP 2. In fact we will prove a more general result relevant to
the study of selfdual gravitational instantons. We will make use of the classification of
canonical forms for four dimensional manifolds given in [5]. Since we are dealing with a
Riemannian (positive definite) metric, the only relevant types are B, C,F and H of [5].

Before stating and proving our result we give some background. Let V4 be a four
dimensional Riemannian manifold. Due to the local isomorphism between the groups
SO(4) and SU(2) SU(2), we can describe local four dimensional Riemannian geom-
etry equally well in terms of local orthogonal or local spinorial moving frames. For
example, if f] denotes the curvature two-form on V4, then with respect to an orthonor-
mal moving coframe {0 a) we have

(6.5) --Rabcd[gC/[9 d, a,b,c,d= 1,.--,4
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whereas, with respect to a local spinor coframe 0AA with 01]---’O +iO 3, 01--02+i04,
0 2i= -0, and 0i =0-, we have

(6.6) B B

A,B,A,:O= 1,2; and

(6.7) SAn=eAnO AO

S’i=-eAO AO

1-el- -el, ell-e2-0. We mention that S (S) is self-dual (anti self-dual) with
respect to the Hodge star operator on exterior differential forms. The decomposition
(6.6) is convenient because it realizes in terms of its irreducible components with
respect to the group SO(4). Here Cj6fi (Cnco) are the self-dual (anti self-dual)
components of the Weyl conformal tensor, Cn6fi is the traceless part of the cci
tenor, and R is the scalar cuature. V4 is said to be self-dual (anti self-dual) ifA 0
(g=0), and conformally self-dual (conformally anti self-dual) if Cco=0 (Cj6fi= 0).
TnOM 4. Let V4 be a conformally anti self-dual Riemannian space. Suppose

further that in V4 the Laplace-BeRmmi equation (1.2) is separable in the local coordinate
system {xi}. Then either V4 is conformally fiat or {x i} is type C and nonorthogonal.

Proof. From equations (6.5)-(6.7) we find

CaCD-- sa6(ABSCdcD)R abcd,

C,,i61j gab(i Scd6fi)R abcd,

where the parentheses denote symmetrization and SaB(Sa’) are the components of
Sn(Sjh) with respect to 0 0. Explicitly we have

Ciiii- C, =4(R,234-R 2314) + 4i(R1214+R 2334),
(6.8) Cilia- Cl 112- 2( R1413 +R 2324) + 2i( R1242 +R3431),

C]i- C1122= 8R 1324 + 4R 1234 + 4R 1423

and CAscn= CAscn and the same for dotted components. Now suppose (x i} is type H;
then by [5, Lemma 5] the only nonvanishing components of f] are R abba. Thus from
(6.8) C.4scn=O implies C,/i6fi=0. Suppose now that {x i} is type F. Without loss of
generality (by making an SO(4) gauge transformation if necessary) we can choose x 4 as
the ignorable coordinate. Then [21, eq. (37.4)] implies R abb4= 0, a, b- 1,2, 3 and the
result follows as before. Similarly if (x} is type B, we can use results of Petrov [22, pp.
174-175] to show that V4 is conformally flat. Now suppose (x} is type C and
orthogonal, then again [21, eq. (37.4)] and (6.8) imply that V4 is conformally flat. It
follows that {x} is necessarily type C and nonorthogonal.

Since in an Einstein space, Hamilton-Jacobi separability implies Laplace-Bel-
trami separability [1], [5], it follows that Theorem 4 holds when Laplace-Beltrami
separability is replaced by Hamilton-Jacobi separability, and V4 is an Einstein space.
Furthermore, since CP 2 with the Fubini-Study metric (2.8) is a conformally anti
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self-dual Einstein space, we can combine Theorems 3 and 4 with the well-known fact
[19], [20] that there are precisely two separable coordinate systems on S2 to obtain:

COROLLARY. There are precisely two separable coordinate systems on CP 2. They are
the two induced by Theorem 3 from spherical and elliptic coordinates on S 2.

These two coordinate systems are given by equations (6.1) and (6.4) with n= 2.
Furthermore, theconstants of the motion are given by c2(su(3)), PI, P2 and for

(i) spherical coordinates by c2 =c2(su(2))
(ii) elliptic coordinates by c23 + ac3

where in (6.4) we have taken e-0, e2- 1, e "-a, and cij is given by(4.6).
C. n-3 and 4. For C p3 there are precisely six classes of separable systems with

three ignorable coordinates. These come from [23, systems (1), (3), (6), (13) and (17)] in
the real case there are two inequivalent classes of type (13), see [24, Table 1]. For Cp4
there are 14 systems on S4 which are inequivalent under S0(5, C). These are given by
[25, classes i, V(i), VI, VII(i), VIII and X]. The inequivalent types under the real group
SO(5,g) can be worked out from these. For all of the systems mentioned above the
constants of the motion on S and S4 can be read off and transformed by (4.5) to
constants of the motion on p3 and C p4, respectively, it is then a straightforward task
to write down the separated equations in each case.

7. Conclusions. The main result of this paper can be formulated as an algorithm.
In order to find all conjugacy classes of coordinate systems in C p having an additive
separation of variables in the Hamilton-Jacobi equation (1.1) (or multiplicative separa-
tion in the Laplace-Beltrami equation (1.2)), proceed as follows:

1. Introduce n complex coordinates zk and put

Sk(7.1) z= e’, <_k<__n
Sn+

where

(7.2) +Sn+

i.e., s (i= 1,.- .,n + 1) are cartesian coordinates in R n+ .
2. Find all separable coordinate systems {O,.. ",On} on the real sphere S for

which the free Hamilton-Jacobi (or free Laplace-Beltrami) equation on the sphere
allows a separation of variables and express si (1 _<i_<n + 1) in terms of these separable
coordinates. The corresponding equations on the sphere with the potential induced
from CP (see (3.7)) will, as we have shown, also separate. Substitute

(7.3) si-si(Ol... On), <__i<_n+

back into (7.1). Then the sets

(7.4)

p;ovide a complete list of representatives of all conjugacy classes of separable coordi-
nates on C P" with n ignorable coordinates.

Several comments are in order here.
1. For n-2, i.e. the complex projective plane C p2 we have proven that all

separable coordinate systems have precisely 2 ignorable coordinates, i.e. the maximum
possible number equal to the rank n of su(n + 1). Thus there exist precisely 2 separable
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coordinate systems in CP 2, induced by spherical and elliptic coordinates on S 2,
respectively.

2. The 2n integrals of motion in involution characterizing each separable system
are obtained as follows. The first n of them correspond to the ignorable coordinates
they form a basis for the Cartan subalgebra of su(n + 1) and can be identified with the
canonical momenta conjugated to ai:

<_i <_n.

The remaining n constants of motion A (including the Hamiltonian (1.1)) can be
interpreted as second order operators in the enveloping algebra of su(n + 1). Writing
the infinitesimal generators of su(n + 1) as (again by an abuse of notation)

(7.6) Tik--Eik--Eki, Sik=i(Eik+Eki), Hik:i(Eii--Ekk ) <-i<--k<-n+ 1,

in the defining representation of su(n+ 1), we can write the quadratic constants of
motion as n independent linear combinations of the n(n + 1)/2 Casimir invariants

(7.7) Cik 2Tik+ S,2+H, <_i <k <_n + l,

(i, k fixed) of the su(2) algebras (7.6). Thus

(7.8) Ar: X akcik, <_r<_n.
<i<k<_n+

The operators A can easily be restricted to C p or to S. Upon restriction to S the
Casimir operators Ck reduce to the form (4.5). The classification of coordinate systems
on S then reduces to a classification of sets of n operators in involution, all of them
being linear combinations of the squares of the generators of o(n + 1).

Several problems suggested by this paper are under active consideration:
1. The first concerns special function theory and the separation of variables on

C p in spherical coordinates (see 6A of this article). If we separate variables in the
Laplace-Beltrami equation, then (6.2) reduces to a system of 2n ordinary linear equa-
tions. The eigenfunctions of the Laplace-Beltrami equations are then expressed as
products of Jacobi functions (and exponentials euk*). The role of Jacobi polynomials
as basis functions of SU(n+ 1) representations in a basis corresponding to the sub-
group reduction SU(n + 1) D U(n) D U(n 1) D... U(2) U(1) makes it possible to
obtain relations for special functions, in particular addition formulas [26]. But now
more poweful methods are at our disposal. We can use the techniques of [12] by
constructing a simple model of SU(n / 1) acting on the sections of certain holomorphic
line bundles over Cp and relate this action to the action on harmonic polynomials--
namely the Jacobi polynomials. Furthermore, we have many more sets of bases than
that given by spherical coordinates. A detailed study of tractable coordinates should
give a wealth of special function identities.

2. The approach of this article has been to Hermitian hyperbolic spaces HH(n).
The noncompact group SU(n, 1) then plays the role that SU(n+ 1) plays for CP(n).
The results are much richer for HH(n) mainly because su(n, 1) has n+2 different
mutually nonconjugated maximal abelian subalgebras [27]-[28], each of them being of
dimension n and leading to different types of coordinate systems with n ignorable
variables [29].

3. Separation of variables on a sphere S is being studied for arbitrary n (the
results are at present known only for n--2, 3, and 4) [30].
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GLOBAL EXISTENCE AND ASYMPTOTIC
STABILITY FOR A SEMILINEAR HYPERBOLIC

VOLTERRA EQUATION WITH LARGE INITIAL DATA*

WILLIAM J. HRUSA*

Abstract. The equation

(*) utt(x,t)--k(ux(x,t))x-fm(t-z)(Ux(X,Z))xdz+f(x,t), xllC, t>--O,

provides a model for the motion of a one-dimensional viscoelastic body. Here if, k, m, and f are given smooth
functions, and u(x, t) denotes the unknown displacement at time of the particle with reference position x.
All functions in (.) are real-valued; subscripts x and indicate partial differentiation.

It has been shown by several authors that under physically reasonable assumptions, various initial and
initial-boundary value problems associated with (.) have globally defined classical solutions provided that f
and the initial data are sufficiently smooth and "small". Moreover, these solutions decay to zero as . It
has also been shown (for the special case with k-) that if ,"0, then (.) does not have global smooth
solutions if the data are too "large".

In order to isolate the effects of nonlinearity in the memory term we here study (.) with linear, but k
(generally) nonlinear. Several global existence and asymptotic stability results which permit the data to be
large are established. We analyze in detail the case where [$ =[0, 1] and homogeneous Dirichlet boundary
conditions are imposed. Other types of boundary conditions as well as pure initial value problems (i.e. B R)
are discussed in the last section. The analysis is based on a priori estimates of energy-type.

1. Introduction. The equation

(1.1)

Utt(X,t)--dP(Ux(X,t))x- m(t-)(Ux(X,r))x.dz+f(x, t), O_<x_<l, t_>O,

provides a model for the motion of a homogeneous one-dimensional viscoelastic body
that occupies the interval [0, 1] in a reference configuration (which we assume to be a
natural state) and has unit reference density. Here , k: R--,R are assigned smooth
constitutive functions, m" 0, ) R is a given smooth relaxation function, f: [0, 1]
[0,) is a known forcing function, and u(x,t) denotes the (unknown) displace-
ment at time of the particle with reference position x. Subscripts x and indicate
partial derivatives, and a prime will be used to denote the derivative of a function of a
single variable. A standard problem is to determine a smooth function u which satisfies
(1.1) together with prescribed initial conditions at t--0 and appropriate boundary
conditions at x 0, 1.

Assuming that rn is integrable over [0, ), we define the equilibrium stress func-
tion X:

(1.2) X(J)" q(J) (J) m(s)ds

On physical grounds, it is natural to assume that

(1.3) ,’(0) >0, >0, x’(0) >0,
and that rn is positive and decreasing.

*Received by the editors October 3, 1983, and in revised form December 19, 1983.
Department of Mathematics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213.
The symbol is used to indicate an equality in which the left-hand side is defined by the right-hand

side.
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If m vanishes identically, then (1.1) reduces to the undamped quasilinear wave
equation

(1.4) utt--( Ux )x-[-f
It is well known that (1.4) does not generally have globally defined smooth solutions,
no matter how smooth ,f, and the initial data are. (See, for example, [7] and [9].) This
situation does not improve even iff and the initial data are small.

If m0 and the appropriate sign conditions are satisfied, the memory term in (1.1)
induces dissipation which is effective (and overpowers the destabilizing effects of
nonlinearity) provided that u is "small". A great deal of insight into the dissipative
character of memory is provided by the work of Coleman and Gurtin [1] on growth and
decay of acceleration waves in materials with memory. Roughly speaking, an accelera-
tion wave is a solution which is smooth except along a curve Y, across which second
derivatives sustain jump discontinuities. The amplitude of such a wave is defined to be
the jump in acceleration across Y.

Coleman and Gurtin derived general and explicit expressions for the change in
amplitude of an acceleration wave travelling in a nonlinear material with fading
memory. In particular they showed that under physically reasonable assumptions (which
exclude the case m =--0 in (1.1)), the amplitude of an acceleration wave decays to zero as
t o if its initial amplitude is sufficiently small. They also showed that the amplitude
of an acceleration wave may become infinite in finite time if the initial amplitude is too

large.
Global existence theorems for (1.1) have been obtained by several authors. In the

special case where k------, MacCamy [8], Dafermos and Nohel [2], and Staffans [10] have
shown that various initial and initial-boundary value problems associated with (1.1)
have globally defined smooth solutions provided that the initial data and forcing
function are suitably smooth and small. Moreover, these solutions tend to zero as

m. Such results were also obtained (for initial-boundary value problems) in the
general case with k different from by Dafermos and Nohel [3].

On the other hand, Hattori [6] has shown (for the case k----) that if " 0, then
there are smooth data for which (1.1) does not have a global smooth solution. Such
data must necessarily be "large" in view of the aforementioned existence results.

We remark also that in the important special case when the relaxation function is
an exponential of the form m(s)----eTM, where/ is a positive constant, (1.1) (with f=0)
is equivalent to the third order partial differential equation studied by Greenberg [4].
He derived a priori estimates which show that any sufficiently smooth and small
solution must decay to zero exponentially as --, o.

In the present paper, we study (1.1) when is linear (i.e., "----0), but is allowed
to be nonlinear. In particular, we consider the initial-boundary value problem

0(1.5) Utt(x,t)--CUxx(X,t)-- m(t--z)(Ux(X,Z))xdz+f(x,t ),

Oxl, t_>O,
(1.6) u(O, t) u(1, t) O, >0,

(1.7) u(x,O)=uo(X), ut(x,O)--Ul(X), Ox<l,

where c is a positive constant and u0, u are given initial data. Our motivation for
studying (1.5) is to isolate the effects of nonlinearity in the memory. We would like to
determine whether or not nonlinearity of k leads to breakdown of smooth solutions
with large initial data.
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Since (1.5) is a special case of (1.1), the results of Dafermos and Nohel [3] imply
that under physically reasonable assumptions on m and k, (1.5), (1.6), (1.7) has a
unique solution u C2([0, 0, )) provided that u0, u l, andf are sufficiently smooth
and small. Moreover, u and its partial derivatives of first and second order converge to
zero uniformly on [0, 1] as o.

It is conceivable that if m satisfies appropriate decay and sign conditions and a
global analogue of (1.3) holds, then (1.5) will have global smooth solutions which tend
to zero as , even for large data. A strong indication that this should be the case is
contained in the paper of Coleman and Gurtin [1]. When specialized to equation (1.5),
their results reveal that even large discontinuities in acceleration are damped-out.

We here establish several global existence and asymptotic stability theorems for
(1.5), (1.6), (1.7) which allow the initial data to be large. Our basic approach is
standard: We first construct a local solution on a maximal time interval 0, To) with the
property that a certain "energy" becomes unbounded as T0, if TO<. We then
derive estimates for the local solution which imply global existence and, in certain
cases, guarantee that the solution decays to zero.

The paper is divided into five sections. The main results concerning global ex-
istence and decay of solutions are stated in 2. Local solutions are studied in detail in
3, and in 4 we derive certain global estimates and provide proofs of the results stated
in 2. Other types of boundary conditions are discussed in 5.

For hyperbolic type problems there is essentially an even tradeoff, locally, between
space and time smoothness. In other words, taking a spatial derivative of the solution
causes the same loss of smoothness as does taking a time derivative. It is therefore
reasonable to expect that the time integration in (1.5) has the same effect (locally) as
removing a spatial derivative from the quasilinear term +(ux)x. This is indeed the case;
the local behavior of solutions of (1.5) is quite similar to that of solutions of the
semilinear equation

(1.8) U tt’--" CUxx -]- t( Ux ) -l-f

Roughly speaking, a solution of (1.8) exists (and retains the full smoothness of its initial
data) for as long as the spatial L2 norms of its second derivatives remain bounded. The
same is true for (1.5). (Stronger bounds are required to continue a solution of (1.1). See
[31.)

Travis and Webb [11] have studied local existence of solutions to the abstract
initial value problem

(1.9)
u(0)=u, u’(0)=u’,

where u and f take values in a Banach space X,A is a linear operator generating a
strongly continuous cosine family in X, and g is a (generally) unbounded nonlinear
mapping from R XX into X. A local existence result for (1.5), (1.6), (1.7) quite
similar to Theorem 3.1 follows easily from Propositions 3.1 and 3.2 of [11]. The
questions of global existence and higher order regularity are not considered in [11 ].

Although Theorem 3.1 essentially follows from the work of Travis and Webb, we
provide here a direct proof based on energy estimates. These estimates are useful for
establishing additional properties of local solutions. Moreover, they are helpful for
securing certain global bounds.
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Observe that if q is linear and m is positive, then the natural global analogue of
(1,3) entails boundedness of q/. If c>0 and q’ is bounded, one can establish global
existence of classical solutions to (1.5), (1.6), (1.7)even for large data--without
imposing any sign restrictions on m or q’. In fact, rather crude bounds (requiring only
local assumptions on m) can be employed for this purpose. Of course, such solutions
may become unbounded as

The estimates required to establish decay of solutions with large data are consider-
ably more delicate and rely crucially on positivity and decay of m, and a global version
of (1.3). Our discussion of asymptotic behavior is limited to the case where m is a
decreasing exponential and f----0. Motivated by the paper of Greenberg [4], we use
exponentially weighted multipliers to form our energy identities. This leads to estimates
which yield exponential decay of solutions--even for large initial data. The assumption
f----0 is made only for the sake of simplicity; a nonzero forcing term which behaves
suitably as o causes no problems.

Our asymptotic analysis can be adapted to handle "nonexponential" relaxation
functions. However, this involves imposing rather complicated and implicit assump-
tions on the resolvent kernel associated with m’. Theorems based on these assumptions
seem somewhat artificial and will not be discussed here.

It should be noted that our results depend in an essential way on the fact that we
are dealing with only one spatial dimension. The methods used here can also be applied
to analogues of (1.5) in more than one space dimension; however, among other things,
smallness of the data would be required to establish global existence of classical
solutions.

We close the Introduction with some remarks on notation. We shall frequently
deal with functions from a set of the form [0, 1][0, T] into R. All such functions are
assumed to be measurable. Subscripts x and always indicate partial clifferentiation
with respect to the first and second argument, respectively. (Subscripts other than x or
do not indicate differentiation.) All derivatives are to be interpreted in the sense of
distributions.

For a function w: [0, 1] [0, T] g, it is useful to consider the mapping w(., t)
from [0, T] into various function spaces. We use the same symbol w to denote such a
mapping. Moreover, we suppress the qualification "almost everywhere" and we omit
obvious remarks such as "after modification on a set of measure zero" when no danger
of confusion is likely. We employ standard notation for the usual function spaces.

2. Statement ot main results. We first discuss the existence of global solutions to

(1.5) when no assumptions are made regarding the sign of m or q/. Of course, decay of
solutions should not be expected in this situation; in fact, the memory term may cause
solutions to grow--even if is linear. Roughly speaking, Coleman and Gurtin [1] have
shown that for equations such as (1.5), the amplitude of an acceleration wave is
influenced by k’, but not by k"- Their results suggest that boundedness of k’ precludes
the development of singularitiesindependently of the size of the data and the sign of
the memory term. This is indeed the case.

THEOREM 2.1. Assume that c>0, k C2(R), rn Wllo’cl 0, ), and that ’ is bounded,
i.e., ’ L(R). Let uo, u, andf be given with

(2.1) u0 e Ho(0, 1) H(0, 1), u, eH(0, 1),

(2.2) fe C([0, o); L2(0, 1)), fteLo([0, o); L2(0, 1)).
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Then the initial-boundary value problem (1.5), (1.6), (1.7) has a unique solution u: [0, 1]
[0, ) R with

(2.3) U, Ut, Ux, Utt Utx UxxC([O, GO); L2(0, 1)).
The solution in Theorem 2.1 is not necessarily a classical solution. However, under

slightly stronger smoothness assumptions, global classical solutions exist.
TI-IEOIM 2.2. Assume that c>0, + C2(R), m C[ O, ), and that q/ is bounded.

Assume further that uo, u, andfsatisfy

(2.4)
(2.5)
(2.6)
(2.7)

u0 n(0, 1)n3(0, 1), u, n0(0, 1) f n2(0, 1),
=0,

f, ft, fx C([0, o); L2(0, 1)), ft/L12oc([0, o); L2(0, 1)),
f(O,t)=f(1,t)=O Vt>O.

Then, the solution u in Theorem 2.1 has the additional regularity

(2.8) Uttt, Uttx, Utxx, UxxxC([O, oQ); t2(0, 1)).
Thus, by the Sobolev embedding theorem, u C2([0, 0, )).

Remark 2.1. Theorem 2.2 remains valid if (2.5) and (2.7) are replaced by the
weaker compatibility assumption

(2.9) CU’o’(O) +f(0, 0)= cu)’(1) +f(1,0)= 0.

The proof in this situation requires careful estimation of certain boundary terms which
automatically vanish if (2.5) and (2.7) hold.

Remark 2.2. As is to be expected, local analogues of Theorems 2.1 and 2.2 are
valid without the assumption that q/is bounded. These are stated and proved in the
next section. (Continuous dependence on the data is also established in [}3.) Moreover,
a local solution u retains the full smoothness of its data for as long as u remains
pointwise bounded. (See Corollary 4.1.) Thus shock formation does not occur for (1.5).

We now discuss asymptotic behavior of solutions of the equation

(2.10) Utt(X,t)--CUxx(X,t ) e-(t-r)(Ux(X,,r))xd’r, 0<x<l, t0,

where is a positive constant. The corresponding equilibrium stress function is given
by

(2.11) X(): c-/z-’q(5)

Thus, the natural global analogue of (1.3) reads

(2.12) c>O, 0 <’() <#c

Under a slightly stronger assumption on ’, we show that solutions decay to zero
exponentially, even if the initial data are large.

THEOREM 2.3. Assume that c>0, qC2(), and that there are constants a and
such that

(2.13) 0 <a_<q.,’() _<,8 </c
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Then there exist constants F, 8>0 such that for every u o and u satisfying (2.1), the
corresponding solution u of (2.10), (1.6), (1.7) (which exists by Theorem 2.1) satisfies
(2.14)

uxx}(x,t)dx<_Fe 8t U0(X _._UI(X ) dx
"0

Thus, by the Sobolev embedding theorem, u also satisfies

(2.15) max (u2+u+u)(x, t)<_re_tfo[Uo( )2+Ul(X),
x[0, 1]

Remark 2.3. If a forcing term f is added to (2.10), one can still establish decay of
solutions if f(., t) behaves suitably as z. Of course, the rate of decay of solutions
depends on the rate of decay of f. An estimate quite similar to (2.14) holds if f decays
exponentially in time. If it is merely assumed that f and ft are square integrable over
[0, 1] [0, ), it-is still possible to show that u(., t), ut(.,t), and ux(., t) converge to
zero uniformly on [0, 1] as --, . This is discussed further in 4.

Remark 2.4. Analogous results for other types of boundary conditions are dis-
cussed in [}5.

3. Local solutions. This section is concerned with properties of local solutions of
(1.5), (1.6), (1.7). In particular, we discuss existence, uniqueness, continuation, continu-
ous dependence on initial data, and regularity.

THEOREM 3.1. Assume that c>0, kC2(R), m WI[0, ), and let uo, u 1, f be
given with

(3.1) 0/(0,)/(0, 1), u, /(0, 1),
(3.2) f C([0, c); L2(0, 1)), ft Loc([0, c); L2(0, 1)).
Then (1.5), (1.6), (1.7) has a unique solution u, defined on a maximal time interval O, To),
TO >0, with

(3.3)

Moreover, if

U, U,, UX, Utt Utx UxxC([O, To);L2(O, 1)).

then TO .
The procedure used to prove Theorem 3.1 is familiar: The solution of (1.5), (1.6),

(1.7) is constructed as a fixed point of the "solution operator" associated with a related
family of linear problems. We begin by recording some standard results concerning
solutions of the linear wave equation

(3.5) utt(x,t)=CUxx(X,t)-k-g(x,t), 0_<x_<l, t_>0.

To simplify our notation, we make the following definition. For each T>0, we denote
by E2r the set of all functions w: [0, 1][0, T]--,R with

(3.6) w, w,, Wx, wtt Wtx wC([O,T];L2(O, 1)).
PROPOSITION 3.1. Assume that c>0 and that (3.1) holds. Let T>0 and g: [0, 1]

[0, T]R be given with gC([O,T];L2(O, 1)), gtLz([O,T];L2(O, 1)). Then, (3.5), (1.6)

(3.4) sup fol(U2tt--U2tx-lt-U2xx}(X,t)dX<,
t[O, To)
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(1.7) has a unique solution u . Moreover,

(3.7) l{bltt tx u x}(x,t)dx<--e u (x +u (x +g(x dx

+e rl,

where is a positive constant which depends only on c. Thus, by Gronwall’s inequality, u
also satisfies
(3.8)

max (u,t Utx Uxx)(X,t)dx<_?e U’o’(X +u(x) dx
t[0, T]

+ max (x,t)Zdx+ gt(x,t)2dxdt.
t[0, T]

Remark 3.1. By virtue of linearity, (3.8) can be used to establish continuous
dependence of the solution of (3.5), (1.6), 1.7) on u0, u, and g.

For M, T>0, let %t,r denote the set of all w 2r which satisfy

(3.9)
and

(3.10)

w(O,t)-w(1,t)-O Vt [0, T],

2 2 2max (wtt+Wtx+Wx)(X,t)dxM2,
t[O,T]

equipped with the (complete) metric defined by

(3.11) O(w, ff)’- max ((wtt-l;tt)2---(Wtx-Wtx ---(Wxx-Wxx)2}(x,t)dx
/G[o, T]

Note that %t,r is nonempty for each M, T>0. The Sobolev embedding theorem and
(3.6) imply w C([0, 1] [0, T]). Moreover, it follows from (3.9) and (3.10) that

(3.12) max IWx(X,t)l <_M Vw%M r.
x[0, ]
t[0, T]

For w %M,r we consider the linear equation

(3.13)

utt(x,t)--CUxx(X,t)-- ftm(t-’r)(Wx(X,’r))xd’r+f(x,t), x[0, 1], t[0, T],
"o

and we let S denote the map which carries w into the unique solution of (3.13), (1.6),
(1.7). Our goal is to show that S has a unique fixed point in %M,r for appropriately
chosen M and T. For this purpose we employ the contraction mapping principle and
Proposition 3.1. As a first step, we prove

LEMMA 3.1. Under the assumptions of Theorem 3.1, S maps 6M,T into %M,r for M
sufficiently large and T sufficiently small relative to M.

Proof. Let M, T>0 and w %,be given. Define g: [0, 1] [0, T] - R by

(3.14) g(x,t)’--f(x,t)- m(t-’)(Wx(X,Z))xdz, x[0,1l, t[0, Tl,
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and observe that gC([O,T];L2(O, 1)), g,L2([O,T];L2(O, 1)). Thus, by Proposition
3.1, the solution u of (3.13), (1.6), (1.7) belongs to 2r and satisfies (3.8) (with g defined
by (3.14)).

It is important to keep track of how the bound for u which we obtain from (3.8)
depends on M, T, and the initial data, ect. Therefore, let us definef,, k-: 0, ) -, 0, )
by

(3.15) f(s)’- max ,t)2dx+ )2dxdt
/G[0, s]

(3.16) (s)’- max m(,)-+ f Im’(t)ldt vs_>0,
tG[0, s] "0

(3.17) (r/)’- max [k’()2++"()2]
and set

(3.18) Uo fo’[Uo(x,, )2+u,(x),2] dx.

Observe thatL and are continuous and nondecreasing on [0, ).
It follows easily from (3.14) that

(3.19)

m(t-$)(w(x,r))xd$ dx, t[0, T],

from which we conclude that

/o(3.20) max g(x,t)2dx<_2f(T)+2T2(T) (M)M2.
t[0, T]

Moreover, we have

(3.21) gt(x,t)=ft(x,t)--m(O)(wx(x,t))x-- fotm’(t-z)q(wx(x,r))xd’,
x[0,1], t[0, Tl,

which yields

gt(x,t)dxdt<-3 (x,t)=dxdt

+ 3m(O)2fTfl(+(Wx(X, ))x)2dx dr
"0 "0

/o’/ol (/o ,+3 m t-’)q,(w,Xx,’)),d" dxdt,

and hence

(3.23) forfo’g,(x,t)2dxdt<-3f(T)+6T(T) (M)M2.
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It now follows from (3.8), (3.20), and (3.23) that

2 2 2(3.24) max {u +u + }(x t)dx
t[0, T]

tt tx Uxx

_<6eT{ Uo+f(T)+(T2+ T)(T) (M)M2}.
If M and T satisfy

(3.26)

M2 -> 12re z( Uo +f(1)),
T_<min(1, (247eZ(1) (M)+ 1)-t),

then the right-hand side of (3.24) is dominated by M and consequently

(3.27) max {(Sw)2 2tt--(Sw)tx-t-(Sw)2xx)(X,t)dx-.M2 VW%MT.
t[o, T]

Ts completes the proof of Lemma 3.1.
LEMMA 3.2. Let the assumptions of Theorem 3.1 hoM. Then S: %,r%, is

strictly contractive ifM is sufficiently large and T is sufficiently small relative to M.
Proof. Let M, T>0 and w, ff%,r be given. Set u:= Sw, fi:= S, U: u-fi,

W:= w-if, and note that U satisfies

(3.28) t(x,t)=Uxx(X,t)+G(x,t), x[0, 1], t[0, T],
(3.29) U(O,t)=U(1,t)=O, t[0, T],
(3.30) U(x,O)=(x,O)=O, x[0,1],

where G is defined by

(3.31) G(x,t)’- (t-)[((x,))-(w(x,z))] d,

x[0,1], t[0, T].
Obsee that G has the smoothness required to apply Proposition 3.1 to (3.28), (3.29),
(3.30). In particular, (3.8) can be used to estimate U in terms of W.

A simple computation shows that

(3.32) a(x t) t,=- m(t-z)+’(w(x,z))W(x,)d

m(t-,)[’(Wx(X,Z))-’(x(X,,))]xx(X,,)dr

x[0,1], t[0, r],

and

(3,33)

t[O,T].
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Making use of the mean value theorem and the inequality

(3.34) max }W(x,t)l <- max W,2(x,t)dx,
x[0, 1] t[0, T]
t@[0, T]

we deduce from (3.32) and (3.33) that

(3.35)

and

(3.36)

fo’ 2 M2 1) max f0 W2x(x’t)dxmax G(x,t)2dx<__2T (T)/ (M) ( +
t[o, T] /[0, T]

r ,Gt(x,t)2dxdt<_8T(T)( (M).(M2+ 1) max W2x(X,t)dx,
t[0, T]

where and k are as in the proof of Lemma 3.1.
It follows from (3.8), (3.35), and (3.36) that

(3.37)

whe,re

max W2x(x,t)dx,max { Utt2+ Ut2+ U}(x,t)dx<K(M,T)t[o,r]t[O, T]

(3.38)
If M and T satisfy

(3.39)

K(M,T)’- 8?er(T2+ T)(T) (M). (M2+ 1).

T_<min(1, (647eZ(1) (M).(M+ 1)+ 1)-’),
then O<_K(M,T)<_]. Therefore, if M and T obey (3.25), (3.26), and (3.39), then
maps %M,T into %M,T and

(3.40) p(Sw, S)<_-p(w,) V/w, %M,r"

We are now ready to prove Theorem 3.1.
Proof of Theorem 3.1. It follows from Lemmas 3.1 and 3.2 and the contraction

mapping principle that, for appropriately chosen M, T>0, S has a unique fixed point
U%M,T which is obviously a solution of (1.5), (1.6), (1.7) on [0, T]. Moreover, it is
evident that for each T’ >0, (1.5), (1.6), (1.7) has at most one solution which belongs to

Let [0, To) be the maximal interval of existence for u such that (3.3) holds. It
remains only to show that if (3.4) is satisfied then TO o. This can be done in the usual
way: If (3.4) holds and TO< oo, we can reapply the contraction mapping principle to
extend the solution to an interval [0, TO+ ], >0, contradicting the assumption that
[0, To) is maximal. This procedure involves changing the initial time and consequently
requires modification of the forcing function, to account for the history of the solution
prior to the new initial time.

For each T’ [0, To), let us define a new forcing functionfr,: [0, 1]X[0, o)--, R by
(3.41)

fT,(X,t)" f(x,t+ T’) fT’ T’m(t+ -r)(ux(x,r)),d
"0

x[0,1], t->0,
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and consider the initial-boundary value problem

(3.42) ,(x,t)-Cex(X,t)- m(t-)(Vx(X,))xdz+fr,(x,t ),

x[0,1], t_>0,

(3.43) e(0, t) =e(1,t) =0, t_>0,

(3.44) e( x, O) u( x, T’), vt(x, O) u(x, T’), x [0, 1].

Suppose that (3.4) holds and To<oO. Then, u(.,T’), ut(.,T’), and fr’ obey bounds
uniformly in T’ [ 0, To) which allow us to choose T* (0, To) such that for each
T’ [ 0, To), (3.42), (3.43), (3.44) has a unique solution in .. (The existence of such a
T* follows from Lemmas 3.1 and 3.2 and the contraction mapping principle. In
particular (3.25), (3.26), and (3.39) reveal that T* can be selected independently of
T’ [ 0, To).) Now, set T’ := To-(T*/2), let v denote the corresponding solution of
(3.42), (3.43), (3.44), and define : [0, 1] [0, TO+ T*/2] N by

u(.,t), t [0, T’),(3.45) (.,t)’- v(.,t- T’), tE[T’, To+ T*/21.

By construction, fi is a solution of (1.5), (1.6), (1.7) on [0, To+ T*/2], and by local
uniqueness, fi extends u. This violates maximality of [0, To). Therefore if (3.4) holds,
To=.

It is not difficult to prove that the solution of (1.5), (1.6), (1.7) depends continu-
ously on the initial data. To make this precise, let H denote the space (H(0, 1)
H2(0, 1)) Ho(0, 1), equipped with norm [[. [[ H defined by

(fol[)tt(X)2 2] )1/2(3.46)

THEOREM 3.2. Assume that c>0, /EC2(R), mE WI O, ), and that f satisfies
(3.2). Suppose that u* r* is a solution of (1.5), (1.6) on [0, T*] for some T* >0. Then,
there is a neighborhood (9 of (u*(.,O),u*t(.,O)) in H such that for each (Uo, Ul)E(9, (1.5),
(1.6), (1.7) has a unique solution uE2r.. Moreover, for each tE[0, T*], the mapping
( uo, u ) -( u(., t), ut( ", t)) is continuousfrom into H, the continuity being uniform in t.

We first establish continuous dependence on an interval [0, T], where is (possi-
bly) smaller than T*. We then use a stepping argument (if necessary) to reach T*. The
stepping procedure involves the "shifted problem" (3.42), (3.43), (3.44), and thus our
local result must allow for variation of f. At the expense of possibly needing more steps
to reach T*, we prove local continuous dependence on an interval whose length cannot
exceed one.

Let denote the set of all functionsf: [0, 1] [0, 1]-R such thatfE C([0, 1]; L2(0, 1))
and ft EL2([0, 1]; L2(0, 1)), equipped with the norm 111. [ll defined by

( f0lf( fo1 f01ft )1/2(3.47) III/ll[" max x, t)Zdx -k- (x, t)2dx dt
t[0, 11

For each r >0, let B and 63r denote the (open) ball of radius r in H and oy, respectively.
LEMMA 3.3. Assume that c>0, E C2(N), mE WI[ 0, ), and let r, R>0 be given.

Then, there exists E(O, such that for each (Uo, Ul)EB and each fEaR, (1.5), (1.6),
(1.7) has a unique solution uEr. Moreover, for each tel0, ], the mapping ((Uo, U),f)
-(u(.,t),ut(.,t)) is continuous from BN @R into H, the continuity being uniform in t.



A SEMILINEAR HYPERBOLIC VOLTERRA EQUATION 121

Pro. Examination of the proofs of Lemmas 3.1 and 3.2 reveals that we may
choose M>0 and 7(0, such that for each ((Uo, U),f)BrR, S maps ,/ into

9(,/ and satisfies

(3.48) t(Sw, S)<_-t(w,) Vw, t,/,

i.e., S is a uniform contraction. Thus, for each ((Uo, U),f)BrR, S has a unique
fixed point in ,/.

Moreover, for each w %,/, the mapping ((Uo, u),f) Sw is continuous (in.fact,
Lipschitz continuous) fromBn into %,/. (See Remark 3.1.). Since S is a uniform
contraction, this implies that the fixed point of S also depends continuously on
((uo, u),f). (See, for example, [5, Thm. 0.3.2].) [5]

Proof of Theorem 3.2. Set l’-maxto,r.lll(u*(.,t),u(.,t))lli and choose R>0
large enough so that for each T’ [0, T*] and each u E, with

maxtto,r,lll(u(.,t),ut(.,t))lln<-l+ 1, we have IIIf,lll_<R, where fr’ is given by (3.41).
Now, by Lemma 3.3, we may choose 2?(0, 1] Such that given any T’ [0, T*] and any
u 2r, with ((u(., T’), ut(., T’)),fr,) t+ ffbn, the initial-boundary value problem
(3.42), (3.43), (3.44) has a unique solution v r. Moreover v depends continuously on
(( u(. T’), ut(. T’)),fr’) in the appropriate topologies.

If 7>_T*, then we are done. If 2?<T*, we make steps of length 7 until T* is
reached, as follows. By virtue of continuous dependence on [0, 7], we choose a neigh-
borhood (95 of (u*(.,0), ut*(.,0)) in H such that for each (Uo, U)(9, the corresponding
solution u of (1.5), (1.6), (1.7) satisfies II(u(’, t) u*(’, t), ut(’, t) uT(-, t))ll< for all
t[0, ], and hence (u(.,t),ut(.,t))Bt+ for all t[0, T]. Now, set T"- T and note
that for each (u0, u) (9 we have ((u(., T’), u t( ", T’),far,)) Bz+ n (where u is the
corresponding solution of (1.5), (1.6), (1.7) and fr’ is defined in terms of u by (3.41));
therefore (3.41), (3.42), (3.43) has a unique solutionvwhich depends continuously
on its data. Using (3.45) to extend solutions of (1.5), (1.6), (1.7) onto [0,2]?], we
conclude that for each (U0, Ul)l, (1.5), (1.6), (1.7) has a unique solution u/.
Moreover, the mapping (Uo, U)(u(.,t),ut(.,t)) is continuous from (l into H, uni-
formly in t[0,2T]. This argument can be repeated (if 27<T*), choosing a smaller

neighborhood 2 of (u*(., 0), ut*(-, 0)) for which solutions of (1.5), (1.6), (1.7) exist on
[0, 3T], etc.

After a finite number of applications of the above procedure, we eventually obtain
a neighborhood ( of (Uo, U) in H with the desired properties. This completes the proof
of Theorem 3.2 E]

As u0, u and f become smoother, the corresponding solution of (1.5), (1.6), (1.7)
gets smoother. Moreover, the maximal interval of existence of a smoother solution is
exactly the same as the maximal interval of existence of a solution with the regularity
(3.3), i.e. a bound of the form (3.4) is also sufficient to continue a smoother solution
globally. More precisely, we have

THEOREM 3.3. Assume that c>0, C2(R), mCl[0, o)), and let Uo, u, f be given
with

(3.49)
(3.50)
(3.51)
(3.52)

u0 n(0, 1)n n3(0, 1), u n(0, 1)fq n2(0, 1),
U’o’(O)- u’o’(1)-O
f, ft, f C([0, 0); t2(0, 1)), ftt toc([0, oQ); t2(0, 1)),
f(O,t)--f(1,t)-O ’qt >_O.
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Then, (1.5), (1.6), (1.7) has a unique solution u, defined on a maximal time interval
[0, To), TO >0, with

U, Ut Ux Utt Utx Uxx Uttt Uttx, Utxx, Uxx
(3.53) C([0, To); L-(0, 1)).
in addition,

(3.54) Uxx(O,t)-Uxx(1,t)-O Vtu [0, To),
and if (3.4) holds then TO

Remark 3.2. Under the supplementary smoothness assumptions of Theorem 3.3,
the existence of a local solution with the regularity (3.53) follows2 from Dafermos and
Nohel [3, Thm. 2.1]. However, the statement that "(3.4) implies T0- ", which is
important for our purposes, is not valid for the more general equation studied in [3].

Remark 3.3. it is interesting to observe that no additional smoothness of p is
required in Theorem 3.3. However, if we want to prove that the solution depends
continuously on the initial data in the natural norm associated with (3.49), the assump-
tion q C2(R) should be strengthened.

It is possible to prove Theorem 3.3 by using the local result in [3] to establish the
existence of a solution u which satisfies (3.53), and then make estimates to show that
(3.4) implies TO= . However, the estimates required for this purpose, when used in
conjunction with standard regularity theory for the linear wave equation, actually yield
the existence of a solution of (1.5), (1.6), (1.7) satisfying (3.53). Therefore, we provide a
complete (but brief) proof of Theorem 3.3. The relevant regularity result for (3.5) is
recorded below. To simplify the notation, we introduce an appropriate subclass of E.
For each T>0, let denote the set of all functions w which belong to E and satisfy
Wttt, Wttx, Wtxx, Wxx C([0, T]; L2(0, 1)).

PROPOSITION 3.2. Assume that c>0 and that (3.49), (3.50) hold. Let T>0 and g:
[0, 1] [0, T]--,R be given with g, gt, gxC([O,T];L2(O, 1)), gttUL2([O,T];L2(O, 1)), and
g(O,t)--g(1,t)=O for all t[0, T]. Then, the solution u of (3.5), (1.6), (1.7) belongs to 3
and satisfies Uxx(O,t)-uxx(1,t)=O for all t[0, T]. Moreover

(3.55) max { llttt--U2ttx f- Utxx+ uxxx) ( x, ) dx
t[O, T]

lg 0 ,X -Jf’Utlt(X) 2 dx

+
[0. rl

where C is a constant which depends only on c.

Proof of Theorem 3.3. For M,N, T>0, let .r denote the set of all functions
which belong to ,rand satisfy

,,, ,x, w,, x;([0, rl; (0,1)),
Wxx(O,t)-’Wxx(1,t)=O Vt [0, T],

(3.56)
(3.57)

and

(3.58) ess-sup fol( 2 2 2 2w,,+ W,x+ Wtxx+ W;xx} (x, t) dx <--N 2.
/[0, T]

Different boundary conditions are used in [3], but the difference is not important.
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We note that (3.6) and (3.56) imply wC2([0, 1][0, T]) so that (3.57) is meaningful.
Moreover, it follows from (3.57) and (3.58) that

(3.59) max Iw x(X,t)l <_N
x [0,

M,T"

t[0, T]

Clearly, s is nonempty for each M, N, T>0.M,T
As before, we let S denote the map which carries w into the solution of (3.13),

(1.6), (1.7). Our first project is to show that S maps s into itself for appropriatelyM,T
chosen M,N, T. Actually, we will show that if M and N are sufficiently large, then S
maps s into itself provided that T is small enough relative to M. The fact that TM,T
does not need to be small relative to N plays the essential role in showing that (3.4)
implies TO

Let M,N,T>O and ws be given. Then, the function g defined by (3 14)M,T
satisfies g, gt, gx - C([0, T]; L2(0, 1)), gtt L2([0, T]; t2(0, 1)), and g(0, t) = g(1, t) = 0 for
all [0, T]. Thus, by Proposition 3.2, the corresponding solution u of (3.13), (1.6), (1.7)
belongs to 3

r and satisfies uxx(O, t) uxx(1, t) 0 for all [0, T ].
Clearly, all of the estimates derived in the proof of Lemma 3.1 remain valid under

the present circumstances. We supplement these with bounds for third derivatives of u
which we obtain from (3.55). It is particularly important to keep track of how these
bounds depend on M, N, T, and the initial data, etc. For this purpose we define f*, *"
[0, )R by

fo foSfo’ft(3.60) f*(s)’- max {ft2+fx2)(x,t)dx+ 2t(x,t)dxdt
tG[0, s]

(3.61) *(s)’- max (m(s)2+m’(s)2} + Im’(t)ldt Vs>-O,
tG[0, s]

set

(3.62) U"- f0’ u"(x)2+ u’((x)2] dx,

and let f, m, k-, and U0 be as in the proof of Lemma 3.1. Observe that f* and m* are
continuous and nondecreasing, and that *(s) _>(s) for all s ->0.

We conclude from (3.14) and a routine sequence of estimations that

(3.63)

and

max {g2t +gE}(x,t)dx
t[0, T]

<_3f*(T)+3*(T) (M)M2+3T2*(T) (M)’(M2+ 1)N2

fo fo gtt(x’t)Zdxdt<-6f*(T)+ 18T*(T) (M).(M2+ 1)N 2.(3.64)
r

It follows from (3.55), (3.63), and (3.64) that

2+2+2+2(3.651 max (utt uttx Utx Uxxx}(X,t)dx
t[0, T]

<_18,eCT(U+f*(T)+m*(T) (M)M2

+(T2+ T)*(T) (M)- (M2+ 1)N2}.
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If M, N, and T satisfy

(3.66) N2>_36eC(U +]*(1) + *(1)q (M)M)
and

(3.67) T<min(1,(72eC-*(1) (M). (M2+ 1)+ 1)-l),
then the right-hand side of (3.65) is dominated by N2 Therefore, S maps %N intoM,T
itself if M,N, T>0 obey (3.25), (3.26), (3.66), and (3.67). The crucial point here is that
the right-hand side of (3.67) is independent of N.

The estimates derived in the proof of Lemma 3.2 also remain valid under the
present circumstances. Thus S maps into itself andM,T

(3.68) o(S Sb)<O(ff, ff) Vk,k%N
3/,7"

if M,N, and T satisfy (3.25), (3.26), (3.39), (3.66), and (3.67). Moreover, by virtue of
Alouglu’s theorem and sequential weak lower semicontinuity of the norm in
L([0, T]" L2(0, 1)), %N is complete under the metric p. We are now ready to syn-114,7"
thesize the proof.

Choose M,N,T>O such that S maps %N into %v and (3.67) holds. By theM,T M,T
contraction mapping principle, S has a unique fixed point u %v which is a solutionM,T
of (1.5), (1.6), (1.7) on [0, T]. Examining (3.25), (3.26), (3.39), (3.66), and (3.67), we see
that the length of the time interval on which we can produce a solution by this
procedure depends on U0 and f, but not on Ud" or f*. Moreover, it is clear that u
belongs to 3r and that for each T’ >0 there is at most one solution in 3r,.

Let [0, To) be the maximal interval of existence of u such that (3.53) is satisfied.
Gronwall’s inequality, (1.5), and (3.52) imply (3.54). For each T’[ 0, To), let fT", be
given by (3.41).

Suppose now that (3.4) holds and T0<c. Then, u(., T’), ut(., T’), and fr’ are
sufficiently smooth, satisfy the appropriate boundary conditions, and obey bounds
uniformly in T’ [ 0, To) such that we may choose T* >0 with the property that (3.42),
(3.43), (3.44) has a unique solution in 3r. for each T’ [ 0, To). The construction used
at the end of the proof of Theorem 3.1 yields a smooth continuation of u, which
violates maximality of[0, To).

4. Global existence and decay of solutions. We now discuss global behavior of
solutions of (1.5) and (2.10). Throughout this section we use f, and U0 as defined by
(3.15), (3.16), and (3.18), respectively. We begin by deriving an a priori bound which
can be used (in conjunction with the results of 3) to prove Theorems 2.1 and 2.2.

LEMMA 4.1. Let the assumptions of Theorem 3.1 hoM and let u denote the correspond-
ing solution of ( 1.5), (1.6), (1.7) on the maximal interval O, To). If

(4.1) sup Ib’(ux(x,t))l <c,
x[O, 11
t[0, r

then for each T (0, To),
(4.2)

max (u 2 +ut2,+ 2
tt Uxxl(X,t)dx.(Uo--i(T))exp(.[A(T).(T2-+ T)-+- T])

tG[0, T]
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where

(4.3) A’- sup 6’(ux(x,t))2

x[0, l
t[0, T0)

and is a positive constant which depends only on c.

Proof. Let T(0, To) be given. Observe that u satisfies (3.5) with g defined by

(4.4) g(x,t)’--f(x,t)-- m(t-r)(Ux(X,Z))xdz, x[0,1l, t.[0, T].

The procedure used to derive (3.20) and (3.23) yields

(4.5)
’t ’1 2lg(x,t)2dx<-2/(T)+2AT(T)Jo Jo ux=(x,s)dxds Vt[O, TI,

and

(4.6) fotfolgt( fofox,s)2dxds<3f(T)+6A(T) U2xx(X,s)dxds

Therefore, we deduce from (3.7) that

(4.7)

’t ’l 2+38A(T)’(T+2)Jo Jo Uxx(X’s)dxds

Vt[O,T].

The desired result follows from Gronwall’s inequality and (4.7). In fact, we can use
g:= 6&

As an immediate consequence of Lemma 4.1, we have the following corollary.
COROLLARY 4.1. Let the assumptions of Theorem 3.1 or Theorem 3.3 hold and let u

and TO be as in Theorem 3.1 or 3.3, respectively. If (4.1) holds, then TO oe. In particular,
if either

(4.8) sup

or

(4.9) sup lux(X,t)l
x[0, 1]
t[ 0, To)

Proof. Suppose that (4.1) holds and T0<. It then follows from Lemma 4.1 that
(1.4) holds. This implies that To-- o, which is a contradiction. Therefore, if (4.1) holds,
To= oo. [S]

Thus we have proved Theorems 2.1 and 2.2. As mentioned previously, the esti-
mates required to prove Theorem 2.3 are considerably more involved. The following
observation allows us to simplify some of the computations.

Remark 4.1. To prove Theorem 2.3, there is no loss in assuming that/ 1. Indeed,
if/>0 we can always convert (2.10), (1.6), (1.7) into an equivlaent problem of the same
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form which has/x- by a linear rescaling of time. If the original equation satisfies the
assumptions of Theorem 2.3, then so will the modified equation. Moreover, the new
initial data will have precisely the same smoothness as the original initial data.

Therefore, we consider

(4.10) utt(x,t)--CUxx(X,t)- e-t-*)(Ux(X,))xd, 0<x<l, t_>0,

in place of (2.10). Formally differentiating (4.10) with respect to and substituting for
the integral term from (4.10) we obtain

(4.11) uttt(x,t)+utt(x,t)=CUxxt(X,t)+X(Ux(X,t))x, O<_x<_t, t>O,

where the equilibrium stress function X is now given by

(4.12) X(): c-6()
We first establish an estimate of the form (2.14) for solutions of (4.10) under

supplementary smoothness assumptions on the initial data. The additional smoothness
permits us to use equation (4.11) to derive energy identities. The extra assumptions on
the data will then be removed by using Theorem 3.2 and a density argument.

LEMMA 4.2. Assume that C2() and that there are constants a and fl such that

(4.13) O <a <_’( ) <_fl <c

Then there exist constants F, 8 >0 such that for every Uo, u which satisfy

(4.14) uoH(O, 1)tq H3(0, 1), u Hd(0, 1)NH2(0, 1),
(4.15) u’(0) u’(1) 0,

the corresponding solution u of (4.10), (1.6), (1.7) satisfies

(4.16) f01 (u2tt+U2tx+ 2 tUo >-0.ux)(x,t)dx<_Fe-

The proof of this lemma involves the analysis of several energy identities which we
obtain from (4.11). The "potential function" defined by

(4.17) ()’- 2fo(S)ds
arises quite naturally in these identities. To establish positivity of certain combinations
of terms, we make crucial use of several properties of 6, X, and which follow from
(4.13). In particular, we require the following elementary proposition.

PROPOSITION 4.1. Assume that 1( cl(), 1(0)=0, and that (4.13) holds for some
and ft. Then, there exist e(O,a/c) and )> 1/c such that

(4.18) (1 -e)O()-XX()2->0
where X and d# are defined in terms of/ by (4.12) and (4.17), respectively.

Proof. Observe that X(0)=(0)=0, sx(s)>_O for all s, and X’(s)<_c-a for all
s . Thus, we have

(4.19) 2X(s)x’(s)<--2(c-a)X(S) Vs>_O,
(4.20) 2X(s)x’(s)>2(c-a)X(S)
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Integration of these inequalities from 0 to yields

(4.21)

Consequently, for each e (0, 1)

(1-e) )2(4.22) (1-e)t(f;)- (c_a) X(; >-0 Vf;I.

Now, choose e (0, a/c) and set ) (1 e)(c- a)- . A simple computation shows
that 7> 1/c. The conclusion thus follows from (4.22). E3

Proof ofLemma 4.2. We assume without loss of generality that (0)-0. Let u0 and
u satisfying (4.14), (4.15) be given and let u denote the corresponding solution of
(4.10), (1.6), (1.7). It follows from Theorem 2.2 that u C2([0, 1][ 0, o)) and Uttt, Uttx,
utxx, Uxx C([ 0, ); L2(0, 1)). We remark that this degree of regularity is sufficient to
justify the computations which follow. In particular, u satisfies (4.11).

Let 8 be an arbitrary positive constant (to be specified later). We multiply (4.11)
by 2eatutt(x,t) and integrate the resulting expression over space and time, using
integration by parts and exploiting the boundary conditions, to arrive at

(4.23)

(Note that utt(.,O)-cu’o’(. ) by (4.10).) To obtain our next identity, we multiply (4.11)
by 2etut(x,t) and integrate as above. The outcome of this computation is

(4.24) fleat{u2t +dP(Ux)W2ututt}(x,t)dx
"0

fotfo /sf 2+2 e I.cu,,-utt)(x,s)dxds

fofo’ea*{ 2+d(u)+2u u.}(x s)dxds+8 ut

Making use of Proposition 4.1, we can construct a linear combination of the
left-hand sides of (4.23) and (4.24) which is positive definite. For this purpose, we
choose e(O,a/c) and h>l/c such that (4.18) holds. In what follows, we use F to
denote a genetic positive which can be chosen independently of and U0.

We multiply (4.24) by (1- e) and add the resulting expression to (4.23). (Note that
1-e >0.) After majorizing the right-hand side and rearranging certain terms, we obtain
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(4.25) folet(u2tt+2(1-e)ututt+(1-e)u2t )(x,t)dx

fOle+ "t(cu2tx+2X(Ux)Utx+(1-e)dP(Ux))(x,t)dx

+2fotfole’s(eu2tt+ (,’(ux)- ce)u2tx)(x,s)dx ds

_<FUo+SF e utt--

The first and third integrals on the left-hand side of (4.25) can be bounded from below
rather easily; the first by completing the square and the third since ce<a<_e/’() for all
/j. The second integral on the left-hand side of (4.25) deserves special attention.
Observe that for each r/>0, we have

(4.26)
Now, using (4.18) and (4.26) with := A, we deduce that

2(4.27) CUxt2 2I._2X(U )Uxt 21"(|--E)C(Ux) >’( c- 1/k)Uxt
Since (c- 1/,) >0, this yields a lower bound for the integral in question. We thus have
an estimate of the form

fo fotfo 8Su2tt’+" 2tx)(x(4.28) *t{u ,t)+ )e tt+ut}(x e u

<FUo+Ffotfole,s( 9.u,t+ut )(,)aa, [o,).

Multiplying (4.11) by 2e*tuxx(X,t) and integrating over space and time as before
produces the identity

(4.29) fole"{CUxx--UL--2u,,Uxx}(x,t)dx
fotfoles( 2+2 x’(,) } (,),,,Uxx UttUxx

For each >0, we have

(4.30) _u+(/n)u.
Recall that X’()-->c-/3>0 for all. Therefore, if we apply (4.30) with (0,c-B]
to (4.29) and combine the resulting inequality with (4.28), we finally arrNe at an
estimate of the form

(4.31) [le’t{ut+Ux+2 rles{ Ux+2u}(,t)+ u,+ u},),

<FU0+,Ft *{ut+u +u}(x s)dxds Ut[0 ).e tx
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The desired result is obtained by choosing 3 sufficiently small in (4.31).
It follows from Theorem 3.2 and a simple density argument that Lemma 4.2

remains valid for initial data (Uo, Ul)H. (Recall that H:=(H(O, 1)fqH:(O, 1))
Ho(0, 1) equipped with norm given by (3.46).) Indeed, the set of all (Uo, U) which
satisfy (4.14) and (4.15) is dense in H. Moreover, by Theorem 3.2 the mapping
(Uo, U)(u(.,t),u(.,t)) is continuous from H into H for each t>0. Since u satisfies
(4.10), this implies that the mapping (Uo, U)l-utt(.,t ) is continuous from H into
L-(0, 1) for each >0. Therefore, (4.16) holds under the weaker assumption (u0, u)H.

By virtue of the Poincar inequalities and the bounda conditions, (4.16) and
(2.14) are equivalent. The uniform decay estimate (2.15) follows iediately from
(2.14) and the Sobolev embedding theorem. In view of Remark 4.1, we have now
proved Theorem 2.3.

It is not difficult to modify the preceding argument to establish decay of solutions
of

(4.32)

Utt(x,t)--CUxx(X,t)- f-"(t-’)(Ux(X,))xd+f(x,t ), 0xl, t0,
o

provided that f is sufficiently smooth and f(.,t) decays suitably as . If the
assumptions of Theorem 2.3 hold and there ests a constant y >0 such that

(4.33) =1eV(f+2)(x,s)dxds<,
then the procedure used to prove Lemma 4.2 yields an estimate of the form

(4.34) { 2utt+Ux+Ux}(X,l)dx

re-’ go+ e’{f+}(x,s)dxds Vt0

for solutions of (4.32), (1.6), (1.7). Here F, >0 are constants wNch are independent of
uo, u, and f. (Necessarily, Ny.)

If the assumptions of Theorem 2.3 hold and f, L([0, 1]X[ 0, m)), i.e.

(4.35)

then one can show that solutions u of (4.32), (1.6), (1.7) satisfy

uNf
u(.,t), ut(.,t), - o as

[0,1

The basic idea of the proof is to follow the procedure used to prove Lemma 4.2, but
with 3=0. This leads to a bound ofthe form

2 1 2.Ut+U2(4.37) sup {ut+u+u}(x,s)dx+ (utt }(x,s)dxds
s[0,)

F(Oo+1{f2+2}(x,s) dxdS)
where F is a positive constant which is independent of u0, u, and f. Standard
embedding inequalities, (1.6), and (4.37) imply (4.36).
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5. Other boundary conditions. With only minor revisions, the arguments used in
the preceding sections remain valid for other types of boundary conditions. For easy
reference, we have collected here several analogues of Theorems 2.1 through 2.3. In
order to avoid repetition in the statements of these results, we record several of the
common hypotheses below.

(H1)" c>0, C2(n), +’ L(),m Wilt 0, ).
(H2): c >0, + G C2(), ’ L(), m C[ 0, ).
(H3): c>0, k C2(), and there exist constants a and fl such that 0 <a_<k’()_<fl

</to for all.
A. Neumann conditions. If, in place of (1.6), we impose the boundary conditions

(5.1) u(O,t):Ux(1,t)=O t>_O,

then nontrivial rigid motions are possible. This, of course, affects the asymptotic
behavior of solutions. It is convenient to first analyze (5.1) with the data normalized so
as to eliminate the possibility of nontrivial rigid motions. The general problem can
always be reduced to one with normalized data by superposition of a rigid motion. The
appropriate conditions read

Uo(x)dx- u,(x)dx-O,

(5.3) fo’f(x,t)dx-O Vt>_O.

Observe that (5.2) and (5.3) imply that solutions of (1.5), (5.1), (1.7) will have zero
average spatially.

THEOREM 2.1A. Assume that (HI) holds and let Uo, Ul, andfbe given with

(5.4) uo n2(0,1), u, nl(o, 1),
(5.5)
(5.6) f C([O, o); L2(O, 1)), ft L12o([0, o); L2(O, 1)).
Assumefurther that (5.2) and (5.3) hold. Then, the initial-boundary value (1.5), (5.1), (1.7)
has a unique solution u: [0, X O, ) with

(5.7) u, Ut, Ux, Utt Utx UxxC([O, 0Q); Z2(0, 1)).
Moreover, u has zero average spatially, i.e.,

(5.8) fo’U(x, ldx-O vt_>o.

THEOREM 2.2A. Assume that (H2) holds and let Uo, u, andf be given with

(5.9) uo (EH3(0, 1), u H2(O, 1),
(5.10) U’o(O)-u’o(1)-u](O)-U’l(O)-O,
(5.11) f, ft,fC([O, o); L2(0, 1)), ftt Lo([0, ); L2(0, 1)).
Assume further that (5.2) and (5.3) hoM. Then, the solution u in Theorem 2.2A has the
additional regularity

(5.12) Utt,, Uttx, Utxx, UxxxC([O 00); L2(0, 1),
whence u C2([0, 0, o)).
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THEOREM 2.3A. Assume that (H3) holds. Then there are constants I’, B >0 such that

for every uo, u satisfying (5.2), (5.4), and (5.5), the corresponding solution u of (2.10),
(5.1), (1.7) satisfies

(5.13)

fo Iuo x /Ul X Uxx,,X,t,dx<_Fe_S, 2

and hence also

(5.14) max (u2nt-u2tnt-U2x)(X, t)<_Fe_tf[Uo( )2_t_.U,l(X)2]dx Vt>_O.
x[O, 11 "0

The proofs of these results are virtually identical to the proofs of Theorems 2.1,
2.2, and 2.3. Therefore, we merely point out the necessary changes.

In the definition of %t,r, the condition

(5.15) folw(x,t)dx-O Vt[0, T]

should be added and (3.9) should be replaced by

(5.16) wx(O,t)-wx(1,t)-O ’t [0, T].

Moreover, (3.57) should be dropped from the definition of %N With these modifica-M,T"
tions all of the estimates used in 3 and 4 remain valid. In particular, the boundary
contributions are once again annihilated in the integrations by parts used to derive
(4.23), (4.24) and (4.29).

We now show how to reduce a problem with "un-normalized" data to one with
normalized data. Given u0, u 1, and f satisfying (5.4), (5.5), and (5.6), define fro, flR
and f: 0, )- R by

(5.17) fro’-- (x)dx, f,’-- u,(x)dx,

Then, define rio, ill: [0,1]-,R,f: [0, 1][0, )---, N by

(5.19) rio(X)’-- Uo(X)-fo, rl(x)’- fl(X)-Ul, x( [0,11,

(5.20) /(x, t)’-- f(x, t) _flf(x, t) dx,
"o

and consider the initial-boundary value problem

(5.21)

(5.22)
(5.23)

rtt(x,t)-Crxx(X,t ) m(t-)/(rx(x,r))xdr+f(x,t),
O_<x_<l,

rx(o,t)-rx(1,t)-o, t>-o,,

r(x, 0)- r0(x ), rt(x,O)-rl(x )

t>_0,

Clearly, rio, r, and fhave zero average spatially. Thus, the above results are applicable
to (5.21), (5.22), (5.23). The solution u of (1.5), (5.1), (1.7) is determined from the
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solution of (5.21), (5.22), (5.23) by the formula

(5.24) u(x,t)--ft(x,t)+ff(t), 0_<x_<l, t_>0.

B. Mixed conditions. Mixed boundary conditions such as

(5.25) u(O,t)-ux(1,t)--O t>_O,

can also be handled. In this case no nontrivial rigid motions are possible, so there is no
need to normalize the data. Making obvious amendments in the proofs, it is straightfor-
ward to establish the following analogues of Theorem 2.1 through 2.3. (Clearly, similar
results hold for the boundary conditions ux(0, ) u(1, ) 0, _>0.)

TH.OREM 2.lB. Assume that (HI) holds and let uo, u l, and f satisfying (5.4), (5.6),
and

(5.26) uo(O)=ul(O)--Uto(1)-O
be given. Then, the initial-boundary value problem (1.5), (5.25), (1.7) has a unique solution
u which satisfies (5.7).

THEOREM 2.2B. Assume that (H2) holds and let uo, u andfsatisfying (5.9), (5.11),

(5.27)
and

Uo(O) uI(O) U)(1)-- ui(1)-0,

u’(0) 0, f(0, t) =0 Vt-->0

be given. Then, the solution u in Theorem 2.1B satisfies (5.12), and consequently u
c([o, o, o)).

Remark 5.1. Theorem 2.2B remains valid if (5.28) is replaced by the weaker
compatibility assumption

(5.29) CU’o’(O) +f(0, 0)- 0.

The proof in this situation requires estimation of certain boundary terms which auto-
matically vanish if (5.28) holds.

THEOREM 2.3B. Assume that (H3) holds. Then, there exist constants F, >0 such
that for every uo, u satisfying (5.4) and (5.26), the corresponding solution of (2.10), (5.25),
(1.7) satisfies (5.13) and (5.14).

C. Cauchy problems. We conclude with a few remarks regarding pure initial value
problems. In place of (1.5) and (2.10), we now consider

(5.30)

utt(x,t)--CUxx(X,t)- fotm(t-’r)/(Ux(X,,r))xd,r+f(x,t), -o <x<o, t-->0,

and

(5.31) utt(x,t)-CUxx(X,t)-fte-t(t-r)(ux(x,’r))xd’r, -o<x<o0, t>O,
"0

together with initial conditions

(5.32) u( x, O) uo(x ), u,(x,O)=ul(x), -c <x< o.

Due to the lack of Poincar6 inequalities on all of space, additional estimates are now
required for certain lower.order derivatives. It is not too difficult to prove analogues of
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Theorems 2.1 and 2.2; however, a great deal of information concerning the decay of
solutions is lost when the spatial region is unbounded.

THEOREM 2.1C. Assume that (HI) holds and let u o, u l, f be given with

(5.33) Uo H2(it), u CHi(R),
(5.34) f C([0, ) L2(ti)), ft Loc([0, ) L2(t)).
Then, the initial value problem (5.30), (5.32) has a unique solution u: (- e,
--, with

(5.35) U,’Ut, Ux, Utt Utx UxxC([O
THEOREM 2.2C. Assume that (H2) holds and let u o, u 1, f be given with

(5.36) u0H3(R), ui H2(R),
(5.37) f, ft, f C([0, o); L2(R)), fit Loc([0, ); L(R)).
Then, the solution u in Theorem 2.1C has the additional regularity

(5.38) uttt, uttx, Utxx, UxxxC([O, ); t2()),
whence u C2( X 0, oo)).

The procedure used to prove Lemma 4.2 also yields a result in the same spirit for
the Cauchy problem (5.31), (5.32); however the conclusion is substantially weaker. In
particular, we can no longer claim exponential decay.

THEOREM 2.3C. Assume that (H3) holds. Then, there exists a positive constant F such
that for every u0H2(R), UlH2(R), the corresponding solution u of (5.31), (5.32)
satisfies

(5.39)

To prove Theorem 2.3C, we assume without loss that/-1 and proceed as in the
proof of Lemma 4.2, but with/J=0, and replace integrations over [0, 1] with integra-
tions over (-o, o). Because of the lack of Poincar6 inequalities, more care must be
used to combine the energy identities. For this purpose, we employ the following
straightforward refinement of Proposition 4.1.

PROPOSITION 5.1. Under the assumptions of Proposition 4.1, there exist constants
v >0, e (0, a/c), and ,> 1/c such that

(5.40) (1-e)()-XX()Ev2 VR.

We choose u, e, and X as in the above proposition, and consider the analogue of
(4.25). We bound the first integral from below by means of the inequality

:z (1-)2 +2(l-e)u u +(1-e)u2>-utt-k u2t(5.41) utt tt t-- (2--e)

For the Cauchy problem, U0 should be defined in a different way.
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which follows from

(5.42) 12(1-e)ututt _<r(1- E)ut2t-+-I-1(|-E)ut2

with r:= (2- e)/2(1- e). Now, using (4.26) with r/:= ;k and (5.40), we conclude that

(5.43) CU2xt+2X(Ux)Uxt+(1 ,)t(Ux)>(c X-l) 2uxt2f lU2x
which yields an obvious lower bound for the second integral in the analogue of (4.25).
The rest of the estimations are carried out as in the proof of Lemma 4.2.

Acknowledgment. The author wishes to thank Professor R. C. MacCamy for several
enlightening discussions on this material.

Note added in proof. See the recent paper of Heard [12] for some related existence
theorems. See also the survey article [13] for a much more complete summary of results
concerning (1.1).
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ON VOLTERRA’S POPULATION EQUATION WITH DIFFUSION*

KEINHARD KEDLINGER"
Abstract. In this paper Volterra’s population equation with diffusion for a single, isolated species u is

considered. Generalizing a result of R. K. Miller it is shown that every nonnegative solution u 0 tends, as
t- o, to a spatially homogeneous distribution u*, independent of the initial distribution of u. For proof, a

recursively defined sequence of pairs of lower and upper solutions is used.

1. Introduction. As a simple model to describe the evolution of a single population
V. Volterra [9] proposes the equation

(la) u’= au bu2- f’f(t-s)u(s) ds, t> O,

where r 0 or o, u is the population size, a and b are positive rate constants, and the
integral is an hereditary term containing the effect of the past history on the present
growth rate. The initial condition for (la) has the form

(lb) u(0)=u0 ifr=0 (resp. u(t)=g(t)fort<Oifr=-o).

Concerning the asymptotic behavior of solutions u of (1), R. K. Miller [3] obtained the
following result: Let

(2)
a,b>O, fC(O,m)(3Ll(O,o), fO,

b> If(s)lds.

Then, for any positive u0 resp. for any positive, continuous and bounded function g(t)
there exists a unique positive solution u of (1). This solution is defined for all > 0 and
satisfies

(3) lim u(t)=a b+ f(s)ds
t---,

-1

It is the object of this paper to extend the above result to the case that a diffusion
term Au is added to the right-hand side of (la). We hereby suppose that the population
has no interaction with the exterior. Thus, we will consider the initial boundary value
problem

(4a)
(4b)
(4c)

with

U AU al- au- bu2_ uFu

Ou/On =0
u(O,x)=uo(x)

in D= (0, oc),
on r=(O, oo) x Of,
for x f

(Fu)(t,x) =fo?( t-s )u(s,x) ds, (t,x)_D,
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where f is a bounded domain in R whose boundary 3f is a C2-manifold, and where
O/On denotes the exterior normal derivative to Of.

In the formulation of problem (4) we have assumed r 0. The case r= o will be
dealt with at the end of this paper.

By a regular solution u of (4) we understand any real-valued function u C(D)
with partial derivatives u t, Ux,, Uxx C(D) for i, j=l,2,...,n and with gradu
C(D U F, R n) such that (4) is identically satisfied.

The following theorem will be proved:
THEOREM. Let the coefficients of (4a) satisfy (2) and suppose uo C1() with Uo > O.

Then the initial boundary value problem (4) has a unique bounded, nonnegative and
regular solution u. Moreover, if uo O, we have u(t,x)> 0 for all > O, x f and

(5) lim u(t,x)=u*=a b+ f(s)ds uniformlyforx.
t---*o

Remarks. (i) The theorem remains true if the term u in (4a) is replaced by the
linear, uniformly elliptic operator

i,j=l i=1

with coefficient functions a j, a that are uniformly H/flder continuous in D and satisfy
aij=ai, ai(O,.)C() for i, j=l,2,-..,n. Instead of (4b) we then require the
outward conormal derivative of u to vanish on F. The proof is the same as that for the
case Lu A u.

(ii) For nonnegative f, the stated theorem has been proved by A. Schiaffino [6] if f
is decreasing and by Y. Yamada [11] if f C(0, o) with tf L(0, o). A. Tesei [8]
established relation (5) in case uo is near to u* and n < 3. There is also a number of
papers on equation (4a) with Dirichlet boundary conditions; see, e.g., A. Schiaffino and
A. Tesei [7].

To prove the theorem, we will make use of the method of lower and upper
solutions developed in [5] for parabolic differential equations with functionals. We will
first deal with the existence part of the theorem. Relation (5) will then be established by
an iterative process concerning the step-by-step improvement of the lower and upper
solutions found thus far.

2. Existence. Let us introduce the function class Z consisting of all functions z:
D g such that

(a) z is continuous in D,
(fl) the partial derivatives zt, zx, Z x exist in D for i, j= 1,... n

ij

(,) the exterior normal derivative z/3n exists on F.
As is usual with parabolic problems, in (fl) the existence of z as a one-sided

derivative from below is sufficient for our purposes.
DEFINITION. By a pair of lower and upper solutions for problem (4) we understand

any pair of functions v, w Z such that
(i) v < w in D;
(ii) v mv+ av bv2- vFck in D, w AW "[- aw bw- wFck in D for all functions

qb C(D).with v < qb < w in D;
(iii) v/3n < O, 3w/n > 0 on F;
(iv) v(O,x)< Uo(X)< w(O,x) for x f.
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The following lemma is a special case of [5, Thm. 3.4]"
LEMMA. Let v, w be a pair of lower and upper solutions for the initial boundary value

problem (4) and suppose uo C1(). Then there exists a unique regular solution u of (4)
such that v < u < w in D.

We give a short outline of the proof. Set D.= (0, T] f, FT.= (0, T] Of with
T> 0, and define

where

)2 (Au uNu=-b(Au )F(A ),

(Au)(t,x)=min(w(t,x),max(u(t,x),v(t,x))), (t,x).
Consider the system

(4a*) ut Au + au + Nu in Dr,

(4b*) Ou/On=O on Fr

with initial condition (4c) and the corresponding integral equation u= Su with (Q
denotes the fundamental solution of ut- Au=0 in Dr)

fotfonQ+ (t,x; ’,)h(’r,)dod"

+ fnQ(t,x;O,)Uo()d inD

(compare [2, 5.3]). The density h depends on the unknown function u. Since Nu as well
as h are globally Lipschitz continuous with respect to u, the fixed point principle of
Banach may be applied to give the existence of a unique solution C(Dr) of u Su.
By using considerations of the same type as in [2, Chap. 1], the function Sfi is seen to be
HOlder continuous in Dr. Hence, fi is a regular solution of (4a*), (4b*), (4c) by [2, 1.5].

It remains to prove that fi solves (4), i.e., that v < fi < w in Dr. Assume that we have
strict inequalities in (i)-(iv) above. Then v < fi < w in Dr follows by a method of proof
that is well known for parabolic differential equations; see, e.g., [10, proof of Lemma
24.1]. The case of weak inequalities can be handled in the same way by making use of a
family (O)>0 of positive auxiliary functions,

p(t,x)=Ce(e(2a+l)t+ 1)+eh(x), (t,x)T,
where h C2() is a function with Oh/On>O on 0f (compare [10, 31.VI (-/2)]) and
C= C(a,h) is a suitably chosen positive constant. We then have v-0,< < w + tg for
all e > 0, which gives v < _< w in Dr.

Noting that T>0 is arbitrary in the above reasoning, we arrive at the desired
result.

With the help of the above lemma the existence part of the theorem is easily
proved. It suffices to choose v 0 and w-- K, where K is any constant such that

(6) K>max max_luo(x)i,a b- If(s)lds
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Indeed, for all (t, x) D and any function q, C(D) with 0 < q, < K in D we then get

wt-Aw-aw+bw2+w t-s)q(s,x)ds> -aK+bK2-K 2 [f(s)lds>O,

as required. The other inequalities in the above Definition are trivially satisfied. It
should be noted that in view of this result it is possible to replace the functional Fu in
(4a) by F(A*u), where

(A*u)(t,x)=min(K, max(O,u(t,x))), (t,x),
without changing the solution u of (4). In the following we will tacitly assume that such
a cut-off has been made.

Let us add the remark that the Lemma still yields the existence of a unique
bounded, nonnegative and regular solution u for problem (4) if instead of (2) we
assume

(2’) a<0, b>0, fC(O,)OL(O,), f>O,

or

(2") a>0, O<b<fof(s)ds< , fC(O, ), f>O.

The first case is mentioned by R. K. Miller [3], whereas the second one has been
considered by J. M. Cushing in [1]. In both cases we can use the lower solution v 0. As
upper solution w we choose

(2’) the solution of the initial value problem

w’ aw bw 2, w(0) max lu0 (x

or respectively

(2") the function w K1, where K is any constant such that

K > max( max luo ( x ) a/b )x

Note that limt_. w(t)=0 if (2’) holds. Hence, in this case all nonnegative solutions
tend to zero as

The asymptotic behavior for (2") is by far more complicated and will not be
considered here. As regards problem (1), a discussion of the possible behavior of the
solutions can be found in [1, Chaps. 3, 5]. For (4), we refer to the above-mentioned
papers [8] and [11].

3. Asymptotic behavior. We will now prove the second part of the Theorem, i.e.,
the validity of (5). Suppose (2) to hold and let u0 0. By u we denote the unique regular
solution of (4) whose existence has been shown in 2. Writef=f+-f-, where

f+(s)=max(O,f(s)), f-(s)=max(0,-f(s)) fors>0,

and set

c+= c
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Equation (4a) then takes the form

(4a’) ut= An +an-bu2-u(tf+ (t-s)u(s,x)ds + ufff-(t-s)u(s,x)ds.
.’o .’o

Further define

and set

u(t)=min_u(t,x), fi(t)=max_u(t,x)
xf x

I= liminf u (t),
t--, o

lim sup (t) 1"t-o
We have to show that the interval I consists of the single point a[b + ff(s)ds]-1.

Let us first prove that

(7) Ic[O,a/(b-c-)].
To see (7), we consider the functionp (t) defined by

p’=apx-bp+plKC for t>0, pl(0)=(0)

with K given by (6). Using the results of 2, it is easily seen that 0, p is a pair of lower
and upper solutions for problem (4). By the lemma there exists a unique regular
solution of (4) such that 0< (t,x)<pl(t) in D. Since pl(t)<K for all <0, we have

u. It follows that I [0, 3’1], where

1 lim pl(t)=(a+Kc-)/b.

Remark. The estimate 0 < u(t,x)<_ K made it possible to replace FU in (4a) by
F(A*u) without affecting the solution u of (4), and this led us to the improved upper
solution P l- In a similar way, use can be made of the inclusion I c[a, fl], where
0<a<fl. It suffices to treat the case I c[0,3q] in detail. The general case can be
handled in the same manner.

Choose e > 0. Then there exists a to > 1 such that

and a tl > to such that

(t) <3,1 + e for all t> t0-1

Set

ft f-(s)ds<e
t-

for all >

z(t)=3q+e+(K-l-e)max(O, min(1,to-t)) for t>0.

Without changing the solution u of (4) the functional F(A*u) in (4a) may then be
replaced by F(A’u) where

(A’u)(t,x)=max(O, Ilfin(u(t,x),z(t))), (t,x).
Hence, the functions v=0 and w=p2, where P2(t) is defined by

p; ap2- bp+ eKp2 + (h + e) c-p2 for > 1,

pv_(t)=K for 0_< t_< tx,
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are a pair of lower and upper solutions for (4). We have

lim P2(t)=3/2+e(K+c-)/b with2=(a+hc-)/b.
t-- o

Since e is arbitrarily small, it follows that

Ic [0,y2].

Replacing q by ]t2 in the above reasoning, we get

Ic [0, "/a ], where ’a a + yc-)/b,

and so on. The sequence (,/,) is decreasing and nonnegative. Hence there exists
/= lim_ 3’. A little computation shows V= a/(b c-), and this proves (7).

Let us now improve the lower solution/3=0. We first observe that by the strong
maximum principle for linear parabolic equations (see [4, 3.3]) we have

u(t)>0 fort>0.

Choose e > 0. Then there exists a t2 > 1 such that

(t)<,/+e forallt>t2-1
and a > 2 such that

ft f+(s)ds<e for all > t3.

Set

i=min _U_(t)"-ta<t<ta
and define a function vl(t) by

0’ ao bv2 eKvx c + ( + e) Vl

/31(t) max(0, 1(2t- t3/) )
for t> t3,
for 0 < <

Then/3 =/31 and, say, w=K is a pair of lower and upper solutions for (4). In view of

lim Vl(t)=),(b-c+-c-)/b-e(K+c+)/b
t--- ot

(for all sufficiently small e) we conclude that

(8) Ic [/x,v]= [/(b-c+-c-)/b,,], where-t=a/(b-c-).

Remark. Note that the inequality u(t)> v(t) is obviously satisfied for O<t<t3.

Therefore, the proof of the Lemma still goes through (see the outline of proof in 2),
even though hypothesis (ii) in the above definition of a lower solution is violated for
some (0, t3].

To prove (5) we now use an iterative argument starting with (8). Choose e
(0,//2). Then there exists a 4 > 2 such that

l-e<u(t)<Ft(t)<v+e for all t> t4-1
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and a > 4 such that

fot-t4f+(s)ds>c+--e,
and

Set

ft f+(s)ds<e
t--

fot-tT-(s)ds>c---e,

for all > t5

f-(s)ds<e for all t>t5.

1 / 1
$2=min u(t)"-ts<t<t

Define the functions 02(t) and w2(t) respectively by

v av2 bv eKv2- c+ ( vl + e) v2 + ( c-- e)( tXl e) v2
v2(t) max(0,82(2t- t5)/t5)

w(=aw2-bw-(c+-e)(gl-e)w2+eKw2+c-(vl +e)w2

w2(t)=K

and by

Then v2, w2 is a pair of lower and upper solutions for (4). We have

for > t5,
for 0 _< _< ts,

for > t5,
for 0 < _< ts.

lim v2(t)=(a+c-txl-C+Vl)/b-e(K+c++c-+t.tl-e)/b

l= v= a/( b + c+- c-),
as desired. The proof of the Theorem is complete.

and

lim w2(t)=(a-c+ll +C-Vl)/b+e(g+c++c-+tXl-e)/b.
t--o

Since e > 0 is arbitrarily small, we find

IC [g2, v2l [( a + c-g C+Vl)/b, (a- c+ll + C-Vl)/b
Repeating the above argument, we get two sequences (gn), (vn) defined by

(9a) tx+l=(a+c-#.-c+v.)/b for n N,

and by

(9b) r.+l=(a-c+g.+c-r.)/b for nN, vl=T,

with a/(b- c-). It is an easy matter to show by induction that

tl <l,2 < <l&nPn< P2 <Pl for all n.
Hence there exist

tt= limg and r= lim rn,

and from (9) it follows that

I=y(b-c+-c-)/b,
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Remark. The case r o presents no new difficulties. Instead of (4) we now have

(10a) ut=Au+au-bu-u f(t-s)u(s,x)ds inD,

u(10b) 0--=0 on F,

(10c) u(t,x)=g(t,x) in F0=(-oo,0 .
In the definitions of 2 replace D by D Fo and (iv) by the assumption v < g_< w in F0.

Then, under suitable regularity conditions on g, the lemma is still valid.
For example, suppose that g C(I’0) is a bounded nonnegative function which is

uniformly H61der continuous in F0. Assume further that the function go(x)=g(O,x)
satisfies the same hypotheses as uo above. Let (2) be fulfilled. Then (10) has a unique
bounded, nonnegative and regular solution u that satisfies (5) in case g0 0. Apart from
some obvious modifications the proof of this assertion is the same as that of the
theorem.

We finally remark that the above assertions concerning the cases (2’) and (2") are
also valid for problem (10).
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SPEED OF PROPAGATION OF SOLUTIONS
OF A LINEAR INTEGRODIFFERENTIAL EQUATION

WITH NONCONSTANT COEFFICIENTS*

GUY CANADAS

Abstract. Using an energetic method we prove a property of propagation with a finite speed for the
solutions of the system of linear viscoelasticity in nonhomogeneous media. Our results generalize those
obtained by P. L. Davis [SIAM J. Math. Anal., 19 (1979), pp. 570-576] for constant coefficients.

1. Introduction. The notion of hyperbolicity was extended to linear integrodif-
ferential equations of Volterra type by P. L. Davis [7] in the case of equations with
constant coefficients. Such an equation is said to be hyperbolic if the solutions of an
appropriate problem propagate with finite speed.

In [8], [9], [10] the same author studies equations arising in electromagnetic theory,
in heat condution for materials with memory and an equation of linear viscoelasticity,
always with constant coefficients. It is precisely this last equation we are interested in
here, in the case of non constant coefficients, i.e. for an inhomogeneous viscoelastic
medium.

The tools used by P. L. Davis to study the evolution of the solution support are the
Fourier transform and the Paley-Wiener theorem. This method can obviously not be
used when the medium is nonhomogeneous. To extend the results to this case we use an
energetic method in a domain limited by the characteristics of the principal part (in
Hrrmander’s sense) of the operator.

2. The linear viscoelastic problem. The linear viscoelastic system is, using the
summation convention for repeated subscripts:

(1) la(x)’-of)i-
OjOij (X, t) +fi(x, t)

o
(I) (2) O"eij "(OjVi(x,t)-bOi19j(x,t))

where 0 is the mass per unit volume, f= (f,f,f) a force per unit volume, e (e, %, %)
the velocity, o the Cauchy stress tensor, the linearized strain tensor, the instanta-
neous elastic tensor. The tensor b describes the relaxation behaviour of the material
(b =0 when the material is purely elastic).

We denote by E the linear space of 2nd order symmetric tensors on N , endowed
with the usual scalar product:

VOI, E < oi, > olijij,

and usual norm: [Ol[’--(Olij, Olij)1/2. The same notation [.[ serves also for the Euclidean
norm in 0 3. The linear space of linear symmetric operators of E is denoted by Es(E),
and its natural norm by I1" I1:

1}.
*Received by the editors December 27, 1982, and in revised form, July 27, 1983.
Drpartement de Mathrmatiques, Universit de Pau, 64000 Pau, France.
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DEFINITION. We say that (v, e, o) is a solution of system (I) on f] X ]0, T[, where f]

is an open subset of R 3, if vHlloc(fX[O,T[,R3), p.e, oHoc(fX[O,T[,E ) and the
equations (1), (2), (3) are satisfied almost everywhere on f X ]0, T[.

In [3], [4], [5], [6], [11], one can find results of existence, uniqueness and stability
for certain limit problems associated with the system (i).

These authors employ various hypotheses on the coefficients, and in [1] one can
find a discussion on natural hypotheses in the problems of solid visco-elasticity. In this
work we will use only:

H1

H2

H3

[o, +
0b

p >0 and O, O- Lc(n 3),
(x) is positive definite a.e. x R 3.

3. Inversion of the constitutive law. The constitutive equation (3) may be inverted
to express e as a function of o. This result, which generalizes an analogous result of R.
C. MacCamy [2] is given in:

THEOPdM 1. Under the hypotheses H1 the constitutive law (3) may be inverted, and

for e,oLoc( [0, + [,E) we have:

(4) o(x,t)+ ,t-

where k L]oc(R [0, + [, E(E)) depends only on b.

If moreover H2 is satisfied, then Ok/Ot Loc(R3[O, + [, E(E)).
Proof. Let Kbe a compact subset of R3, T>0 and Q=K[0, T]. For pL2(Q,E)

we define

( T6ep ) ( x, ) fotb ( x, t- "r )cp ( x "r ) d’r a.e.(x,t)Q.

Tb is a continuous linear operator in L2(Q,E), with norm smaller than

We show first that the operator I-T, where I is the identity on L2(Q,E), is
invertible. For a given fL2(Q,E) let us prove that the equation qo-T,q:f has a
unique solution q L2(Q, E).

Let N be an integer verifying 0 <a T/N< (211bll(Q,())- and suppose that p is
known on K[O, na] for a value n {0,1,...,N). For a.e. (x,t)K[na,(n+ 1)a]
qo(x, ) verifies:

p(x,t)- b(x t-$)ep(x )d=f(x t)+ ,t- )qg(x,$)d.

The right-hand member i.s known, and the norm of the operator Tb(") on

L2(K -[na, (n + 1)a], E) defined by (T(")q)(x, t) ftb(x,.t )+(x, r)dz is

smaller than a//[[b[lOO(Q,e)< 1. A classical fixed point theorem shows that p is then
uniquely determined on K[na,(n+ 1)a] and by induction that it is uniquely de-
termined on Q.
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In a similar manner one can prove that iffL(Q,E), then pL(Q,E).
We show now that (I-Tb)-1=I+ Tk where kL(Q,E) is the solution of k-

Tbk=b. Fubini’s theorem shows that TbTk--Trbk, and the relation Tbk=k-b gives
TbTk Tk_b Tk Tb and therefore (I- Tb)(I- T) I.

For the second part of the theorem we consider k’L]o(R3 R +, s(E)) defined
by

Ob fOb (x,t-$)k(x,$)dz,k’(x,t)--(x,t) + b(x, O)k(x,t) +Jo --where b(., 0)L]oc(l 3, Es(E)) is the trace of b in t-0. It is easy to see that k’-k/Ot.
4. Propagation with a finite speed. We define c Loc(Nt 3) by

c(x)- (I.(x)l/o(z))

(with the hypothesis of symmetry, t(x)l is equal to the greatest eigenvalue of/). The
quantity c, homogeneous to a speed, appears with regard to Theorem 2 as the local
maximal speed of propagation. More.precisely this theorem says that in a domain of
3, if c is a.e. bounded by a constant c0, then the local speed of propagation of
solutions is bounded above by co in this domain.

Notice that the maximal speed of propagation does.not depend on b, and is the
same as in the elastic case when b 0.

THEOREM 2. We assume HI, H2 and H3. Fix r>0, define B as (xR3; Ix-xol<r)
and choose co a positive constant so that c(x)<_co a.e. x B. If a solution of(I) vanishes
a.e. on B [0, to[, then this solution still vanishes on

Q- ( (x,t) NI3 R + t>_to,Co(t- to) + IX-xol<r}

provided that f also vanishes on Q.
Proof. Multiplying (1) by vi(x,t ) and integrating on Q=((x,t)Q;to<_t<_s)

with s[to, to+r/co], we get:

In view of Theorem we have

(x,t)+k(x,O)o(x,t)+

and with the symmetry of/:

(6)
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The right-hand member of (6) can easily be bounded above by Afo 112 dx dr where A is
a constant depending only on II/-k(.,0)ll,(,<(e)and II/-ll(o,e,()). To trans-
form the left-hand member, let us establish the Green formula

0 V2 lo

Q,
+(o,- > nt--oijvinj

where n-(nl,n2,n3,nt)-(nx, nt) is the outward normal to OQs. In fact this formula is
true with p and # regular enough, for example when they are continuously differentia-
ble. We consider then two sequences (Pn) and (/*n) which verify:

p,, and/*-, are uniformly bounded for x B and n N

p,--+ p in Li(B) when n + + o,

/*Tl_.,/*- in Ll(B, Es(E)) when n-+ +o.

We obtain (6) as a limit of the same formula written with p, and/*n instead of p and/*.
For the left-hand member there are no difficulties, because p, and/*, do not depend on
t. For the right-hand member, the same argument shows that p,,v2+ (a,/*7o) con-
verges a.e. on Q to pl)

2 + ( a,/*-10 ) with [[p,v2 + (o,/*7 o )11 .,(aO,) bounded. Lebesgue’s
dominated convergence theorem then applies and gives the result. The left-hand mem-
ber of (5) can be written

n t--oijl)inj}
where I’--{(x,t)3Qs, t-s} and F-{(x,t)OQ;co(t-to)+lX-Xol+r). We have
a.e. on F:

The left-hand member of (6) is then bounded below by the integral term on F, and
therefore:

This inequality gives:

A ftlF(t)dt.F(s ) -<
211 t:(,,e())

Gronwall’s lemma shows that F vanishes a.e. on [to, to+r/co] and therefore that the
solution of (I) vanishes on Q.

5. The one-dimensional case. The simplicity of the geometry permits in that case
the integration in a domain Q limited by the characteristic curves of the principal part
of the operator, instead of a cone contained in this domain, as previously. We obtain
therefore a more precise result expressed in Theorem 3. The hypotheses HI, H2 and H3
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remain the same if we change R 3, E and Es(E) into R. /(x) is therefore a positive
number, and c(x)-(l(X)/p(x))1/2.

THEOREM 3. We assume HI, H2 and H3. Let to>_O, X+ <X_ two real numbers. Let
B--]X+ ,X_[ and Q=((x,t)g2; X+ <_x<_X_, O<_t<_Inf(t+(x),t_(x))}, where t-t+
(x) (respectively t-t_(x)) verifies dt+/dx-1/c(x) and t+(X+)-to (respectively
dt_/dx--1/c(x) and t_(X_)-to). If a solution of (I) vanishes on B[0,t0] and f
vanishes on Q, then this solution vanishes on Q.

S

X_

FIG 1.

The proof of this theorem is identical to the previous one if we change the
definitions of B and Q as indicated. The hypotheses on p and/ ensure that OQs is
Lipschitz continuous and the same arguments hold.

Remark. The hypothesis H2 is not essential. Theorem 3 remains valid if we
suppose, instead of hypothesis H2, that for a.e. x , k(x, t) is a positive decreasing
function. In this case one has to consider, for fixed x, a sequence k vrrifying"
kn(O)-k(x, 0), k, positive decreasing on +, and k,-o k(x, .) in Loc(R +).
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THE LEAST CONSTANT IN FRIEDRICHS’ INEQUALITY
IN ONE DIMENSION*

J. T. MARTI

Abstract. Friedrichs’ inequality for the Sobolev space HI(0, s), s>0, is Ilfll c(f(0) +f(s) +llf’ll2)/2,
f@H(O,s), where f’ is the first derivative of f and I1"11 and I1"11 are the norms of Hl(0,s) and L2(O,s
respectively. The usual proofs for the existence of such a constant c are based on nonconstructive functional
analytic ideas. It is shown that the least constants c can be evaluated by variational techniques and are given
by the unique solution of a simple transcendental equation. In the special case s one has, for example,.
c-- 1.07869

1. Introduction. Let Ck(0,s) be the vector space of bounded continuous real
f/nctions f on an open interval (0,s) of R with bounded continuous derivatives
f,,...,f<k), and let I1"11 be the norm of L2(O,s ). The Sobolev space Hl(O,s) [1, 3.1 and
3.16] is obtained by completing Cl(O,s) with respect to the Sobolev norm given by

II/11,-(llill +lli’ll:’) ’/:’
i c’(o,s)

It is well known [1, 5.4] that .Hi(O,s) may be considered as a subset of C(0,s),
imbedded such that for some constant d>0 depending on s the Sobolev inequality
sup{If(x)l: x (0,s)}-<dllflli holds for all f in H(O,s). Therefore, the so-called traces
Tf in 2 of all f in H(0, s) are well defined by

Tf (f(0+),f(s-))r_ lim (f(e),f(s-e)) r.
exO

Of course, the trace operator T: H(0,s) R 2 given this way is a linear operator with
norm IITll (ITfl:fH(O,s),llfll <1 } <_2/d, where R 2 has the usual Euclidean norm
l" l- For the special case of the Sobolev space H(O,s), Friedrichs’ inequality [2, Thror6me
1.9] is given by

Ilill, <-c( l il + lli’ll -) l S ’(o

where c >0 is a constant depending on s. The inequality of Friedrichs is an important
tool in the theory of elliptic operators, where it can be used to show the V-ellipticity of
certain differential operators which is needed in the existence theory for the corre-
sponding boundary value problems.

The existence of the constants c in (1) is usually shown by an argument using the
classical inequality of Poincar6 and Banach’s open mapping theorem based on a
verification that the right-hand side of (1) defines a norm on Hl(0, s) for which H(0, s)
is complete again. The defect of such a (nonconstructive) proof is the fact that one has
no idea how large c is. However, the following concrete bounds are given by Rektorys
[3, 18.5, 19]" c-(1 +4s2/r)ll2which gives 1.18545 for s-1.

The aim of this paper is to use variational techniques in order to compute the exact
value of the best (i.e. least) constant c in (1). A simple example shows that c is greater
than or equal to (1 +s2/12)/> 1" Letfbe the function given byf(x)-x, O<x<_s/2;
:s/2-x, s/2<x<s; then by (1) one has c2>(s3/12+s)/s.

Received by the editors May 10, 1983.
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2. Evaluation of the exact value of the least constant in Friedrichs’ inequality. By
the following argument it is sufficient to determine the least constant c in (1) on the set
C l(0, s). Let the functional F on Hl(0, s) related to (1) be given by

(2) F(f)’-- Ilfll,/(Izfl2+llf,ll2) /2 fH(O,)

Then since

c: sup(F(f): 0 =f=fcHl(O,s ) ),
we obviously have

Co := sup{F(f):O=/=fC(O,s)} <_c.

Assuming now that Co<C, one would have an f in Hl(0,s) such that F(f)>co. How-
ever, by the continuity of I1"11, T and I1"11, this would imply the existence of a g in
C (0,s) such that F(g) >c0, which would contradict the definition of c0.

Next, if there is a nonzero f in C:(O,s) for which F assumes a maximum value,
then for each g in C(0,s) such that Tg=O one necessarily has O<_F(f):-F(f+g).
Using (2) and the fact that T(f+g)= Tf, one obtains

o _< (I r/lllfll+ IIf’+ g’ll:llf I1-, rll211f+ gll-IIf’ll:llf+ gll)/2
Tfl:(f, g), + IIf II:(f’, g’) -IIf’ II:(f, g) + o( Ilgll:,),

where (-,.) and (-,.)l are inner products of L2(O,s ) and Hi(0,s) respectively. Since a
partial integration yields (f’, g’)= -(f", g) one has

o _< (- [I r:l + IIf’il’]/+ [I  sl + o(li ll’;)
If ITfl--Ilfll, then the density of Cd(O,s) (the subset of functions in Cl(0,s) with
compact support in (0,s)) in L2(O,s ) and the above inequality imply that
(IZflg+llf’llZ)g--O and thus f=O, a contradiction to fC-(O,s)\{O). Therefore, one
may assume that ITfl:/:llfll and define

(3) 7t’- -(I TfI:+ IIf’ll )/( ITfl- Ilfll:).
Applying the above density argument again, one then obtains Euler’s differential
equation for the described variational problem"

f" +,f=0.
It is clear that for the solutions f of this differential equation, F(f) attains a maximum.
Since f=/=0 implies X =/=0 one has to consider the two cases X---+a 2, a>0 with corre-
sponding general solutions

f(x)-cosa x-- +bsina x- x(O,s),

bR, where the positive homogeneity of the nominator and denominator of F defined
in (2) allows to set the multiplicative constant of the cosine function equal to one and
where in the case h a the notation sin and cos for the corresponding hyperbolic
functions sinh and cosh is kept, for simplicity of notation.
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gets

(4)
(5)

Using the symmetries with respect to the midpoint s/2 of the interval (O,s) one

ITfl +cosas+--b2(1- cosas),

21if
2 +bE(s a-1= s+ a- sin as sin as ),

2a-2llf,II 2
+--(s-a- sinas)+b2(s+a-’sinas),

hence by (3) and )k- ---+a 2

a2= _+_ 2 -F- 2 cos as- 2b2(1 cos as) +--a2s -W-asinas+ a2bZ(s+ a-sin as)
2 + 2 cos as +-- 2b2( cos as ) s a- ’sin as b2(s + a- ’sin as )

Solving for b2 yields
a sin as ( a 2 +-- )(cos as+ )(7) b2=--+
a sin as ( a z -+ )(cos as )

and thus by (2), (4), (5), (6) and a lengthy but elementary calculation

(8) V(f)z= +-.a-.
From (7) it follows immediately that

(9) a(a+--1)-’sinas--cosas=(1-+-bE)/(1 wb2), ben,

where the right-hand side of (9) lies in \[- 1, 1) or (-1, 1] for the upper and lower
sign respectively. Therefore, for the lower case sign (hyperbolic functions), the possible
solutions a of (9) are to be found in the interval (1, o). In this case, in view of (8) and
the example of which shows that c> 1, the functions F(f) assume values in (0, 1) so
that the hyperbolic functions fall out of competition.

On the other hand, for the upper case sign (where X--a 2 and the functions in (9)
are circular functions) one obtains from the considerations at the beginning of this
section

(10) c= (1 +a"2)’/z,
where a0 is the smallest number a in (0, ) satisfying (9) for some b in R. It is now
clear that a0 is the unique solution a in (0, r/s) of

(11) cosas--a(a 2 + 1)- sinas 1.

From the computational point of view, the root a0 of (11) in (0,r/s) can easily be
determined e.g. by Newton’s method. For the special case s-1 we obtain (up to 5
decimal places) a0 2.47254, and thus by (10) the value 1.07869 for c. Finally, it is of
interest how a0 and c behave as s goes to 0 or o: It is easy to see that in both cases ao
is close to r/s asymptotically, hence that c is close to (1 + $2/q1"2)1/2 which shows that c
tends to or respectively.
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STUDY OF THE CORRECTOR OF THE EIGENVALUE
OF A TRANSPORT OPERATOR*

RIMI SENTIS’
Abstract. We consider the transport operator

A --1, 1QV +, X ,2

on the space L2(flX V) where fl is a bounded open set of Rs, V a compact set of Rs and Q a Markovian
generator. We show that its largest eigenvalue % converges (when e-0) to the largest eigenvalue of a
diffusion operator A on L2() and we calculate the limit of (l/e)(-).

Introduction. Let A be the transport operator defined on L2( 1/’) by

f=f(x,v)A.f(w,v) Of=--- v, + Of v V)

with zero boundary conditions on , where f is a bounded open set of RN with
smooth boundary Of; V is a compact set of Rv symmetrical with respect to 0, provided
with a probability measure (this measure is denoted as a Lebesgue measure for simplic-
ity); and where Q is the operator (depending on the parameter xf) on L2(V) defined
by

g=g(v) --’, Qxg(v) fvO,(x, v, w)g(w) dw-o(x, v)g(v)
with o and o strictly positive (we emphasize the various assumptions on V, Ol, o in 1).
e is a positive real number (assumed to be small). The operator (A*+ a) [with a being a
real number] is said to be critical (with respect to the domain 2) if there exists a
positive function u in L2(t2 V) such that:

A*u+au=O.

We recall in 2 that if 0, is the maximal real eigenvalue of A*, then (A*+ %) is critical
(that is to say that the corresponding eigenfunction is positive). The goal of this paper
is to give an asymptotic expansion of % with respect to e.

The main assumptions are the following (let Q be the adjoint of Qx):

(i) Qxl 0 Vx f,
(,) (ii) 3rrL2(V)l ar=0 fr(v)vidv-O (i-l,2,...,N).

Now let us show how a general "collision operator" Q may be reduced to one of
the above-mentioned type. Let V be a union of spheres centered in 0 (that is to say
V=GS: with G being a compact set of R+) and let -x be defined by:

v.w )I llwl g(w)dw- (x, Ivl)g(v),

*Received by the editors December 28, 1981.
C. E. A. Limeil, B.P. 27, 94190 Villeneuve Saint Georges, France.
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where 1 is a strictly positive function defined on f G G[-1,-t-1] and 8 is a
strictly positive function defined on f G. (This corresponds to a "multi-group" model
in neutron physics, where the cross sections depend only on the position and the energy
of the incident neutron. Modeling with a small parameter e means that the dimension
of the domain is large with respect to the mean free path of the neutrons.)

_According to the Krein-Rutman theorem, we know that the maximal eigenvalue
of Q is real and simple. We assume that this eigenvalue is 0. (This restriction is not
very strong because the nature of an eigenvalue problem is not changed if one adds a
constant.) Thus there exist two functions p and p of L2(V) such that"

p (v) >0,
axpx-O, a’p’x-O.

Since p is strictly positive, we may let

ag--p O(Pg),

Then we have:

Vxf, VvV,

P

Assume that r does not depend on x. (This is true in "monogroup" models, where
V=S2 and Px-P-1.. This is also true, obviously, in the case where Q does not
depend on x.) Then Q satisfies (*). Indeed, due to the spherical symmetry, we have:

v v ) v dv O.

An outline of the paper follows: In 1, we give preliminary results. Particularly we
recall that there exists an unbounded diffusion operator A on L2(f):

A-X -x aij-x
with zero boundary Dirichlet conditions, which is the limit of A in the following sense:

L(ax V)

In 2, we show that the types % and of the segroups e and e are Nso simple
eigenvalues of A and A. In 3, we use a characterisation of the type of a segroup in
order to find a lower bound for %. And in 4 we prove that an eigenfunction of A
corresponding to % converges in L(X V) to an eigenfunction of A corresponding to, and that:

% whene0.

Finally the calculation of the lit of (-)/ is developed in 5.
1. e problem. Let a be an open bounded subset of RS, with a smooth boundary

Off. Assume that fl is connected.
Let V be a compact subset of R symmetrical with respect to 0, provided with a

probability measure symmetrical with respect to 0, whose support is not contained in
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any hyperplane of Rv, that is to say there exists a positive constant c0, such that:

We assume that

(2) o v.
In the Hilbert spaces L2( X V), L2(V), L2() we denote the scalar products by:

(’,’), (’,’)v, (’,’) (or(.,-))
and the norms by:

][" [I, I" ]t2(v), I" l2() (or I" [: if there is no ambiguity),
respectively.

Let us denote also by C( V), C(V), C(f) the spacesof continuous functions
from (f V), V or f into R.

Let us define the operator Q on LZ(v) (depending on the parameter x) by

with

Kf:fro,(x,v,w)f(w)dw, o(x,v)- gxl(v),

where o C(fl V V). o is smooth in x and satisfies:

(3) :lotR +, O<ot<_o,(x,v,w ).

We may consider Q as an operator defined on C(V) (and also on L2(f V) or
C(f V)). From (3) we know (see for example Blankenship and Papanicolaou [4]) that
0 is a simple eigenvalue of Q and that there exists a unique eigenfunction r of Q’ which
is a probability measure density (Q’ is the adjoint of Q). From (3) we also know that

]r+, 0<r_<r(v).
Assume that r does not depend on x and that

(4) (r,v,) v= 0 Vi.

If o(x, v, w) o(x, w, v) then we have r and (4) is satisfied. Moreover, if f L2(fl ),
it is necessary and sufficient for the existence of a solution u of

Qu+f=o,

that (r,f) 0.
Thus let ’i--’/ be the function of C(V) satisfying:

Qx;-vi-O, (;,r)--O.

For any x on )1, let us denote by n theunit outward normal to

F (v Vsuch that n.v<0), r-- vlv r; }.
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For any positive e, let us define the operators A and A on L2( X V) by:

Af=

A’f= Af+

D(A)=D(A) fLZ(aX V) such that v eLU(ax V),r-=0

The following proposition will be useful.
PROPOSITION 1. i)Assume that (3) holds. We havefor anyf in L2(V):

ii) A is the infinitesimal generator of a semigroup of class C on L2(fl X V),
which is bounded un@rmly with respect to and e.

Proof. i) Here we do not write the parameter x. Since satisfies

fd,(,,).(w)w-o(,).(),

we have

+l(w)

This yields the result, indeed we have:

(Qf,,n.f)v: l(t,w)t(t))[-2f(t)f(w)+f(t) +f(w)2] aaw.

ii) In the Hilbert space L2(V) provided by the scalar product {f; g},g)v, the
operator Q is dissipative. Since we have

I/2 2/ ll  fll l lo VII Q,E.D.

Let us define the unbounded operator A on L() by

Af= 2. a wherea,(x)=(,-ff),
,J

D(A) H(a) aH(a) (using the usual Sobolev notation).
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We know that the coefficients a ij are smooth with respect to x. Let us show now that
the matrix ao is strictly positive definite. Indeed, let belong to Rs and g(v)-Y,ivii;
then we have

2 aijij --(rg, Qg)v>---odrt [g(v)-g(w)]Edvdw>>.O.
i,j

And if we had Y,aqj.=0, then g would be constant, that is to say, g(v)-O almost
everywhere (because (g, 1) v= 0). Therefore 0 (due to (1)). So A is the generator of a
contraction semigroup Tt, of class C, defined on L2(f]). (We may also consider A and
T as operators on C(f]).)

The following result is classical (see Blankenship and Papanicolaou [4], Bensous-
san, Lions and Papanicolaou [3] for the case where fl=Rs, or Williams [16], or Sentis
[13], [14, 3]). When e goes to 0, for any t>0, we have:

Ttf- Ttf in C(fX V)
TtY- TtlIf in C(fX V)

VfC() s.t. flau: 0,

Vf C(fl V) s.t. flau: 0 and f(., v) C(f]),

where II is the projection defined by

v).

Since Tt is uniformly bounded with respect to e, on L2(fl V) and C(fl V),
using the previous convergence, we can see that, for any >0, when e --, 0.

(5) Ttf Ttf in C(fX V) feC(f) s.t. flo=0,
(6) TtY- TtlIf in L(fX V) VfeL(ftX V).

Hence, we see that, for any positive real number

(A-)-’ (A

by the strong convergence of the operators on L2( X V), when e --, 0.
These results (which may be interpreted as singular perturbation results) mean that

the transport process associated with the Markovian generator A may be approximated
well by the diffusion process associated with the diffusion operator A. (More precisely
the "spatial part" of the transport process converges weakly, as e 0, to the diffusion
process.) This kind of result has been well known for a long time to the specialists in
neutronics (e.g., Larsen and Keller [10]) and in probabilities (e.g., Khasminskii [7]).

Let to and to be the types of the semigroups Tt and T (considered as operators on
L2(fl V) and L2(fl)). Recall that the type to of a semigroup T is defined by:

o= lim +ogllTll.
t--- oo

These two types are nonpositive. Now we shall show that they are also eigenvalues
of A and A.

2. Spectral properties of A and A’. It is well known that, for the operator A, the
eigenvalue with the largest real part is real (see, for example, Protter and Weinberger
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[12]). But we shall prove here, following Amann [1], that:
PROPOSITION 2. i) The type to of T is an eigenvalue of A and there exists a unique

function such that

(7) hD(A)tL2+(12), I1=-1.
ii) Furthermore h is smooth, andfor any compact set ’ with

(8) inf ((/)(x)lx fl’) >0.
iii) Ifwe let E=(fC() such that :let>0, :lfl>0 -flch<_f<_ach), then there exists

a function h of C() having a lower bound like (8) and:

(9) lfE e-’tTf-)th(f,) in C() when t-

Proof. We can write A in the following form"

O2f
_
bi --fxi

D(A)-H:(a)H(a),

with otij--(aij+aji),

b -jj aj

Let us denote by J the operator A considered as an unbounded operator on C(f).
Then according to Amann [1, Thm. 1.16] applied to the Dirichlet boundary value
problem, we know that there exists a real eigenvalue too. of (with finite multiplicity)
such that ReX <too for any eigenvalue , (, to0) of A, such that the corresponding
eigenfunction ,/, is unique up to a multiplicative constant and such that

A-o, c+().
We know also that the semigroup generated by A is compact on C() thus eot is equal
to its spectral radius which is e ’t. Then: too- to.

Now, any eigenfunctionf of A is smooth (indeed we havefD(A’)CH" for any
n in ) and the eigenfunetions of A and are the same. Thus there exists a unique
function , satisfying (7).

Since (h may reach its minimum only on Ol2, we have (8). If we denote by A’ the
adjoint of A, we have the same result for A’. That is to say, there exists a unique
function ,h satisfying

eD(A’)CI.L+(I]), A’-to’k, (k,k)-1.
Moreover inf ((x)lx ll’)>0, for any compact subset 2’ with 12’c ii. Finally we can
see that E provided with the norm:

[Iflle-sup

is a Banach space. Since e’gt-e’t, the semigroup e "Tt can be restricted to E and is of
class CO on E and its infinitesimal generator is A with the domain

D(A) eE s.t. a,i I}Xi)Xi E

Let L2+(fl) be the cone of nonnegative functions in L2() and C+(2) the cone of nonnegative
functions in C(f).
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Since o is an eigenvalue of A with finite multiplicity and since we can show easily that:

We know that the eigenvalue o is semisimple. (That is to say: (;k-o)()-)- con-
verges strongly on E, when -o+. Ts lit is the spectral projector P related to .
See Kato [8, III 6.5 and I 5.4].) Thus, we have

VfE, e-*e*fPf in E, when .
Thus the range of P is the eigenspace related to . On the other hand the dimension of
ts eigenspace is 1, thus there ests m in the dual of E satisfying:

Pf=m(f), m()= 1.

Since we have:

e--’(eA’f,)L,--(f,)L,_ VfE,

we see that m(f)--(f,q)L2. Then (9) follows. Q.E.D.
Now, let us give a general result which we shall apply to the operator A:
PROPOSITION 3. Let B be a Banach space and B+ a convex closed cone such that B is

the closed hull of (B+-B_). Let L be the infinitesimal generator of a semigroup T
(strongly continuous on B) such that for large enough:

i) T is compact,

ii) Tt(B+) CB+

Then the type o of this semigroup is (if o 4 c) an eigenvalue with finite multiplicity of
L and

:lq, B+ N D(L ), Lq-o
Proof. Let us fix such that i) and ii) are satisfied. The type 0 of the semigroup

satisfies:

tot-lim llog liT.ill-log lim (llr,"ll) ’/".
n-- ot n n-- ot

Thus e ’’t is the spectral radius of T if 0 4:- . For large enough, T is compact;
therefore (since Tt(B+)CB+) we can apply the weak Krein-Rutman theorem (Krein
and Rutman [6, Thm. 6.17]) and we see that the spectral radius of T is an eigenvalue
associated with an eigenfunction qt of B+"

q,t B+ Ttq,,= e "’q,t
On the other hand we know that the eigenspace corresponding to e ’’t is indepen-

dent of t. Hence, qt does not depend on and for any >0 we have

Since

-,Lq, when 0,

we have the desired result. Q.E.D.
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According to J6rgens [5] and (2), for large enough T: is compact from L2( X V)
to L2(f V). Since T: leaves invariant the cone L+(f V) of positive functions of
L2( )< V), we can apply the foregoing and if %v -oo, there exists an eigenfunction
satisfying:

We call a principal eigenfunction of A. The uniqueness of q is now proved.
Remark 1. For e small enough, the dimension of the eigenspace of A related to %

is 1.
Sketch of the proof (due to Bardos [2]). Let us choose e such that (o +e2c0) is

strictly positive and let q= e-(o + e2to) and H=e-IK. If there exists an eigenfunction
X linearly independent of , there also exists a real number a such that k=+aX
satisfies

(10) i) (A+H-q)=0, kL2(2 V),
ii) + v0, - v0,

where + and - are the positive and negative parts of (-+--). Let B-
(q-A)- which is a bounded operator on L2(f V). Thanks to (10i), we have

/ BH/ (BH) /.

Let us denote by A’, B’ and H’ the adjoint operators of A, B and H, respectively.
We know that there exists an cigcnfunctionf@L+( V) of (A’+H’-q) and thus

f=B’H’f fO.
If u--H’f, we have uH’B’u. Therefore, we have

(II) ([k[, u ) ([1, (H’B’):Zu) ((BH)E[I,u) (I(BH)2/[,u ).
On the other hand we can show easily that there exists a constant/3 >0 such that

(HBH)g(x,v)>--fl(g, 1) V(x,v),
Thus let us define the function 3’ from f to , by

fl [1-exp (-(infq)’d(x’f) )]),(x) sup q sup Ivl
Then we have 3’(x)>0 for any x in 2 and

(BH)Eg(x,v)>-y(x)(g, 1) V(x,v) VgLE+(]V).

Similarly, we can show that u(x) >0 for any x in f. Thus, we have

( BH)2(x, v ) <_(Bn)2ll( x, v) 2:(x ) ( /_ 1),
1).

Thanks to (10ii), this yields:

which contradicts (I I). Q.E.D.
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3. Lower bound for the type %. Let us denote by lim and lim the lower limit and
upper limit.

PROPOSITION 4. When e goes to 0, we have

limo >_0.

For the proof we use an idea due to S. Varadhan communicated by G. C.
Papanicolaou 11 ], introducing the quantities 3‘ (t) and 3‘(t).

We need only the positivity of Tt and T and the properties (5), (8), (9), to prove
this proposition.

Proof. The usual norm of the operators on L2(f F) is denoted by I1" I- Let 0 and
be two open sets such that

1CIC0C0C.
Letfbe a continuous function on such that

0%f(x)<l_ where f(x)-{ O1 ifx’if
From (8) and (9) we know there exist two constants P0 and P such that for large

enough,

(12) O<poe-Ot(f)(x)pl xo.

On the other hand, let us define:

(t)-log inf (f)(x)
x

7(t)--log inf (f )(x)
x

On account of (12), (t) is finite for large enough and when m, we have

0- lira 71OgOo Nlim ((t)-)lim logp -0.
l t t

Thus,

(13) lim 3’(t) 0.

On the other hand, by (5), when e goes to 0

inf Ttf(x) --, inf T f(x ).
xf xf

Hence, we have, when e goes to 0

(14) 3’*(t) 3‘(t).

In particular, we see that 3’*(t) is finite for e small enough. Let us assume for the
moment the following lemma.

LEMMA 1. Forfixed e, we have:

X sup 3’*(t) lim 3’(t).
t+
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Thanks to (14) we have, for any t, when e goes to 0,

lim X_>lim7(t) (t).

And due to (13), we conclude that:

To complete the proof it suffices to show that ,<o for any e. Now, since

Ilfll( )-<clol (where I01 denotes the measure of f0), we have

11Tte[12 2 [011 [2(etV*(t))2-> IIT, fll -> inf T f c
III 2 IIII 2 "o

Vt.

Therefore the type 0 of Tt is finite. For 0’ larger than o, there exists a constant M,,
such that

IITtII<_Mo,e ’t

Hence,

and

Therefore

cl/2e t’*(t) Mo,e’’t Vt

,-lim 3,(t)__< lim (o’+logM,,) -o’.
t---,

Proof ofLemma 1. Let * suPt -{ (t).
Let Xo be the characteristic function of the open set fo and let

,-inf (Tf)(x), ,(t)--logx,

Since T*fxoTfand Xo(X)f(x),Vx we have:

(15) 8,+inf (XoTef)inf(Xo( i:Tf ) ) St.o o
Due to the definition of , for any small p (p >0), there exists a positive number a

such that:

By (15), it follows that

log, >log()--logX--O VnN.
a a a

We conclude that for any smN1 0 (0 >0), we have

--(lim log, X-0.



THE EIGENVALUE OF A TRANSPORT OPERATOR 161

4. Convergence of 6% and of the principal eigenfunction.
PROPOSITION 5. Let be a principal eigenvalue of A. Then there exists a function
L2(f) such that

ep / in L2( X V), when e O

Moreover we have

First let us give a lemma in which the parameter x does not appear.
LEMMA 2. Let fn be a sequence of elements ofLZ(v) such that:

(16)
i) lim ILlv)< +,
ii) ( Qf,, rf,)vO.

Then the sequence Ifnl=<v) converges and

L-_+lim ILI inL2(V).

Proof ofLemma 2. First let us show the following inequality (due to Tartar [15])

(17) If-(f, Vf L=(V).
017

Indeed, we have, thanks to Proposition 1,

{ ) w )

Now we have (provided that fvdv 1)

fvfv[f(w) -f(v)12dv dw 2fvlf( v)12dv 2(f, I):

-2f [Iff v)l -ff l)v] av-2f [:-ff l)v]2dv.

Therefore (17) holds, and by (16 ii) we have that when n goes to

f.-(f.,1)v-.O inLZ(V).

On the other hand, by (16i), there exists a subsequence of f, still denoted by fn,
which converges to a functionf of L2(V) in L2(V) weakly. Thus we have

(f, 1)v(f, 1)v when n ,
and it follows that

f(f, 1)v in L2(V).
Thus the whole sequence If&= converges, and we have

(f, 1) v= --+ lim ILIa=. Q.E.D.
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Proof of Proposition 5. Since q,D(A) we know that:

-v---x ,r,/, <_0.

Then, because of Proposition 2, we have

() l( Oq 2 Cv <c.

Hence it follows:

Since (Qx(x, .),(x, "))v is nonpositive, there exists a measurable set o (such that
o is a negligible set) satisfying, x o-

ii) .)) 0.

Using the preceding lemma, we can see that for any x in o there exists a number
+x in R+ such that, when e 0

(18) ff(x, .)+ in LZ(V), =liml(x,-)IL.
We see that the function x +x is measurable, and if we denote by L2() equal to

x on o and zero elsewhere, we have

falldx fali l(x, )l(v)dx -lim llllz= 1,

and

qq in L2(IX V). Q.E.D.

PROPOSITION 6. When e goes to O, we have

and the limit q ofq is equal to the eigenfunction q ofA satising

(19) D(A), A=, 0, [,[z,(a) =1.

Before proving ts proposition, let us state a lemma.
LE 3.2 For any f in @(), there exists a family f in C(X V) such that, when e

goes to O,

i) c(e x v),
ii) Ae*f A*f in C( V).

Proof. (Here and in the following we use summation convention.) It may be seen
that the solvability condition for the equation Q’u+g=0 is:

(1,g)v=0.

The adjoint of an operator (with respect to the L duality) is denoted by *, d the set of smooth
functions defined on fl, with compact support in , is denoted by @().
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Therefore, let x be the solution of

xOt x+ l)i

Let us define:

where f2(x," ) is a solution of

0f

Q’xf2(x, .)+v, - (1,v,x)-x. -0.

We see that f2 belongs to C(f V) and i) follows. We have,also (Of2/Oxi)C( V).
On the other hand, we have

-!

0 ( Of) Of2A,f inC(aXV)

Indeed we have aji(x ) ( j, Q )v=(vi, fj )v. Q.E.D.
Proof ofProposition 6. Using the preceding lemma for anyf in () we have:

Lf, A:fA*f in L(XV).
Let ’ =lim. There ests a sequence e, converging to 0 such that

Then we have, due to Proposition 5,

Since () is dense in L() we conclude that:

Hence ’ is an eigenvalue of A. But, thanks to Proposition 4, ’. Since is the
mammal real eigenvalue, it follows that

Since satisfies I1= 1, 0, we also have =. Q.E.D.

5. The correetor ot . Before calculating the corrector of (i.e.,
lim0(1/e)(-)), we give a result which one can easily prove with the techniques
used in Bensoussan, Lions and Papanicolaou [3, 3.5] (a silar calculation is per-
formed in Sentis 14, 4.4,1]).

PgOVOSTO 7. Let f be in C() and &t a be a positive real number (a 0). There
exists a unique solution u of the equation

-au+Au=f uD(A).
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Let uo be the solution of

Then we have

-auo+Auo=f uoD(A).

OUou (x,vl-uo x)-  ;(vl-ggx e2C

where the function (which is called a boundary layer) satisfies:

[fi(/,v)] <Cexp (- 7--d(x’e Of))’
where d(., ) denotes distance and C and 7 are positive constant, w is the solution of

and fli jk being smooth coefficients satisfying

flijk(x)-(r,vinj), QxnjX-vj;-aj(x)-O,

I&ij(X)--(,--v,q;), Qxq;+ (-v,f-a,(x))-O,

andPx is a probability measure on F (which depends only on Qx), for any x in af.
Let q satisfy (19). Thanks to Proposition 6 there exists a solution z of the equation

(20) Az=wq, zD(A).
We know that z q is the unique solution of

Az wq z D(A ).
Let w be the solution of

Then, thanks to Proposition 7, we have

with I111 Eft.

(Indeed II[ll is less than e times a constant.)
PROPOSITION 8. When e goes to O, we have (if we let: 3/3n--ajknjO/x)
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Proof. Let k be an eigenfunction of A* satisfying

Using the definition of z given in (20) we have

(22)

Due to (21), it follows that

(23)

e

Let e go to 0; we can show, in exactly the same way as for , that

k-r, inL2(2 V).
Hence, we have

Since (i, ’/7" ) V"- 0 for any i, we have

--xi a’i-x ,ok

+ Px li x) Ox On

From the definition of w, this yields the result. Q.E.D.
Remark 2. The calculation of the corrector of the eigenfunction is very difficult.

Even when the second order operator is homogeneous there are no good results (see
Kesavan [9]), we have only the corrector for the corresponding z.

Remark 3. There exists a constant C such that:

I%- oa eoa <_e2C.

Indeed, if we put 8-e-1(%_oa), by (23), we have

(24) 8,-- --(o+eS,) ’i

Since 0, 8 and the function k are bounded, and since [l&lleC t, we conclude that
e- 1(8, Oal) is bounded.
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Remark 4. If we assume that o does not depend on x and that V satisfies the
property of spherical symmetry. Then there exist O C(R) and 02 C(R+, R+) such
that

a, b ) a, a ) _> o,>0,

Then it may be easily seen that

I)p )p_> 1, Ol(V, v’)- o=(Ivl, Iv’l)0 i;llv;l X/v, v’ V.

rlijk--txij--O Vi,j,k.

Remark 5. All the foregoing remains true if fl is an open set of the torus [0,, 1[v,
with a smooth boundary Off and such that [0, 1[v. A nuclear reactor where there are
many periodically spaced control rods may be modeled by a wide domain with a large
number of holes which are periodically spaced with period 1, and in this framework the
preceding calculation of t0 (with fl an open set of the torus) may be useful.

Acknowledgments. I thank G. Papanicolaou and C. Bardos for useful discussions
on this problem.
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THE NORM OF CERTAIN CONVOLUTION TRANSFORMS
ON Lt, SPACES OF ENTIRE FUNCTIONS

OF EXPONENTIAL TYPE*

B. F. LOGAN"
Abstract. Denote by Bp() the subspace of Lr(-o, o) whose elements are restrictions to the real line

of entire functions of order 1, type at most . It is shown that the norm of certain convolution transforms on
Bp() is independent of p, <p< o. It follows that a number of classical inequalities sharp for functions in

B() are also sharp for functions in Bp(fl) with <p<

1. Introduction. Consider the convolution transform

(1) Tf(x)-g(x)-f_f(x t) riG(t)

where G is a function of bounded variation on (- o, ) and f belongs to the space
Lp Lp(-, o) for somep satisfying <p< o, with norm

(2) Ilfll, If(t)lpdt <o, _<p<o

-- essup If( ) l<: p-

Here essup is the smallest number M such that

If(t)l<-M
is satisfied for almost all in (-o, ). Iff(t) is continuous, then

essup If(t)l- sup If(t
-o<t<

Minkowski’s inequality, which asserts that

<3) a AIl.<- lakl"
where ak are scalars, fk Le, generalizes to

(4) f dG(,)f(x; t)] <-f_ IdG(t)lllf(x;

where the norm is understood to be taken over the variable x.
In particular, if f(x; ) =f(x ), then

IIf(x; t)ll, --Ilf(t)
i.e., the L, norm is translation invariant.

Then we have for g(x ) Tf(x ) in ( ),

(5) IIg[I, -< Ilfllf_ Ida( )1.

*Received by the editors October 23, 1982. This paper was presented at AMS Meeting #808, Special
Session on Operator Theory, held in Evanston, Illinois, November 11-12, 1983.

Bell Laboratories, Murray Hill, New Jersey, 07974.
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The norm of the transform on Lp, which depends on p and G, is defined by

(6) Mp(G ) sup Ilgllp.
fGLp

Ilfllp--

Here we are interested in the norm of the transform (1) on certain proper subspaces of

Lp. The subspaces we consider are the spaces Bp(2) which consist of band-limited

functions in Lp, i.e. the subspace of Lp whose elements are restrictions to the real line of
entire functions of order 1, type at most f. (In the terminology of Boas [1] entire
functions of order 1, type at most 2 are called entire functions of "exponential type
2".) Now functions belonging to Lp for some p greater than 2 do not necessarily have
Fourier transforms. However, functions in Be(f) can be essentially described as those
continuous functions of Lp whose "Fourier transforms vanish outside [-f, 2]". In fact,
Boas [1, Thm. 6.8.14] shows that for f in Boo([2) there exists a sequence F of functions,
each of bounded variation, such that

(7) f(x)-- lim fu eiXtdFn(t).
n--> oO ---"

Also (see 1, Thms. 6.7.17 and 6.7.18])

(8) Bp(f)CBoo(2), l_<p<oo.

Since a bounded function in Lp, i.e., a function in LpfqLoo, also belongs to Lp,,
wheneverp <p’ < oo, we have

(9)

One can argue from (7) (also cf. [2]) that all functions f in Boo(f) (and hence all
functions in Bp(2) by (8)) are orthogonal to all functions in L (and also all finite
measures) whose Fourier transforms vanish over (-f, 2), and that

(10) f(x)-- _ooru(x-t)f(t)dt, fCBp(f)

where ru is any function of L (or a finite measure) whose Fourier transform is over
[-,1.

Consequently, if f in (1) belongs to Bp(f) we may replace G by Gu, where Gu is
any function of bounded variation satisfying

(11) e-i’t(dG( ) dGu( ) ) -O,

The norm of the transform (1) on Bp(f) is defined by

(12) Mp(G, f]) sup Tfllp.
fBp()
Ilfllp--

Using (5) and (11) we see Mp(G,f) is bounded by

(13) Mp(G,ft)<_inf IdG(t)l

where the inf is over functions Gu satisfying (11).
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Now the right-hand side of (13) is independent of p. Our purpose here is to point
out that there are, in fact, a number of interesting transforms for which the norm is
independent of p.

We prove the following result.
THEOREM A. Suppose there exists a function Gn satisfying

f? e-i’t(dG(t)-dGn(t)) -0,

and

e-iOtdG(t) [dG.(t)}.

Then the norm of the transform (1) on Bp(f) is given by

Mp(G’ a ) IdGf( ) -<p_< o.

In particular, we use this theorem to show that a number of "classical" inequalities
known to be sharp for Boo(f) are also sharp for Bp(f), <_p <_ c. This is done below.

2. Applications of the theorem. One of the simpler applications is to transforms of
the special form

(14) g(x) =f? K(x-t)f(t)dt,

where

(14a) K(t)=eiXtp(t), P(t)>_O (-o <t<c)

and X satisfies f<_<. Then

[K(t)ldt= P(t)dt- e-iXtg(t)dt;

f_K( )e-i,Otdt _olK( ) ldt.

An example of this type is the inequality relating the norm of the analytic continuation
off on a line parallel to the real axis to the norm offon the real line.

Application 1. Iff Bp( ) then

(15) Ilf(x+iy)llelylllf(y)ll.

This inequality is sharp in the sense that e Iyl cannot be replaced with any smaller
number, for 1 _<p _< c.

The inequality (15) is due to Plancherel and Polya (see [1, Thm. 6.7:1]) and
generalized by Boas [1, Thm. 6.7.4].

Proof of Application 1. We view f(x + iy)-Tyf(X), for fixed real y, as a convolu-
tion transform.
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We first choose a reproducing kernel re in (10) which has an analytic continuation
belonging to L on lines parallel to the real axis; e.g.,

(16) ra(x) = sin(f + e)x. sin ex
/’x x

where e is a fixed positive number, it is readily verified that the Fourier transform of re
is over [-fl, f], decreasing linearly to zero at +--(f + 2e). Then the analytic continua-
tion off in B,(fl) is given by

(17) f(x+ iy ) rf(x + iy- )f( ) dt- re( + iy )f(x ) dt.

Now

f,4 e(to)eitdt

and hence

ft pe(o)e_O,yei,tdt"re( + iy ) --r’n"
Therefore

(18) e-i’tre(t+ iy)dt-e-y, -f<__<__.

Thus in (1) we may replace re by any function of L (or any bounded measure) whose
Fourier transform is e-y over [-fl, f]. An appropriate choice is

(19)

ye ey,e-iet
r( 2 +y)

ke(t; y)-
1e-eyeiet

r( 2 +y2)’

y>0,

y<0.

We have

fee( Y) f -tk { e-le+tly’
e e(t" y) dt- le_oly_eyoo e

y>0,

y<0.

So regardless of the sign of y we have

(20) le( o; y ) e-’y, <_y <_ft.

Thus we obtain (15) by replacing re(t+ iy) in (17) in ke(t; y).
It then follows from

(21) max
-_<_<e f ke(t; y)e-itdtl-f Iku(t; y)ldt-eu’y’,

and Theorem A, that e elyl in the inequality (15) cannot be replaced by a smaller
number, for anyp in [1, 0]. D
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Another interesting series of applications is to transforms (or operators) that admit
the representation

(22) Tf(x)-g(x)- E a,(O;fl)f x+O+ fB(f),

where (for some choice of 0)

(22a) (-1) ak(O; a)_>0, X la,(0;

(See Boas [1, Chapter 11, "Operators and Their Extremal Properties"].) This transfor-
mation may be regarded as a convolution transform where G(t)= Ga(t) in (1) is a step
function of bounded variation. In this case, owing to the alternating sign of ak, and the
"(,r/f)-translates" off, the norm of the transform (22) on Boo(f) is readily seen to be

(23) Moo(G; a)= X la,(O; a)l,

with Ilglloo = Moo(G; f) attained for

(23a) f(x)=A[aeiaX+ (1-a)e-iax],
where IA[- 1.

Here again we have

(24) max

O_<a<l,

f_ dG(t)e-itdt= IdGa(t)l= , la(0; a)l

where the max is attained for 0- ---f. Hence, according to Theorem A, the norm of the
transform (22) on B(fl) is

(25) Mp(G; a)- . la,(O; a)l, l_<p_<o.

An important example of this kind is

(26) Tf(x)=g(x)=f(x+z)-f(x-z), fB,(f),
where z >0. Here we regard g(x) as obtained by the convolution transform

(27) g,(x)-f_oof(x-t)dG(t; ),
where

1, --z_<t_<z,G(t; z) 0 otherwise.

Application 2. LetfBp(f) and for real z set g,(x)--f(x +z)-f(x-z). Then

sinlalllf[I,
(28)

21[fl[ if

These inequalities are sharp in the sense that 2 sinlfzl and 2 cannot be replaced by any
smaller numbers, for _<p _< o. Equality can be attained only in the case p- and in
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the case p--1 only for 12lr.This is an inequality due to Bernstein (see [1, Thm.
11.4.1 ]) for the casep .

The limiting case obtained by dividing both sides of (28) by 2 and letting 0 is
the well-known "Bernstein’s inequality" for the derivative:

We obtain the following generalization.
Application 3. Letf Bp(f). Then

(30) IIf’ I1 [If lip.
This inequality is sharp in the sense that fl cannot be replaced by any smaller number,
for _<p _< c. Equality can occur only forp- .

We derive Applications 2 and 3 below. We prove inequalities (28) and (30)
directly, and use Theorem A only to show they are sharp. The discussion of the cases of
equality in Applications 2 and 3 seems to be new.

Proof of Applications 2 and 3. We first derive (28) in the case >r/2f. We have

and

So for _>r/2f we have

f? dG(I; ’)e-itdt-2isin

f’__ IdG(t; )ldt-2.

max 12isinzl- IdG(t; )1-

Hence, according to Theorem A, with G(t)--G(t; ) defined in (27), the norm of
the transform is

(31) Me(G; f)-2, -->-, l_<p_<o.

Forp and ->2r/f, the norm of the transform is clearly attained for

f(x):fo(x ) [A (aeiXX+ (1 a)e-iXx},
where ,=r/2z<fl, 0_<a_<l and IAI-1. For 0<<r/2fl we get a representation of
the form (22), with 0--r/2fl, by considering

i._fz f(z+t)dz
[--nr/ ( Z 2-- ’i" 2)COS ’Z

wherefBp(f) and 0 <’<r/2f.
From the growth estimate (15) we find that

lim I=0;

i.e., by Cauchy’s integral theorem the sum of the residues is 0. That is,

f(t+’) f(t--)
2zcosflz 2zcosfl

(--1)kf(t+tk)
i :
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or

(32) f(x+r)--f(x--r)-- akf(X+tk) fBo(2),

where 0 <r<r/2 and

( 1)r )k 2rCOSf
k- k+- -, a,=(-1 (tg-r )2 2

(The formula (32) is actually valid for all r, since ak is an entire function of r.) Here
Xla ,1 2 sin fz is evaluated by taking f(t) =f0(t) sin fix, or more generally,

fo(x ) a exp(if(X-- to ) } + (1-- a)exp( if(X-- to ) }
for 0 <_et< 1.

Thus we obtain an inequality due to Bernstein (see [1, Thm. 11.4.1]),

(33) If(x+r)-f(x-r)l<
2sinar. llflloo, 0<r<2--,
211fll,

valid for all f in Boo(f ). Moreover, we conclude from the representation (32), and the
obvious upper bound 21lf]l,, that (28) holds. (Clearly the norm in question is an even
function of r, vanishing for r--0; so we may extend the inequality for r>0 to all real
r.)

We now prove (30). The representation of the derivative operator is obtained from
(32) as

4 (--1)kf(x+tk)
(34) f"x’--) --:

-oo (2k+1)2 fe/(n),

where (k+ 1/2)r/f. From this (30) follows.
Note that we did not use Theorem A to establish the inequalities (28) and (30).

However it follows from Theorem A and the representation of the transforms (opera-
tors) that the inequalities are sharp for _<p _< o0; i.e.,

(35) sup II(fx+r)-f(x-r)ll-{ 2sinlzl’llflle’f

Ilfllp--

and

(36) sup IIf’ll- fallfll, fB,(),
Ilfllp=

for --.<p --< m.
We now treat the cases of equality in (28) and (30). We have seen that the "sups"

are attained here in case p= m. For other p they are not, except in (35) for p= and

12+l>r. The reason for this is that the L, norm is strictly convex for <p<,
meaning that equality can hold in
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only if, assuming (say)Ilfollp =0,

(37a) fk(X)=,kfo(X) (a.e.)
where ’k >0. (This goes back to H61der’s inequality.)

Now supposef(x) in Bp(fl) with IIfll, and set

(38) g(x): E akf(x-- tk),

where every at‘ 0.
Then in order for equality to hold in

(39) Ilgll-Ilfll,
k k

we must have for all x, according to (37a),

akf(X-- tk) =hkajf(x-- tj),
or

Xt‘aJf(x), -oo <x<oo(40/ f(x+tj--tt‘)--
at

for allj and k appearing in the sum.
But

So in (40) we must have

or, since , k >0,

[If( x -I- tj- k )lip --ill( x)ll, :.

ak

(41)

If the at‘ are real, then Xkay/at‘ takes the value either + or 1, and hence for all
x We have

f(x+ 2(t- tt‘) } =f(x).
Thus, if ty v k, i.e., if there are at least two distinct k with associated real nonzero

at‘ in the sum (39), then f must be periodic in order to achieve equality in (39); so if
Ilfll, < we must have Ilfllp--0, in contradiction to the assumption Ilfll" 1. If the ak
are not real but nonzero and there are at least two distinct k then Ihkaj/at‘[--1 and
hence

If( x + tj- t‘ )l: If( )1.
So If(x)l is periodic and the same conclusion results. Thus the "sups" in (35) and (36)
cannot be attained for <p <

Now for p= and o the Lp norm is not strictly convex. It is clear that the
proportionality (37a) is not required for equality in (37) for p= l,



NORM OF CERTAIN CONVOLUTION TRANSFO,RMS 175

(42)

we have

(43)

In casep = and

g(x)= Xakfk(X), fk L,(-- O0,
k

Ilgll = Ig( x ) ldx { sgng(x ) ) g(x ) dx

=, f_ {sgng(x)}f(x)dx<-- IIfll.
k oo k

In order for Ilgll----Xkllfkllt with Ill, lit 0, the fk must have a common signum
function,

(43a) sgnfk(X ) sgng(x ),

where for a complex number z, we define

sgn- ’O,
Now supposef is in B(f), II J]l 1, and set

(44) g(x) = X ak/(x--tk),
k

with every akv0. Then equality in

(45) Ilgll -<llfll" lal= lakl
k k

requires (since the zeros off are isolated) equality everywhere in

(46) sgn(akf(x--tk)}--sgn{ajf(x--tj)}, --o <x<oo

for all k andj appearing in the sum.
Since the signum of a product is the product of the signums, we may write (46) as

(recall aj, ak VO)

{ sgnaJ )sgnf(x)(47) sgnf(x + t-- t) sgn ak
which must hold for allj and k appearing in the sum. Now we suppose that there are at
least two distinct tk, say t and t2, appearing in the sum (44) with

(48) sgna= -sgna2 (4:0)

and

(49)

(50)

O<t2-- tl : T<_-.
Then we must have

sgnf(x + T) sgnf(x), o <x< o,
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in order to achieve equality in (45). We may suppose (by translating f and multiplying
by a scalar of unit modulus) that f(0)>0. Then (50) gives

(51) sgnf(nT)=(-1)nsgnf(0)- ( 1)
where n- 0, --- 1, , i.e.

(52) (-1)"f(nT)-lf(nT)l, fin B(f).

Now for continuous functions f in L which are also of bounded variation, Poisson’s
summation formula asserts that

(53) T (- 1)f(nT)- f((2n- 1)- ),
where f is the Fourier transform of f. If f belongs to Bl(f), f is continuous (analytic)
and also of bounded variation. In fact

varf- If’(t)ldt<,

since by Bernstein’s inequality for B l(fl),

IIf’ll -< llfll .
Also the Fourier transform of f is continuous and vanishes outside [-fl, f] and hence
at the endpoints. Therefore we have from (52) and (53)

(54) T E (-- 1)"f(nT)- T E If(nZ)l:O,

from which we conclude that

(55) f(nT)-O, n=O,---1,..-, fBl(a).

But if T satisfies 0<T_<r/f, (55) implies f--=0. (see [1, 9.4.2]). This contradicts the
assumption that Ilfll-1. Hence if in (44) there are two distinct t,, say t and 2, and
associated coefficients a and a 2 such that

sgna --sgna2 and 0<t2

then equality cannot be attained in (45). Thus the "sup" in (36) cannot be attained for
p= 1, nor in (35) for [2[_<r/f. However if [2[>r/f, the "sup" in (35) may be
attained forp- and

(56) f(x)--e xf(x),
where h= r/[2’l <f, f is in Bl(e), e= f--,, and

f(x)>0, -o<x<o, f(x)dx-1.

The type off is at most ,+ e f, so fbelongs ..to B l(f), and

f(x +’r)-f(x-’r)=e X(x+)( f(x +z)+f(x- z) ).
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Hence, sincef is nonnegative

5If(x+*)-f(x+’)ldx-2 f,(x ) dx 2 lf(x ) ldx.

3, Proof of the theorem. The theorem is a consequence of the following lemma.
LEMMA. Define for G ofbounded variation the convolution transform on Lv

Tf(x)-g(x)--_ f(x-t)dG(t).

Then the norm of this transform on Bv(f) defined by

My(G; f)- sup
fBv()
Ilfllp--

satisfies

for 1 <-p <_ c.

(o; )> max

(57)

and

(58)

f_ e-i’tdG(t)

Now according to the hypotheses of Theorem A, there exists Ga satisfying

f-_ e-’’a(t)-f e-’tdGn(t), -a<_w<_a

From (13) we have

f -i,OtdG(e t) Id%(t)l.

M(G" )-f_ld%(t)l,
which with the lemma establishes the theorem.

Proof of the lemma. First the casep is obvious. We suppose that

f_ ff(59) max e-itdG( ) e-ihtdO( )

where A 0 satisfies -f-<k0-<f. Then we take f--e-ixt to obtain the lower bound for

Mo(G, f). Now we will establish the lemma by exhibiting a functionfin Be(f) of norm
1, given an arbitrary p in [1, m), such that the corresponding norm of g-Tf is
arbitrarily close to the maximum in (59). Now a slight difficulty arises here in case
A o +-- f. However, since

f-_ e-i’tdG(t)

is a continuous function of w for G of bounded variation (by a standard argument) we
may find in the open interval (-f, f) such that given any positive ,

f_ (e-iXot-e-iXt)dG(t) <.(60)
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So we assume that ),--+e, for some positive e, is in the closed interval [-fl, fl]. Then we
let

(61) f(x)=eiX"f(x)
where f, belongs to Bv(e) and IIf,ll,= 1. Consequentlyf belongs to Bv(f) with iI/11,-1.
(The type off(z) is at most Ih-+-el-<fl.) We may take, for example,

f(t)=(e)l/t’q(et)
where is a fixed function of norm in By(l).

Now we wish to show for such f that, by choosing e sufficiently small and positive,
the function

Can be made arbitrarily close in the L,-norm to

(63) g*(x; X)-e’X(x) e-’X’d(t)=l(x)

(This is reasonable, since the "Fourier transform" of f is supported on a small interval
centered on X, and if the Fourier-Stieltjes transform of were constant (say = 1) over
tNs intervN, then the convolution withfwould reproducef exactly.)

We have

Then using (4) we have

(65) Ilhll, = IIg*-gll,-ldG(t)l" IIL(x)-L(x-t)ll,

where on the right the norm is understood to be taken over the variable x.
Now using the inequality (28), which we obtained independently of Theorem A,

we have

(66) Ilhllz,2ff/ sin eltl IdG(t)l/2 fl, IdG(t)l-T"-r/ >>_/

This will be small for sufficiently small e, for then

2f/ sineltl ldG(t)l<-2sin fl IdG(t)l+2f{2 IdG(t)l-T
and hence for sufficiently small e

(67) Ilhll-<2 sin-f IdG(t)l+2fl IdG(t)[.

The second integral (the tails) necessarily tends to zero as e--,0, since the first integral
converges.

So for any positive 8 we have

(68) Ilhll<
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for e sufficiently small but positive. Then, since

g*(x; X)=g(x; h,e)+h(x;
we have

IIg* I1--< Ilgllp / I[h I1,
ioeo

(69)
Now

f iXtIIg*ll= e dG(t)

and IX-Xo[-<e, so that for e sufficiently small we will have

(70) Ilg*ll,-> e-’XtdG( ) ,,
(71) Ilgll,_> e-iXtdG(t) -28,

which establishes the lemma. E]
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ON SOME GAMMA FUNCTION INEQUALITIES*

JACQUES DUTKAf

Abstract. D. K. Kazarinoff [Edinburgh Math. Notes, 40 (1956), pp. 19-21] and G. N. Watson [Proc.
Edinburgh Math. Soc., 2, 11 (1959), pp. 7-9] gave extensions and proofs of gamma function inequalities
closely associated with Wallis’ product. One of Watson’s proofs generated considerable interest, particularly
among statisticians. Here some of. the extensive previous background is outlined and further results are

developed.

1. Introduction. One form of Wallis’ product formula is

(2n)!! ]2 2
(1.1) r=,_oolim (2n--I)".. "2n+l"

A frequently employed method of obtaining it is to integrate over [0,r/2] the
inequalities sin2n+lt<sin2nt<sin2n-t where 0<t<rr/2 and n is a positive integer.
Then one gets

(2n)!! ]2 2(1.2) (2n-- 1)!! "2n+l
(2n)!! ]2 2

---’---<<
(2n-- 1)!! "n"

Since the ratio of the bounds on r tends to unity as n oo, (1.1) follows. The substance
of the foregoing is generally given in textbooks. Much less frequently treated, however,
is a closely related inequality, (1.4) below. Since from (1.2) n <[(2n)!!/(2n- 1)!!]2/r <
(n + 1/2), it is convenient to define 0(n) for n a positive integer by

(1.3’) (2n)!! ]21n+O(n)= (2n-l)!! 7
22n

2

and more generally by

[r(x+ 1)/r(x+1/2)](1.3) x+O(x)--
0

for x > 1/2,
for x- 2,

From (1.3’) and the foregoing, it follows that

(1.4) 0<O(n) <1/2 (n-1,2,3,... ).

In 1956, D. K. Kazarinoff [1] obtained an improved inequality

(1.5) 1/4<0(n)<1/2 (n-1,2,3,...).

In 1959, G. N. Watson [2], to whom the inequality represented by (1.4) was new,
gave two additional proofs of (1.5) as well as additional results. The first proof involved
the application of Gauss’ formula for a hypergeometric series of the form F(a, b; c; 1) to
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(1.3) so that

(1.6) O(x)’--x+xF(-1/2,-1/2;x; 1)

1! +2!(x 3!(x+l)(x+2)+""
where the series on the right certainly converges for x >- 1/2. The terms of the series are
positive, and, after the initial constant term, each is a decreasing function of x. Hence
0(x) is a monotonic decreasing function of x which -0 1/4 as x-o o. In particular, (1.5)
follows from this and (1.3).

Watson’s proof attracted considerable interest because of its simplicity and its
applicability to related problems. Statisticians, in particular, have made use of this
method in connection with the derivation of inequalities for ratios of gamma functions.

The purpose of this article is to call attention to some of the previous background
associated with the foregoing and to develop further results.

2. Some consequence of results of Wallis, Stifling and Binet. From a considera-
tion of (1.2) and (1.3’), it is convenient to regard 1/[n + 0(n)] as a convergence factor in
the Wallis infinite product representation of r. In 1656, when John Wallis obtained the
equivalent of (1.2) as the culminating result of his greatest work, [3, Prop. 191], he gave,
without proof, essentially better bounds than (1.2). From this improved bounds for
0(n) in (1.4) and better bounds in (1.5) follow.

On applying the Cauchy-Schwarz inequality to

(2.1) ff/Z(sint)2-ldt-1/2B(x, 1/2), x>O,
"0

one gets

+

whence, on setting x-n and x-n+ 1/2 where n is a positive integer, one obtains Wallis’
result

(2n--2)!! 2n rr (2n--2)!! 2n--1

(Actually, Wallis set n--7, but indicated that the method of procedure could be
continued indefinitely.) It is readily shown, on applying (1.3’) to (2.2) that

(2.3) n. l+n-n -1 <O(n)<n. 1--n --1 (n--1,2,3,...).

The lower (upper) bound is a positive increasing (decreasing) function of n. As
n-o o, the bounds, and thus O(n) tend to 1/4. Thus, as n increases, (2.3) yields pairs of
narrowing bounds, uniformly better than (1.4), and providing better upper bounds than
(1.5).

Series for [22"/(2)2], (which by (1.3’) equals r.[n+O(n)]) and for its reciprocal
were obtained by James Stifling [4, pp. 119-124] in his book of 1730, and corrected (in
part) by J. Binet [5, pp. 319-320]. In modern notation, the series are

(2.4) [22"/( 2nn ) 12 =rrn.F(1/2, 1/2;n+ 1; 1)=r(n+1/2)F(-1/2, 1/2;n+ 1: 1),
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(2.5) 22n z__ 2 .F(1/2,1/2;n+-;1)-rrn-.,r(Zn + 1)

wNch yield lower and upper bounds for n + 0(n) and its reciprocal. On comparing with
(1.6) and applying Gauss’ formula, one gets

(2.6) x.V(-{,-;x;1)-x.V(,{;x+l;1)=(x+{).V(-{,{;x+l;1).
Alternatively, if the values of [22n/(an)]2 for even moderate values of n are known,

close bounds for can be obtained. Binet [5, pp. 161-162] also obtained the series
expansions

(2.7) B(t+r,t-r) =F(r r" t+r’ 1)B(t,t)

=F(-r, -r; t-r; 1), r real, t>O,

In particular, let r-b, t=c-b. Then, since all the terms in the series in (7) are
nonnegative, for an arbitra positive integer m, one gets firstly

F(c)F(c-2b)(2 8) X’, breal, c>0, c-2b>0,
r(-b) =0 g()

where equality holds if and only if b-0, 1,...,-(m- 1). This result was obtained by
H. Ruben [6] in 1967 as an extension of an earlier result of J. Gurland for the case
m- 2. Secondly, one gets

(2.9) r(c)F(c-2b)>_ X [(-b)t,] 2

b real, c>0, c-2b>0,
I’2(c-b) =0 k!(c-2b),’

where equality holds if and only if b 0, 1,2,..., (m- 1). (For example, for m 2, (2.9)
is stronger (weaker) than (2.8) if b is positive (negative).)

Inequalities related to Gurland’s have been investigated by a number of statisti-
cians. See for example, A. W. Kemp [7] and the bibliography given there.

3. Bounds for n+O(n) and some applications. From (2.6) and their equivalent
representations of x+O(x) for x>0, numerous representations in terms of integrals or
series can be obtained. For example, it is readily verified that

(31) x+O(x)_x+1/4folF(1/2 1/2.x+l.t)dt=x+1/4. [1/2,1/2, 1.]F
2, x+l’

where 3F2[ denotes the generalized hypergeometric function with unit argument, or

x f0,(l_t)x-.F(1/2 1/2.2" t)dt

4X 2

fl )x-=-----ao k(1 k 2 lK(kldk,

where K(k) is the complete elliptic integral of the first kind. But, in many applications,
it is important to obtain close bounds for x +O(x), particularly when x is a (large)
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positive integer n. From (1.1),

(2n)!! ]2 2 2n+2 2n+2 2n+4
rt= (2nzi)!,. 2n+l 2n+3"2n+3

and, by a product relation for the quotient of beta functions stemming from Euler,

(2n)!! ]2 B(n+1/2,1/2)(3.3) r-
(2n-l)!! -ff B(n,1/2)

(See, e.g., Nielsen [8, p. 132].) But Euler also obtained some continued fraction expan-
sions for quotients of beta functions which will prove useful subsequently.

Euler [9, p. 380] obtained the continued fraction for x >0

B(x,1/2)
=1-

2 1.3 3.5 5.7(3.4) B(x+1/2,1/2) "8x-----+ 8x + 8---+ 8--+’"’

where the initial convergents on the right are

8x+l 64x2+8x+3 512x3+64x2+144x+15(3.5) ]-’ 8x- 64x- 8x + 3 512x3-64x2 + 144x- 15

(The partial numerators in the continued fraction expansion in (3.4) are quadratic
functions of the index, while the partial denominators, after the initial two, are the
same. It is known that continued fractions of this type converge slowly. But H.
Rutishauser [10] has shown how the convergence of such fractions can be accelerated.)

Let x= n and x-n +1/2 in (3.4) where n is a positive integer. Then from (3.3) and
(1.3’), one gets

(3.6) n<n+ 4n+3

2(8n+5)
2n

<’" <n+O(n)<... <n+8n_l<n+.

Another continued fraction expansion for the quotient of beta functions obtained by
Euler [11, pp. 301-303, 323] follows. For x>0

(3.7) (x + 1) B(S-’ 1/2) 12 32 52
B(-t11/2)=x+’x+2"-+ 2--+ "’"

where the initial convergents on the right are

x 2x2+ 4x + lx 8X4+ 72x2+ 25(3.8) "i-’ 2x 4x2+9 8x3+68x "’"
(Compare the remarks following (3.5).) Let x-- 4n + and x 4n + 3 in (7) where n

is a nonnegative integer. Then one gets

(3.9)

8n2+ 13n+6 8n+3 n/n+-<n+ 32n2+a8n+ 19<" <n+O(n)<... <n+8(an + 1) <n+an+-----.-..
Evidently the inequalties (1.4) and (1.5) are included in (3.6) and (3.9), but numerous
additional results can be obtained in a unified manner. For example, from the bounds
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in (9), Gurland’s inequalities 12] follow

4n+3 (2n)!! 2<r 4 [ 2n!! 2

(3.101 (2n+119. (2n-l)!! <4n+’i (2n-l)!!

as well as improvements on pairs of bounds for r obtained by Ruben [6, e.g. (17)-(19),
etc.].

Moreover a result of Chu [13] may be obtained:
If c >_- 1 is independent of n, then

n+c
r n+O

if

n-t-1
if c --4n+l

4. Some additional results. In 1954, M. E. Wise [15] developed some interesting
expansions for the ratio of two factorials and for the logarithm of this ratio. In
particular, he obtained the equivalent of

(4.11
22n 2

(n= 1,2,3,...),

where

19 631 11.13. 1219 13.17-1093
(4.2) w(/)= 1-t

26t 2 213t 4 219t 6 227t8 29.9t 10

The series converges rapidly for even moderate values of n but the coefficients of the
powers of t in (2) become increasingly complicated.

An expression for x+O(x), essentially as the quotient of two hypergeometric
functions will now be obtained. In particular, this will yield an expression for w[(n + 1/4)] 9.

in (4.1). By Erd61yi et al. [16, Vol. I, p. 104 (51)]

b b+l
2 2 b=/=0, 1, -2, ,(4.3) F,a,( 1-a;b+ 1; )..-r b+a b-a+
2 2

so that for positive values of the arguments of the gamma functions,

(4.4) F(a, 1-a;b; 1/21
F(a,l-a;b+l;1/2)

_2 F((b+a)/2+1/2).F((b-a)/2+ 1)
b F((b+a)/2).F((b-a)/2+1/2)

Let a 1/2 and b (4x + 1)/2. Then

F(, ; (4x+ 1)/2; 1/2) 1-’(x+ 1)
9_

(4.5) x+O(x)-(x+1/4) -?-’(:(, , (4x + 3//2; 1/2) F(x +1/21
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cf. (3.7). In particular, if x is a positive integer, from (4.1)

.IJFw[n-f1/4]2--F(1/2’ 1/2; (an+ 1)/2; 1/2)(4.6) F(1/2, 1/2; (an+ 3)/2; 1/2)’
so that [w(n +1/4)]2 may be expressed in terms of the quotient of two factorial series,
which converge rapidly even for moderate n.

Acknowledgment. The writer wishes to express his appreciation to Dr. S. Wrigge of
Stockholm for helpful comments.
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PROJECTION FORMULAS, A REPRODUCING KERNEL
AND A GENERATING FUNCTION FOR

q-WILSON POLYNOMIALS*

B. NASSRALLAH AND MIZAN RAHMAN"
Abstract. A projection formula for the q-Wilson polynomials p,,(x; a,b,c,d) is obtained which is then

used to construct a reproducing kernel. Using Askey and Wilson’s q-analogue of the beta integral an integral
representation is obtained for a very well-poised 8t7 as a q-analogue of Euler’s integral formula for a Ft. As
an application of these results a generating function is obtained for the continuous q-Jacobi polynomials
introduced by Askey and Wilson.

1. Introduction. The importance of projection formulas of the types

(1.1)
and

(1.2)

q,,(x)=fPn(Y)d’x(Y), d’x(y)>-O

q,,(x)-Ea,,,p(x), a,,,>_.O
k

in the theory of orthogonal polynomials was pointed out by many authors during the
1970’s (see, for example, [1]-[5], [12], [13] and [18]). Explicit formulas for d,x(y) have
been known for some time when q,,(x) and p,,(y) are both Jacobi polynomials with
different sets of related parameters (see [1], [2] and [18]). Formulas for an, have been
found by Askey and Gasper in [5], again for Jacobi polynomials, and relationships
between the parameters have been obtained for which these coefficients are nonnega-
tive.

In view of the discovery of various q-analogues of Jacobi polynomials and, more
recently, of a very general set of basic orthogonal polynomials called q-Wilson poly-
nomials [9], interest in finding explicit formulas for d,(y) and a,,,k has naturally
shifted to the q-world. In this paper we shall be concerned with projection formulas of
the type (1.1) and postpone treatment of (1.2) to a later report.

Askey and Wilson [9] have evaluated the following integral as a q-analogue of the
familiar beta integral:

(1.3)

where

(1.4)

with

f dx w(x ) 2,n’( abcd )
-, (ab)(ac)(ad)o(bc)(bd)(cd)oo(q)oo

: r, say,

w(x)=w(x; a,b,c,d)-(1-x2) -l/: h(x, 1)h (x,- 1)h( x, f)h( x,-V-)
h(x,a)h(x,b)h(x,c)h(x,d)

(1,5) h(x,a)--klXo
*Received by the editors July 8, 1982, and in revised form June 9, 1983. This work was supported by the

Natural Sciences and Engineering Research Council of Canada under grant A6197.
Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6.

186



PROJECTION FORMULAS FOR q-WILSON POLYNOMIALS 187

provided

(1.6) max (lal, Ibl, Icl, Idl,
The basic shifted factorial with base q is normally denoted by (a; q),. However, as

we shall be using the same base q throughout the paper we shall adopt the abbreviation
(a), for the sake of printing economy. Thus

1, n=0,
(1.7) (a)=(a;q)n-- (1--a)(1--aq)...(1--aq"-), n--l,2,....

The symbols used on the right-hand side of (1.3) then have the meaning

(1.8) (a)oo : (a; q)oo--yO(1--aqk),=
whenever the infinite product converges.

Askey and Wilson [9] have shown that the q-Wilson polynomials defined by

(1.9) p,,(x; a,b,c,d)- 4#3[ q-’’ abcdq’-l’ aei’ ae-’ ]ab, ac, ad
q

x=cos0, 0__<0_<r, are orthogonal with respect to the weight function w(x; a,b,c,d).
The 43 function on the right is a special case of the basic hypergeometric series defined
by

[al,a2,’",ar+l ] (al)k(a2)i’"(ar+l)kzk(1.10) + ’q
b, .,b

;z
,’" k=0 (q)k(b’)k’’" (br)k

The continuous q-Jacobi polynomials P."’O)(xlq), as introduced by Askey-Wilson
[9], are a special case of the q-Wilson polynomials:

(1.11)

pn,,,,O)(xlq):- -(q"+t),,.pn( x. q(,,,+1/2)/2 q,+3/2)/2 __q(O+l/2)/2 _q,0+3/2)/2).
(q),,

Two of the most widely used projection formulas for the classical Jacobi polynomi-
als are [1], [181

!) ’( ),,_, p2,,t)(y) dy,(1.12) (1--x)"+",(;;7-(i-i,(a+)r(,)fx 1-Y)’(Y-X Pn("’O)(1)
and

(1.13)

(1 +x)o+’P2"-’’t+’)(x)- F(fl+/x+ 1), fx (1 +y)O(x--y)t-l P(n"’O)(Y)
dy,

where <Re a, Re fl and 0 <Re#.
We shall obtain q-analogues of these formulas for the q-Wilson polynomials (1.9)

generally, and for P2’’#)(xlq) in particular, and will show in what sense they are
q-analogues of (1.12) and (1.13). We shall also obtain a reproducing kernel for
p,,(x; a,b, c,d) by using the projection formulas. This will be done in the following
section.



188 B. NASSRALLAH AND MIZAN RAHMAN

In 3 we shall find a q-analogue of Euler’s integral representation of Gauss’
hypergeometric function F that turns out to be a very well-poised 87. In 4 we shall
apply our results to obtain a generating function for P("’l(xlq).

2. Projection formulas and a reproducing kernel. By (1.9) and (1.10) we have, for
arbitrary parameters a, b,. c, d, c’, d’, subject to the constraint (1.6),

(2.1) fl dyw(y; a,b,c,d)p,,(y; a,b,c’,d’)
--1

n n--I
k f irk, (q-) (abc’d’q )kq k

k--0 (q)-k(ab)k(aC’)k(ad’)k J--ldyw(y; a,b,c,d)(ae )k(ae )k,

y--COS. However, from (1.3) to (1.5) it is clear that

(2.2) fl dyw(y; a,b,c,d)(aeiq’)k(ae-iq’)k
--1

fl dyw(y; aq,b,c,d)
--1

2r(abcdqk)oo
( abq k ) oo ( acq k ) oo ( adq k ) oo (bc) (bd ) oo ( cd ) o ( q ) o

r.(ab)k(ac)k(ad)k
(abcd) k

Hence we get

(2.3) fl dyw(y; a,b,c,d)p(y; a,b,c’,d’)-r4eP3[q-’ abc’d’q"-’ ac’ ad ;q,q].
--1 act, ad’, abcd

Setting C=leio, d-Ie-io, x=cosO, dropping the primes in c’, d’ and using (1.3), we
get the projection formula

(2.4) fl dyw(y; a,b,leia,le-ia)p,(y; a,b,c,d)
--l

20r(ab/x2)oo
(q)o(ab)oo(p,2)ool(ap,eiO)oo(bt.teiO)o[

2 Pn(X; at,bp,,cp,-,dp,-),

which is valid if max ([a[, [b[, [/[)<.
Since the 43 series defining p.(x; a,b,c,d) is balanced, we can transform it to

various different forms by Sears’ formula [17]

d, e,f
;q 7;( --d- 4*3 d, de/bc, df/bc

;q’

where abcq def. Thus

p,,(y; a,b,c,d)-(bc),,(cd),,(a)"(-d’)".-(-i c
P"(Y; c,d,a,b),

!(t(2.6) p,(x; a#,b,cl-l dl-) -(be)" cdlz-2)" alz--- Pn(X" cp,-l,d/z-1 a/ b)(ad-()- c
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Using (2.6) in (2.4) and interchanging c,--,a, dob, we get a second projection formula

(2.7) f dyw(y; e’,l.te-i,c,d)p,,(y; a,b,c,d)
--I

( q )o ( cd )oo (2)ol(cei)o(dP"ei)ool
2

(cd),(abl-2),
"(,7’-n(-7-2}-n p’2npn(X; a-l,b-l,cl,dl)

with max (Icl, Idl, I/l) < 1.
We now replace x by z and 0 by g, in (2.4), multiply both sides by

w(; c/- ,d- ,e,e-)l(aleq’)(b/eq’)l and integrate over to get

(2.8) f’ dzw(z; clt-l,dl,t-l,l.tei,l.te-i)l(aei+)oo(bei4’)ool
2

--1

f dy w( y a b tJ, e iq’ I.te- i4’ ) p,,( y a b c d)
--1

(ab)oo(cdl-2)oo (q)oo(2).l(ce’)oo(de’)

(bc)"(ca-)" at- .p.(x’c a a b)
c

which, by (2.6), leads to the integral equation

(2.9) fl_K,,(x,y;__ q)p,,(y; a,b,,d)dy-a,,p.(x; a,b,,a)

where the reproducing kernel is given by

(ab)oo(cd-2)oo (q)()o(cei)o(dei)o 12K,(x,y; q)--
(cd)(abt2)oo 2rr

w(; c ’d e,e-)w(y’a, b, ei*,e-*)
--1

1(aei)(bei) [2dz,
cos+ z, providedm (lal, lb lc- l, Id l, Il, Iql) < 1. The eigenvalue X, is given by

(ab)n(cd-2).2..(2.11) .= {755(i)-Let us now set a-q(+1/2)/2, b-q(+3/2)/2, c-_q(+1/2)/2, d-_q(+3/2)/2 in
(2.4) and replace by q/2. Use of the q-gamma function [6], [19]

(2.10)
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and the notation

(2.13) (a)oo
(a)X:(aqX)o

enables us to write (2.4) in the form

(2.14)

where

G(x,y; q) 43
q-’’ q,,+,,,+l+t qt,,,+t/2)/2eq, q,,,+/2)/2e-,t,

qa+ 1, q(a+t+ 1)/2, q(a+t+2)/2

I’q( + 1) I’q(/X) 2

q-n, qn+a+B+ 1, q(O,+t+ 1/2)/2ei0 q(O,+,+ 1/2)/2e-i0

qa+t+ 1, _q(a+#+ 0/2, q(a+#+2)/2

(2 15) G(x,y; q)
-(1-q)(q)l(eo) 14

2.+,+ lr
(1 _y2)-/2

h(y, 1)h(y,- 1)h( y, f)h(y,-V)
h (y, q(+l/2)/2)h(y, q(+3/2)/2)h (y, qt/2ei)h (y, qt/2e-i)"

Since lim q_.. l’q(X) F(x) and limq_, l](1/-ei)AI2- 2x(1- cos0)x, we obtain, from (2.14),

(2.16) lim f G(x,y’, q)
p(,,,.t)(y)

ql --1 P, (1) F(a++ 1)

We shall now show that

(2.17) lim G(x,y’, q)=(1-y)"(y x)’- ill(y-x),
q-,l

where H(t) is the unit step function. First, we rewrite G(x,y; q) in the form

(2.18)

G(x’y; q)- [ Fq(1/2)v
2

L(x,y; q)

where

(2.19) L(x,y;
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It is clear that

(2.20) lim G(x,y, q)-(1-y)"ly-x limL(x,y; q).
q--, q--,

Using Jacobi’s triple product formula:

(2.21) (t; q)oo(qt-l; q)oo(q; q)oo-- X (--1)nq n(n-’)/Etn,

and changing the base to q-, we obtain

(2.22)

[ (q; q2)oo
9_ (nOO=_oo(_l) q,einO)

L(x,y; q2)-- - [ ](q2;q2)o (,oo___(_ 1),q,ei,(o+q,))(yn=_o(_ 1)nqn2ei,(o-,) )
Using the theta functions [20, Ch. 21] this can be expressed in the form

(2.23) L( x,y; q2 ) _.
where

(q; q2)o193 ]2(q2; q2)
a942(0/2, q)9(,/2, q)

4((0+ b)/2, q)4((0--)/2, q)a93’

,-(--q; q2)oo(-q; q2)oo(q2; q2)oo.

Using the identity (q; q2)oo(-q; q2)oo(-q2; q2)oo and the addition formula [20, Ex.
2, p. 4881

!
(2.24) 14 2

we can write

0 0q)_4(,q)(_,q) +z2( ,q)2( _, q),

(2.25) 2L(x,y; q2)_ .[(_q; q )/z] 1+
a}(O/2,q)9(/2,q) )ag (2 q)v ( ck/21 q)

Since

(2.26) 2 --17lim [(-q; q )1/2] 2

ql

we need to consider the limit of

2(0/2,q)l(q/2, q)
(2.27) B(x,y; q2) asq 1.

Using Poisson’s transformation [20, p. 476]

(2.28)
n--

g2 /rt o

e_n2rt+2niz e e--nr/t+ 2nz/t Ret>0
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and the definitions of the theta functions we find that, with q-e-’t,

(2.29) 9, q - -oX (-- 1)"exp ,rnt

e-q’2/4rt

-X exp ( rn(n-/r)

0 ) e-(,r-O)2/4rt
.194 -,q

o

( 2 n(rr_O) )exp
rn

As q --, we have

0B(x,y; q2)_exp 4,rt 4,rt +- + 4rt
-exp

q-0
2t

For 0-<0, q-<rr, it is clear that

(2.31) q_olim, B(x,y; q2)_ t-,o+lim exp( dP.t 8 ) {0c if
if

Hence,

(2.32) lim L(x,y; q2)_ {Ol ifx>y,
q- 1- if x <y,

which completes the proof of (2.17).

3. A q-analogue of Euler’s integral formula. We start with Sears’ identity [16]:

(3.1) (e)oo(f)oo [a,b,c(a)oo(b)oo(c)o 3’2 e,f ;q

q ( q2/e)oo ( qf/e)oo
e (aq/e)o ( bq/e o(cq/e)

3q2 aq/e,q2/e, fq/ebq/e, cq/e

( e )o ( q/e)(f/a)o(f/b)(f/c)oo
( a )oo ( b )oo ( c )oo ( aq/e)o ( bq/e)o ( cq/e)

where both 3t2’S on the left-hand side are balanced, that is

(3.2) ef-abcq.
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Let a A, b aei, c ae-io, e ---> E. Then (3.1) together with (3.2) gives

(3.3) 3:z Aqa:Z/E q E
(A )oo ( q2/E )o ( Aq:a2/E 2 )o ( aei)oo (ae-i)

(E )oo ( qAa2/E)o (Aq/E)(aqiO/E)(aqe-i/E)

Aq/E, aqeiO/E, aqe-i/E
32 q:/E, Aq2a:/E2

;q

( q/E )oo ( qa:Z/E )o ( aAqei/E)o ( aAqe-i/E)
(qAa:lE )oo (Aq/E)o ( aqei/E )o (aqe-i/E)

Assuming that [aq/E[< and that (1.6) holds, we now multiply both sides of (3.3)
by w(x; a, b, c, d) and integrate over x to get

(3.4)

(q/E)oo(qa2/E)oo fl dxw(x; a,b c,d)
(qaAei/E) 12( Aq/E )oo ( aqa2/E )oo ( aqeO/E)

A, ab, ac, ad ]K43 E, qAa2/E, abcd
q

2r(abcdq/E )oo (A )oo ( qZ/E )oo ( q :zazA/E z )ooqE-
( abq/E ) ( acq/E )oo ( bc) ( bd)( cd)(E )o ( qAa2/E)(qA/E ) ( q

Aq/E, abq/E, acq/E, adq/E ]43[ q:Z/E q2a2A/E2 abcdq/E
;q

Noting that -qE-(q:Z/E)oo/(E)oo-(q/E)/(E/q)o we now divide both sides
of (3.4) by x and simplify to get

(3.5)

( Aa2cdq/E )o ( acq/E )o(adq/E)oo (Aq/E) oo A, ab, ac, ad

( a:Zcdq/E ) oo ( Aacq/e ) oo ( Aadq/E ) oo ( q/E )oo 4*3 E, qAaZ/E, abcd
q

(Aa :ZcdqlE )oo ( ab )oo ( ac)(ad )oo (A)o ( q :Za :ZA/E:z )oo ( abcdq/E)
(a2cdq/E ) ( Aadq/E ) oo ( Aacq/E )o ( abcd )o ( E/q)(abq/E)(qAa2/E)

[Aq/E, abq/E, acq/E, adq/E
43 q2/E, qZa2A/EZ, abcdq/E

;q

( AaZcdq/E )oo ( acq/E )oo ( adq/E )o ( ab)o ( ac)o
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By [10, 8.5 (3)] the left-hand side equals a very well-poised 87" Replacing aq/E by
for the sake of notational simplicity we have thus found the integral representation:

(3.6)

Aacdtq-1, qIAacdtq- qIAacdtq- At/b, A, ac, ad, dc
8117 /Aacdtq- iAacdtq-1 abcd, acdt, Adt, Act, Aat

(Aacdt ) oo ( ct ) oo ( dt)( at )o ( q ) ( ab ) ( ac) ( ad )o ( bc )o ( bd ) ( cd )
( acdt ) oo ( Act ) oo ( Adt ) oo (Aat ) oo 2r( abcd )

fl_ldxw(x; a,b, c,d) (AteiO)m(tee)o 1.
It appears that as far as Askey-Wilson’s q-extension (1.3) of the beta-integral is

concerned, the appropriate q-analogue of a 2F is a very well-poised 8+7- It is not hard
to see that (3.6) does approach Euler’s well-known integral formula [11, 2.1.3(10)] in the
limit q-+ after one replaces the parameters A, a, b, c, d by powers of q.

4. A generating function for P2"’)(x[q). Rogers’ q-ultraspherical polynomials [7],
[8], [15] are defined by the generating function

(4.1) , C.(x; AIq)tn- (Ate)
n=0 (tei)

where x=cos0, 00, Itl < and C.(x; A Iq) has the series representation

(4.2) C(x; a Iq)-
i=0 (q)k(:

cos(n-2k)O.

However, C.(x; A Iq) can also be represented [8] by a balanced 413

(4.3) (A2)n n/2C,,(x; Alq)- (-: A- 413
q-,AEq, V/-eiO, V/-e-iO

AVe, -Aft, -A
;q

Setting a-v, b-A, c--v/-, d=-A- in (2.4), we have the projection
formula

(4.4) f dy w( y; /-’, -, gei,
--1

-ia)C(y;Alq)

(q)o (A-)oo (/2)oo (f-ge’ )oo f-lxe’ )ool 2

(A:)"A-n/Epn(X; gf gf --Iz-’ --lz-’).(q),,
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Multiply both sides by , sum over n from 0 and c and assume that the order of
summation and integration can be interchanged. We get, using (4.1),

2
(Atei) oo(4.5) f_l_ldyw(y; f-, f, le, txe-) (te,)o

n

X (AX)n(t/V/-) Pn(x;/xf-- /xA __--1/
__

a).(q)nn-O

However, setting a- V/-, b-A, c-/ei, d=/e-i in (3.6) we have

(4.6)
2

( Atei*)fl_ldyW( y; f-, f, ie
,

ie-
A3/ElEtq-’, qiA3/21Etq-I -qiA3/ElEtq-I t(A/q, A,

Comparing (4.5) and (4.6) we get

I/eie, fe-ie, lx2;t]"lxAtei, A3/2t

(4.7)

:o

( tAtei )o

A3/2t2tq- l, qIa3/212tq qIA3/2tx2tq
8t7 IA3/212tq 1, IA3/212tq-l, Ate-iO, tAteiO

lei, f-e-i, l2, A, tiA/q
A3/2t, V/-/2t, A/x2V
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For convergence of the series on the right we require Itax/l<l. This formula was
recently obtained by Gasper and Rahman [14] without the benefit of the integral
representation (3.6), and, consequently they required a good deal more computation.

For the continuous q-Jacobi polynomials defined in (1.11) we may set A
q(+,+ 1)/2, /-- q(--,)/, in (4.7) and obtain

(4.8)

X (q’+’a+ 1)
n=o (’-=i2 ( tq-(+O+ 1)/4) p(na,fl)(X

(tq(3-t+ 1)/4)oo (tq3(+t+ 1)/4

(tq(+#+ l)/4)oo(tq(5’+#+3)/4)oo

tq(Sa+#-l)/4, qtq(Sa+-l)/4 --qtq(Sa+-l)/4 q(+ 1/2)/2ei0 q(+ 1/2)/2e-i0
87 tq(Sa+fl_l)/4, _tq(Sa+#_l)/4 tq(3a+o+:z)/4e-iO, tq(3a+#+2)/4eiO,

q(a-#)/2, q(a+#+ l)/2, tq(a+#-l)/4
tq3(+t+ 1)/4, tq(3-#+ 1)/4, qa+ tq(a+#+3)/4

Note that the fight-hand side is positive if 0<t<l, a+fl+ _>0 and a>_fl.

Acknowledgment. We would like to thank Professor R. Askey for suggesting the
proof of (2.17).
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ON CONVERGENCE AND DEGENERACY IN RATIONAL PADI
AND CHEBYSHEV APPROXIMATION*

LLOYD N. TREFETHEN AND MARTIN H. GUTKNECHT

Abstract. We study two questions associated with rational approximation of a function f(z) near the
origin z-0: continuity of the Pad approximation operator, and convergence of Chebyshev to Pad ap-
proximants as the domain of approximation shrinks to a point. Both become delicate in the case of
degenerate approximations, i.e. approximations whose numerator and denominator are deficient in degree. In
this situation various distinct definitions of convergence of sequences of rational functions make sense, and
we give a unified treatment that explains their interrelationships. Our results show that the answers to the
above questions are generally affirmative only in the nondegenerate case.

AMS-MOS subject classification (1980). Primary 41A20, Secondary 30El0, 41A21, 41A50

Introduction. This paper is concerned with two problems connected with ap-
proximation by rational functions:

(1) continuity of the Pad6 approximation operator;
(2) convergence of Chebyshev to Pad6 approximants as the domain of approxima-

tion shrinks to the origin.
The first question has been investigated previously in [4], [8], [14], [15], and the second
in [2], [3], [6], [10], [11], [12]. Our purpose is to unify, correct, and extend some of the
results of these papers.

Both problems turn upon questions of the convergence of sequences of functions
within a fixed space R,n, the set of rational functions having at most m zeros and at
most n poles. Such convergence can be defined naturally in many different ways, and it
is not obvious a priori which of these is most appropriate. Since each of the papers
cited above considers on!y one or two of these definitions, the scope of the existing
results, and the connections between them, have been unclear. We hope to improve this
situation.

In particular we will investigate approximations involving a degenerate rational
function rR,,nmthat is, one with/<m zeros and ,<n poles, hence with a defect
d--min(m-I,n-,) that is positive. It is in the degenerate situation where the various
definitions of convergence become distinct, and also where the answers to (1) and (2)
are least obvious. The explanation for this is that in the degenerate case, r can be
multiplied by one or more pole-zero pairs (z- ’)/(z- ") and the result will still belong
to Rmn; if ’ and " are nearly equal, the effect of such a perturbation will be large near
these points but can be made arbitrarily small elsewhere. It is natural that this possibil-
ity should render convergence results somewhat complicated.

If r.Rmn has defect d, and ?Rmn is arbitrary, then r-? belongs to Rm+n_d,2n_d

and so can have at most m +n- d zeros. As a consequence the degree of agreement of r
with a function ? is in some sense determinedmin the absence of troublesome pole-zero
pairs--by how closely they agree at any rn + n + 1- d points. In both problems (1) and
(2) above the origin is a distinguished point, and so we are led to the following notion
of "H" convergence: "r-H r" denotes convergence as e -0 of the Taylor coefficients
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of degrees 0 through rn + n- d of r R to the corresponding coefficients of r. This is
one of a sequence of convergence definitions we consider (precise statements in 1):

cw: coefficientwise,
au" almost uniform away from poles of r,
A. uniform on some disk A about the origin,
Tay: all Taylor coefficients,
H: Taylor coefficients of degree _<m + n d,
/: measure.

In addition four other convergence definitions will be mentioned, mainly at the end of
1"

I: uniform on some interval I about the origin,
X: chordal metric on all of C,
X: chordal metric on compact subsets of C,
cap: capacity.

Definition I is of interest because it has been used in the papers of Werner and
Wuytack [14], [15] and Chui et al. [2], [3]. Definition X is stronger than all of the others,
and becomes relevant for rational functions deficient in neither numerator nor de-
nominator degree. Definition X is equivalent to cw, and cap to/.

Our main results can be abbreviated as follows, where cw is short for r--, r, and
SO on.

TI-IEOREM 1. (a) For arbitrary r one has

cwauATayH/.

If r is nondegenerate, all six definitions are equivalent. (b) If r is degenerate, they are all
distinct.

THEOREM 2. (a) The Padb approximation operator is always H-continuous, regardless
of degeneracy, hence also always I-continuous. (b) It is continuous in other senses only
when this follows from Theorem 1, i.e. only at a function f whose Padb approximant is

nondegenerate.
THEOREM 3. (a) Chebyshev approximations on a small domain eK containing a

neighborhood of the origin always converge in H as e0 to the Padb approximant rp,
regardless of degeneracy, hence also in l. (b) If rp is nondegenerate, K can bean arbitrary
set with at least rn + n + points (e. g. [- 1, 1] or [0, ]) and they will still converge, in all
senses. (c) If rp is degenerate they do not in general converge in any sense stronger than H.

Theorems 2-3 show that the solutions to problems (1) and (2) are closely related:
desired properties typically hold in the relatively weak H sense, but hold in stronger
senses only when this follows from general considerations involving sequences of
rational functions.

In addition we discuss at the end a variant of the Chebyshev vs. Pad6 question: not
whether Chebyshev approximants converge to Pad6 as the domain shrinks, but whether
the magnitude of the error in Chebyshev approximation converges to that for Pad6.
One sees easily that in general it need not, even when rp is nondegenerate.

Before beginning, it remains to make some specific remarks on how our results
relate to those obtained previously.

(1) Continuity of the Padb operator. The basic theorem in this area is due to Werner
and Wuytack [15]: in approximation of a real function f, the Pad6 operator is/-con-

tinuous at f if and only if rP(f) is nondegenerate. (The "if" half of this result was
known earlier.) Our Theorem 2 shows that the same statement extends to continuity
with respect to cw, au, A, and Tay, and that there is no need to restrict attention to real
functions.
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(2) Convergence of Chebyshev to Padb. In 1964 Walsh showed that r* re must
hold as e0 for complex approximation on small disks Izl<_e, if rp is nondegenerate
[11]. Our Theorem 3a is a generalization of this result. In 1974 he extended the
convergence statement to real approximation on [0,e] [12], but the proof he gave is
erroneous. Theorem 3b here gives a correct proof of this theorem, as well as generaliz-
ing it with regard to domain and definition of convergence. On the other hand in 1974
Chui, Shisha, and Smith claimed to show r*- rp for real approximation on [0,e],
regardless of degeneracy [2], [3]. However, our Theorem 3c shows that this conclusion is
false. The upshot of our results is that it appears there is very little difference regarding
the r* - rp problem between real and complex approximation, or between approxima-
tion on Izl_<e, [-e,e], and [0,e]. In all cases convergence in cw, au, A, or Tay is assured
only if rp is nondegenerate.

1. Convergence of sequences of rational functions. Let C denote the complex
plane topologized by the absolute value metric d(w,z)-Iw-zl. Let S denote the
extended plane C tO ( o } topologized by the chordal or spherical metric X defined by

(1 -+-Iwl2)’/(1 + Izl=)/2
for w, z C, and by continuity for w- o or z- [1], [7]. Under this definition S is a

compact 2-manifold, and X(w,z) can be interpreted as the Euclidean distance in R
between,, the points w and z on the Riemann sphere of diameter 1. For any two
functions f, g: S S, and any set KC_ S, define the uniform-norm distance between f
and g on K (possibly infinite) by

IIf- gllg: sup If(z) g(z )1,
zEK

and the chordal-metric distance X r(f, g) on K (at most 1) by

xr(f,g)-- sup x(f(z),g(z)).
zEK

Let X s be abbreviated by X.
Let m,n>_O be fixed integers, and let Rmn be the space of complex rational

functions r with at most m zeros in C (unless r----0) and at most n poles in C, counted
with multiplicity, and satisfying the additional condition r(0)4 . A function r: S S
belongs to Rmn if and only if it can be written as a fraction

(1.1) r(z) -p(z)-a+’’’ +amzm
q( z ) bo+ Srz b-I

for some coefficients ak, bkC. We assume that all common factors have been re-
moved from p and q, which makes this representation unique, and we refer to {a,}-
{ak(r)} and (bk}--(bk(r)} as "the coefficients of r as a rational function." Let/-<m
and ,_<n denote the exact degrees of p and q, so that if r0, then r has exactly/x zeros
and v poles in C. If r =--0, then/x-- and v-0.

D.FINITION. The defect of r is the nonnegative integer

d- d( r ) rrfin (m lx n v }

r is nondegenerate if/-m or ,-n (i.e. d-0); otherwise it is degenerate (i.e. d>0).
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Any r R,,,n has a Taylor series

(1.2) r(z)- 2 Ckzk
k=0

converging in a neighborhood of z 0. We refer to {ck) {ck(r)} as "the Taylor
coefficients of r", and for convenience we define also Ck--O for k<0. The coefficients
{a,}, (bk} and {c) are related linearly. To obtain this relation, equate (1.1) and (1.2)
and then multiply through by q(z). The result is the following infinite system of
equations:

(1.3)

C-n C-n+l C_

C-n+l -n+2 CO

Cm-- Cm--n+l Cm_

Cm--n+l Cm--n+2 C

Cm--n+2 Cm--n+3 Cm+

Of particular interest is the n n subsystem

(1.4)
Cm--n+ Cm bn

Cm C+n-- 1

ao
al

a
0
0

CO

C

Cm
Cm+
Cm+2

Let H denote the matrix in (1.4). Since H has the form hq= h i+a, it is a Hankel matrix.
If H is nonsingular, i.e. detH =/=0, then the coefficients (bk} are uniquely determined by
(c,,_,+1,.- .,c,,+,) as the solution to (1.4). Once these are known, the coefficients {a}
are uniquely determined by (Co,..., Cm) from the first m + rows of (1.3). All together,
{ak} and {bk} depend upon Co,’",Cm+ in this case, but not on the remaining
coefficients ck.

The following result is well known [1], [5].
PROPOSITION. r is degenerate if and only ifH is singular.
Proof. The solutions (ak}, {bk} to (1.3), (1.4) are unique if and only if H is

nonsingular. Such solutions correspond to all possible representations of r as a fraction
of the form (1.1), including those that are not in lowest terms. On the other hand a
lowest-terms quotient p/q is the unique representation for r if and only if it can be
multiplied by no fraction (z-a)/(z-a) and still remain a quotient of type (m,n),
which is to say, if and only if r is nondegenerate, g]

Thus when H is singular, the defect d is positive. It can be seen that in general
(ak} and {b,} are determined by Co,.. ",Cm+n_d(bUt not by Co,.. ",Cm+n_d_l).

Suppose f(z) oo=oCkZ, CkC, is a formal power series. The Padb approximant
rP Rmn to f is defined to be that rational function in R whose Taylor series agrees
withf to as high an order as possible. It can be shown that if the matrix H formed from
the coefficients (Ck} is nonsingular, then the coefficients of re are the unique solution
of (1.3) and (1.4), and --rP)(z)--O(zm+n+l). In general H may be singular, but rp is
always uniquely defined and satisfies (f--rP)(z)=O(zm+"+l-d). (Neither of these
estimates need be sharp.)
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Now let {r,)e>0 be a family of functions in Rmn and let r belong to Rmn also. We
will make use of the following six definitions of convergence of r to r as e --, 0.

cw ("coefficientwise") r -cw r if lime_oak(re) ak(r ) for 0 _< k _< m and
lim_obk(r)-b(r) for <_k<_n.

au ("almost uniform") reau r if lime_011re-rll/:0 for any compact KC_C that
contains no poles of r.

A ("wrt disk A") rea r if lime_011re-rlla-0 for some disk A-{zC "lzl_<},
>0.

Tay ("Taylor")/’e---Tay r if lim_oc(r)--c(r) for all k>0.
H ("Hankel") re,riflime_.oc(re)-c(r) forO<k<m+n-d.
ts (" measure") r-, r if for any i >0 and any compact Kc_ C, lim_.0g{z K"

Ir(z) r(z)l >8} 0, where g is the Lebesgue measure on .
The following theorem describes the relationships between these definitions of

convergence. In the statement "cw" is an abbreviation for r-w r, and so on.
THEOREM 1. (a) If r is nondegenerate, then

cw *au*A *Tay

(b) If r is degenerate, then

(1.6) cw au A_ Tay H/,

except that aucw holds if r has no poles in C.
Proofs--arbitrary r. First we prove those implications asserted to hold regardless

of whether r is nondegenerate, namely the five rightward implications in (1.5)-(1.6).
(a) cw au. If r cw r, then the denominator polynomials qe converge coefficient-

wise to q, which implies that the zeros of qe converge to zeros of q or to o. If KC_ C is
compact and contains no poles of r, it follows that for all sufficiently small e, the poles
of r are uniformly bounded away from K. Therefore for small enough e, the values
re(z) (z K) depend continuously on the coefficients of re, hence on e, in a manner
uniform in z for z K. This implies lim_.011r- rll -- 0.

(b) au A. Trivial.
(c) A Tay, If rea r, there is a disk A on which r is analytic with lime_01lre-rll a

=0. If IIr-rlla<, then r is analytic on A too. Therefore the Taylor coefficients for
both r and r can be computed by Cauchy integrals around Izl-, and the uniform
convergence on that circle implies that these integrals converge.

(d) TayH. Trivial.
(e) Hg. If re-H r, then Ck(Are)O for O<_k<m+n--d, where Are-re-r

Rm+n_d,2n_d. Setting M=m+n-d and N=2n-d, we see that it is enough to show
that if reRMv satisfies c(re)-O for O<_k<_M, then re-. 0.

For each e, let re(z ) be written as a quotient pe(z)/qe(z) with the normalization
[[qella- 1, where A is the unit disk. (This is a different normalization from that of (1.1).
Further specification regarding common factors and a constant of modulus is unnec-
essary.) The condition [[qe[[a-1 implies [b[_<l for each coefficient of qe, and since
pe(z) qe(z) _oCZ the conclusion lime_.011Pella 0 then follows by the ck0 hy-
pothesis.

Now let KC_2 be compact, and let 8>0 be arbitrary. Clearly IIpll:0 also as
e 0. On the other hand we have (zK’lre(z)[>i} C_ (zK" [qe(z)l<llPellr/i}, and it
is readily seen that the latter set has measure bounded by const(l[Plli/)2IN. Therefore
the measure of this set goes to 0 with e, which is just what is required to establish r t, 0
(see [1, vol. 1, 6.6]).
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Proofs--degenerate r. Next we prove those relationships asserted to hold if and
only if r is degenerate, namely the leftward nonimplications in (1.6). If rRmn is
degenerate, then /<m and ,<n hold. Therefore for any a,zoC with z0:/:0, the
function

{ a )r(z)- r(z) 1+

belongs to Rmn too. By choosing a and z0 judiciously, we construct a sequence of
counterexamples that establish the required results. Detailed verifications are left to the
reader. In the case r(z)=--O, each construction should be modified by setting simply
r( z )-- a/(1 Z/Zo).

(f) au cw. Assuming r has a finite pole at z0, take r(z)-r(z)(1 +e/(Z-Zo)).
(g) A au. Take r(z) as in (f), but with z0 equal to any nonzero complex number

that is not a pole of r.
(h) Tay A. Take r(z) r(z )( + e- //( z/e)).
(i) H Tay. Take r(z)-r(z)(1 +e+n+-u/(1-z/e)).
(j) # H. Take r(z)-r(z)(1 / 1/(1-z/e)).
Proof--nondegenerate r. Finally, assume that rRm, is nondegenerate. To com-

plete the proof of Theorem 1, it is enough to show #cw"
(k) #cw. If r is nondegenerate, assume it has n finite poles z,. .,z,; the case of

m zeros is analogous. It is clear that if r-, r, then for all sufficiently small e, r must
have n poles z() satisfying z()z as e 0. This implies qw q, henceq q. From
this and r --,, r, one can concludep p, hencep p, hence r r.

We now make some remarks on the additional notions of convergence mentioned
in the Introduction. They are defined as follows:

I ("wrt interval 1") ri r if lim_.ollr-rllI--O for some interval I- [-,/$], i>0.
x ("chordal") rx r if lim_oX(r,r)-O.
Xr ("almost chordal") rx,r if lim_oXr(r,r)-O for any compact KC_C.
cap ("capacity") r-->capr if for any 8>0 and any compact K C_C,

lim_.0cap{z K" [r(z)-r(z)l>/$ } -0, where cap is the logarithmic capacity [7].
We state without proof some basic facts relating these definitions to the others.
THEOREM lc.
(i) If r is nondegenerate, then A .I. Otherwise AI but I A.
(ii) If both -m and ,- n hold, then X * cw. Otherwise Xcw but cw o X.
(iii) X r* cw.
(iv) cap *#.
Result (iv) is, of course, quite different from the more familiar situation cap

cap that holds for approximation by arbitrary rational functions rather than rational
functions of fixed type (m, n) ].

2. Continuity of the Pad6 approximation operator. Let m,n>_O be fixed and let
f(z)-ECkzk be a formal power series. Thenfhas a unique Pad6 approximant rp Rmn
and we let P denote the operator

P’frp.

In fact rp depends only on the coefficients CO,’’’,Cm+ n, and if the defect is d>0, it
depends only on Co,..., Cm+-d" (To be precise,f-f= O(z"++ l-d) implies P(f) e(f),
but f-f=O(zm+-d) does not.) Therefore the most reasonable way to define conver-
gence off to f in the Pad6 approximation context is"

ffif lim_0ck(f) c(f) for 0 -<k-<m + n.
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Since only finitely many terms off have any influence, we can be careless as to whether
f is a full power series or just a set of numbers CO,’’’,Cm+n. On the other hand for
defining convergence of P(f) to P(f) all of the choices discussed in 1 are reasonable
candidates. To each definition of convergence corresponds a different definition of
continuity of the Pad6 approximation operator. We say that P is H-continuous at f if

f --*f implies P(f) u P(f), and so on.
If re-P(f) is nondegenerate, then for most senses of continuity it is an easy

matter of linear algebra to show directly that P is continuous at f. Essentially the
required argument is given in [8, Thm. 3.17] (for rational interpolation), [4, Thm. 8] (for
Newton-Pad6 approximation), in II of [14] (under the stricter assumption that rp is
normal), and probably elsewhere too. An explicit statement that P is continuous in the
nondegenerate case appears perhaps first as [15, Thm. 4.1], where /-continuity is
established. The case where re is normal was treated earlier in [14]. Our approach here
is to show that P is H-continuous regardless of degeneracy, from which continuity .in
other sense follows as a corollary of Theorem a, if rp is nondegenerate.

THEOREM 2a. Let f be arbitrary. The Padb approximation operator P is H-continuous
at f.

COROLLARY (by Theorem 1). If re is nondegenerate, then P is also cw-, au-, A-, and
Tay-continuous at f. Whether or not re is nondegenerate, P is it-continuous at f.

Werner and Wuytack have established/t-continuity previously in [15, Thm. 6].
Proof. In fact one has local Lipschitz H-continuity with a constant of exactly 1.

For we have already mentioned that re--f--O(zm+n+l-d), and we claim that the
analogous identity holds for sufficiently nearby perturbationsfof f. To see this, observe
that for either (#,v)-(m-d,n) or (tt, v)-(m,n-d) (with the obvious modification if
rp ----0), rp is also the Pad6 approximant to f in R, and is nondegenerate with respect
to that class. By the Proposition of the same nondegeneracy holds for nearby f, since
small perturbations of a nonsingular matrix H are nonsingular. Therefore for all f
suffic_ient.ly near to f one has P(f)--f=O(z++l)--o(zm+n+l-d), hence a fortiori
P,,n(f)--f= O(z "+"+ l-d), as claimed. E]

The main result of[15] is the following converse to Theorem 2a" if rp is degenerate,
then P is /-discontinuous at f. The proof involves multiplications of rp by cleverly
chosen pole-zero pairs. Our proof below generalizes this result to Tay-discontinuity,
hence also discontinuity in cw, au, and A. Also, in [15] Werner and Wuytack present
their argument only for the case in which rp lies in a 2 2 square block in the Pad6
table, and they suggest that the proof for the general case will require the introduction
of several pole-zero pairs rather than one. However the following proof, which has no
block size restriction, shows that one is enough.

THEOREM 2b. If re is degenerate, then P is Tay-discontinuous at f.
COROLLARY (by Theorem b). If rp is degenerate, then P is also cw-, au-, and A-

discontinuous at f.
Proof. Let f,m,n be given, let f have the form f(z)-ctzt+ct+lZt++ with

ctvO, and let P(f)-rp Rmn have defect d>0. Then

(2.1) f( z ) re(z) + a2 m+n+ l-d+ O( z m+n+2-d)

for some a C, possibly zero. To begin with, assume re 0, which implies l<_m+ n-d.
If ave0, then for each e >0, define

ae,+n+ -d-t/c )(2.2) r(z)--rP(z) 1+ ]- ),-
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Since rp is degenerate, r belongs to Rmn for each e and has defect at least d-1. This
implies that for r-P(f) to hold for somef, it is enough thatf satisfy

(2.3) f( z ) r( z ) + O(zm+n+2-d).
To achieve this, let f be that function which has the Taylor coefficients of f for degree
>--m+ n+ 2-d and those of r for degree _<m+ n+ 1-d. Now from (2.1) and (2.2) it
follows that the coefficients of f and r agree up to O(e) for degrees _<m + n + 1- d.
Therefore ff as e 0, while from (2.2), re-ray rp. This establishes discontinuity as
claimed.

If a-0, replace aem+n+ -a-t by e"+n+2-a-t in (2.2).
It remains to treat the case rP=--O, which will occur whenever f(z)--O(zm+l). If

m-->n-- 1, we set

aEm+n+l-d(2.4) r(z)-

or r,(z)--em+"+2-d/(1--z/e) if a--0, and then the proof is again valid. Therefore
assume rn _<n- 2. In this event rp has defect d--n, while (2.4) has defect m _<n-2, and
so that proof breaks down at (2.3). If f(z)-O(z"+), let f have the Taylor coefficients
off for k>_n+ 1 and those of e"+/(1-z/e) for k<_n. Then r=P(f)-e"+/(1-z/e)
"Tay 0 as e ---> 0, butff, and discontinuity is established.

On the other hand iff(z)-azr+O(z K+l) with a:/:0 and m+ <_K<_n, setf(z)-
e+f(z) and r-P). Then for any e>0, r will have Kth coefficient a4:0, while rp has
Kth coefficient 0. Thus again one has/’e"*Tay rp.

In summary, the Werner-Wuytack result that P is continuous at f if and only if
rpQ) is nondegenerate holds not only for/-continuity, which seems after all a some-
what unnatural definition of continuity for a problem with no intrinsic restriction to
the real axis, but also for continuity with respect to definitions cw, au, A, and Tay.

3. Best approximation on small domains. Suppose KC_ C is a compact set, f is a
fixed function, and for each e>0, r*r is a best approximation to f in Rm, on eK. In
1934 Walsh posed the question [10]: as e 0, must r*K approach rP? We are especially
interested in three choices of K:

A--(z’lzl--<}, I=[--1,1], J-[O, 1].
In his original paper Walsh settled the question in the affirmative for polynomial
approximation on these regions, showing [10, pp. 175-176]

(3.1) r,r,r--au rp if n--0

providedf is analytic (case A) or sufficiently differentiable (cases I,J) at the origin.
To obtain analogous theorems for rational approximation, it is convenient to make

use of the linear system (1.3), and therefore natural to assume that rp is nondegenerate.
In 1964 Walsh extended (3.1) to

(3.2) r "--> an rp if rp is nondegenerate

for f analytic in a neighborhood of the origin [11]. In Theorem 3a below we generalize
this result as follows: if K is any region containing a ball around the origin, then

r*r rp as e 0, regardless of degeneracy. Thus H- and/-convergence always occur,
by Theorem a, and if rp is nondegenerate, one also has convergence with respect to
cw, au, A, and Tay.
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A decade later Walsh published the analogous result for the half-interval:

(3.3) r au rp if rp is nondegenerate

for fcm+n+l[o,], some >0 [12]. This theorem is correct, but Walsh’s proof has an
error in it: his equation (13) does not follow from his equation (12), and it appears that
no simple modification can get around this problem. In Theorem 3b below we give an
alternate proof that avoids this error, and in the process generalize the domain: we
show that if K is any bounded set with at least m/ n / points, then r*K cw rp if r is
nondegenerate. In particular K can be disconnected or discrete, and it need not contain
the origin.

Walsh did not speculate as to whether the nondegeneracy condition is necessary
for (3.2) and (3.3) to hold. This question was taken up by Chui, Shisha, and Smith, also
in 1974. For the problem of approximation of a real function fcm+n+l[o,] by
rational functions with real coefficients, they claimed [2], [3]

(3.4) rI r regardless of degeneracy.

However, this assertion is false. We will demonstrate this in Theorem 3c by exhibiting a
counterexample that is a modification of some related examples derived in [6]. The
error in the proof of [2] comes in the last sentence of the paper, where the authors
appeal to the fact cwI (in the notation of our Theorem 1), without having imposed
the normalization b0= (eq. (1.1)) in the definition of cw that is needed for this
implication to hold.

In general it appears that if r is degenerate, then nothing can be said about
convergence in senses stronger than H, regardless of what domain K is under considera-
tion, and in fact Theorem 3c will give examples with r*K -’Tay rp for K= A, I, and J, for
0oth real and complex approximation.

THEOREM 3a. Let f be analytic in a neighborhood of the origin and have the (m, n)
Padb approximant rp with defect d. Let KCC be a bounded set that contains a disk about
the origin, andfor each e, let r*r be a best approximation in R,, to fon eK. Then

(3.5) r*tc t rp as e 0.

COROLLAtY (by Theorem a). Under the same hypotheses one has r*r r, and if in
addition d--O, one has convergence also with respect to cw, au, A, and Tay.

Remark. The assumptions that f is analytic and that r*r is the best approximation
are unnecessarily strict. All that is needed for the proof is II r*-rPll-o(em+n-d).

Proof. By definition rp is analytic at the origin and its Taylor coefficients agree
with those off through degree m+ n d. Since K is bounded, this implies

and therefore also

[[f r*K[[eK’-- o( em+n--d).
Subtracting these estimates yields

(3.6)
Now without loss of generality assume K contains the disk A. Then (3.6) will hold in
particular on the boundary of eA, and by a Cauchy integral this implies the estimate

ck( rP- r*tc ) o( e"+n-d-k )
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for the kth Taylor coefficient of rP--re*K For k<_m+n-d one therefore has c(r*r)-
c(rp) as e -, 0, and this is the definition of r*

THEOREM 3b. Let f be analytic in a neighborhood of the origin and have the
nondegenerate (re,n) Padb approximant rp. Let KC_C be an arbitrary bounded set
containing at least m + n + points, which need not include the origin. Then

(3.7) r*rcw r as e 0.

COROLLARY (by Theorem a). Under the same hypotheses one also has convergence
with respect to au, A, Tay, H, and

Remark. The remark following Theorem 3a applies again here, and now it is more
important. To guarantee IIr*c-rPll-o(em+ ), it will be enough for f to have m+n+
derivatives at the origin with respect to the set t_J eK, which may consist of a union of
rays through the origin (such as J or I) rather than a complex neighborhood. Also, if
f()=f(z), then the conclusion holds for real best approximations r*x as well as
complex ones.

Proof. Let r’ and r*tc be represented as

rp(z) P(z) r,r(z) -p(z)Q(z) q(z)

normalized by Q(0)-I and [Iqllr 1. As in the previous proof, one obtains the
estimate (3.6) with d=0,

By the normalization of Q and q we can multiply through to obtain

Since the function inside the norm is a polynomial of degree at most rn / n, and since K
contains at least m+ n / points, this estimate can only hold if in fact

By a Cauchy integral over Izl-e, this implies that the polynomials pQ and Pq have
approximately equal coefficients,

(3.8) c(pa)-c(eq)+o(1), k-O,...,m+n.

Now if n-0, then Q--q=-1, and (3.8) is the conclusion (3.7) we are looking for.
Therefore assume n >0. In this event the nondegeneracy assumption implies P 0, and
since P is independent of e and IIqll-1, it follows that for each sufficiently small e,
Pq has a coefficient bounded below in modulus by a fixed constant. Together with
(3.8) this implies that the sets of zeros of pQ and Pq must converge to each other as
e0 in the following sense: if z,’",Zm+ and ’l,’" ",’m+, are the zeros of these
polynomials, counted with multiplicity, and padded with numbers zg-o or ’- owhen the degree is less than m/ n, then for some ordering of the subscripts one has
X(Zk,k)O for each k as e-0. Now the zeros of P and Q are independent of e, and if
rp is nondegenerate, either there are rn of the former or there are n of the latter, or
both. Suppose P has rn zeros; the other case is analogous. Then the convergence of the
zero sets of Pq and pQ implies that for all sufficiently small e,p has degree exactly m,
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with its zeros converging as e0 to those of P. It follows then that the zeros of q also
converge to those of Q, with possibly some additional zeros converging to c. From
here (3.7) is a ready consequence. []

Remark. Comparing Theorem 3b to Theorem 3a, one sees that in permitting a
general region K, we have lost the ability to conclude r*r--,n re in the absence of
nondegeneracy. An example shows that this cannot be helped: take f(x) x, (m, n)
(0, 1), K= { 1, }. For each e, the best approximation is then

Z

which has a pole at the origin, so r*r re certainly does not hold. On the other hand
it is still conceivable that some conditions on f and K weaker than the assumption
A C_K would be enough to ensure r*r re.

Having established r*r- re under appropriate hypotheses, we come now to the
task of giving examples to show that if re is degenerate, then convergence in stronger
senses than H will not in general take place. (Of course, degeneracy will not always
cause nonconvergence; for example, the best real approximation in R0n to f(x)-x on
el is 0 for all e, which converges to the degenerate Pad approximant re=--O in every
sense.)

THEOREM 3C. There exist examples of integers m,n and entire functions f with the
following properties"

(i) re*A-Tayrp,
(ii) re*l.,TayrP,
(iii) /’e-,Tay /’P.

Analogous examples also exist if each problem is restricted to approximation of real
functions by real rational functions, in which case one also has r*r- re. (By a "real"
function on A, we mean a function f with f(f) =f( z ).)

COROLLARY (by Theorem lb). The.same nonconvergence results hold with respect to
cw, au, and A.

Proof. There are six statements to prove, which we label A-C, I-C, J-C, A-, I-,
J-. Probably examples exist in each category for arbitrary m >-0, n > 1, but we will not
worry about achieving this generality.

A-C. Take (m,n)-(O, 1) and f(z)-zE-z 5, hence re----0. In the proof of Theorem
4 in [6] it was shown that for all e,r has a pole in the region Izl<-pe, for some fixed
constant p. It follows also from the arguments there that one has IIf-Oll-IIf-rlla
>conste5 as e0. This implies Ilri*a(eto)ll>--conste for each of the three roots of
60

3 1, and therefore r must have the form

(3.9) r(z)- z-eb(e)

with a(e) bounded below and b(e) bounded both above and below by constants. It
follows that the Taylor coefficients ck(r) for k_>6 diverge to as e 0, so in
particular rTay re

A-R. The example and argument above are suitable here too. Since b(e) is real,
obviously rz re also.

1-C. Consider f(x)--x, (m,n)=(0, 1). It is shown in [6] that r is not a constant,
but has a pole somewhere in C. A scale invariance argument shows that ri must



RATIONAL PADI AND CHEBYSHEV APPROXIMATION 209

therefore have the form

ae2

(3.10) r(Z)-z_eb
for some constants a and b, independent of e. Obviously r.Ty rp

I-. Consider f(x)-x 2, (re, n)-(0,2). By the equioscillation theorem, r cannot
be a constant, for a constant yields at best three equioscillation points. So it must have
a pair of real poles, symmetric with respect to the origin, and a scaling argument gives

X 2 e2b2

which again implies re-,,-Tay r’, and also r,I rp.
J-C and J-R. For both of these situations the example and argument of case I-C

apply. The equioscillation theorem shows that the best approximation to f(x)-x on eJ
is not a constant, either in real or complex approximation; therefore in each case it
must have the form (3.10), which implies r...Tay r’. For real approximation one also
has r.,-,I r P, and in fact in this case the coefficients of the solution have been calculated
explicitly by Maehly and Witzgall [8]" they are a- -1/4, b-(1 + 7-)/2. IS]

All of the above examples have rp 0, and it may seem that this might make them
exceptional. However, examples with rP0 can also be invented. For example, con-
sider type (2,1) approximation to f(z)-z+z7+z5 on eh. Now rP(z)-z, but the
arguments of [6] show that r.-,Tay rp holds regardless.

Throughout this section we have investigated whether r*K and rp approach each
other as e 0. However, for some purposes it may be more interesting to know whether
I- r*ll and ILl- rPll approach each other. Let

Ilf- rPIIK
OK-- ILf r*KIIK

be a measure of the agreement between these two. For Pad6 approximation to be
asymptotically best, one should have oK as e 0. The following examples reveal
that in general this need not occur, even if rp is nondegenerate, but that on the other
hand it may occur even if r*Kay rP.

First, suppose K is the diskA and f is analytic at 0, as in the proofs A-C and A-R
above. Then whether or not rp is degenerate, for small enough e the function f-rp

maps [z[=e onto a curve of winding number at least m+nO-1-d whose modulus is
constant up to a factor + O(e). By Rouche’s theorem one concludes oK-- O- O(e) [9].
Thus oK does not imply r*K--Tay rP.

Second, let K be any bounded region that contains a disk about the origin. An
extension of the above argument shows OK_<Const as e0, but it is easy to devise
situations in which oK is bounded away from 1, even when rp is nondegenerate. (For
example" let K be the eccentric disk [z 1/2[_< 1, and take f(z) z, (m, n) (0, 0). Then
[[f--rPllK--3e/2, but Ilf--r*KllK--e, so OeK:- for all e.) Thus /’e*K---)TayrP does not
imply oK- 1.

Third, consider any of the examples in the proofs l-C, l-R, J-C, J-R above. Here
one has oK--=const> as e -00, independent of e, and so neither oK- nor/’e*K--->Tay rp

holds.
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Finally, take K=[1/2, 1] and letfbe a COO function on [0, oo) whose Taylor series at
the origin is that of some fixed roo Rmn, degenerate or nondegenerate, but which
equals some slightly different rkR, on each interval 4-kK, k->0. Then IIf-r**ll:=0
but [[f-rPl[rvO for each e=4-k, so in this case the ratios or are not even bounded as

"-> 0o
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FORCED OSCILLATIONS OF EXTENSIBLE BEAMS*

NORIO YOSHIDAt

Abstract. Forced oscillations of extensible beams are studied and sufficient conditions are given that all
classical solutions of boundary value problems for extensible beam equations are oscillatory in a cylindrical
domain. Various end conditions are considered.

1. Introduction. We are concerned with the oscillatory behavior of solutions of the
extensible beam equation

(,)

( fo, ( )Ot 2 -Ot--OX 4 [d- O d d-C(Xox 2 t,u)=f(x, t), (x,t)IR+,

where I=(0,L), R/=(0, o), a is a positive constant and fl and / are constants.
Equation (.) with c(x,t,u)=f(x,t)=O was proposed by Woinowsky-Krieger [17] as a
model for the transverse deflection of an extensible beam of natural length L. The
existence of solutions to initial-boundary value problems for (.) was discussed by
numerous authors; see, for example, [1], [3], [4], [6], [7], [12], [17], [18]. The purpose of
this paper is to obtain sufficient conditions for all solutions of boundary value prob-
lems for (.) to be oscillatory in I R /. Our method is an adaptation of that used in
studying the oscillatory behavior of solutions of hyperbolic equations (cf. [2], [5], [8],
[15], [19]).

In 2 we consider the case of hinged ends and in 3 we consider the case of sliding
ends. Various end conditions are studied in 4.

We assume that the following conditions are satisfied throughout this paper:
(A-I) c(x, t, 1) is a real-valued continuous function in I R/ R1;
(A-II) ,lc(x,t,i)>=O for all (x,t,,1) IR+XR1;
(A-III) c(x, t, -r/)= c(x, t, ,1) for all (x, t, ,1) Ix R+R+;
(A-IV) f(x, t) is a real-valued continuous function in I R /.

DEFINITION. A function u: I R+-R is said to be oscillatory in I R+ if it has a
zero in I (t, oo) for any > 0.

2. Hinged ends. In this section we deal with the case of hinged ends for which

(HE) u(O t)=u(L t)=o2u (0 t)=o2u (L t)=0

THEOREM 2.1. Assume that >=0, and that there ex&ts a positive function d(x)
C4(i) such that

(1)

(3)

t(4) ( X ) t"(X ) >= k( (x ) in lfor some constant k >= O,
qd’(x) <_0 in I,
,t,
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Every classical solution u of (.) satisfying the boundary condition (HE) is oscillatory in
I R / if the ordinary differential inequalities

(4) y"(t)+ky(t)<_ f(x,t)g)(x)dx,

are oscillatory at t-- in the sense that neither (4) nor (5) has a solution which is positive
on [, ) Ior an),

Proof. Suppose to the contrary that there exists a solution u which has no zero in
I x o ) for some o > 0. First we assume u > 0 in I x o ). By assumption (A-II)
we obtain c(x,t,u)_ 0, and therefore

Ot-----t-t- B+Y <_ f(x t).
OX. 4 O O.X 2

Multiplying (6) by #)(x) and then integrating over I yields

(7) foL o2u
-t 2 tk ( x ) dx + OlfoL 04U (x4 * (x ) dx fl

L
<= f(x,t)g)(x)dx.

Ld__2 L
uck ( x ) dx + u ( atk(4> ( x ) fltk"( x ) )dx

dt 2

,,"(x)ex <- O
We obsee, using (1) and (2), that

d u,(x)dx+k u,(x)dxZ f(x t),(x)dx t>to.dt 2

Hence, M[u](t) fu(x)dx is a positive solution of (4) in [to, ). Next we consider
the case where u<0 in I[to ) for some to>0. Letting U -u, we see that

02_ 04U ( L ( OU(,t) )2d) O2U
 +c(x t).

0x4 0 0x2

Proceeding as in the case where u>0, we conclude that M[U](t) is a positive solution
of (5) in [to ). This contradicts the hypothesis and completes the proof.

Combining (7)-(9) yields

Integrating by parts and using (HE), (3), we have

(8) foLo2u- foLOx 2 tk ( x l dx u,"( x l dx

(9) foL0’u- foLOx 4 #)(x ) dx uO(4) (x) dx.
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COROLLARY 2.1. Assume that 3/>= 0 and a(r/L)4 + fl(r/L)2 >= O. Every classical
solution u of (,) satisfying (HE) is oscillatory in I x R+ if

liminf 1-7 f(x,O)sin -xdx dO= o0,

0
litm-,s:P fr (1---f )( foL f(x’O)sin-xdx)dO=oo

for all large T.
Proof. It is easy to see that q(x)=-sin(r/L)x satisfies conditions (1)-(3) with

k--t(,a’/L)4+ fl(’n’/L) 2. Using a result of Kusano and Naito [9, Thm. 2], we find that

(10)
L ry"(t)+(a(cr/L)4+fl(r/L)2)y(t)<= + f(x,t)sin -xdx

are oscillatory at oo. Hence, the conclusion follows from Theorem 2.1.
COROLLARY 2.2. Assume that / >= 0 and a(’/L)4+ fl(’/L)2 > O. Every classical

solution u of (,) satisfying (HE) is oscillatory in IR+ if there exists a C2 function p:
[1, oo)R with the followingproperties:

(i) #(t) is oscillatory;

(ii) p"(t)=
L
f(x,t)sin -xdx,

(iii) lim p (t) O.
t--- oO

Proof. Conditions (1)-(3) are satisfied with p(x)=sin(r/L)x. We easily see that
the ordinary differential inequality

(11) y"(t)+(a(rr/L)4+fl(cr/L)2) y(t) <O=

has no eventually positive solution (cf. Kahane [5, p. 185]). It follows from a result of
Kusano and Naito [9, Thin. 3] that (4) and (5) are oscillatory at t= oo. Hence, the
conclusion follows from Theorem 2.1.

COROLLARY 2.3. Assume that y >=0 and a(r/L)4+ fl(’/L)2>O. Every classical
solution u of (,) satisfying (HE) is oscillatory in I R + if the function

t+cr/to L
f(x,s)sin -xdx sin(s-t)ds

is oscillatory in (to, o)for some to>O where to (a(r/L)4+ fl(r/Z) 2)1/2.
Proof. It is sufficient to show that (10) are oscillatory at t= oo. Suppose to the

contrary that there exist eventually positive solutions of (10). Multiplying (10) by
g(t,s) sin to(t- s) and integrating over (s,s + r/to) with respect to yield

(12) fsS+"/’y"g( t,s ) dt + ( a( cr/L )4 -I- fl( "lr/L )2) fsS+’r/yg( t,s ) dt

<__ + f(x,t)sin-xdx g(t,s)dt.
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Integration by parts gives

(13) fss+’r/’y,,gdt= [y,g]t=s+,/, t=s+r/to fsS+qr/tt---s -[Ygt] + Ygtt dt

+fss+r/’-to(y(s+r/to)+y(s)) ygttdt,

where the subscript denotes the partial differentiation with respect to t. Combining
(12) with (13) yields

+
s+/ )4 2)w(y(s+/w)+y(s)) y(gtt+(a(/L +(/L) g)dt

(x, t)sin xdx sin(t-s)dt,

and therefore

(4) ((+/)+())se (x,)ixx i(-).

The left-hand side of (14) is positive, but the right-hand side of (14) oscillates. Thus we
have a contradiction and (10) are oscillato at t= m. The conclusion follows from
Theorem 2.1.
Coo 2.4. Assume that 0 and (/L) + B(/L) > O. Eve classical

solution u of the extensible beam equation

+ + +c(x ) o
Ox4 x

is oscillato in I x R +.

Proof. We choose (x)=sin(/L)x. Since f(x,t)O, (4) and (5) reduce to (11),
wNch has no eventually positive solution. Hence, the conclusion follows from Theorem
2.1.

Example 1. We consider the extensible beam equation

+-x + +(Xx,,.= i 2x e-’o,

where 0 and (elL) + B(/L)a > 0. Since

OL(sin2e-
] 1-7 e cos0 dO7 e-dO=]<,

Corolla 2.1 is not applicable to (15). We define the function p(t) by O(t)=
-(L/4)e-tsin t. It can be shown that O(t) satisfies conditions (i)-(iii) of Corolla 2,2.

Hence, eve classical solution u of (15) satisfying (HE) is oscillatou in I x R +.

Example 2. We consider the extensible beam equation

t a + B+ d 0,x Ox
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where ,>_0 and a(r/L)4+fl(cr/L)2>O. Corollary 2.4 implies that every classical
solution u of (16) satisfying (HE) is oscillatory in IR+. In fact, there exists an
oscillatory solution u (sin(cr/L)x)T(t), where T(t) is an oscillatory solution of the
Duffing’s equation

T" +(a(r/L)’t + fl(rr/L)2)T+v(rr/L)4(L/2)T3=O
(cf. Woinowsky-Krieger [17, p. 36]).

Remark 1. Our result in this section can be generalized to the equation

(17) 02u
--t2 +A2u-Q Ilgradu(" t)ll

2,. Au+c(x,t,u)=f(x,t), (x,t)fxR+,

where A denotes the Laplacian in R", f=(0,L1) (0,Ln) and Q(s)>_O for s>=0.
The existence of solutions of (17) was studied by Medeiros [10] and Menzala [11].

3. Sliding ends. This section is devoted to the case of sliding ends for which

(SE) 8u (0 t)= 8u 83u )3u (L, t)=0i)--- -x ( L’ ) -- (O’ )
8x 3

TSEOREM 3.1. Eoery classical solution u of (.) satisfying (SE) is oscillatory in I R+
if the ordinary differential inequalities

(18) y"(t)<= f(x,t)dx,

(19) y"( ) <= f( x, ) dx

are oscillatory at t--

Proof. Suppose to the contrary that there exists a solution u which has no zero in
! [to, oo) for some to> 0. First we assume u> 0 in I [to oo). As in the proof of
Theorem 2.1, we obtain the inequality (6). Integrating (6) over I, we obtain

X4
ax

OX2

Since

foL a4U 3U (L,t) 83u (O,t) 0
X4

dX,
X3 X

L 02U
dx=

au u (0, t)=0
8x 2 -x ( L’ ) --x

we see that

udx < f(x t)dx.
dt 2

Hence, fudx is a positive solution of (18) in [to ). This contradicts the hypothesis.
In the case where u<0 in Ix[to oo), U-= -u satisfies

8t 2
t- a

x4 fl -I" " a’ dl + c (
x 2

t, U)=-f(x, )
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Using the same arguments as in the case where u > 0, we arc led to a contradiction. The
proof is complete.

THEOREM 3.2. Assume that the following condition holds:
(A-V) c(x,t,,1)_p(t)H() for all (x,t,,1)IR+R+, where p is continuous,

positive in R+ and H is continuous, nonnegative and convex in R +.
Every classical solution u of (,) satisfying (SE) is oscillatory in I R + if the ordinary

dtfferential inequalities

(20) y"(t)+p(t)H(y(t))<=- f(x,t)dx,

1 fo,f(x,t)dx(21) y"(t)+p(t)H(y(t))<_ -are oscillatory at o.
Proof. Suppose to the contrary that there exists a solution u which is positive in

I to oo) for some o> 0. As in the proof of Theorem 3.1, we obtain

(22) d’-2 Ludx+ c(x t,u)dx= f(x t)dx
at 2

An application of Jensen’s inequality [13, p. 160] shows that

(23, fo/: fo (1foe)c(x,t,u)dx>=p(t) LH(u)dx>=p(t)L’H udx

Combining (22) with (23) yields

dfoL (lfo) foL- <_ f(x,t)ex.

Hence, (1/L)fudx is a positive solution of (20) in [to ). In the case where u<0 in
Ix[to o), we see that (1/L)f(-u)dx is a positive solution of (21) in [to o). This
contradicts the hypothesis and completes the proof.

COROLLARY 3.1. Every classical solution u of (,) satisfying (SE) is oscillatory in

IXR+if

(24)

(25)

for all large T.

0 L

liinf fr (1-)(f f(x,O)dx)dO=-o,
limsup 1- 7 f(x,O)dx dO=

Proof. Conditions (24) and (25) imply that (18) and (19) are oscillatory at t= o
(see Kusano and Naito [9, Theorem 2]). The conclusion follows from Theorem 3.1.

COROLLARY 3.2. Assume that (A-V) holds, and that H(/)=r/, where o >_ 1 is the
quotient of odd integers. Every classical solution u of (,) satisfying (SE) is oscillatory in

IxR+ if

(26) tl-p ( t ) dt=

(27) tp ( ) at=

for some e > 0 (o 1),

(o>1),
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and there exists a C2 function p: [1, oo)--, R with the followingproperties:

(i)

(ii) P"(t) 2 f(x,t)dx, t>= 1;

(iii) lim p (t) 0.
t--- oo

Proof. It follows from (26) and (27) that

y"(t) +p(t)(y(t))<= 0

has no eventually positive solution (see, e.g., [16, p. 633]). Using a result of Kusano and
Naito [9, Thm. 3], we find that

1 foLf(x,t)dxy"(t)/p(t)(y(t)) <_ +_--
are oscillatory at t oo. Hence, the conclusion follows from Theorem 3.2.

COROLLARY 3.3. Assume that c(x,t,,1)=po,1 (Po is a positive constant), i.e.

02U 04U [ rL [ OU(,t) 2d O2U,
(28) 2 + a Jo )+’tax 4 x9_

+PoU=f(x t)

Every classical solution u of (28) satisfying (SE) is oscillatory in i R + if the function

ft t+r/’ ( foIf(x,s)dx)sin[(s-t)ds
is oscillatory in (to, oo) for some to>0, where ( po)1/-.

Proof. By the same arguments as were used in Corollary 2.3, we conclude that

y"(t)+poY(t)< + f(x,t)dx

are oscillatory at oo. Hence, the conclusion follows from Theorem 3.2.
Example 3. We consider the extensible beam equation

(29) 02u
"’Ol --04Uox 4 ( fl+yfoL ( Ou(’’t)O’ ) 2d’) 02//0x2 +P(X’t)u=fl(x)t(lgt)sint’’

wherep(x,t)>_O in IR+,fl(X)>O in I and o(>0) is the quotient of odd integers. We
easily obtain

0 L 0
(30) fr (1- ’)(f0 f(x)O(logO)sinOdx)dO=6f (1--)O(logO)sinOdO

-i$ (logt)sin t + B(t, T),

where B(t, T) is bounded as tends to infinity and

8= fotf(x)dx>O.
In view of (30) we see that conditions (24) and (25) are satisfied. By Corollary 3.1 we
conclude that every classical solution u of (29) satisfying (SE) is oscillatory in I R /.
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Remark 2. In the case of sliding ends, specific assumptions are not imposed on the
constants fl and 3’.

4. Various end conditions. In the case of hinged-sliding ends for which

Ou O3u (L t)=O,(HSE) u(0 t)= oEu (0,t)= x(L t)=

there exists a positive function (x) C4(I) which satisfies conditions (1), (2) and the
following boundary condition

(o)=
In fact, we may choose rb(x)=sin(r/2L)x. Hence, our results in {}2 hold true with
(HE) replaced by (HSE), and sin(r/L)x by sin(r/2L)x.

We treat the case where fl =3’ 0, i.e.

(**)
au
3t---- +a +c(x t,u)=f(x,t).

OX 4

The boundary conditions to be considered are the following"

OU(o,t)=u(L,t)=Ou(B[u]) u(0, t)= --x(L,t)=0 (clamped-clampedends),

3u ____O2u (L,t) 0 (clamped-hinged ends),(B2[u]) u(0,/)= -x(O,t)=u(L,t)= Ox 2

3u (0,/)= 32u (L t)= 33u (L t)=0 (clamped-freeends)(Ba[u]) u(0,t)
)x2 3x

Tno,nM 4.1. For each fixed (i= 1,2,3), every classical solution u of(**) satisfying
the boundary condition Bi[ u] is oscillatory in I x R+ if there exists a function k(x) Ca(I)
such that

(31) (x)>O inI,

(32) 4(x)>=e(x) inlforsomee>_O,
(33) the boundary condition B[ tk ],

and if the ordinary differential inequalities

y"(t)+aey(t)<_ f(x,t)b(x)dx,

y"(t)+aey(t) <= f(x,t)(x)dx

are oscillatory at

Proof. The proof follows by using exactly the same arguments as in the proof of
Theorem 2.1 and will be omitted.

We conclude by showing that there exist functions ki(x) (i= 1,2,3) which satisfy
conditions (31)-(33) (cf. Timoshenko, Young and Weaver [14]).

Defining k(x)--x2(L x) 2, we obtain

k4(x) 1 >_
kx(x) 16

SUPxtkx(X) =-Xkl(x)"
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Hence, II(X ) satisfies (31), (32) and (33) with i= 1. We define the function II(X) by

( x ) (sinhm sinm ) ( --xm
cos ---x)m

(coshm cosm ) sinh --x sin --xwhere rn --4.730 is the lowest root of the equation

1 (coshm )cosm 0, m > 0.

We easily see that x(x) also satisfies (31), (32) and (33) with i= 1.
The functions k(x) (i= 2, 3) defined below satisfy (31)-(33). We define

q, ( x ) (sinhm. sinm) cosh --x cos x

(coshm- cosm sinh --x sin x

q, ( x ) (sinhrn + sinm) cosh --x cos --x(coshm + cosm ) sinh x sin --xwhere m--3.927..- is the lowest root of the equation

(coshm)sinm-(sinhm)cosmO, re>O,

and rn 1.875 is the lowest root of the equation

1 + (coshm )cosm 0, m > 0.

Acknowledgment. The author would like to thank the referee for many helpful
suggestions.
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RELATED EVOLUTION EQUATIONS AND LIE SYMMETRIES*

E. G. KALNINS" AND WILLARD MILLER, JR.

Abstract. We show that there is a one-to-one correspondence between the Lie symmetry operators (with
nontrivial time dependence) for a given evolution equation and those evolution equations related to the given
one by a change of independent and dependent coordinates.

1. Introduction. By an evolution equation we mean a partial differential equation
of the form

(1.1) (*) [=ot-K(yl,’",y",v,vil...in)=O,
where

inVt’" OtV Vil...in--’ 11" OynV
and K depends on only a finite number rn > 0 of the derivatives vix...in. We assume that
K is a real local analytic function of its rn + n + 1 variables, and for technical reasons,
that it is a polynomial in the derivatives vi...i; A solution of (1.1) is a function
v= v(t,yl, .,yn), locally analytic in the variables (t,y), such that (1.1) is well defined
and identically satisfied for all (t,y) S where S is a nonempty open set in C n+ 1. (In
the following, all functions are assumed to be locally real analytic.) A second evolution
equation

(1.2) (+) b=-u-J(xl, ,xn,u,ui...in)=O
is said to be related to (.) if there is a coordinate transformation

(1.3) t=t(s,x), yJ=yJ(s,x), v=v(s,x,u),

j= 1,’’ .,n, which maps (.) to( + ). Here we assume that the Jacobian det(O(t,y)/O(s,x))
is locally nonzero and Ov/Ou:O. It is clear that an arbitrary transformation of the
form

(1.4) t=s, yJ=yJ(x), v=o(x,u)

will map (.) to a related evolution equation, so we consider transformations of the form
(1.4) to be trivial. Our interest is in determining all equivalence classes of evolution
equations related to a given equation, where two evolution equations are equivalent if
they are related by a trivial coordinate transformation.

It is well known that every generalized Lie symmetry of (1.1) can be expressed in
the standard form

(1.5) X( f ) =fO,,+ DtfOo,+ E D inDynfO%...,n,
il + +in_l
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wheref=f(t, y, vil...i, ) and Dt, Dy, are total derivatives, e.g.,

(1.6) Dyk=Oykq’Oykoq’Vtyt’Vt "Jr" E Oia"’ik+l""inOUil...ik...in
i1+ +in>=l

see [1]-[3]. In particular, X(f) is a generalized Lie symmetry provided

(1.7) X(f)fl=0,
whenever f=0 and D1... D-f =0 for all ii,...,i,,> O. Special Lie symmetries are the
point operators

(1.8) Y=.r(t,y,v)at+Y’J(t,y,V)ayj+r(t,y,v)ao.
J

These operators can be identified with the standard form operators X(f) where [1]-[3]

(1.9) f rl Y’Vyj- ’K.
J

In {}2 we show that, under the assumption of a nondegeneracy condition on K,
there is a one-to-one association between equivalence classes of evolution equations
related to (,) and point symmetry operators Y for (,) such that 4: 0. Thus a knowledge
of the Lie symmetry algebra of an evolution equation leads directly to a list of all
related equations.

In 3 we modify and specialize these ideas to associate each time-dependent
Hamilton-Jacobi equation related to a given equation

(1.10) 2Xpt-giJpy,pyj-2,lipy,-,2V=O
with a conformal symmetry of (1.10). Further, we associate each time-dependent
SchriSdinger equation related to the fixed equation

1
(1.11)

with a conformal symmetry of (1.11).
In 4 we examine in some detail the evolution equations related to

1
(1.12) 2,pt-g’-’p.v,P.v=O, 2,*t--y,( gij/-.v’’)=O,

the Hamilton-Jacobi and SchriSdinger equations on an n-dimensional Riemannian
manifold. We also show that the conformal symmetry algebras of these two equations
are isomorphic. We conclude with some examples.

The results of this paper have applicability in the theory of separation of variables
[4, Chapt. 2], in the solution of time-dependent boundary value problems [5], and in
the solution of Cauchy problems [6], among others. We note that our coordinate
transformation approach is only a special case of the theory of evolution equations
related by Btcklund transformations, e.g., [7]-[9]. However, in this special case we can
give rather explicit and complete results.

2. Related evolution equations. Our basic observation is:
LEMMA 1. Let

(2.1) =v,-K(y,v,v6...i.)=O
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be an evolution equation and

(2.2) u,- J(x, u, u,....o) 0

an evolution equation related to by means of the coordinate transformation

(2.3) t=T(s,x), yJ= YJ(s,x), v= V(s,x,u).

Then X(f ) is a standardform point symmetry of f 0 where

(2.4) f OsV- OsYJ. vy,- OsT. K.
J

Proof. It is obvious from (2.2) that Y= 0s is a point symmetry operator for 0,
hence for fl 0. From (1.7) and (2.3) we see that Y corresponds to the standard form
symmetry X(f). Q.E.D.

The converse of Lemma 1 is false; there may exist point symmetries of fl 0 that
do not correspond to a related evolution equation. For example,

=Vt--VylyX--VyZy2--’O Y=Oyl.

The following result isolates a special class of point symmetries that do correspond
to related evolution equations.

LEMMA 2. Let

(2.6) Y=,(t)Ot+
J

be a point symmetry operator for f 0, where r O. Then there exists a transformation to
new coordinates (s, x, u),

(2.7) t= T(s), yJ= YJ(s,x), v= V(s,x,u)

such that (in the new coordinates) Y O and the transformed equation can be expressed as
an evolution equation

=u,-J(x,u,u....)=o.
(The coordinate transformation is not unique because of the possibility of trivial

transformations (1.4). We are identifying an equivalence class of related equations.)
Proof. It follows directly from (2.6) and Lie’s theorem [10, pp. 34, 49, 50], that

there exists a new coordinate system (s,x,u) such that the coordinate transformation
takes the form (2.7) and Y=O. Introducing the new coordinates into the equation
[2 0, we see that only the term v contributes a derivative of u with respect to s. Thus
this equation can be rewritten as

=-u,-J(s,x,u,u....)=o.
However, since Y= O is a point symmetry operator for O, we must have OJ O.
Q.E.D.

The form of the point symmetry operator (2.6) appears somewhat special. How-
ever, for a large class of evolution equations it is perfectly general. Given an evolution
equation fl=0, (1.1), we can express K as a polynomial in the derivatives vl... (with
coefficients which are analytic functions of y, v). We say that a given monomial in this
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polynomial (with nonzero coefficient), B6""t.(y,v)=via....vj,..4, Vll...ln has order +
2 + + n +j + + l,. Similarly, we say that this monomial has rank (sx, s2,... ),
where s is the number of factors Vk.... with k + + k,= 1, s2 is the number of
factors Vk,...k. with k + + k,=2, etc. For example VxoVxoVoxV2 has order 6 and
rank (3, 0,1). Let m be the highest order occurring in K and let

S= E B6t"(Y,O)Oix...i, Vll...l
i + + ln’- m

be the sum of the monomials of highest order. We can write

S S(s’’’’),
s] +s2+ m

where S(sl’s2’’’’) is the sum of the monomials with order m and rank (sl, s2,... ). With
respect to the natural basis Vy,,Vy,yj,... each term S(sl’s2’’’) defines a multilinear
m-form corresponding to the matrix components

(2.8) B.(iktq)tsx,s=,--.), iktq 1,. ,n, k=l, ,q, l=l,2,...,sq, q=1,2,....

We can assume, without loss of generality, that B is symmetric in the indices klq for
fixed l, q and, also, symmetric in for fixed k, q. We say that f] is nondegenerate if m > 1
and for each nonzero n-vector i at least one of the (m- 1)-forms n,<ik,q) is nonzero(s,s2,""

(for some choice of sl, s2,...,l,k), where B’ is,the contraction of B<s,s2,... and i with
respect to one of the indices k,rq,. (Note, however, that the property of nondegeneracy
is independent of the choice of basis.) For example, with n m 2 the forms VyyX + Vy2y,
0;21 "Jr- Vy2y2 and yloyy2 (y 4: 0) are nondegenerate while ryE2 is degenerate.

THEOREM 1. Let

(2.9) =-vt-K(y,v,vi,....)=O
be a nondegenerate evolution equation. There is a one-to-one correspondence between
(equivalence classes of) nondegenerate evolution equations related to fl=0 and point
symmetry operators for 0 of the form
(2.10) Y= ’(t, y) 0,+ E(t, y) Oyj+rl(t,y,v) Oo

J

with 4 O. In fact, all such point symmetries have the property that

Oy,z=O, i= l,. ,n.

Proof. Suppose the nondegenerate evolution equation

(2.11) =us-S(x,u,u,..4.)=O
is related to f] =0 by means of the coordinate transformation (2.3). Then (2.11) can be
obtained from (2.9) by performing the coordinate transformation and solving for u in
the resulting equation. Since both (2.9) and (2.11) are nondegenerate, the n n matrix
(Oxi/Oyj) must be nonsingular. Furthermore, nondegcneracy implies that, unless
Os/Oy=O, i=l,..-,n, the transformed equation must contain at least one nonzero
ruth order term with a factor of the form usx,...x,,, 1 <_l<_m-1. This is impossible!
Thus s s(t) so = Ot/Os is a function of alone. We must have 0 since otherwise
there would be no term in the transformed equation involving us. It follows from
Lemma I that Y= 8s is a point symmetry of 0.



RELATED EVOLUTION EQUATIONS AND LIE SYMMETRIES 225

Conversely, suppose Y, (2.10), is a point symmetry operator for f =0 with :/: 0.
Then X(/- 2Vyj- K)= X(f) is a standard form symmetry operator for this evolution
equation. Substituting X(f) into (1.7), comparing coefficients of terms of order 2m- 1
and invoking the nondegeneracy of K, we can conclude that i)yi=O, i= 1,...,n. By
Lemma 2, Y determines an evolution equation (I)=0, related to (2.9). The induced
coordinate transformation takes the form (2.7), so the n n matrix (1)y2/8x) is nonsin-
gular. This implies that (I) is nondegenerate. Q.E.D.

As a very simple example, consider the symmetry Y= i)y + c i)t- i)o, c:/: 0, for the
Korteweg-deVries equation (clearly nondegenerate)

(2.12) V Vyyy-- Vl)y O.

(The symmetry algebra for this equation can be found in many references, e.g., [2].) The
requirement Y leads to new coordinates (s,x, u) such that

t=cs, Y=1/2Cs2-t-x, O=--s-ku.

Equation (2.12) transforms to the new evolution equation

(2.13) u= CUxx / cuu+ 1.

Note that the group invariant solution corresponding to the operator Y is obtained by
requiting that u= 0 and solving the ordinary, differential equation so obtained, [2], [11].
(This is a general fact; the group invariant solutions correspond to solutions indepen-
dent of the "new" time coordinate. However, in many cases one can find additional
explicit solutions of the new evolution equation, say by separation of variables, for
which u 0.) To find all evolution equations related to (2.12) it is natural to identify
two such equations if one can be transformed to the other by a Lie (group) symmetry of
(2.12). The distinct equations correspond to the orbits of symmetry operators (under
the adjoint action of the symmetry group) that contain a representative Y= 8t + JJy
+r/i)o with 0.

3. The Hamilton-Jaeobi and Sehr6dinger equations. We now modify the results of
the preceding section to apply to the Hamilton-Jacobi equation

(3.1) 2,pt-g’(y)py,py-2X’(y)py,-X2V(y)=O.
Here pt=itW(t,y), py,=i)y,W(t,y), i and V are given functions, , is a parameter and
(gij) is an n n nonsingular matrix defining a metric on a pseudo-Riemannian space
V. We can interpret (3.1) as the (time-dependent) Hamilton-Jacobi equation for a
one-particle Hamiltonian system on V with (velocity-dependent) potential.

Our interest is in transformations of (3.1) which map this equation into another
equation of the same type:

(3.2) 2X[-,’(X)px,Px-2X(X)x,-,2f/(x)=O.

Here, ,= i)fl(s, x), h is unchanged and defines a metric on a pseudo-Riemannian
space V. To determine the form of the permissible transformations it is convenient to
consider (3.1) as a zero-potential equation in an (n+ 2)-dimensional pseudo-Rieman-
nian space. In terms of local coordinates, y, t, o we write (3.1) as

(3.3) 2p,pt-g’J(y)py,py-2/:,’(y)p,py,- V(y)p,p,=O,
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i,e., as the equation -G"Op,,po 0 for the metric

(3.4) --6- o -a

Here p, ,Z(,, t, y), etc., so the desired solutions take the form

(3.5) Z(y,t,) =Xu+ W(t, y),

where W satisfies (3.1). Comparison of the equations GOpp,=O and
suggests that the allowable transformations to new coordinates ,s,x should be of the
form

(3.6) t=T(s,x), yJ=YJ(s,x), ,=H(,s,x), Z=2, p=p,
so that u=+ h(s,x). Here 3( t, y)/3(s, x) is nonsingular. Thus, in terms of the varia-
bles deterning (3.1), the allowable transformations are

(3.7) t=T(s,x), yY= W(s,x), W= +hh(x,x).
We must deterne wch of these transformations will map (3.1) into an equation of
the form (3.2).

An analysis silar to the above shows that the allowable point symmetries for
(3.1) should be those of the type

(3.8) Y=(t,y)Ot+v(t,y)Oe+hk(s,y)Ow
(It is straitfoard to show that the space of all symmetries of ts type forms a Lie
algebra under the usual operator commutator bracket.)
THOM 2. There is a one-to-one correspondence between (equivalence classes of)

Hamilton-Jacobi equations related to (3.1) andpoint symmet operators Yfor (3.1) of the
form (3.8) with 0. All symmetries of theform (3.8) satisfy 3y, 0, i= 1,. .,n.

Proof. Suppose the Halton-Jacobi equation (3.2) is related to (3.1) via a trans-
formation of the form (3.7). Ts means that we can obtain (3.2) by substituting the
transformation (3.7) into (3.1) and soling for hp in the resulting expression. Since
(gJ) and (Y) are nonsingular the n xn matrix (Ox/Oyj) must also be nonsingular.
Furthermore, the coefficient of PPt in the resulting expression is 2gjOs/3y 3xt/3yj.

Since ts must vanish for each l, we have 3s/3yi=O, so s= S(t) or t= T(s) with

3T 0. Clearly, Y= 3, is a point symmetu of (3.2) wch implies that Y= T’(s)Ot+
3y/3s 3y, + h 3h/3s 3 w is a point symmet of (3.1).

Conversely, suppose Y, (3.8), is a point symmetry operator for (3.1) with z0.
Then X(hk-Jpy-zPt) is a standard form symmetry operator for ts equation. This
is possible only if 3y, z=0, i= 1,. -,n (since (gjr) is nonsingular). By Lie’s theorem we
can introduce new coordinates s, x and a new dependent variable such that

(3.9) O=zOt+fJOy t= T(s), yJ= W(s,x), W= +hh(s,x),
where 3h= k. Clearly, OS/Oy,=O, and (OxJ/y) is nonsingular. Thus, substituting the
new coordinates s, x, ’ into (3.1), we see that the coefficientsofp and PPi vanish in
the resulting expression wle the quadratic form gJOxt/Oy Oxm/OyJp,p is nonsin-
gular. The coefficient of p is h3s/Ot=hf(s)O and, since Y=3+ hk3 W is a point
symmetry, if we multiply all terms in our equation by f-l(s) we obtn an expression of
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the form (3.2), where the coefficient of each term is independent of s and () is
nonsingular. Q.E.D.

COROLLARY 1. If the Hamilton-Jacobi equations (3.1) and (3.2) are related by a

transformation (3.7), then the tensors (gi) and +(#,i) define metrics on the same
pseudo-Riemannian manifold. (There is a possible Sign ambiguity.)

There is a similar theory for transformations that map a SchriSdinger equation

10yi(gijfOyy)X_(2ki+ll)i)Oy,X_(k2V+kU+ W)xIt= 0(3.10) 2AOtff’

to another Schrtdinger equation

1(3.11) 2Aa,O---Ox,(,’JO)O-(2A’+’)Ox,O-(Az+AO+ #)19=0.

Here, , is a parameter (which we can roughly identify with -2r’-1/h where h is
Planck’s constant [12]), (gJ(y)) determines a metric on a pseudo-Riemannian n-dimen-
sional manifold and g-l=det(gJ). The allowable coordinate transformations are of
the form

(3.12) t= T(s,x), yJ= YJ(s,x), (t,y)=exp(XRO)(s,x)+R2)(s,x))O(s,x),

where O(t,y)/O(s,x) is nonsingular. The allowable point symmetries of (3.10) take the
form

(3.13) Y= ,(t, y) 0 + ,J(t,y) Oy+ (,k(t, y) + l(t, y)) xI, 0,.

The vector space of symmetries of this type is a Lie algebra under the usual operator
commutator bracket; we call this the Lie symmet algebra of (3.10).

THEOREM 3. There is a one-to-one correspondence between (equivalence classes of)
Schridinger equations related to (3.10) and allowable point symmetry operators Y for
(3.10) of the form (3.13) with ’ O. All symmetries of the form (3.13) satisfy 0y,=0,
i=l,. .,n.

COROLLARY 2. If the Schr5dinger equations (3.10) and (3.11) are related by a

transformation (3.12) then the tensors (gij) and ++_(,ij) define metrics on the same
pseudo-Riemannian manifoM.

The proof of these statements and the connection between the symmetry operator
and the coordinate transformation is very similar to that of Theorem 2. Again the time
coordinates s, t of related Schr/Sdinger equations satisfy T(s), where T’ .

4. The zero potential case. In his thesis, [13], Chandler proved the following
result:

THEOREM 4. Let f# be the Lie algebra of allowable point symmetry operators for the
Schridinger equation (3.10) on an n-dimensional pseudo-Riemannian manifold. Then
dim 1/2(n + 1)(n + 2)+ 3.

A simple modification of Chandler’s proof yields the following"
THEOREM 5. Let f#’ be the Lie algebra of allowable point symmetry operators for the

Hamilton-Jacobi equation (3.1) on an n-dimensional pseudo-Riemannian manifoM. Then
dim f#’ _< 1/2(n + 1)(n + 2)+ 3.

Earlier, Kuwabara [14] showed that for =i=0 in (3.10), i.e., no velocity.depen-
dent potential, the upper bound on the dimension of the symmetry algebra is actually
achieved only for flat spaces and for certain scalar potentials. (In particular the upper
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bound is achieved for a constant potential in flat space.) Kuwabara’s results and proof
remain valid for the Hamilton-Jacobi equation (3.1) with i= 0.

For arbitrary potential a complete determination of the symmetry algebra is
difficult and there are only a few general results available, e.g., [14]-[17]. However, for
the zero-potential Hamilton-Jacobi equation

(4.1) 2,pt-giJpy,pyj=O,

we can say quite a lot. The operator Y, (3.8), is an allowable symmetry of this equation
if and only if the following conditions are satisfied:

(4.2) Otk O, gitOy,, O, 0,,[i= gitOy,k, gitOyl[j + gjlOyi,i__ ,lOylgij.,. gij Old.

For an analysis of the solutions of these equations it is convenient to utilize the Poisson
bracket of two functions ’i(y, p), 1, 2, on a 2n-dimensional symplectic manifold:

Note that Y0 2’0w is always a symmetry of (4.1).
LEMMA 3. Modulo a change of time coordinate t + a and addition of an arbitrary

multiple of Yo, each nonzero allowable point symmetry operator for the Hamilton-Jacobi
equation (4.1) is a scalar multiple of exactly one of the following operators:

I) YI at.
2

It) Y2= --t+ t’i(y) Oy,+ )k (y) Ow,

V= -g’Oy,k, { V’P,, gip,p } =gipxpj.
III) Y3 ,+ ri(y) b" { riP/, gijpip: ) gijpiPj"
IV) Y4=tvi(y)Oy,+)k(y), Vj= -gjlOytk, (Vtpt,gipip)=0.
v) Ys=v’(y)oe,, ( V pt, gipip } O.

THEOREM 6. Let f be the Lie algebra of allowable point symmetry operators for the
Hamilton-Jacobi equation

(4.4) 2,pt=gijp,pj

on an n-dimensional Riemannian manifold V and let rn be the dimension of the vector

space of type IV symmetries of this equation. Then there exists a coordinate system
(xl,...,X m, ym+ 1,...,yn) on Vn, with respect to which (4.4) takes the form

m n

(4.5) 2XPt= _, P+ E g*(Y)PP,.
i==1 j,k=m+l

Furthermore, as a vector space

(4.6)
where"

1) dim..’,,, 2m andm has the basis

Ox,, ,,-x w, 1,.-., m.
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2) Let be the Lie algebra ofsymmetries of type V. Then is a subspace of type V
symmetries such that=,span(0x, "i 1,...,m).

3) CCq corresponds to exactly one of the following possibilities:
a) 2, basis Ot, 2tO w.
b) 3, basis ,, tt+ : _y w"

Here gi=exp({y+)Gij(y+,. .,y"), i,j=m+ 1,. .,n.
c) 4, basis 0t, tot+

t2at + XlOx’+

Here gm+l,=sm+l, 1 <k<n, and

",n.

Proof. Let c be the mafimal number of functionally independent symmetries of
type III (with respect to the terms t) and let Zx,...,Z be c functionally indepen-
dent type III syetries. (Clearly, these symmetries paiise commute.) By Lie’s
theorem and Lemma 3 there efists a coordinate system ( x, ,xC,yc+ 1,... ,y } for Vn

such that Zi= O,-XXOw, i= 1,...,c and the Halton-Jacobi equation takes the
form (4.5). (Here we are using the fact that the metric is positive definite.) If Z is a type
III symmet then by definition of c, Z must be of the form

Z=
i=1

However, the condition that Z be a point symmet operator impli3s that each f is a
constant. Thus c m. Furthermore, it is obvious that the operators Z 0,, 1,..., m
are type V symmetries of (4.5). The remMnder of the proof now follows easily from
Lemma 3.

The structure of the symmet algebra of the zero-potential Schrdinger equation

(4.7)

is silar to that of the Halton-Jacobi equation (4.1). The operator Y, (3.13), is an
allowable symmet of (4.7) if and only if conditions (4.2) hold, and if in addition

(4.8) l=l(t), Sy, ( giavl Oy.k ) + Otl= O.

Since the SchriSdinger equation is linear, ’0 I,O. is always a symmetry operator.
LEMMA 4. Modulo an additive change of time coordinate t + a and addition of an

arbitrary multiple aX + fl of o, each nonzero allowable point symmetry operator for the
Schrbdinger equation (4.7) is a scalar multiple of exactly one of the following operators:

I) trl--" 8
/,2

II) 2 - at+ t’t’(y)y,+(Ak(y)+l(t))O.,
.yj= gja Oyok, ( "yapa giJpiPj } giJpiPj

1 yi([[i)__=Otl.
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III) 3= -tOt+ yi(y)Oy,, ( yapa,gijpiPj}=gijpiPj.
IV) r,=tyi(y)Oy,+hk(y)CgO, yJ=-gjaOyok, (Tapa,gijpiPj}=O.
V) 5=vi(y)ay,, (Vapa,gijpiPj}=O.
Tnou 7. Let be the Lie algebra of allowable point symmet operators for the

SchrSdinger equation

(4.9) 2XOt

on an n-dimensional Riemannian manifoM V", and let m be the dimension of the vector
space of type IV symmetries of this equation. Then there exists a coordinate system
{ xl,...,x,y=+ 1,...,y,} on V with respect to which (4.9) takes the form

m

(4.10) 2XO,= ..+ 1 (gi(y)).
al i,jm+

As a vector space

(4.11) =m Cq
where

1) dimm 2m and.’m has the basis Ox, tO:- XxaO, a 1,... ,m.
2) Let be the Lie algebra of symmetries of type V. Then is a subspace of type V

s(mmetries such that= span(Ox" a 1,..., m).
3) @q crresponds to exactly one of the following possibilities:

a) 2" basis Or, .
b) W3 basis Ot’ t b

x y
Here, giJ=exp(y+)GiJ(ym+2,. .,y ), i,j= m + 1,...,n.
c) 4, basis Or, Ot + (EaxaO: +y+ Oy+),

t2at+t EXaax.+ym+ay.+ + -y x +y ym+
a

Here gm+X,k=m+X,k, 1 =<k<n,= and gi=(ym+)-2Gij(yZ+ ",y), i,j=m
+ 2," .,n.

To provide examples of related evolution equations we will consider one case in
detail" the free particle Halton-Jacobi equation

2 22Xp,-p;,
The symmetry algebra of ts equation. (the Schr6dinger algebra) is nine-dimensional,
with basis

Pi=y,, Bi= -ty,+Xyi, i= 1,2,

M=yXy_y2, E 2h w,

(4.13) X ylyX 2y2)-tt-t(yy,+yy)+( +y ,K2=
K_2=t D=yly +y2y+ 2tt"

We will identify two related evolution equations if one can be transformed into the
other through an action of the Schr6dinger group [4, Chap. 2]. Thus to classify the
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possible related evolution equations we first determine a complete set of orbit repre-
sentatives for one-dimensional subalgebras of ff (under the adjoint action of the
SchrSdinger group). We then compute the related evolution equation, if any, associated

9.

1’0.

TABLE 1.

Evolution equations related to 2 Xpt =Py2x +Py22.

Operator Coordinates Potential

K_2-K2/M

K_ K + M+ 7B1

D+ flM

-K2-M

-K2- P

M

I+ B2
Px

tan s
yi=xi/coss

k X2XW= /--(x x + tans

tans
yl ._[ x sinfls + x cos fls]/coss
y2 =[-xl cosfls + x sinfls]/coss

W #--’’(X1X + X2X2) tans

tan s

s
Yl xl tan s + x -- tan s +

2
7s

Y2 X1 + X2 tan s +-W= lTV-[(xXxl + x2xg- tans

,/xXs tan s 3,x 2s
7 3.,/2s ]+ -s2 tans----g

t_--e2

yX =vteS(xX cosfls- x sinfls)
y2 e x sin fls + x cos fls
W= fV

-1t= -s

X Xy =- sin s + cos s
2 s

X Xy:’- =coss-sins
$ S

W= 17V+ X(xlx + x2x2)/2s

t=S

yJ x

)k2 (xlx + X2X2)

2.(xl3x X23x
-t- k xlx + X2X

2X( XIDx x2)x

-t- k2 (xlx + x2x2-3[x2- 372/4)

+ 2Xfl(Xlx2 X2x

2X(X2x XIx2

2X2X1’
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with the orbit representative. A list of orbit representatives is given on [4, p. 124]. Our
final results are presented in Table 1. We express any related equation in terms of
Cartesian coordinates:

(4.14) 2,/-’2 -2 -2--p+p+ 22( ""p+ px)+XEf/’.
Thus the related equation can be determined by merely listing its associated potential.
Note that the operators corresponding to orbits 8-10 are not associated with an
evolution equation since they contain no term in Ot. The analogous results for the
free-particle Schrtdinger equation are virtually identical with those presented here for
the Hamilton-Jacobi equation.

REFERENCES

[1] A. S. FOKA$, Invariants, Lie-Bcklund operators, and Bicklund transformations, Ph.D. Thesis, California
Institute of Technology, Pasadena, 1979.

[2] P. J. OLVV.R, Applications of Lie groups to differential equations, mimeographed lecture notes, Mathemati-
cal Institute, Oxford, 1980.

[3] Symmetry groups and group inoariant solutions ofpartial differential equations, J. Diff. Geom., 14
(1979), pp. 497-542.

[4] W. J. MILLER, Symmetry and Separation of Variables, Addison-Wesley, Reading, MA, 1977.
[5] A. MUNIER, J. R. BURGAN, M. FEIX AND E. FIJALKOW, Schrdinger equation with time-dependent

boundary conditions, J. Math. Phys., 22 (1981), pp. 1219-1223.
[6] S. ROSENCRANS, Perturbation algebra ofan elliptic operator, J. Math. Anal. Appl., 56 (1976), pp. 317-329.
[7] R. L. ANDERSON AND N. H. IBRAt3IMOV, Lie-Bicklund Transformations in Applications, SIAM Studies in

Applied Mathematicsx, Philadelphia, 1979.
[8] A. S. FOKAS AND R. L. ANDERSON, Group theoretical nature of Bicklund transformations, Lett. Math.

Phys., 3 (1979), pp. 117-126.
[9] S. Kueml AND G. W. BLUMAr4, When nonlinear differential equations are equivalent to linear differential

equations, SIAM J. Appl. Math., 42 (1982), pp. 1157-1173.
[10] L. EISEmIART, Continuous Groups of Transformations, (reprint), Dover, New York, 1961.
[11] G. W. BLUMAN.AND J. D. COLE, Similarity Methods for Differential Equations, Applied Mathematics Sci.

13, Springer-Vedag, New York, 1974.
[12] L. LANDAU AND E. Lrsnrrz, Quantum Mechanics, Non-Relativistic Theory (from Russian), Addison-

Wesley, Reading, MA, 1958.
[13] L. J. CHANDLER, Separation of variables by the symmetry methodfor second order linear partial differential

equations, Ph.D. Thesis, Univ. New Mexico, Albuquerque, 1980.
[14] R. KUWABARA, On the symmetry algebra of the Schr6dinger wave equation, Math. Japonica, 22 (1977), pp.

243-252.
[15] C. BOXEp,, The maximal kinematical inoariance group for an arbitrary potential, Helv. Phys. Acta, 47

(1974), pp. 589-605.
[16] D. R. TRUAX, Symmetry of time-dependent Schrdinger equations, I., J. Math. Phys., 22 (1981), pp.

1959-1964.
[17] A. S. FOKAS, Group theoretical aspects of constants ofmotion and separable solutions in classical mechanics,

J. Math. Anal. Appl., 68 (1979), pp. 347-370.



SIAM J. MATH. ANAL.
Vol. 6, No. 2, March 985

(C) 1985 Society for Industrial and Applied Mathematics
0O3

GLOBAL BEHAVIOR FOR A
CLASS OF NONLINEAR EVOLUTION EQUATIONS*

PAUL E. SACKS)

Abstract. We derive decay rates and study the asymptotic behavior of solutions of a class of scalar
quasilinear reaction diffusion equations of degenerate type.

We study here the initial and boundary value problem

v Alv v+)klv v, xf, t>0,
(0.1) v(x, O) vo(x ), x f,

v(x,t)=O, xOf, t>0

where f is a bounded domain in R r, X_>0, rn > 1, p _> 1.
If p<m, or p= rn and f] is sufficiently small, this problem is known to have a

global time solution for voL(f) [18] or vH(f) [12]. In the remaining cases
there exists a local time solution if v0 L(f]), and vH0(f) provided that p is not
too large. These solutions may blow up in finite time [12], [18].

The goal of this article is to prove some decay estimates for solutions of (0.1), to
prove solvability of (0.1) for a larger class of initial values, and more specifically to
study the behavior of solutions of (0.1) as 0+ and oo.

In some of our considerations a crucial role is played by the first eigenvalue of the
Dirichlet problem

(0.2) --Ap--,p, x_, p--0,

We denote the first eigenvalue by , and the corresponding eigenfunction by p, with
the normalization pl>0 in f and [[pl[L,(a 1. It is possible to interpret as a
measure of the size of the domain f.

Here is a summary of the main results.
(i) p<m. In this case a certain regularizing effect, known (cf. Aronson and

Benilan [2]) in the case h-0, continues to hold. A consequence of this is an estimate for
[[V(.,t)I[L(U which is independent of v0. We exploit this to prove the existence of
solutions to (0.1) with v0 Ll(fl). We consider the asymptotic behavior when vo_>0,
vo0, and show that there is a unique positive steady state solution of (0.1) to which
all solutions of (0.1) tend as oo.

(ii) p= m, ,<. We have again a decay estimate which is independent of the
initial state. Solvability of (0.1) is proved for vo Lq(f]) q> 1. All solutions of (0.1) tend
to zero as t oo.

(iii) p--m, )=)l. We obtain an estimate for IIv(’, t)lloo(u) which now depends on
vo. Solvability of (0.1) is again proved for voLq(f])q> 1. As oo, solutions of (0.1)
tend to Opl/’’ for some constant 0 depending on v0.

(iv) p=m, )>)l. Previous results [12], [25] show that (0.1) has no nontrivial
positive solutions which exist for all time. We do not consider this case.

(v) p >m. Here solutions of (0.1) may or may not exist for all time. We restrict
attention to those initial values for which the solution of (0.1) remains uniformly

*Received by the editors October 20, 1982, and in revised form August 10, 1983.
Department of Mathematics, Iowa State University, Ames, Iowa 50011.
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bounded for all time, and give sufficient conditions that the solution tend to zero as- . In particular v--=0 is an asymptotically stable equilibrium solution of (0.1), while
any positive equilibrium solution is unstable.

Besides the papers cited already we mention the works of Gurtin and MacCamy
[14] and Aronson and Peletier [4] which include some discussion of the case p-.1,
m> 1. The problem (0.1) with h<0 is studied by Bertsch, Nanbu and Peletier [27],
while Aronson, Crandall and Peletier [3] consider (0.1) in one dimension with a
different type of nonlinearity on the fight-hand side. For the semilinear heat equation
m-- l, p > 1 there is of course a large literature; see for example Matano [20], Weissler
[26], or Lions [19] for some results related to those presented here. See Alikakos and
Rostamian [28], [29] for the corresponding problem with Neumann boundary condi-
tions.

1. We begin by making precise some notions of solution of (0.1) and related
equations. For simplicity of notation we will always write v" instead of Ivl v.

Given vo L(f) andfL(Qr), Qr=f (0, T), the problem

vt=Av"+f (x,t)ar,

(1.1) v(x,O)--Vo(X ), xf,

v(x,t)=O,

has a solution in the sense of nonlinear semigroups (see [8],[11],[22]) which is also
known as the mild solution of (1.1). We write v(.,t)= S(t; vo,f) for this solution of
(1.1). If f----0 then it is usual to write S(t;vo, O)=S(t)vo, and the collection of maps
(S(t))t>_o is a semigroup of nonlinear nonexpansive operators on L(f) with S(0)--
identity. More generally, one has

(1.2) IIs(t Vo ,f) s( eo IIv0- e0 +fotllf( s ) -/(s )II

If v is a bounded function on some subset Q c Qr, then v satisfies (1.1) in the
sense of distributions on Q. Also vC([O,T];LI(f)) so the initial condition has a
meaning. In general, however, the boundary condition may not be satisfied in any
ordinary sense.

For the problem (0.1) we will use two definitions of solution.
DEFINITION 1. A measurable function v is a mild solution of (0.1) on [0, T] if
(i) v’L(Qr);
(ii) v(.,t)--S(t; Vo, hV’), O<_t<_T.
DEFIrITIO/ 2. A measurable function v is a weak solution (0.1) on [0, T] if
(i) vL(Qr),

(1.3) (ii)

for all tC2(Qr)fqC(r), p(x,t):O for
We may also define a weak solution of (1.1) by replacing Xvp by f in (1.3). The

following facts are then more or less well known: If v0L(f) and fL(Qr), then
(1.1) has exactly one weak solution on [0, T] which coincides with S(t; vo,f). For the
existence assertion see, e.g. [3] or [18], and for the uniqueness [3] or [6]. The fact that
the weak solution agree with the semigroup solution is seen by observing in the course
of the construction of S(t; v0,f) that it also satisfies (1.3) under these hypotheses.
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Using the above remarks, and inequality (1.2), it is easy to prove the following,
concerning solutions of (0.1).

PROPOSITION 1.1. (i) If V is a weak solution of (0.1) on [0, T], then it is also a mild
solution of (0.1) on [0, T].

(ii) If v is a mild solution of (0.1) on [0, T], and vL(Qr), then v is a weak
solution of(0.1) on [0, T].

(iii) (0.1) has at most one weak solution on [0, T].
Regarding the uniqueness of mild solutions of (0.1) we have the following.
PROPOSITION 1.2. Let v(x, t ), 1, 2 satisfy
(i) v is a weak solution of(0.1) on [,.T]for every ’>0;
(ii) Ilvi(.,t)llL=<U) <_Ct-for some a(O, 1/(p- 1)), 0<t_<T;
(iii) limt_.ollVl(.,t)--v2(.,t)llL,S)=O.
Then v =-- v2.

Proof. By Proposition 1.1

v,(.,t):s(t-,; v,(.,),Xv,), i=1,2, ’>0;

hence by (1.2)

IIv ,(-, t) -v_(., t)II,u)IIv,(-, )- v_(., )II’)+Xf/l[v P( ",s ) -v2P(", s

Letting z--, 0 gives

IIv, (’, t)- v2(’, t)II’<-fotf( )llv,(’,)-v=(., )11

with

f(s)=pmax( llv,( ,s )[l:,),llv,( ,s )II:,)) <Chps-’’-’).

By hypothesis (ii), fL(O,T); hence the conclusion follows by Gronwall’s in-
equality. U]

In particular Proposition 1.2 implies the uniqueness of mild solutions of (0.1) in
the class of functions satisfying the decay estimate in hypothesis (ii). That this condi-
tion is not unduly restrictive is seen from the following, which is our main existence
theorem for problem (0.1).

THEOREM 1.3. Assume either

(1.4) p<m, v0Ll(f])
or

(1.5) p:m, X<_X,, q>l, Uo__.tq(’ ).

Then (0.1) has a mild solution v(x,t) on [0, T] for any T>0, v C((O, T] 2), and
the following estimates are valid.

(i) Ifp<m, there exists a constant =(N,,m,p) such that

k/m--p) + )(1.6) IIv(’,t)ll,(a)--<
((m--1)t) l/(m-l)
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(ii) If p=m and <, there exists a constant 2 :2(N,,m,),
max(1/m,N/4m), such that

(1.7) 11(’, t)llr(fa-<
((m--1)t) /(m-0 (X-X)/(’’-0 +

(iii) Ifp m and X X l, there exisu a a(N,, m, q), such that

(1.8) [[V(’,t)[lL(fl)3( llV(’,t)[[Lq()W )((m_l)t)l/(m-l)

(iv) Ifp=m, and A<-At, there exists a constant 4=4(N,f,m,q,,,llVollLq(n)) and
a number e >0 such that

(1.9) [iv(. t)[[L(a,_<E4(1 + )tl/(m--l/e)

Remarks. (i) Note especially the fact that the estimates (1.6) and (1.7) are indepen-
dent of v0. This is already known for ,=0; see [11] or [22] for example. No such
estimate is possible in the case p m, h--,t, as results of 3 will show. If fl= R then
again there can be no such estimate.

(ii) The estimates (1.6) and (1.9) indicate that one may expect condition (ii) of
Proposition (1.2) to be satisfied under certain circumstances. In particular we get
uniqueness in the class in which we prove existence.

(iii) It is known [4] that for =0, solutions of (0.1) decay like /(m-D for large t,
and this is the best possible exponent. Certainly no better asymptotic decay rate can
hold when >0. For small t, this exponent may be improved, e.g. in (1.9), but the
constant will depend on some norm of v0. Precise results of this type may be derived
using formula (2.13) in the next section.

(iv) In the estimate (1.9) the constant 4 tends to zero with [[V0IILq(). There can be
no such result when p<m, since, as we shall show in {}3, all initial states v0_>0, v00
eventually evolve into the same positive equilibrium solution of (0.1). An estimate on
the solution involving the size of the initial value is possible on any fixed bounded time
interval.

2. From [18] we have the following local existence and continuation theorem.
THEOREM 2.1. Let v H([2) qL(f]). Then there exists a time

2k( p 1)IIv011
(T= oo not excluded) such that (0.1) has a unique weak solution on O, T). If T< oo, then

(2.1) lim IIv(" ,t)ll,(u)-- o.
t-,T-

If T’ < T, then v satisfies
(2.2)
(2.3)
(2.4)

veC((O,r’)xn),
tm L(O, T") H( )),
( D(m+ l)/2)teL2(O T’; L2( f)).
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Remarks. (i) The lower bound on the existence time follows directly by comparison
with the initial value problem

(ii) There is no restriction on p or , here. If _<0, then T(v0) oo clearly. If p <m
orp=m and , is sufficiently small, the results of [12], [18] again imply that T(vo)=
but this fact will be rederived here, in the course of proving more exact estimates.

(iii) If we do not require v’ H(f), then Theorem 2.1 still holds except (2.4) is
not valid, and (2.3) must be replaced by

Dm L2(O, T; H(’))
(iv) We actually require a more precise regularity result, corresponding to (2.2). See

[10] or [25]. The point is that the modulus of continuity of solutions of (0.1) depends
locally only on the L norm and data.

THEOREM 2.2. Let v H(f)fqL(), and v be the corresponding weak solution of
(0.1). Su_gpose Iv(x,t)l<-M for t[,,T], ,>0. Then the modulus of continuity of v on, T] f depends only on

(2.5) N, m, p, ,, M, -.

The following result is the key to all of our estimates.
PROPOSITION 2.3. Let p<--m, 2>--0, vH(f)fL(f), Vo>--O and v be the corre-

sponding solution of (0.1). Then for (0, T(Vo)),

v(. t)(2.6) -Avm("t)<-XvP("t)+ (m-1)t
in @’(f).

Remark. The case h=0 is essentially proved in Aronson and Benilan [2]. The fact
that the method generalizes to equations with lower order terms has also been observed
by Bertsch and Peletier [30].

Proof. Fix T’ (0, T(vo)) and suppose Ivl<-M for t--<T’. We may regard v as the
solution of (0.1) with Av’ replaced by ,Ft(v), where

FM(v)_ f v’ v<_2M,
(2M)’, v>_2M.

Consider now the problem

wt=Awm+XFM(W),
(2.7(e)) w(x, 0): v0(x) + e,

w(x,t):e,

xf,
xf,
x O2.

t>0,

This problem has a classical solution v,, which exists for all t_>0 (see [17, Chap. V]). By
comparison [24], v, decreases as e0 to a limit function t3, and by standard arguments
(e.g. [4]) t3 is the weak solution of (0.1) with ,v replaced by AFM(v), thus v=t3. (The
uniqueness properties discussed in 1 continue to hold for this problem). Since v is
continuous on [,, T’]f for every ,>0, v,v uniformly on any such set, by Dini’s
theorem. Thus there exists e0>0 such that for e_<e0, v, solves (2.7(e)) with AFt(w)
replaced by hw’.
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For e _<e0 the following calculation is therefore valid. Set

z(x t)-tvt(x,t)+ v(x’t--)
m-1

Then z(x, 0)-->0, z(x, t)>-0 for x i)fl, and if we define the elliptic operator

Ew Amvm- w+ pv:- w,

then zt- Ez >_0 by direct computation. Hence z_>0 for x f, t<_T’ by standard com-
parison theorems [24], and T’ < T is arbitrary.

Therefore, using the equation (2.7(e)),

(2.8) --AvT("t)<--Xvf("t)+ (n-- i)
for t(0, T(vo)) in a pointwise sense. Since v(.,t)-v(.,t) uniformly, (2.6) holds.

Remarks. (i) Since v’( t) H(fl) for a.e. (0, T(v0)), the inquality (2.6) actu-
ally holds in the usual weak sense.

(ii) From the fact that v(.,t) is a positive subsolution of a certain elliptic
equation we will derive estimates for v(.,t) in L(f). In the paper [5] similar types of
arguments are used for the study of (0.1) in v with X--0 and a very large class of
initial values.

PROPOSITION 2.4. Assume the hypotheses of Proposition 2.3 with ,<_ ifp--m, and
let t (0, T( vo)).

(i) lfp <m there exists t=(N,f,m,p ) such that

(2.9) "V(’,t)l[L(fl)’<l( kl/(m-P)+ )((m_l)t)l/(m-1)
(ii) Ifp m, <, there exists E2 2(N, fl, m, o), o >max(1/m,N/4m) such that

(2.10) IIv(’, t)ll,.u -<
((m-1)t) 1/’-’ (X-X)l/"-l-t-

(iii) Ifp m, there exists E E3(N,, m, q), q> 1, such that

(2.11) ,,v(. ,t)l[i=(fl) <-3( [,v(. ,t)l,q()q )((m_l)t)l/,-,)
Proof. It is enough to prove these estimates for those for which v"(.,t)H(f).
We will use the following estimate from the regularity theory for divergence from

elliptic equations (See, for example, [16, Chap. 2 appendix], for a nice explanation of
these matters.)

If u H(f), u>_O, -Au<_f +f2,fiLr’(), ri>max(1,N/2), then

(2.12) Ilullu<-o(rl)llflll..<u+(r2)llf211.2u.
where the constant (r) depends also on N and f, and is nonincreasing in r.

Set w= v(., t), 3’ 1/((rn- 1)t). By Proposition 2.3 and (2.12) we have im-
mediately
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Now for r >q/p, r_>q, q>_ 1,

liP--q/rill q/rl m ’0(SI) ,l(mq/r,)/(m--p+q/ri)

811/fs,-i IlWllZq()

’0($2) (mq/r2)/(m-l+q/r2)

with

8,,/z>O, s s2 n(s)p-q/rl 1- q/r2 ss/(s--1)

Choose 81 1/4h(rl), 2-- 1/43,0(r) to find

(2.13) (q/rl)/(m--P+ q/rIIw <.)_<r(m ,p, q, r )k1/(m-p+q/r)llwllLqff)
(q/r2)/(m-- +q/r2)+ r(m, 1,q,rz)v /<m- +q/rz)llwll o< 

where

F(m ,p, q, r ) (2(4l/- ) )r/(s ))l/m,o( r m

Ifp <m, then we may let rl, r2 oo to obtain (2.9) with

1 max(F(m,p, 1, oo), r(m, 1,1, oo)).
Next, if p-m, , <,l, we first obtain an a priori estimate for IlWilL2m(). Multiply-

ing 2.6 by wm and using Poincar6’s inequality gives

(2.14) f. f m+ l)/2m(tl --X ) w2m’ wm+’<_IIwlI,=-)IfI

where IZl denotes the Lebesgue measure of . Thus

IlwllL-(S)<( Y[l(m-l)/2m )’i:,

We now let r2 oo and substitute (2.14) into (2.13), with q=2m to obtain (2.10)
with

e_-max( F(m,m,2m,rl)l2l’/m,F(m, 1,1, oo)).
Finally, if p m, -t we again let r2 - oo and take

e3-max(?]’/qF(m,m,q,r),F(m, 1,1, o))
for some fixed r >max(l, N/2, q/m).

Finally, before giving the proof of Theorem 1.3 we need some control over the
behavior of solutions near t-0.

PROPOSIXION 2.5. Let the hypotheses of Proposition 2.3 be satisfied with ? <-? if
p m. Then T(vo): oo.
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Furthermore
(i) If p<m there exists a constant 5--5(N,,m,p,X,IlVollLl(u)) and a number

e >0 such that

folf’+dxdt<-5
(ii) Ifp-m, <-1, q> 1, then there exists a constant 6-6(N,,m,q,X,lloll<u))

and a number e >0 such that

fof’+dxdt<-6
Proof. (i) In this case the fact that T(vo)= oo is clear from (2.1) and (2.9). By (1.2)

IIv (", t)I1,:<.)-< Ilvoll,:<.) /xfotl[v’(.,s )I1,:<)ds
-< Ilvoll,>)/ xfo’ v(.,s)11)llv(’, s )II ’<.)ds

-< Ilvoll ,<.)/ftf(s)IIv(’,) I1,><.) ds
"0

where

using (2.9). Sincep <m, fL)(O, I). By GronwaII’s inequality

fly(" t ) IIL’(fl> < IIVOII L..fl> ( -F ( >(s) ds ) exp (tf( s ) ds )).C[lvOllL.(.
for tl, where C depends only on m,p,h,N and ft. Thus, for e(O,m-p)

v+dxdt IIv(’,)<.> IIv(’,)llL’<.>d

(ii) To beon with we wish to multiply the equation by q- and integrate over Q
for some t (0, T(vo)). Ts procedure may be justified by approximation, as in Pro-
position 2.3. We obtn

(m+q- 1)2
Vv(+q-’>/212dx dt

tvm+q--Iq dx dt

for (0, T(vo)). By intedafion

:’:vm+q-ldxdtt[D(m+q-l>/212dxd,+C() oqdxdt
o
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with O-(m+q-1)/q, 8>0, and C(8) depends also on N,,m and q. We choose
8=2m(q- 1)/(m+q- 1)2 to find

(2.16) ( )0
and

(2.17) 2mq(q_l) fotf f (for )o(m-l-q--1)2
[Tt(m+q-i)/2]2dxdt< q(x,O)dx+C() uqdxdt

From (2.16) and (2.17) it follows that there exists (0, T(vo)) depending only on
N,,m,q,X and I[Voll.qtu), and a constant C depending on the same quantities such
that

(2.18) IIv(" ,t)llq(u) <C, O<t<,,

(2.19) foTifflom+q-ldxdt<C.
Now, if X<X then the desired conclusion follows from (2.19) and (2.10), with

e=q-1.
If X-, then from (2.15) with q replaced by m+ and the lower limit of

integration replaced by ,
I1’ (", t)I1,’+’)-< II (" ,) I1,-+’), tl

I1(", ,)I1<)11 a/<m+ l)

((m--1)’1) ’/(m- 1)

by (2.11) and (2.18).
So by another application of (2.11), with q-m+

II(.,t)ll<)c fort
from wch the conclusion again follows.

Proof of Theorem 1.3. Consider the case p<m. Let 0.o in L() .H
L() for each n. For each n denote the solution of (0.1) with initial value o,, o,,
by ,, ], v respectively. (Here v + max(0, ), - min(0, ).) By comparison

for x 0. The results of this section apply to and -; in particular

,(t), t>0,

where (t) is the function on the fit-hand side of (2.9).
Thus, on any compact subset of X (0, ) the sequence {,} is uniformly bounded,

and therefore equieontinuous by Theorem 2.2. By diagonalization we may then find a
subsequence n k and a lit function (x,t), I](.,t)]l=<)fl(t), such that
pointwise on fi X (0, ) and uniformly on compact subsets, so that C((0, ) ).
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Next, by Proposition 2.5, the sequence {vfk } is uniformly bounded in L+*/V(Qr)
for any T>0. Since it is pointwise convergent, it is strongly convergent in L(Qr), and
in particular v p Ll(Qr).

Set e(.,t)=S(t; Vo,hvP). By (1.2), since vnk(.,t)=S(t; Von;hvfk),

(-,,) )11 ,,,o,-< Ilvo- vow(., 0)II / loll{l)p(.,s) l)nP&(.,s ){I L’(ft)dS"

Letting n--,oo one sees that v=t3, that is v(.,t)-S(t; Vo, AVP), so v is a mild solution
of (0.1) on [0, T].

For the case p-m, 2_<2 we pick a sequence Vo so that Vo--,vo in Lq(f) and
v’ Hd(f) Iq L(f]), and define vn, v,+ v- as above.

Arguing as in the conclusion of the proof of Proposition 2.5, we may show that

(2.21) IIv;(.
for some fixed constant CO depending only on N,2,m,q,A and IlVOllLq<). Therefore,
from (2.10) if X<, or (2.11) if h =,l, we have the estimate (2.20) in this case also, with
a different choice of fl(t). The remainder of the proof is similar to the case p<m and
we omit the details.

Finally to obtain (1.9) we substitute (2.21) into (2.13) to get (1.9) with

Ea= max( F(m m q, rl ) hr,/qCo, F(m 1, q, r2 )C(oq/r2)/(m-- + q/r2) )
r2

for any r2 >max(q, N/2), r >max(q/m,N/2, 1).
Remark. Any solution of (0.1) which can be constructed by the method of this

theorem must satisfy the hypotheses of Proposition 1.2. There is then only one possible
limit for the sequence (v), so the entire sequence converges.

3. We turn now to the large time behaviour of solutions of (0.1). Here is some
notation.

(3.1) E-- {z" zm(_.C2(’2)("lC(’),z>--O and --AZm--XZP},
(3.2) E*=E\{0).

E is the set of nonnegative equilibrium solutions of (0.1). Clearly 0 E, whatever
the choice of h, m and p. By the strong mafimum principle [24], z >0 in fl if z E*.

Now suppose v0 is given in some class for which there is an unambiguously
deterned solution of (0.1), at least on some time inteal. Denote this solution by
v(x, t; Vo) and define the semi-orbit

(3.3) y,(Vo) (v(.,t; v0): tr)

for -_>0. It is possible that 3q(Vo)= for large enough . We will write

v,(Vo)<-c
if ,,(Vo) :/: for every _> and Ilwll oo()

Next define the w-limit set
-< C for every w q(v0).

(3.4) w(v0)--{zC()" there exists too such that

v(-, t,,, vo) z uniformly as n oo ).
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PROPOSITION 3.1. (i) Suppose(Vo)<--C for some >0, C<o. Then tO(Vo)Va
and is compact and connected in C(f).

(ii) Suppose o(Vo) consists of a single element zo. Then zonE and Ttm(’,t;
Tz strongly in L2(f).

Remark. Both parts of this proposition are valid for a much larger class of
equations than (0.1). We defer the proof of (ii) until the end of 4; it will not be used
anywhere.

Proof. (i) If /,(Vo)<_C, then the collection of functions {v(.,t; Vo)}t_> is uniformly
bounded, and hence equicontinuous, by Theorem 2.2. Therefore o(v0) by the
Arzela-Ascoli theorem. The other two properties are standard; see for example [3] or
[91.

For the remainder of this section we consider the asymptotic behaviour of solu-
tions of (0.1) under the hypotheses of Theorem 1.3. Then v(., t; v0) is well defined for
vo L(fl) ifp<m, or v0 zq(), q> 1, ifp-m and )-<) I-

TrIEORM 3.2. (i) Let <--p<m. Then E* consists ofa single element zo. Ifvo L(f),
Vo>_O, voO, then o(Vo)-(z0}.

(ii) Letp-m, )<), voLq(), q> 1. Then (Vo)- (0}.
(iii) Letp-m, )-)t, vo Lq(), q> 1. Then

(I)0)--(0pll/m), 0--(fl)0p dx /( f2pll-l-l/mdX
Proof. (i) For a complete discussion of the equilibrium problem, see [4]. The

uniqueness of zo is actually a consequence of the argument given below.
We first recall that a comparison property is valid for solutions of (0.1); namely, if

v,3 are solutions of (0.1) with v(x, O) <_d(x, O), then v(x,t)<_3(x,t) for t>0. This may
be proved as in [3, Thm. 12]. It follows that it is enough to assume that either Vo<_Zo or
Vo>_Zo. Suppose first that v0_>Zo; then v(x,t)>_Zo(X ) for all xEf and t_>0. By
Theorem 1.3 "t(Vo)<-C for all >0 and some C; hence v is a weak solution of (0.1) on
[, T] for any >0, T<oo, by Proposition 1.1. We may take p-z’ as test function in
(1.3) to obtain

(3.5 

Therefore

(3.6) ftf
for any >0 and <, and the rit-hand side is bounded independently of t.

Now the integrand on the left-hand side of (3.6) is nonnegative, and by Theorem
2.2 the function

f.v ( )zg(x )( Vm--P( X, t) z--P(X )) dx

is uniformly continuous on , ). Therefore we must have

(3.7) lim fl)P(x,t)z(x)(tgm-p(x,t)--z-P(x))dx--O.
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But if w tO(Vo), then from (3.7)

Since the integrand is nonnegative and w>-zo>0 in 2, we must have w----zo, i.e.
,(Vo)= (Zo}.

Now suppose Vo<-Zo, so that v(x,t)<-zo for all zfl and t->0. Then (3.5) is still
valid, with -= 0, from which we deduce that

(3.8) fo"fn ’(’19 X t)Z(X)(Z-P(X)--Vm-P(x t))dxdt_ +l(x)dx.

As in the first case, it follows that if w tO(Vo), then

f,w,(x),( )(,-,(x ) wm-’(x )) a-- O.

Since Zo>0 in f, it follows that

wP(x)[wm-p(x)-z-P(x)]-O a.e. in f,

but since Zo>0 and w is continuous, the only possibilities are w=---0 and wzo.
However from (3.5) again

x, ),Z<x ) ax >_fvo<x x ) ax >o.

Letting t oo through any subsequence, we see that w =0 is impossible, hence to(vo)
{Zo} again.

The proof of (ii) follows directly from estimate (1.7).
For the proof of (iii) and also for later use, we introduce the functional

-ira Xmfv(3.9) J( v ) vvl-dx- +dx.m+p

It is shown in [18, Lemma 4.1] that

(3.10) 4m f0’fa(m+ 1)2
(v(m+l)/Z)2tdxdt+J(v(. ,t)) <__J(vo)

if v is a weak solution of (0.1) with v’ Hd(f). At the lower limit could be replaced by
any time other than 0, we see that oJ(v(., t)) is nonincreasing, i.e. J is a Lyapunov
functional for this problem.

It is also shown in [18] that

(3.11) ,uf vm+(x’t)dx-fuv’+’(x’O)dx=fotfu( Avm+p(x’t)- Ivvm(x’t)12) dxdt
for weak solutions of (0.1).

In the case at hand, namelyp m, h h l,

_1 f)2,dx
By the variational characterization of X, J(v)_>O if e/-/(f), and J(v)=O only if
e" O0 for some constant O.
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Now let Vo.Lq() q> 1, and let v(x,t; Vo) be the corresponding solution of (0.1).
By Theorem 1.3, V,(Vo)<_C for every z>0. By (3.11) with lower limit replaced by r,
v"L2(r,T;H()) for any >0, T<oo. In particular v’(.,t;Vo)H(ft) for some
t>0, and hence for any larger t by (3.10); in fact v"L((r, oo); H0(fl)) for any z>0.
If wto(Vo), then certainly w’Hd(fl) so that J(w)_>0. We claim that J(w) =0.

Supposing that this is not the case, then since J does not increase, and

J(w)<_ lim S(v(.,t,; Vo))

for any subsequence t,--, oo, there must exist 8>0 such that

J(v(’,t; Vo)) >--$>O

for all t >0. From (3.11) it follows that

f’+’(x,t)dx-fv"+’(x,)dx -2ftj(v( ,t; Vo))dt<--2(t-z)8

and this is clearly a contradiction as oo if 8 >0.
Therefore J(w)=0, whence wm=O0 for some 0. The constant 0 may be de-

termined in the following way. Since v(., t; %) is a weak solution of (0.1) on [z, T] for
any z >0, T< oo we may take O-O as test function in (1.3). This gives

t_>z>0.

Letting 0, t oo through any subsequence gives the desired conclusion.

4. Let us finally consider the cases of (0.1) not included in the previous discussion,
namely p>m, or else p m and 2k > . We assume that v0 L(F) so that (0.1) has a
local time weak solution, by Theorem 2.1 (or more precisely, by remark (iii) following
the statement of the theorem). We also suppose v0_>0.

The case p =m, h >)t may be immediately disposed of; there are no nonnegative
solutions of (0.1) which exist for all time except v----0. This is a special case of results in
[25, Thm. 5.1] or [12, Thm. 2.1]. We sketch here the short formal argument.

If the equation (0.1) is multiplied by the eigenfunction O , one integrates to obtain

So (so) 
by Jensen’s inequality, since we have assumed that IIO]]L,)-1. Thus the function

fv(x, t)O (x) dx satisfies a differential inequality which has no positive global time
solutions. The condition X_<X is therefore necessary, in general, for the solvability of
(0.1) on arbitrary time intervals. Using arguments as in {}2, one can show that for any
vo L(f), q> 1, there exists T>0 such that the problem (0.1) has a mild solution
v C([ 0, T); L())fl Lo((0 T) f) and limt_, rllv(’, t)ll,-

We come then to the case p >m which is more complicated than any of the
previous cases; our results are correspondingly less complete.

One cause of difficulty is the fact that solution of (0.1) may or may not exist for all
time. Here are two conditions which guarantee that v(., t; v0) cannot exist for all time.

(4.1) (i) J(v0) <0 J defined by (3.9) (see [12], [18]),
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(p--m) /’ -- (see [12], [25]).

We remark also that nonuniqueness of mild solutions is to be expected in this case,
although such a result has only been proved when m 1; see Haraux and Weissler [31 ],
Baras [32], Ni and Sacks [33].

From now on we restrict attention to those initial values for which ,(v0)-< C for
some ->0, C<o. In such a case to(v0)v by Proposition 3.1. We expect that
to(Vo) cE but are unable to prove this (except in the case N-- when it follows by the
arguments used in 3]).

In this section we will give three different conditions on v0 which imply that
to(vo) (0). By analogy with the case m- we expect that 0 is an asymptotically stable
equilibrium solution of (0.1), while positive equilibrium solutions are unstable, and
indeed our results imply this. Some results concerning the existence of a stable mani-
fold for an unstable equilibrium are given in Ni, Sacks and Tavantzis [34].

First here is a review of some facts about the equilibrium problem

(4.3) -hz"=Xzp, xf, z=O x2.

For arbitrary smooth bounded domains f CR v andp/m<(N+ 2)/(N-2), (p/m
< for N-1,2) it is known that there exists a positive solution of (4.3); see for
example [1] or [23]. This solution is the unique positive solution if f is a ball [13] or is
unique among positive radially symmetric solutions if [ is an annulus [21]. However if
f is an annulus, there may exist both radial and nonradial solutions [7]. We know of no
multiplicity results for more general domains.

Ifp/m >--(N+ 2)/(N- 2) and f is starlike with respect to some point, then there is
no positive classical solution of (4.3) [23], but for other domains there may be, e.g. if f
is an annulus [15].

We require two lemmas. The first actually holds without restriction on m,p and h
while the second requires p >m.

LEMMA 4.1. Let ,(vo) <-- C. Then EN to( vo) :/= f

Proof. By Proposition 3.1 to(v0)v ; also there is some constant C so that
J(w)>_-C for to’,,(v0) (closure in the L norm). As in Theorem 3.2, vm
L((, );H(f)) for any >0, and hence IIx7w"ll,.() is uniformly bounded for
w3,,(v0)>0. Thus J is proper lower semicontinuous and bounded below on the
compact metric space to(v0). There exists then zo tO(Vo) such that

J(zo)= min J(z).
z(Vo)

But v(-,t; z0)to(v0) for any (i.e. to(v0) is a positive invariant set) from which it
follows that

J(v(.,t;Zo))--J(zo) for all t>0

and this can occur only far z0E by (3.10).
LIMMA 4.2. If 0 to( Vo) then to( vo) =_ {0.
Proof. Pick a domain such that f C f and let b, ,l be the corresponding first

eigenfunction and first eigenvalue, with normalizationb->0, I111<.)-1. Let
minx(x); clearly &>0. If w-(eb)/m, then for e(,/)m/(p--mw is a super-
solution of (0.1) and w>-(e)t/m for xf.
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Now suppose z 0(Vo), z0 and v(., t,, Vo)0 uniformly. Choose

There exists n o such that for n>-n o IIv(._,t,;vo)llvo(u)<()l/m which implies
v(x,t,;Vo)<_w,(x) for all such n and xfl. But then v(x,t;Vo)<-w,(x)<-el/m<
Ilzll LOO(a)/2 for all ->t,o. Thus z 0(Vo) is impossible. [3

We introduce now one final notation. Set

(4.4) d=d(fl)-inf J(z)
zE*

with the convention that d= + oo if E*- .
For any z E*,

J(z)= 2 m+p x7zml2dx>O forp>m,

so that d>_0 always. Under certain circumstances we may be sure that d>0. Here are
some examples.

(i) Ifp/m <(N+ 2)/(N- 2) ( p/m < oo if N- 1,2) then for z E*

)
(m+p)/2m

f.l z -I ax-xf: /-ax<_cx
by the Sobolev embedding. Hence

j(z)>( m )(1)2m/(p-m)

--2 m+p --(ii) Ifp/m >_(N+ 2)/(N- 2) and f] is starlike, then E* [23] so d= + o.
(iii) If E* is a finite set, e.g. if f is a ball [13], then clearly d>0.
THEOREM 4.3. Let p >m, vo L(f), and vo >-0. Then each of the following condi-

tions implies that o(vo) (0).
(i) ,/,( Vo) <_ C and J( vo) <d.
(ii) There exists w E* such that vo <_w, vo w.
(iii)

( 1) l/(p--m>l/m
T

for some domain with !, & defined as in Lemma 4.2.
Proof. In each case we show that y,(Vo)<_C and E* fq 0(Vo)= . Then by Lemma

4.1 0 o(vo), and the conclusion follows from Lemma 4.2.
(i) If gEE*, then J(g)>d, but if zo(Vo) then J(g)<_J(lgo)<d. Hence E*fq

o(Vo) .
(ii) By comparison v(x,t; Vo)<-w(x) for all xf] and t_>0, so ,(Vo)<_C. Also if

z 0(Vo) E*, then 0 <z(x) <w(x) for all x and both functions satisfy (4.3).-Multiply-
ing the equation for w by z m and integrating by parts gives

O Xfwmzm(wP-m zP-m ) dX.
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Since the integrand is nonnegative, and w,z are positive in f, we must have w =--z. But
(3.5), which is still valid here, implies that

Letting o through any subsequence shows that z----w is impossible. Thus E* A
,(Vo) .

(iii) Using the notation of Lemma 4.2 it follows from the given condition that
v(x,t;Vo)<_w(x) for all xfl, t>_0 and e-(l/;)m/p-m). Thus ,(Vo)<-C and if
z ,(vo), then

1) l/(p--m)

<

But if z E*, then multiplying (4.3) by p and integrating by parts, we get

o--f[oIZm(xzP--m--Xl) dX
from which one infers that IIzll,>(,t/,)/<-m), Therefore E*fq(v0)= again.

Remark. Whenever v(.,t; Vo) tends to zero we may also conclude that a decay
estimate of the form

IIv(" ,t; VO)llL (fl) tl/(m_l)
is valid, for some constant depending on the data and the initial value. To see ts, we
just obsee that v is eventually a subsolution of

with X<X, and then apply the estimate (1.7).
We conclude with the proof of Proposition 3. l(ii).
Proof. Without loss of generality suppose that vH([)L(). By Lemma 4.1

zonE. Let J =limtJ(v(., t; v0)); ts lit ests since tJ(v(.,t; Vo)) is nonin-
creasing, andJ J(z0) > .

By (3.11) and the definition of J

Dm+l(X,t) dx D+ldx 1-- m+pdx-2J(D(.,t;Do dt.m+p

The term in brackets has a lit as and since its integral from 0 to t is uniformly
bounded, ts lit can only be zero. Thus

J -x

since o E.
If we now pass to the lit in the equation

J((" t" V0)):7 Ivvml2dx vm+Pdxm+p
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we get

ltirn f g+,ax flwgl dx.

We conclude that X7v"(.,t)-o XTz’ strongly in L2(f]) since it converges weakly in
norm. V1
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THE ASYMPTOTIC BEHAVIOUR OF THE SOLUTION
OF A NONLINEAR DIFFUSION EQUATION*

CARMEN CORTAZAR AND MANUEL ELGUETA

Abstract. We prove that a generalized solution of a filtration equation of the form Ou/Ot=
(i/8x)(o(u) O u/8x), where lims_.O( o(s)/sx)= 1, behaves asymptotically as the selfsimilar solution of Ou/it
=(O/x)(u Ou/Ox).

1. Introduction. The purpose of this note is to study the asymptotic behaviour of
the solution of the filtration problem

0u
(1.1) 0---= 0x---Z(u)in R (0, oo),

where (s)C(-(0}); ’(s)>0 if s>0 and for some >0 ’(s)/sX as s0.
The initial value Uo(X) is assumed to be bounded and in L, Uo(X)O x and
(O/Ox)(Uo(X)), weh efists in the sense of distributions, belongs to L. From now
on we denote Iluoll-m and Ilu011-E.

In [9] Oleiniek proved efistenee and uniqueness of generazed solutions of prob-
lem (1.1).

Let Au--(O/Ox)(u) defined in a domfin of continuous L functions, C at
points where u0 and such thatAuL and (O/Ox)(u)O if u0 or if x .

It can be shown, using results of Crandall and Liggett [4] about nonlinear semi-
groups that A, the closure of A, weh is single vMued, may be regarded a a dissipative
operatorn L and generates a contraction segroup there; i.e. etauo=m+
(I--t/nA)-Uo efists in the L norm. See [1], [3] or [51.

It is known that u(x,t)etauo is a generafized solution of problem (1.1) in
S R 0, ), that is,

i) u(x, t) is continuous in S,
ii) (O/Ox)(u) efists in the sense of distribution and belongs to L,
iii) If C(S) then

axat+ Uo(X),(x,O)ax=O.

See [2], and its references. This permits us to use the results for semigroups, as the
comparison theorems stated later, to prove results about generalized solutions.

Let We(x,t) be the selfsimilar solution (i.e., kWe(kx, kX+2t) We(x,t) for any
k >0) of

(1.2) 0u 1 )2
--= ---’ux+’ u(x t)=Eo(X )Ou + 1 Ox 2

where 0 denotes the Dirac delta function at 0 (see [8]).

* Received by the editors July 19, 1982, and in revised form August 18, 1983. This research was

supported in party by Direcci6n de Investigacibn de la Universidad Cat61ica de Chile through DIUC Grant
45/82.

Facultad de Matemhtica, Universidad Cat61ica de Chile, Casilla 114-D Santiago, Chile.
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Our main result is an alternative, and hopefully simpler, proof of the following
theorem of Kamin [7].

THEOREM 1. If u(x, t) denotes the generalized solution of (1.1), then

lim We(.,/)llo=O

where E f

_
oouo(Y) dy.

We would like to note that we do not need the hypothesis E(s)--, + oo as s + o
and we prove that the uniform convergence takes place in all R. On the other hand
Kamin treats a situation more general than Y.’(s)/sx as s 0.

Our proof is based on the comparison theorems that appear in Vazquez [10], [11]
and Cortazar [3], which we include for the sake of completeness.

THEOREM (co_rnparison).
i) Let f,.=etAg, with gD(A), i= 1,2. Ifg <g2 then f <_f2 and if fLoog <_fog2

then fLf <- fxoof2.
ii) Let f=et,’,g, with gD(A) symmetric with respect to x=0 and g or g2

increasingfor x <_0.

Let Aiu-(O2/Ox2)Z,i(u), i-1,2. If Y.(s)<_E’2(s ) for s[O, min(llgllo,llg2llo)],
tt <--t2 and fLoogi<_fXog2 for x<_O. Then fi are also symmetric with respect to x=0,
fL oof <- fLoof2 ifx <-0 and the correspondingfi is increasingfor x <_0.

We observe that statement ii) is slightly different from the one in [3] but the proof
is exactly the same.

In order to prove Theorem we need Theorem 2 below, which we think is of
interest by itself.

TI-IEORM 2. Let u(x,t) be a generalized solution of problem (1.1) and let :
--,[0, oo] be so that xI’C(R)fqC2(- (0)); xI,’(0)=0 and "(x)>-O Vx0. Then
forO<T<T’

We will use this theorem in the case xI,(s)= s .
2. Proot o| Theorem 1. Let u(x, t) be the generalized solution of (1.1). Define

u (x,t) ).
Then uk(x, t) is a generalized solution of

u(x o)

where Y. k(s ) kx+ y.(s/k).
As in Kamenomostskaya [6], Theorem will be an easy consequence of
MAIN LEMMA. For any T>0

lim Ilu (’, T)-
koo

Proof of Theorem using the main lemma. Assuming the previous lemma to be true,
using the selfsimilarity of WE(x, t) and setting T/(x+)k /(x+), we obtain
tl/(X+2)jju(.,t) We(.,t)JJoo= Tl/(X+2)llu/( T)- We(., T)I] and hence the theorem.
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So our task now is to prove the main lemma. For this we need
LEMMA 1. Let u(x,t) be a generalized solution ofproblem (1.1). Then

Ilu(’,t)lloo-<n(x)

where C=info<_s<_2t(Y’(s)/sx) and B() depends only on ,.
Proof. Pick xo [, consider the function

0(x ) Uo(2X0 x ) + u0(x );
then rio(X) is symmetric with respect to xo, Uo(X)o(X) and fro(X)= 2E.

Let C=info,2(N’(s)/sX), then CsXN’(s) for s[0,2M] and let W(y,t) be
a selfsimilar solution of

(2.2) 0W C =
0t =X+l" x2 (WX+’)’ W(x’ O) 2Exo(X )"

Choose T small enou such that
x x

f_W(y,T)dy-f_ao(y)dy VXXo.

The comparison theorem ii) implies

ff W(y, T+ ) dy ( y, ) dy,

where (x, t) is the solution of problem (1.1) with initial condition o(X)-
Since fLoW(y,t+ T)dy=f5%a(y,t)dy=2E, we obtain

W(y,T+t)dy u(y,t)dy Vxxo.

This implies

t(Xo, t) --< W2(xo, T+ t) -< W2C(xo, t).
Since Uo(X ) <-ao(X), by comparison we obtain U(Xo, t) <(xo, t) <- w2Ce(xo, t). Finally

E l/h+2
wzCe(xo,t)-B(,) ’according to [8] and the lemma is proved.

LEMMA 2. For any fixed T>0 and every interval ( a, b)

y,T)dy (y,T)dy as k- o

Proof. We assume first that uo has compact support.
Since Ilu(.,t)lloo-O as t +o, by Lemma 1, there exists a sequence (t}= so

that Ilu(’, t)ll --< 1/n for >t
Let Y/(u)= uX+ p(u) and let

A= sup
O<--u l/n U’

Without loss of generality we assume -An->0.
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Let W+ be the selfsimilar solution of the initial value problem

OW: O( xOW.+ )-O; =(l+a.)-x (W+ ) W(x,O)-E.6o

and - the corresponding selfsilar solution with -A. instead of 1 +A.. Since, by
[81, [91, u(.,t.), W(.,t.) and W(.,t.) have compact support, there exists a sequence
{x.}.o(x.O) such that

+ be the solution ofLet z.
0z 0 2

0t

and z- the corresponding solution with W.-- instead of W+. Expression (2.3) together
with the fact that for u-< 1/n

(1-A,,)uX<-Y/(u)<--(1 +A,,)ux

given, by the comparison theorem, that

W-(y x. t)dy < -(y-xn t)dy u(y t)dy
oo
Zn

oo

<_ z+. (y+x.,t)dy<_ W+(y+x.,t)dy Vx<_-x.,

A change of variables and the selfsimilarity of the solutions w+ and w give

x Xn x x Xnf_=w; ( ) dy_f_oou,(y,t)dy_f_ooW.+ ( y+-,t ) dy
tnVt>_ x<_

kX+2
X

Letting k---, + oo, we get

W.-(y,T)dy<_ lim u,(y,T)dy<_ lim f uk(Y,T )
oo k--, + k oo "t-- oo

<-f=w.+(y,T)dy Vx<0

and finally letting n --, oo, we obtain that for x <0, limk_. +oo f5oouk(y, T)dy exists and
is equal to f5ooWE(y,T)dy. For x>0, the same argument with f instead of foo
shows that limk oo fUk(Y, T) dy exists and is equal to fWE(Y, T) dy. Since f _oo

oo u,
f_ooWE= E, we get Lemma 2 for the case when u0 has compact support.

if uo does not have compact support, let Uo,n Coo with compact support be so
that ug-ouo in Z as n-o + oo and Ilugll-Iluoll-E.

Let u,(x, t) be the solution of the initial value problem

(2.4) O--= ax 2 ,(u) u(x,O)=ku)(kx)
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Now

fb(uk(Y T)- We(y, T)) dy

<_f OOlu(y, T)-u(y, T)I dy+

+oo
< f_ Ikuo(ky)-ku(ky)ldY +

f luo(Y)-ug(y)l dy+

fb(u(y, T)-- We(y, T))dy

fab(u( y, T) We(y, T)) dy

fa(U( y, T ) We( y, T )) dY]
and letting k + oo and then n + oo, we get Lemma 2.

LEMMA 3. If >0 then there exists a constant C independent ofk such that

xY’k(Uk) (Y,t)----t-.

Proof. Fix T>0 and let u be a sequence of Coo functions so that
i) Ilu,(’)-u(’, T)lloo <, Ilu(’)-u(’, T)ll <,
ii) u,(x)>0 Vx,
iii) (O2/Ox2)y,(u,)L.
Let u,(x, t) be the generalized solution of

(2.6) Ou, 0_____
o-?=Ox ((u,)), u,(x,r)-u,(x).

Then u,(x,t)>O VxR Vt>T and hence u,(x,t) is a classical solution of (2.5) ([9], [3]).
Therefore

(2.7) f_= i)t Y.(u)-Y,(u).

Set (v)= fX(s)ds. Integrating in (2.7), we obtain

--12T!fff+_[(u,(x T))-d#(u,(x 2T))ldx
"T X(u)(x,t adt.

We note that the boundary term in the integration by parts vanishes due to the fact that

0Y,( u)/Ox Loo and Y,( u)(x, t) --, 0 as x _+_ oo. Therefore

and since

(u(x, T)) ,(llu(" T)II)" u(x, T),
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we obtain

Tf+ oo

(2.8) ’r -oo e(u,) dxdtX(llu(’,z)lloo)" +u.(x,Z)dx
_<X(llu(-, T)lloo / 1). (llu(’, T)lll / 1)

fd u(x,t)-u(x,t)dx<-e

for t>T, we have that (O/ix)E(u) converges weakly in R [T,2T] (in the sense of
distributions) to (O/Ox)Y.(u) as e0. Hence, by (2.8), converges weakly in L2 of
R [T, 2T], and consequently.

ffRX[T,2T] 12x(U) ’(llu(’,Z)lloo+l)’(llu(’,T)ll,+ 1).

By the same argument replacing u(-,T) by Uk(’,T) and E by Ek (and hence
u(x, ) by uk(x, )), one obtains

ffR x[T, 2T]
(u) (llu(’,z)lloo+ 1)’(llu(’,T)ll,+ 1),

and using Lemma 1, we get

ffxtr,2rl-xX*(u) -<C

where C is a constant independent of k.
Now, if we fix k, there exists t [T, 2T] so that

and, by Theorem 2, one has

o y.,(u,)[=( ,)dt<C-x y,tg --Y

f. 0 I( ,2T)_<-x Y’k(Uk) Y

Proof of the main lemma. Fix T>0. By Lemmas and 3 the family of functions
{k(Uk(’, T))}’=o is equicontinuous and uniformly bounded. Hence the same is true
for the family {Uk(., T)}’=0 and, since it converges weakly to We(., T), it converges
uniformly on compact subsets of R to We(’, T).

Let aR be so that supp We(.,T)[-a,a]; Nbe so that IlUk(-, T)lloo <--NVk and
F, G>0 be so that GsX+x(s)FsX+’ VsN. Pick x0(- m, -a). Then

xo (u(y, Tl)dy(u(x,r))-(u,(o,r))-



ASYMPTOTIC BEHAVIOUR FOR A NONLINEAR DIFFUSION EQUATION 257

and hence, by (2.5) and HNder’s inequality,

,k(Uk(X T))>,k(Uk(X0 T))-[xo X[ 1/2 ( c)l/2
So, if O<Xo--X<(T/4C)[Xk(Uk(Xo, T))] 2, we have

r)).

Therefore, integrating over this interval, we obtain

T a2---[Y’k(Uk(Xo, T))]3< Yk(Uk(Y,T))dy,

or

sup u,( x, T ) _< [ 2C.F._Nx

x_< --a
fau,(y, T) dy] I/(X+ 1)

Finally since, by Lemma 2, f-ouk(Y, T) dy 0 as k + c, we get

sup u,(x,T)-O ask-
x-- --a

Analogously SUPx>_aUk(X, T)-0 as k + oo and the main lemma is proved.

3. Proof of Theorem 2. If

there is nothing to prove, so we assume

Ox )(y, T) <c.
Let u,(x) and u,(x, t) be as in the proof of Lemma 3 and so that

, OZ(u.) OZ(u)
ax (y,r)dy f-o ax

as e-O.
Let k.(x)C so that n----1 on [--n,n], .--=0 off [--n--l,n+l], 0_<_<1 and

Iq,’(x)l_<2 Vx.
Since u(x,t) is a classical solution, (see [3], [9]), we have
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Hence

S_
o Ox (x,T)dx- n(x)q Ox (x,T’)dx

S_--- + ’.().’ (,t) oot (’

= _ *(’" x (x,l ax( (x,l ’(l(x,lex

+ (x).’ Ox (x,t) u)(x,t)(x,t)dxdt

_f_ ,’ (,t> ’(u)(,t) (,t)ddt.

Since 0(u)/Sx, (u) L( X[T, T’]) and Ou/Ot L( X[T, T’]), (see [3]), the
last term tends to 0 as n +; therefore letting n +, we get

in (l(u,)lOx)(s, T’) coaverges weakly to l(u)lx, letting e +0, we obtain

S_ ( ) S;=( )@ "x o
@ (x,T)dx

limf?=..o= (O(u)) >
+= (O(u))(, T’)_f_ ( T’)

and the theorem is proved.
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THE HELMHOLTZ EQUATION WITH
Lz BOUNDARY VALUES*

T. S. ANGELL" AND R. E. KLEINMAN

Abstract. This paper deals with the Hdmholtz equation in exterior domains with Robin or impedance
boundary conditions on a smooth (Cl,x) boundary with data in L on the boundary. Existence and unique-
ness of solutions are established and a constructive method for finding the Green’s function is presented. This
involves modifying the fundamental solution by adding suitable combinations of radiating solutions of the
Helmholtz equation. The coefficients of these added terms for which the modified Green’s function best
approximates the actual Green’s function for the problem are shown to be the dements of the T-matrix which
arises in the null field or Waterman method for treating such problems. Use is made of complete families in
L2 on the boundary and existing results are extended to the general case considered here.

1. Introduction. In this paper we treat the Robin or third boundary value problem
for the Helmholtz equation in an unbounded domain D and with L2 data on the
boundary OD. We establish the existence and uniqueness of a solution of the boundary
value problem and present a constructive method, utilizing modified Green’s functions,
for finding the Green’s function. The relationship between this constructive method
and the null field or T-matrix approach is also described.

The existence and uniqueness of solutions of the Helrnholtz equation satisfying a
boundary condition of the form

u
(1.1) 0--+ ou =/ on0D

was given by Leis [1] in the case that u is differentiable up to the boundary and the data
o andf are continuous. Later, in [2], we showed that similar results obtain for a and f in
Loo(iD) and a complex. These were applied in [3] to extend, to the Robin problem,
results on modified Green’s functions given by Kleinman and Roach [4]. In particular,
we presented a discussion analogous to that in [4] which provided explicit "best
approximations" in various senses, to the exact Green’s functions for the Dirichlet and
Neumann problems.

In the present paper we show how the analysis of’[3] essentially ensures existence
of solutions of the Robin problem in the "generalized L2-sense" for Lo(D) and
for f in Lg_(ID) rather than Loo as required in [2]. We remark that the more familiar
existence theorems for generalized solutions (mostly, if not exclusively, concerned with
interior problems), see e.g. Lions-Magenes [5] or Berezanskii [6], require that solutions
have smoother traces on OD than we require here. For example the general results of
Berezanskii (p. 206) require, for the present problem, that our function f be at least in
H1/:’-(ID) and, in addition, deal only with the case that oC(iD). Our setting is,
therefore, more general. Appropriate definitions of "generalized L,solutions" are given
in our paper [2] and are discussed in Miranda [7] and, both more recently and in more
detail, by Mikhailov in [8] and [9]. The latter author, in particular, shows that, at least

*Received by the editors November 14, 1983, and in revised form February 1, 1984. The research was
supported by the National Science Foundation under grant MCS-82-02-033.

+Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716.
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for interior problems, this type of solution, is a generalized solution in H(D_) when
the boundary dataf H1/2(OD) (see the remarks following [8, Thm. 6, pp. 197-198]).

After considering the question of existence of solutions we then extend our previ-
ous discussion of modifed Green’s functions [3] to show how to construct the actual
Green’s function for the Robin problem. Finally we show how the approximations to
the modified Green’s function are related to the null field or T-matrix method (e.g. [10]
[11]), following the analysis of [12] for the Dirichlet and Neumann problems.

In 2 we establish notation and define the problem; [}3 contains the existence and
uniqueness theorems which are then used to establish some vital results on complete-
ness and linear independence of a family of functions; [}4 shows how the Green’s
function may be constructed; in [}5 the null field equations are derived and the
connection with the Green’s function results of 4 is shown.

2. Notation and statement o| the problem. Let D_ denote a bounded domain in
3, containing the origin and with boundary 0D which is a closed Lyapunov surface

with index 1. This latter condition implies, among other things that the unit normal is
Lipschitz continuous on OD. We denote the exterior of OD (i.e. the complement of
D_UD in 3) by D+.

Let R R(p, q) denote the distance between two typical points p and q in 3. We
will concern ourselves in this work with the following boundary value problem for the
Helmholtz equation

(2.) ( V’-+ k)u(p)=O, pD/,

(2.2a) u(p)=f(p),
Ou(2.2b) On--p + O( p ) u( p ) f( p ), p OO,

(2.3) lira r, --2- ( p ) iku( p } 0,

wherefLa(D), o L,(D) and Imk >__ 0, Imko >_ O. Here we consider the boundary
values to be taken on in the generalized L sense. Thus (2.2) is understood to hold
almost everywhere on D (for details see [2], [6], [81 [1.

We indicate differentiation in the direction of the unit normal at the point
p D by /n, where , is directed outward, from OD to D +. Furthermore we write

/On- and /n,+ to denote the normal derivative whenp approaches /) from D and

D+ respectively. Points p and q are assumed to have spherical polar coordinates

(9, 0, p) and (rq, 0q, q) relative to a Cartesian coordinate system centered in D
A fundamental solution of (2.1) is a two point function of position "o(P,q) which

we write as

eikR
(2.4) ,0(p,q) "= 2rR

The normalization of the fundamental solution is chosen so that Green’s theorem
for solutions of the Helmholtz equation in D/ satisfying a radiation condition (2.3)
takes the form

p O/,

fa (l(P’q) ,u. OY (p,q)u(q)} dsq= u(p), p}D,(2.)
D
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That Green’s theorem and the divergence theorem may be employed for the class of
surfaces considered here is proven in [2].

The fundamental solution has a well-known expansion in spherical wave functions

(2.6) 0(p,q) ’. v(p>)v(p<),

ik (n-m)! }1/2v’i(p) --e,,,(2n+l) (n+m)!
ze,,’(kr)P(cos0)( (1 -j)cosme +jsinm ),

Z,e, ( kr ) h (,,1) ( kr ), Zin ( kr ) =jn ( kr ),

p>={p ifrp>rq, < (p ifr,<rq,
q ifrq>r, P q ifrq<rp,

where

(2.7)

and the multi-index

(2.8) l=(n,m,j), n_O, O<=m<=n, 0=<j_<l

is employed with I/I n + rn +j. The functions in the series (2.6) could be reordered so
that the summation is carried out over a single index, see [12] for explicit details.
Furthermore we define a modified Green’s function as

N N

(2.9) yV(p q) 3’o(P q)+ E E vatrVr(P)o(q),
I/l--0

where N may be + oo and 1’ is again a multi-index as in (2.8). Note that this coincides
with the simpler modification used in [3] when

(2.10) a,=0, l’l.

However, even in the present case, single and double layer distributions with a mod-
ified kernel may be defined which have the usual properties; that is let

(2.11) (SJV’)(P)’= fa I(q)Y(P’q)dsq’ PR3\{0}’
D

(2.12) (DJP’)(P)’= fa (q) 3f 3\
D (p,qldsq, p (0},

and

(2.13) (Kjt)(P)’= fa (q) O’Yf
D -n(p,q)dsq, pOD,

where j=0,1. We remark that K. and S are completely continuous operators on
L2(SD) [13] provided of course that the series occurring in (2.9) converges if N= o.
Moreover SO and DO may be considered as operators with range in L2(D_) and, as such,
are continuous operators from L2(OD) to L2(D_) (see e.g. [7]). This is no longer true
for the modified Green’s functions which are singular at the origin. Nevertheless $1 and
D1 are continuous operators from L2(D) to L2(D_\B,,) where B is a ball of radius
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a > 0. Thejump conditions are

(2.14)
0n

(S’’u) + p, + Ky,u, p D

and

(2.15) lim (D/) /+g, p D,
pp

where K is the L(OD) adjoint of K and denotes complex conjugate. Note that
these relations hold pointwise almost eye,here on D.

3. Existence, uniqueness d complete Iamilies. The modified Green’s functions
described in the preous section may be used to estabsh the estence of solutions of
the standard exterior boundary value problems with L-data. It is with these questions
that we begin tNs section. Throuout, we will assume Rek > 0.

We remark, first, that two results established in [4] are of particular interest here.
First:
L 3.1 ([4, Thms. 3.1, 4.1]). IflmkO then

(3.1) (I+K)w=O ifandonlyif Sw=O
and

(3.2) (I--j)w=O ifandonly if (Djw)=O.
Second is the result wNch .shows that the homogeneous equation (3.1) has only

trivial solutions"
Tao 3.1 ([4, Thms. 3.4, 4.4]). If Imk O, an,= 0 if l’, and

(3.3) an+ < for all 1, Izl 0,

then

(3.4) (  Kx)w=0 ifan o ty gf w=0.

The last result is stated for Imk=0 and it is in ts case that the modified Green’s
function are needed. If Imk > 0 we need consider only the unmodified operator as the
following theorem shows.
OM3.2. If Imk > 0 then

(3.5) (  Ko)w=0 i[andonty if w=0.

Proof. The proof proceeds along the usual potential-theoretic lines. If

(3.6) (+Ko)w=0

then Lemma 3.1 ensures that

(3.7) Sow(p)=O, pO.

If we define a function u on D_ by

(3.8) p ) Sow( p ), p O_
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then, using Green’s theorem, we obtain

_Ou 2(3.9) o=fz [Unn-U-n dS’’[k2- ]fD_ luI2dV"
But since k2- To2:/: 0 (recall that we are assuming Rek > 0) it follows that u=0 in D_
and so, with the jump relation (2.14), we have

Ou 8(3.10) On-=On-(Sw)=(-I+K)w=O’
which, together with the hypothesis (3.6), implies that w 0.

To see that the same result is true for the operator (I--K0) we observe that, since
Ko is compact, the Fredholm alternative guarantees that the kernels of the operators
I-Ko and I-K have the same dimension and hence, to complete the proof, it is
sufficient to show that if

(3.11) (I-/)w=0
then w 0. But if this equation is satisfied, then we may again invoke Lemma 3.1 to see
that

(3 12)
0

On- (Dw) =0.

We then use the double layer to define u in D_ by

(3.13) u(p)=(Dow)(p), pD_

and employ the same argument as above with Green’s theorem to conclude that

(3.14) u=0 in D_.

The jump relation (2.15) then yields (I+ K))w=0 which, combined with (3.11), shows
that w 0 and the proof is complete.

Remark. We should call the reader’s attention to the fact that this last theorem is
needed at the present juncture because the extension of Theorem 3.1 to the case
Imk> 0 is not straightforward. The proof of Theorem 3.1 appearing in [4] utilized the
usual Wronskian relation for spherical Bessel and Hankel functions and consequently is
valid only for real k. The appendix shows how the Wronskian relations may be
extended to complex arguments and presents a unified treatment of these results for
Imk >= 0 and thereby an alternate proof.

Finally we record the analogue of Theorem 3.2 applicable to the Robin problem
and which was proven in [3]"

THEOREM 3.3 ([3, Thm. 3.1]). If Imk >= 0 and Imko >= 0 and if latt+ 1/21 < 1/2 for all 1,
I11 >- 0, then

(3.15) (I+K2+oS:)w=O ifandonlyif w=0,

where we takej 1 when Imk 0 andj 0 when Imk > 0.
We turn now to a discussion of the boundary value problems for the exterior

Helmholtz equation. Notice that, by setting a 0, the Robin problem is reduced to the
Neumann boundary value problem and hence our proof of existence and uniqueness of
solutions of the former problem ensures the same result for the latter. With this
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observation we can establish the following result:
THEOREM 3.4. Let OD be a closed Lyapunoo surface of index 1 and let Imk >= 0,

Rek>0. Then, for every fL2(OD) there exists a unique solution uC2(D+)NL2(OD)
of the Helmholtz equation (2.1) in the domain D+, exterior to OD, satisfying the radiation
condition (2.3) and satisfying either the Dirichlet boundary data (2.2a)

u=f on OD

or Robin boundary data (2.2b)

i)- +ou=f on OD, oLoo(OD ), Imko>_0,

in the generalized L2-sense [2].
Remark. Note, since we require that uC2(D+)NL2(D), that oLoo(D) and

fL2()D) imply that u/nL2(OD).
Proof. Consider, first, the problem with Dirichlet data. The existence of a solution

follows from the ansatz

u=-Dj# inD+, j=/O,t Imk>O,(3.16) 1, Imk=0.

This assumption, together with the jump relation (2.15) and the boundary condition,
leads to the boundary integral equation for the unknown density

(3.17) (I-/),=f.

But Theorems 3.1 and 3.2 show that the null-space of I- Kj and hence that of I-K is
trivial and so the integral equation (3.17) is uniquely solvable for allfL2(OD). The
fact that double layer distributions with L2-densities assume boundary values in the
generalized L2-sense is established in [2] where it is also shown that the divergence
theorem applies even with functions which assume boundary values in this generalized
sense. This enables one to essentially repeat the classical uniqueness proof for the
Dirichlet problem (e.g. [14]) under the present conditions. It follows that, since the
exterior boundary value problem has a unique solution, the function u, defined by
(3.16) with density given by the unique solution of the integral equation (3.17), is the
solution of the exterior Dirichlet problem.

Turning now to the Robin boundary value problem, we make the ansatz

u=Sjw inD+, j=0,t Imk>0,(3.18) 1, Imk=0.

In this case the bounary condition and jump relations lead to the integral equation for
w

(3.19) ( I+ Ks+ oSs.)w=f
Theorem 3.3 guarantees that this integral equation has a unique solution for any
fL2(OD) and again knowing that single layers and their normal derivatives assume
boundary values in L2(bD) as proven in [2], we may invoke the uniqueness theorem for
the exterior Robin problem (see [2, Thm. 3.7]) to assert that the function defined in
(3.18) is the solution of the exterior boundary value problem.
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Having established the existence and uniqueness theorem, we may turn to a
discussion of the family of radiating functions defined in (2.7). We first record the
important result:

THEOREM 3.5. The family (o)ITS=0 defined in (2.7) is complete and linearly indepen-
dent in L2(OD) for Imk_ 0.

Proof. The proof of completeness was given by Vekua [15] (see also [16], [17], [18])
whereas linear independence follows if there is no finite linear combination of { o }
which vanishes on i}D. Assume the contrary, that is, assume there are constants Ct,

I11=0,1,...,N, such that

N

u= E c,o =o, pOD.

Since u is a radiating solution of the Helrnholtz equation with zero boundary values,
uniqueness of the exterior Dirichlet problem ensures that u vanishes on D/. The
orthogonality of spherical harmonics on spheres then guarantees that

N

(3.20) f lul=dx 21kla E IC l -Ih )(ka)l =
SA I/1=0

where A is the radius of any circumscribing sphere and n is the first component of the
multi-index 1. Since there are no zeros of h())(kA) for Imk >_ 0 [19], it follows that Ct= 0
for all I which establishes the result.

Finally we have
THEOREM 3.6. Thefamily

is complete and linearly independent in L2(OD) for Imk >= 0, o Loo(OD) and Imko >= O.
Proof. First we establish completeness. Assume

ov;( p ))f( p ) O

for all I andfL2(0D). Let u be the unique solution of the exterior Dirichlet problem
with boundary values f (which exists by Theorem 3.4). Then, since u and v are
radiating solutions of the Helmholtz equation,

(3.21) Ov7 0u
-g-;n U dS foo vT ds

hence

(3.22)

"-------+v(P))f(p)ds=faD v(p)[ Ou(P)on +ou(p)] ds=O for all 1.

But completeness of (o(p)} (Theorem 3.5) ensures that

(3.23) P--’---’J + ou(p) O,On pOD,
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and then uniqueness for the exterior Robin problem shows that

(3.24) u(p)=f(p)=O, pOD.

This establishes completeness. Linear independence follows by assuming that

(3.25) E c, --n+ov =0, pD.

Defining

N

(3.26) U= Y’. CtV, pD+,

we see that u is a solution of the homogeneous exterior. Robin problem hence vanishes
throughout D/. Then proceeding exactly as in the proof of Theorem 3.5 we see that all
of the coefficients c must vanish, completing the proof.

Remark. Millar [20] has proved completeness under the more restrictive conditions
that k is real and o is continuous on OD. In addition his argument was based on the
existence of a unique classical solution with continuous boundary values and the
density of trigonometric polynomials in L2(1)D). Theorem 2.4 allows for the simpler
proof presented here although it is modelled after Millar’s argument. An alternative
proof of completeness is given by Colton [21] for real k and constant o.

4. The Green’s tunetions. The Green’s function for the Robin problem is a sym-
metric radiating solution of the Helmholtz equation in each of two points, p and q,
satisfying the boundary condition (2.2) with respect to the coordinates of one point for
all values of the other in D/. Following [3], the coefficients in the more complicated
modified Green’s function (2.9) may be chosen so that the modified Green’s function is
the best least squares approximation to the actual Green’s function for the problem in
the sense that the quantity

(4.1) j.= fs fa aV
o -nq (p’q)+(q)l(p’q) dsqdsp

is minimized, where SA is the boundary of.a circumscribing ball of radius A. In what
follows, we fix a particular value for A.

With the definition of the modified Green’s function (2.9) and the expansion of the
free space Green’s function (2.6), this may be written explicitly as

(4.2)

., v,(p) -nq(q) +o(q)v,(q)+ . ag, -nq(q)+ov(q)
I1--o

E o,(p)[ }rq(q)+oV,(q ) dsqdsp,
I11’> N

where the superscript N indicates that the coefficient choice may depend on the degree
of the modification. The definition of v,(p), equation (2.7), and the orthogonality of
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spherical harmonics on SA enable us to explicitly carry out the integration over SA
obtaining

N

(4.3) J= 21klh E 2

2

I!’1 > N D

In this form it is clear that J will be minimized if a, are chosen so that

is the best approximation in L2(D) of -(ave,/an + ova,) for II’I<=N. Since { OvT/On +
av}ltl_0 is a complete family and is linearly independent on L2()D) (Theorem 3.6),
this approximation can be made as precise as desired by taking N sufficiently large. An
explicit approximation may be obtained by solving the algebraic system

(4.4)

where I1’1, Itl < N.
This equation may be rewritten as a matrix equation if we re-index, eliminating the

multi-indices 1,1’ and t. This may be done in a variety of ways so that (4.4) actually
represents (N+ 1) 2 equations with (N+ 1)4 coefficients or/t,. With a slight abuse of
notation (4.4) may be written as a matrix equation where as, QN, Q are the
(N+ 1)2x (N+ 1) 2 matrices defined implicitly in (4.4)

(4.5) aNQN Qv.

This equation is solvable for the coefficient matrix aN provided det(QN): 0. But this is
indeed the case since the set { Oo/On + ao}l__0 is linearly independent on L2(OD) and
(4.5) is always solvable as

(4.6) aN= QvQ1,

With a, so chosen, it follows that

(4.7) i_,na + oo, + E a, + oo 0.
I11=0 L2(OD)

Recall that the exact Green’s function for the Robin problem is of the form

(4.8) /R(p,q)=/o(p,q)+ r(p,q)

where F(p,q) is a radiating solution of the Helrnholtz equation in both p and q. That
the modified Green’s function described here actually does approximate the Green’s
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function is shown in
Tn.Ol 4.1. If ag, are chosen to minimize J, that is as elements of the matrix (4.6),

then there is a representation

(4.9) r(p,q)= E E at,,o,(p)o(q), rp, rp>_A,
It{- 0 1/1 0

where

(4.10) atr lim
N--- ot

and

A > sup rq.
qD

Proof. Since { v } itS--0 is a complete orthogonal set on any sphere there exists an
expansion of the form

(4.11) r(p,q)= E u,,(q)o,(p), r=a,

where ur(q) are radiating solutions of the Heloltz equation. Moreover the expansion
of the fundamental solution (2.6) and the bounda condition satisfied by V(p,q),
(2.2), imply

(4.12) O=+o(q)
v,(p) (q)+ov,(q)+(q)+out,(q) r=A, qD

i1’1o

from wch we conclude that

OUt’(4.13) n(q)+o(q)vt,(q)v,(q)+-nq(q)+out,(q)=Oa.e. onD.
Furthermore since ur is a radiating solution of the Helmholtz equation, there is an
expansion of the form

(4.14) ur(q)= E at,,o(q), rq>=A,

which, with (4.11), shows that F is of the form (4.9). Now define

N

(4.15) u,(.q) E Natrot(q), qD+UD,

where a, are chosen so that (4.7) is satisfied which with (4.13) shows that

(4.16) lim
u,, u ou[l =0.
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Moreover since both ur and u are radiating solutions of the Helrnholtz equation we
may use Green’s representation (2.5) with ’R in place of ’0 to obtain

(4.17)
a f ),R(q,q,)[u,,(q_’)+Our(q,)ut,(q)-u,(q)= o Onq

8u,(q’) ]Onq, -ou,(q’) dsq,,

pD+,

and since YR(P,q) is bounded for rv=A and qOD, provided A >SUpqaDrq, there is
some constant M such that

L2(

Substituting (4.14) and (4.15) and integrating over S, yields

(4.19) 21kl +2[kl E
Iris0 I11 > N

__<4rM Our + u’’ On ou ,

where n is the first component of the multi-index 1. With (4.16) we see that

(4.20) lim ag, =atr.
N---} oo

This completes the proof and shows how the modified Green’s function approximates
the actual Green’s function for the problem. The question of whether the series repre-
sentation for the Green’s function (4.9) will remain a valid representation if rv and rq
are less than A remains unanswered but it seems dear that it will be valid for all p and
q in D+ only if some form of Rayleigh criterion [16] is fulfilled.

5. The null field equations. The null field equations for the Robin problem are
most easily derived from the Helmholtz representation. If u is the solution of the
exterior Robin problem (2.1)-(2.3) then

(5.1)

and therefore

Ov ,0uu -ffn V "n ) ds foD { ( O v
--n + OV ) u-vTf) ds O

for all l, I/1= 0,1,2,- .,
which are the null field equations. From Theorems 3.4 and 3.6, we know that there is a
unique solution of the system (5.2) in L2(OD) for Rek>0, Imk>_0, Imko>=0, f
L2(OD) and o L(OD).

The usual treatment of these equations involves approximating u on OD with a
linear combination of dements of a complete family and solving the resulting algebraic
equations. Of course there are many complete families from which to choose and here
we only consider one such expansion which will allow us to relate the results of the
previous section to the so-called "null field method" introduced by Waterman [22].



270 T.S. ANGELL AND R. E. KLEINMAN

By virtue of Theorems 3.5 and 3.6, the sets ( v }it=o and { i)v/i)n + ov } i!=o are
complete and linearly independent families. If, in addition, they were bases for L2(1)D)
then we could expand the unknown function u and the known data f in terms of these
families:

(5.3) u(p)= E CrV’(P), piD

and

(5.4) f(P)= E dr +’

substitute in (5.2) obtaining

which, since

(5.6)

may be written as

p3D,

-n V ds
z

ds131’n

E (c,,-d,,)vT, Tfn+OV7 d=O.
D Irl--0

But the completeness of { 0v/On + ov’ } I1=o implies that

(5.8) E (Cl,-a,,)o,=o,
I1" --0

and the linear independence of ( v }1=0 ensures that

(5.9) ct=dt.

That is, the coefficients of an expansion of the unknown function u in { v } are the
same as the coefficients of an expansion of the known datafin { i)v/i)n + ov7 }.

However, unless the boundary i)D is considerably restricted, the families { v } i/=o
and ( iv/in + ova} I1=0 will not be bases for L2()D) (e.g. [23]) hence in place of (5.3)
and (5.4), we may only assume approximations of the form

N

(5.10) UN(P) E CN)v(P), P )D,

and

(5.) i,()__ E e?o -gy+o (p), ea,

where the coefficients are chosen so the approximations are best in L2(tD). Since f is
known, the coefficients d}’ may be determined explicitly, however, since u. is as yet
unknown, the coefficients c}r are likewise unknown. Nevertheless, the completeness
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and linear independence of ( o } insure that such coefficients exist so that

(5.12) lim Ilu- ull0o=0Noo

and

(5.13) lim IIf-fll,<oo)--o.
Noo

Now extend the definition (5.10) of uS(p) to all p D/ and define another function

N

(5.14) N(p)= E d(tV)v(P), pD+

so that

(5.) On

We may use the Green’s functions for the Dirichlet and Robin problems, denoted by 3D
and 3’R respectively, to obtain the representations

(5.16)
1 fo [u(q)-uV(q)]u(p)-uV(P)= - o -nq YD(p’q)dsq

and

(5.17) :R(p q)u(P)-q(P) q"OU---nq--oN dSq

VR(p,q)[f(q)--fN(q)] dsq.2 o

Since (v } ITS--0 is a complete orthogonal set on any circumscribing sphere there is
an expansion

(5.18) u(p) Cll)(p), Fp > sup rq.
I/I--O qOD

Moreover for rp=A>supqaorq and q on OD both VR(P,q) and (/o/Onq)(p,q) are
bounded with, for convenience, the common bound M. Then

(5.19)
M

and

(5.20)
Mlu( p)-<>( p )1< Ilf-f11=<,>.
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Employing the expansions (5.10), (5.14), and (5.18) and integrating over the sphere
of radius A we obtain

N o 12
I11 I11 > N

and, with orthogona5ty of the (o7 }1o on Sa

(5.22) Ikl E Ic, cI)[=lhXX)(ka)l=+ E Ic,l=lhX)(ka)l=
I/1o I11 > N

and silarly

(5.23)

lu(P)-(P)12ds=21klA2 E Ic,-d) Ih)(kA) + E Icl[2h)(kA)l2

I11 0 I11 > N

Hence with (5.12) and (5.13) we see that

(5.24) m c)= lim d)=c,.
N N

Thus even though

and

may not be bases for L2(I}D), the fact that they are complete and linearly independent
ensures convergence of the finite dimensional approximations and the approximate
coefficients in (5.10) actually converge to the coefficients in the expansion of the
solution in outgoing waves for points outside a circumscribing sphere.

Finally we consider the case when the dataf is of the form

u
--oui(5.25) f= an

where u represents an incident field. This is the form in which the boundary data often
appears in scattering problems. It is usually convenient to represent u in terms of
incoming waves

(5.26) u’(p)= E arV’(P), rp<h,

where A is the radius of a circumscribing sphere which contains no sources.
Then the null field equations (5.2) become

(5.27) --n + OV[ u ds E ar v[ --n + OV, ds
D Irl--0 D
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where, for notational convenience, we have replaced the multi-index with t. Now
introduce the approximations (cf. (5.10) and (4.4))

N

(5.28) u= E ,,

and

(5.29) Ova, N

( OV )
to obtain the approximate equations

(5.30)
Irl--0 ,oo

+ev v,ds=ltl__OE Irl--0E at,al, Dv +av ds

E E a,’al’ --n + av vds
I/I-- o Irl-= o D

where the relation (5.6) was used.
Using matrix, notation (5.30) is of the form

(5.31) Qc= aalva
where a is the matrix of coefficients of the Green’s function given in (4.6). This
equation has the obvious solution

(5.32) c= alva

in which form a is often referred to as the T-matrix or transition matrix for the Robin
problem since it transforms the coefficients a (ar) of the incident wave (5.26) into the
coefficients c (cY)) of the scattered field (5.28). We see from {}4 that the elements of
the T-matrix, a, which are chosen to best approximate -(v,/n + ov,) in terms of a
finite number of Ov/On+ov see (5.29), are exactly the same as the coefficients
introduced in section 4 (cf. (4.3)) in order for the modified Green’s function to best
approximate the actual Green’s function for the Robin problem. With Theorem 4.1
then it follows that the elements of the T-matrix become the exact Green’s function
coefficients as N

Appendix. A modified Green’s function for the Dirichlet and Neumann problems.
In Theorems 3.1 and 3.2 it was shown that the integral equations of the second kind
arising in the Dirichlet and Neumann problems could be shown to be uniquely solva-
ble. However for Imk--0 a modified Green’s function was needed whereas for Imk > 0
no modification was necessary. In this appendix it is shown that a modified Green’s
function may be introduced with coefficients which depend continuously on k in such a
way that the modified equations are uniquely solvable without the necessity of treating
separately the cases when Imk 0 and Imk > 0.

First we must extend the Wronskian relation for spherical Bessel and Hankel
functions with complex arguments. For any two differentiable functionsf and g define

d d
(A.1) w(/,g)’= f(kr)r g(kr)-rf(kr) g(kr).
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If Zn denotes a solution of the spherical Bessel equation

d 2 d 2(A.2) r2Z,(kr)+2r Zn(kr)+ [(kr) -n(n+ l)] (kr)=0,
dr 2 -r

then we have the following identities.
LEMMA A.1.

(A.3) W(jn,n)_.k2--2

7, fo t21L(kt)ldt’
2i

Imk =0,

2-k2 f tEIh)(kt)l
2

r dr, Imk>O.

Proof. Note that if k is complex Z--,=Z,(kr)=n(cr). Nevertheless the differen-
tial equation (A.2) together with its complex conjugate may be used to show that

(A.5) d
-dTr [r2w( Z"’)] (k’--c2)rlZ,(

Using the fact that jn(0)=0, integration of (A.5) with Zn=Jn yields (A.3) whereas the
known asymptotic behavior of h(1) is used to obtain (A.4), again by integrating (A.5)
with Z= h(1) for Imk > 0. When k is real (A.4) is merely the Wronskian since

(A.6) h (,1)(kr) h (,2) ( kr ),
If Imk > 0 observe that since

Imk=0.

(A.7)
it follows that

w(,L) fff tZlL(kt)l=dt >0.(A.8)
W ( h (nl), nl)) fr t_lh(,,)(kt)12dt

This enables us to state and prove the following generalization of [4, Thms. 3.4, 4.4].
THEOREM A.1. If the coefficients in the modified Green’s function (2.9) satisfy

(A.9) atr=0, 14=1’, lat+
I/2

and Imk > 0 then

(I___ K1)w 0 implies w O.

Remark. Note that in (A.9) the index n is the first component of the multi-index 1
and (A.8) ensures that argument of the square root in (A.9) indeed positive.

Proof. If Imk 0 then the Wronskian relations

1 l-Jnl))
kr 2(A.10) w(j,,j,)=O, w(j,,h))= kr, w(h 2i
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show that (A.9) reduces to Itlll+ 1/2l < 1/2, the case considered in [4], for which the theorem
was proven.

If Imk > 0 then we proceed along similar lines. Consider first the equation

(A.11) (I+K)w=O.
Lemma 3.1 ensures that

(A.12) Sw=O, pOD.

Now define

(A.13) u(p)=Sxw, pD_\(0}.

The boundary condition (A.12) together with Green’s theorem applied over a domain
bounded by OD and S,, the surface of a ball B, of radius a with center at the origin
lying entirely in D_, are used to write

(A.14) 0 fa u(p) O
D -pl--tu(p) dspOnp

=(k2-2) ]ul2&+ u(p)--U dsp.

But, for p S and air O, l’,

(A.15) u(p) (Sw)(p) E v(q)[vl(P)+a,
D il=0

E C,[V(p)+a,v(p)],
I1=0

where

(A.16) Cl= D v(q)w(q)dsq.

Now the orthogonality of spherical harmonics on spheres and the definitions (2.7)
of the functions v’ lead to

(a.17)

E Ic,l2lkla (j + ,,hl)) (2+l (+l,h [j+ atth

21kla2 E IcA2w(h’,1)

art+
W (h(nl’,n1)) w(h(nD,h-n1)) w( h(ll,h(1t )
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With Lemma A.1 this becomes

(A.18)

fso [u(p)-a (p)-(p)-a (p

oo
2 .faOO---2lkl(2-k2) Ic,I t2lh(1)(kt)]2dt

Itl--0

and substituting in (A.14) we have

(A.19)
dt0=(k2 2)

-Nna I1=0

"--Olli+w(h(nl),nl)) -[-.V(-)il)nl)) "[-
w(h(nl),(n1) )

and we see that both terms in brackets on the fight will be positive if (A.9) is fulfilled.
Hence

(A.20) u(p)=0, pD_\B

so the normal derivative on 0D exists from D_ and vanishes. Using the definition
(A.13) and jump relation (2.14) it follows that

Ou (p)= -n (Sw)(p)=(-I+K1)w(p)=O, pOD(A.21)

which, with the assumption (A.11), establishes that w vanishes, thus proving the first
part of the theorem.

If

(A.22) (I- g’)w 0, pD

then Lemma 3.1 ensures that

(A.23) an + ( Dlw) O, p OD.

Defining

(A.24) u(p)=Dtw(p), pD_\(O),

it follows that, forp Sa and air O, 1 1’,

(A.25) u(p)= E dt[oi(P)+ttto’:(P)]
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where

dl--- f0D(A.26) -nq(q)w(q)dsq.
Then the analysis of (A.17)-(A.20) may be repeated with d replacing c and since in
this case

(A.27) U=Dlw=O, pD_\Ba

the jump relations (2.15) imply that

(A.28) w / K-w 0

which with (A.22) ensures that w vanishes. Hence the null-space ofK has dimension 0,
as does the null-space of K since K1 is compact. This completes the proof of the
theorem.

Remark. Since the modified Green’s function is an infinite series, convergence is
assured if art is additionally restricted to satisfy

1(A.29) I ,,I Z
2sup,o+ Iv(p)l

In fact (A.29) ensures that

(A.30)

_
atto(p)o(q)

converges uniformly and absolutely in D /. The relation (A.29) is compatible with (A.9)
since Ottl may be chosen to vanish if Imk> 0 hence can be chosen as small as we wish.
For Imk 0, all may not vanish but may be chosen as small as we wish provided only
that lair+ 1/2l < 1/2"
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APPLICATIONS OF VARIATIONAL INEQUALITIES TO
A MOVING BOUNDARY PROBLEM FOR HELE SHAW FLOWS*

BJORN GUSTAFSSONf

Abstract. We consider a class of two-dimensional moving boundary problems originating from a Hele
Shaw flow problem. Concepts of classical and weak solutions are introduced. We show that a classical
solution also is a weak solution and, by using variational inequalities, that given arbitrary initial (t--0) data
there exists a unique weak solution defined on the time interval 0_<t<. We also prove some monotonicity
properties of weak solutions and that, under reasonable hypotheses, the moving boundaries consist of
analytic curves for > 0.

Key words. Hele Shaw flow, moving boundary problem, variational inequalities

Introduction. The aim of the present paper is to prove a global existence and
uniqueness theorem for a kind of weak solution to a moving boundary problem arising
in two-dimensional Hele Shaw flows. The method used is that of transforming the
problem into a series of elliptic variational inequalities.

The problem we shall treat is a slight generalization of the following problem. Let,
for D any bounded region in R 2 containing the origin, go be the Green’s function for D
with respect to the origin"

-log[zl+harmonic in D,go(z)-
0 on 0D

( Z X -- iy, R 2 being identified with C).

Then, given an initial domain D=D0, we want to find a family of domains (Dr}
for t_>0 (t--time) such that OD moves with the velocity -(VgD,)[ao,. (It is assumed
here that Vgo,--the gradient of go, has a continuous extension to ODt.)

This problem (essentially) was introduced by S. Richardson in [12]. The physical
interpretation for it as described in [12] is, very briefly, that D is the two-dimensional
picture of the region of flow in a Hele Shaw flow with a (time-dependent) free
boundary and a source point. This means more precisely that an incompressible viscous
Newtonian fluid occupies part of the space between two parallel, narrowly separated,
infinitely extended surfaces and that more fluid is injected at a constant and moderate
rate through a hole in one of the surfaces. The region occupied by fluid then will grow
as time increases and, since the gap between the two surfaces is very small, that region
can be very well described by its projection D onto and 2-plane lying parallel to the
surfaces. The origin of that 2-plane is taken to correspond to the injection point. For
more details and for a derivation of the moving boundary condition above, see [12] and
[8]. An incompressible viscous flow in the narrow space between two parallel surfaces is
called a Hele Shaw flow. See e.g. [10, p. 581ff.].

The approach in [12] is that of formulating the problem as a differential equation
for the Riemann mapping function from the unit disc onto Dt,j identifying 2 withC
and assuming that the D are simply connected. No proof of existence or uniqueness of
solutions of this differential equation is given in [i2]. However, a local (for in a small,
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two-sided interval about zero) existence and a partial uniqueness proof for the same
differential equation have been given in [19]. See also [8].

Since 1972 Richardson’s moving boundary problem has been taken up by J. R.
Ockendon [11 ], C. M. Elliott-V. Janovsk, [6], S. Richardson himself [13], [14], M. Sakai
[16], [17], and me [7], [8]. The present paper is, to a large extent, a summary of [7]. It
also has much in common with [17] and more detailed references to that paper will be
given at relevant places in the text.

The paper is organized as follows. In 1 we define in a precise way what is meant
by being a (local) solution of the problem stated above, by introducing a concept of
"classical solution." In {}2 we also introduce a concept of "weak solution" and prove
that a classical solution is a weak solution. In 3 and 4 we prove that being a weak
solution is equivalent to satisfying a series of variational inequalities. From this our
main result, the existence and uniqueness of weak solutions for arbitrary given initial
domains, follows immediately. Section 5 is devoted to proving that a weak solution is
equivalently characterized as the solution of what we call "the moment inequality."
Finally, in 6, we summarize part of our results in a kind of main theorem (Theorem 8)
and also obtain some partial results on the regularity of the boundaries of the domains
of a solution.

List ofsome notation frequently used.
R - is identified with C whenever convenient (by (x,y)z-x+ iy).
D(a;r)- {zC’lz-al<r).
[(r)- [(0; r).
--D(0; 1).
l- the set of integers.
(a,b)-(x "a<x<b}.
[a,b]-{xR "a<_x<_b).
D C C 2 means: D C fl (if f is open and bounded).
IDI-area of D (if D C 2).
X7u- gradu-(Ou/Ox, Ou/Oy) (if u-u(x,y)).
Au- the Laplacian of u- 02u/Ox 2 + 02u/Oy 2.

fou fouCx,y )

the characteristic function of D C -- in D,
X D 0 in 2\D.
C,.(): the space of infinitely differentiable functions in [2 with compact support.
H"’P(f),H"(f)-Hm’2([2),Hd(f): Sobolev spaces as defined in [18]. H0(2) will

always be equipped with the inner product

(f will always be bounded) and norm Ilull-/(u,u).
( u, v )" the pairing between H0(f) and H-([2) (u H(f), v H- (f)) when

H-(f) is regarded as the dual space of H0(f) in the usual way. This is
consistent with

(u,v):fnu.v for uLP(f), I) tq([’), l/p+ l/q- 1, <_p<c.
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We will often use the fact that the Laplacian A is an isomorphism of H01(fl)
onto H- (2) with the property that 8, Thm. 23.1

(0.1) (u,v)=--(u,Av) for u,vn()., is defined in (before Definition 1).
6o,n is defined in 2 (before Definition 2).

1. A classical formulation of the problem. The purpose of this section is to give an
example of how to formulate the moving boundary condition for the problem described
in the introduction in a rigorous way. This is done by our concept of a classical solution
(Definition 1 below). Actually, we have generalized the problem a little by replacing the
Green’s function go by a domain function Po depending on a positive measure #. Our
concept of classical solution is to be thought of as just formalizing the rule according to
which the moving boundary moves, and we have not tried to make any initial value
problem out of it.

Let #0 be a finite positive measure with compact support in [ 2. For domains
D C 2 with supp/CD let Po be the (superharmonic) function in D defined by

(1.1) -Apo=# inD,
(1.2) po=O onD.

Here (1.2) should be interpreted as follows: for each e >0 there is a compact set KCD
such that ool<e outside K. For all domains D considered in this section, the problem
(1.1)-(1.2) has a unique solution. This solution, moreover, satisfies po>-0 by the
minimum principle for superharmonic functions. We are going to consider the problem
mentioned in the introduction but with the Green’s function go there replaced by the
more general function Po. The special case Po-gz) is obtained by choosing #-2,r6 in
(1.1)-(1.2) (where 6 the Dirac measure at the origin).

Let to be a fixed open neighborhood of supp # and set
,0-the class of all simply connected domains D C 2 with to C CD and such that

OD is a Jordan curve of class C (i.e. such that there exists a twice continu-
ously differentiable map from the unit circle to OD which is bijective and
whose derivative never vanishes; such a map will be called a diffeomorphism
of class C2).

For D, Po exists and is unique and moreover both po and XTpo have continuous
extensions to D. Let IcR be an open interval.

DEFINITION 1. A map I -D o, is a classical solution of our moving boundary
problem if there exists a map ’: R//’ I- 2 of class C2 (i.e. twice continuously
differentiable) such that

(i) g(s,t)aD for all s,t,
(ii) ’(.,t) R/’ OD is a diffeomorphism (of class C2) for each tI, and
(iii)

O(s,t)(1.3) = XTpo,((s t)) for all s t.
Ot

Comment. (i) and (ii) say that for each fixed t,(.,t) parametrizes ODt. The
parameter s (in which " has period 1) numbers the points on OD and (iii) says that each
such point moves with the velocity -X7po,((s,t)). Here X7po, is the continuous
extension of the gradient ofpo_to ODt.
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For simplicity we have preferred, to let the domains of definition of classical
solutions be open time intervals. For that reason the concept of a classical solution is
not immediately well suited to formalize initial value problems of the kind stated in the
introduction. Consider e.g. the following attempt in that direction (where and 0 are
given):

Given Do find, for some e>0, a classical solution (-e, + c) t---> Dt$, such
that D0-- D. This formulation has the drawback that it requires the existence of the
solution for -e<t<0 and, as it turns out (see below), this can only occur if OD is
analytic.

A perhaps better attempt would therefore be:
Given D find a classical solution (0, + c) -D ,, such that lim t-. o Dt-- D

in some specified sense. This formulation does away with the problem of the former
formulation, but nevertheless one cannot expect a solution to exist for arbitrary D
This is because we have not, in our definition of a classical solution, built in any
possibility for D to change connectivity and it is easy to see that without such a
possibility global solutions cannot exist in general.

The above remark shows that the concept of a classical solution has to be fairly
complicated in order to be well suited for a formulation of a global initial value
problem. We have not thought it to be worth the effort to make such a formulation,
since our concept of classical solution is introduced mostly in order to motivate our
concepts of a weak solution (and for this purpose we think that Definition 1 is good
enough). A global concept of a classical solution (allowing connectivity changes) has,
however, been given by Sakai [16].

Definition is, however, well suited for formulating a local problem:

Given D,o find, for some e>0, a classical solution (-e, e)
--, D $, such that DO D.

The task of proving existence and unicity for solutions of this problem is seemingly
hard. In fact, we will prove here (Theorem 10) that a necessary condition for a solution
of (1.4) to exist is that 0D is an analytic curve. Probably this condition is also sufficient.
In any case, in the special case that/x-2ri, Vinogradov and Kufarev [19] have proved
local existence of solutions when the problem is formulated as a differential equation
for the Riemann mapping function (as in [12]), under the condition that OD is analytic
(see also [8]). It is, however, not quite easy to prove rigorously that a solution in their
sense is also a classical solution in our sense. (The converse is easier.) Vinogradov and
Kufarev also prove uniqueness for solutions depending analytically on (of their
problem). Here we prove at least that a solution of (1.4) is unique for >0 (Theorem
10).

Let us next make a remark about the measure /x; namely, as far as classical
solutions are concerned, we can always assume that/x is a smooth function. The reason
is that nothing but the behaviour of Po near 0D comes into Definition and that
therefore Po can be smoothed out in a neighbourhood of supp/. To be precise, let h be
a smooth (C), positive, radially symmetric (i.e. a function of radius only) function
(" mollifier") on R 2 with total mass one (fh- 1) and with compact support in the open
unit disk [. Define
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(Thus supp h, C D(0; e), f h,= 1, h ->0.) Then we have
PROPOSITION 1. Let #, o and I be as before Definition and choose e >0 such that

2e <dist(suppg, 0o). Then I -Dt,o is a classical solution for g if and only if it is a
classical solution for g h (which is a smooth function). ( denotes convolution.)

Proof. The proof consists of the observation that the function PD defined by
(1.1)-(1.2) only changes inside 0 when g is replaced by g, h (for D$o). In fact,
define

PD*h in {zD’dist(z,OD)>e),
qD--

PD in (zD’dist(z,suppl)>e).

Then qD is well defined because PD is harmonic in a whole e-neighborhood of any point
in the overlap between the two domains above, and therefore pD * h--pD in that
overlap by the mean-value property for harmonic functions. Since A(pD h)-
ApD, h=--Ix * h, it is immediately seen that qD is the solution of (1.1)-(1.2) with
Ix, h in place of Ix. Since qD--PD near OD, the conclusion of the proposition follows
immediately.

2. The weak solution. We now introduce the concept of a weak solution and prove
that a classical solution is a weak solution.

The concept of a weak solution is much more flexible than that of a classical
solution (e.g. one does not have to bother about boundary regularity or connectivity of
the domains), it is much easier to show existence of solutions for, and it is also more apt
for numerical treatment (because it is closely related to variational inequalities). These
are the main reasons for introducing the concept of a weak solution.

Let Ix 4:0 be a finite positive measure with compact support in R 2, and choose
bounded open sets 0 and f in R 2 such that supp Ix c 0 c cf and with 2 smooth, and
let T>0. Set

6,,a the class of all open sets D CR2 with o c cD C C f.

In order for the definition below to make sense, we have to assume that Ix belongs to
the Sobolev space H-l(f). This is an assumption of purely technical nature and does
not mean any restriction of the class of problems considered (in view of Proposition
above).

DEFINITION 2. A map of [0, T] D o f is a weak solution of our moving
problem if, for each [0, T], the function u Ho() defined by

(2.1) X Dt-- X Do-- Autqc- t" IX

satisfies

(2.2)
(2.3)

Comments. 1) Notation. The subscript in u just indicates that u depends on t. We
never use subscripts for partial derivatives. (2.1) and (2.2), like all other equalities and
inequalities on open sets in this paper, are to be interpreted in the sense of distribu-
tions. In (2.3) 1-X o, is regarded as an element of H-l(f)-the dual space of H0(f)
and (.,.) denotes the duality pairing between H01(fl) and H-(f). Since, in the present
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case, 1--XD, fEL2() (and utH()CL2()), the left member of (2.3) reduces to the
Lebesgue integral

and since 1-Xo,>-O, (2.2) and (2.3) together express that ut->0 in f and ut--O a.e.
outside Dr.

2) Since X n,- X. Oo- t. I H- l(fl) and the Laplacian A is an isomorphism from
H(fl) onto H- (fl), (2.1) really defines u uniquely.

3) It is clear from the definition that given DO
,e, the domains Dt of a weak

solution can be unique at most up to two-dimensional Lebesgue measure zero, since
(2.1)-(2.3) are not affected if D is replaced by another D: oo,,u such that Xo;-X z),
a.e..

4) In order to motivate the concept of a weak solution, we now sketch a proof that
a classical solution is a weak solution.

So suppose tD is a classical solution. Condition (iii) in Definition 1 can be
written

(2.4) n--;-= On on OD,,

where 8n/St denotes the normal velocity of iD (in the direction out from Dr), and
O/On denotes outward normal derivative. (2.4) is equivalent to

8n(2 5)
" -.qds= o q) ds for all q C(2)

(ds denotes arc-length measure).
It is not hard to see that

8n dfoy d

D,-(ds - dxdy - ( X o, (p )

Extend Po, to all R 2 by settingpo,= 0 outside Dt. Then

-Apo,=#+ ds,

where (Opo,/On) denotes the distribution

a nonpositivc

and (2.)
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Now integrate (2.6) with respect to t. With

(2.7) ut- po,d

this gives X o,- XD0- Au + t" IX, to hold in the sense of distributions. Thus u defined by
(2.7) satisfies (2.1) of Definition 2. Since pD,>_O in D, pD,-O outside D, and because

D, CD2 for ’l <z2 (if t --, D is a classical solution) ut, defined by (2.7), also satisfies

U ’0 in all R 2 and

ut-- 0 outside Dt,

that is, (2.2) and (2.3) of Definition 2.
This was a sketch of a proof that a classical solution is a weak solution. A formal

proof of this will be given later (Theorem 1).
5) A nice feature of the concept of weak solution is that the time variable only

occurs as a parameter in it: (2.1)-(2.3) is just a series of uncoupled problems (actually
free boundary problems), one for each t[0, T]. The transformation (2.7) plays a
crucial role in this respect. The efficiency of transformations similar to (2.7) on certain
kinds of free and moving boundary problems is now well known and has been demon-
strated in works by Baiocchi, Duvaut, Elliott and others. (See e.g. [2], [4] and [5].)

Just as for classical solutions, there is no loss of generality in assuming that the
measure IX in Definition is a smooth function.

PROPOSITION 2. Let Ix, to, and T be as in Definition 2, choose e>0 with 2e<
dist(suppix, Oto) and let h be as before Proposition 1. Then [O,T]tDt,,u is a
weak solution for IX if and only if it is a weak solution for IX h . In case they are solutions
we have

u , h in suppix+)(0;e),
(2.8) I)

u elsewhere in ,
where u (vt) is the function occurring in Definition 2 for Ix (Ix * he). (suppIx+ D(0; e)
(z + w R 2 z supp Ix and w D(0; e)}.)

Proof (sketch). Let D be a weak solution for Ix, let u H(2) be defined by
(2.1) and define v by (2.8). Then u is harmonic in to\suppIx (by (2.1)) and the
mean-value property for harmonic functions, together with the properties of h , show
that u * he---u a distance e away from O(to\suppIx) in to\suppIx. It follows that v is
smooth in thejoin between the two ranges of definition and in particular that v H0().
Now it is easy to check that v satisfies (2.1)-(2.3) of Definition 2 with Ix h in place of

Ix. This proves the proposition in one direction.
Next, let t D be a weak solution for Ix h and u H(f) be defined by (2.1) for

Ix. In order to prove the proposition in the other direction, we have to prove that u also
satisfies (2.2) and (2.3).

Define v by (2.8). As before we have v H(f), and v satisfies (2.1) with Ix h in
place of Ix. Since the solution of (2.1) is unique and D, is a weak solution for Ix h ,
v also satisfies (2.2) and (2.3). From this it follows immediately that u satisfies (2.3).
Moreover, ut>_O clearly holds outside supp IX + (0; e) (ut- v there), and in fact also in
suppIx+)(0; e) because ut>-u h (=v/_>0) there due to the fact that u (by (2.1)) is
superharmonic in o (3 supp Ix+ 2)(0; e)). Thus u also satisfies (2.2), and the proposi-
tion is proved.
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Now we shall prove that a classical solution is a weak solution. Let/x 4:0 be a finite
positive measure with compact support in g 2 such that/x H-l(g 2), let supp/ c 0 and
let a <0 <T<b. Then

THEOREM 1. Suppose ( a, b) --. D ,o is a classical solution. Then [0, T -D,o, is a weak solution if f is chosen such that DTC C f. Moreover, the functions Pot and
u occurring in the classical and weak solutions respectively, are related by

(2.9) ut= pod"

(a Hlo(f)-valued integral), where PD, is extended to all f by setting it equal to zero outside

Proof. Let (a,b) D , be the classical solution, which we shall prove to be
weak. We shall first prove that

(2.10)
d

--dt fz,p dx dy foz,p
Opl
n ds

for all qo C(R 2) and that the right member of (2.10) is a continuous function of t.

Let x,y be the coordinate variables in R 2 and let

denote the components of ’(s,t)8t 2 (see Definition 1). Then (iii) of Definition
becomes

0(s,t) OPD, (’(s, t)) Ol(s,t) OP’ ((s,t)).Ot Ox Ot Oy

Thus the right member of (2.10) becomes

(2.11) --rOD,p On Ox dy-.-y dX fo" (--dy---dx).
Next we rewrite the left member of (2.10). Choose smooth functions, a(x,y) and

b(x,y), on 2 such that Ob/Ox-Oa/Oy-q (e.g. a(x,y)-O and b(x,y)-fq(u,y)du).
Let T -/Z (the range of the variable s). Then, using Stokes’ formula at the first step,
we get

adx+bdy(2.12) dxdy -- ot

= a((s,t)) - +b((s,t)) as

+
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-7+b. ds+ x y t s t s

Ox Oy Ot Os O Os -s a -+b - ds

ds

By (2.11) and (2.12) we have proven (2.10). It is seen from (2.12) also that the right
member of (2.10) is a continuous function of and that hence fD, 9 dx dy is continuously
differentiable with respect to t.

We next prove that D ,o, for t [0, T] if is chosen such that D C c f. Since
0c CD0 (DoGS,o), it suffices to prove that DCD for r<t. Since pz,_>0 in D we have
-Opo,/Orl>--O on ODt. Therefore (2.10) shows that fo,qdxdy is a nondecreasing func-
tion of for all tpC(R 2) such that _>0. This easily implies that DCD for r<t.
Thus we have proved that D ,o, for [0, T ].

Now let utHd() (for t[0, T]) be defined by (2.1) and extend Pz, to all f by
setting it equal to zero outside Dt. Then it is easy to see that p/, H01(f). We now want
to prove that

(2.13) ut- pz,dr.

Equation (2.13) means by definition (we are using the "weak" definition of vector-val-
ued integrals as exposed e.g. in [1 8, p. 73]) that

(2.14) (ut,P)--fot(pD,,P)d’r"
for all p H- l(f). Since A: H(F) H- l(f) is an isomorphism, (2.1 4) can be written

( ut, Aq ) fot( po,, Aq ) dr

for all 9 H(f), i.e., using the fact that ( u,A) ( p, Au ) for u, 9 H(f),

(2.15) (P,Xo,--XZo--tlx ) fot( pz,, kp } d".

We first prove (2.1 5) for q C(f). Green’s (second) formula gives (for Cc())

---n as fo? APD +fotAq Pz
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Combining this with (2.10) gives

SDy SD7 t( PDt,i.ds)dff.(qn’Xo,--Xo)= --S0 --SOD,’’ On

--() I)-JI-fot( po,,Aq) d
This proves (2.15) for C([2).

To extend (2.15) to all q H(f) it is enough to prove that the right member of
(2.15) depends continuously with respect to the H0(f)-norm on q; for Cc(f) is dense
in H(f) and the left member of (2.15) obviously depends continuously on

We have

Sot(PD,,fD) I1 11 f0tllpo, d,r>

where (u,v)-fuXzu. Vv is the inner product in H([2) and Ilull-v/(u,u), and it is not
hard to prove that fll po,lld< c. (Details are found in [7, p. 40].) Thus the right-hand
side of (2.15) depends continuously on q and so (2.15) is proven.

Now it only remains to prove that u satisfies (2.2) and (2.3). (2.2) follows im-
mediately from (2.13) and pn,>_O, and (2.3) follows from

ut, l--XD,)--fot pl),,1--XDt) d"t"

by choosing p X o, in (2.14) and

( Po:, l-xo,)-fPz).(1-Xn,) -0
for ’[0,t], a consequence of DCD (already proved) and pn,-0 outside Dr. This
completes the proof of Theorem 1.

3. Complementarity problems and variational equalities. By weakening still more
the concept of a solution, we arrive at a series of linear complementarity problems.
These are equivalent to a series of variational inequalities which are shown to have
unique solutions.

Let/t,o, and Tbe as before Definition 2 (/xCH-l(R2),/x_>0,/x0, o,f open,
0f nice, supp C0 C C t2 and T>0). Let also DO 6, be given and define tt- tt,no
H-l(f) by

(3.1) ot- 1-Xno-t’l.
Then (2.1)-(2.3) in Definition 2 can be written

mut--[t--XD,- 1, ut>O, ( Ut, 1 --XD,) --0

or

mut--Pt--XD 1, utO (ut,Aut--Pt)--O.
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Since XD,- 1 -<0, this immediately shows
THEOREM 2. Suppose [0, T] D , is a weak solution. Then the functions

u -:n(’) defined by (2.1) also solve the linear complementarity problems

(3.2) Aut.<_pt,
(3.3) utO
(3.4) (ut,Aut--Pt)--O
(t [0, T]), where )t are defined by (3.1).

Remark. Clearly (3.4) (in the presence of (3.2) and (3.3)) expresses that at (almost)
every point in f equality holds in at least one of the inequalities (3.2) and (3.3).

The complementarity problem (3.2)-(3.4) is equivalent to a variational inequality:
THEOREM 3. Let iotn-l() (e.g. given by (3.1)). Then utH() satisfies (3.2)-

(3.4) if and only if it satisfies

mut<--) and (U--Ut,Ut)>--O for all uH(f) with mu<--)t.

Remark. Theorems 2 and 3 together are similar to [17, Prop. 2]. However, [17]
deals with the equivalent variational inequality (3.11) below in place of (3.5).

Proof. If u satisfies (3.2)-(3.4), then (ut, mu--)tO---(ut, mut--Pt for all u
H(f) with Au<_Pt. By subtracting ut, Pt and using (0.1) the theorem immediately
follows in one direction.

Conversely, suppose (3.5) holds. Then (by (0.1))

(3.6) ut,mu--t<--ut,mut--)t foralluH(f)withAu<-pt.

Since A:H(f)H-(fl) is an isomorphism, we can chooseuH(f) in (3.6)
such that Au= Pt or such that Au= 2Aut--Pt (Aula is fulfilled in both cases). The first
choice shows that the right member of (3.6) is _>0, while the second shows that it is _<0.

Thus

(3.7) ut,mut--Pt--O.
By (3.7), and writing q=Au--Pt, (3.6) becomes (ut, q)<-O for all H-l(f) with
tp_<0. This shows that ut>_O. Thus (3.2)-(3.4) hold for u and so the theorem is proven
in the other direction too.

Remark. The variational inequality (3.5) differs somewhat from those variational
inequalities most often met with in the literature in that the condition AuPt is of an
unusual kind, but it is equivalent to a variational inequality of "obstacle-type." To be
precise, define kt H(f) by

(3.8) -At=pt.

Then, in terms of the function

(3.9) Vt-- Ut"t
the complementarity problem (3.2)-(3.4) can be written

(3.10) mVtO Vtt vt--t, mvt --O.

By an argument very similar to the proof of Theorem 3 (see [7, pp. 43-45] for details),
(3.10) can be shown to be equivalent to the variational inequality

(3.11) find vt_.n(’) such that Vtt and (v-vt, vt)>_O for all
v H(f) with v >_kt.
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This variational inequality is of obstacle-type (kt describing the obstacle). See [9, Chap.
II, 6].
THnO 4. Let pt_H-l(). Then the ariational inequality (3.5) has a unique

solution utIgl(f). If, moreover, ptLP() for some 1 <p<o, then utH:’P(), in
particular u is continuous ( ifp >2 even continuously differentiable).

Proof. The existence and unicity of a solution is immediate from the general theory
of variational inequalities or in fact just from ordinary Hilbert space theory since (3.5)
just expresses that u is the unique element of minimum norm in the closed and convex
set K= {u H(): Au<_pt. The regularity of the solution also follows from the
general theory of variational inequalities, e.g. by first rewriting the problem into the
form (3.11) as indicated in the Remark above, and then invoking [3, Th6or6me 1.1].
There is, however, also a direct and rather nice proof of the regularity. This goes as
follows.

Let PtLP() with 1 <p < o. To prove that ut.H2’p(), we shall consider a new
variational inequality, namely

find wt H( ) such that

(3.12) min(0,pt) <--Awt<--pt and

(3.13) (w-wt,wt)>-O for all wH(f) withmin(O, pt)<_Aw<_pt.

This variational inequality has a unique solution w H(f]) for the same reason as
for (3.5). Moreover, this solution a priori belongs to H2’P(f) since (3.12) shows that
AwtLP(f) (and AwtLP(ft) implies wtH2’P(f)). Thus, to prove that utH:’P(f),
it is enough to prove that ut-wt. For that purpose we only have to show that w
satisfies (3.2)-(3.4) (by Theorem 3).

To prove (3.2)-(3.4) for wt, first rewrite (3.13) as

for all wH(f) with nn(O, Pt)<--Aw<--pt. Setting p--Aw--Pt and using that the brac-
ket (., ) in the present case reduces to a Lebesgue integral, we get

(3.14) f,wt. <_f,w,. ( awt- p, )

for all q9H-(f]) with min(0, -pt)<_p<_O. First choose q=0 in (3.14). This gives

f,w,. ( >_o.

Then choose

min(0, Pt) in N,
P- Awt- Pt in \ N,

where N={z:Wt(z)<O}. (Since wtH2’p(), w is a continuous function and so

wt(z) <0 has a natural meaning and N is a well-defined open set.) We get

fwt. min(0,--pt)<--fNWt’(Awt--Pt),
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or

(3.16) fwt" ( Awt-- Pt-- min(0, --p,)) >0.

Since Awt--Pt--nn(O --pt)--Awt--rnJn(O, Pt)>O and wt<O in N (3.16) shows that

Awt- min(O, Pt) 0 in N.

In particular,

(3.17) Awt<_O in N.

But now wt=O on NtA f] (by the definition of N, and since w is continuous and
belongs to H(f])). Therefore (3.17) implies wt>_O in N (minimum principle for super-
harmonic functions). Comparing with the definition of N, we conclude that N is the
empty set. Hence

wt>--O (in f).

Thus (3.3) (for wt) is proven. (3.2) is part of (3.12), and (3.4) follows by combining
(3.15) with (3.2) and (3.3). Hence w satisfies the complementarity conditions (3.2)-(3.4)
which characterize u t, hence wt-- u as we wanted to prove.

The statements about continuity and continuous differentiability of u follow from
Sobolev’s inequalities. See e.g. [18, Thm. 24.2]. This completes the proof.

4. From variational inequalities to a weak solution. Up to now we have performed
a series of weakenings of the concept of solution,

solution of solution of
classical weak complementarity . variational
solution solution problems inequalities

and we have proved existence and uniqueness of solutions at the fight end point of this
series. On the way from weak solution to complementarity problems we have also lost
the domain D from the problem.

Now we want to perform the step

solution of
complementarity weak

solutionproblems

thereby also proving existence of weak solutions with a given initial domain (unique-
ness is already proven, by uniqueness of solutions of the variational inequalities). This
step involves among other things recovering the. regions D from the functions u
(constituting the solution of the complementarity problems). We need two lemmas.

LEMMA 1. Let Pt H- 1([’) and let u H( ) be the solution of the complementarity
problem (3.2)-(3.4). Then ut<_u for all u H(f) which satisfy Au<-pt and u >_O.

Comment. Lemma 1 says that among the functions that satisfy the inequalities
(3.2) and (3.3), there is a smallest function, namely that function for which these
inequalities hold complementarily.

Lemma is closely related to [9, Thm. 6.4, Chap. II]. In fact, that theorem says
that if v H(f) is the solution of the variational inequality (3.11) or, equivalently, to
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the problem (3.10), then vt<_v for all vH(f) which satisfy v>_tpt and Av_<0 (pt
H01(f)). In view of the remark after Theorem 3, this gives a proof of our lemma by
setting ut- vt-Pt, u-v-Pt and by defining Pt H(f) by (3.8).

Let us, however, give an independent proof of Lemma 1. For simplicity we restrict
ourselves to the case that 0 L’() for somep > (which suffices for our purposes).

Proof of Lemma in case lot L’(f), p > 1. Suppose Pt L1,(f) where <p <.
Then u H2, p(f), in particular u is continuous, by Theorem 4. Thus

I--{z:ut(z)--O) and D--\I--{z:ut(z)>O)
are well-defined (relatively) closed and open sets in f respectively.

Put w--u-ut. Thus we want to prove that w_>0. In view of (3.2) and (3.3) it
follows from (3.4), which can be interpreted as a Lebesgue integral in this case, that
mu t in D. Thus

(4.1) Aw=Au--ot<_O in D.

Take an e>0 and define N--(z:ut(z)<e). Then N is an open neighborhood of
IU Of in 2. Now, from u-->0 and (4.1) we have

(4.2) w+e-->0 inN and

(4.3) A(w+e)_<0 inD.

Since 0D CIU 0f, it essentially follows from (4.2), (4.3) and the minimum principle for
superharmonic functions that w+ e_>0 in D and hence

w+e>_O inf,=DUN.

The only problem is that w is not (necessarily) a nice function but just an dement of
Ho(), so that some care is needed in applying the minimum principle.

To this end, choose r>0 with 2r<dist(0N, OD) and let hr be as before Proposition
1. Then an application of the ordinary minimum principle to (w+e).hr in (z
D dist(z, OD) >r} shows that

(w+e).h>_O in (zf :dist(z,O)>r}.

Letting first r 0 and then e 0, (4.4) yields w->0 in 2, as we wanted to prove.
COROLLARY 1. Let O, O’ H- l() and let u and u’ be the solutions of (3.2)-(3.4) for

pt p and O’ respectively. Suppose that p’ <-O. Then u<_u’.
Proof. This follows from the lemma with Ot O, ut= u since Au’ --<O’ --<O and u’-->0.
Remark. There is also an inequality in the other direction. Namely, let p, tp’ H01(f)

be defined by --Ap= o and --Ap’= o’ respectively. Then, if O’_<O, we have u’<_u+
(p-p’). This follows by applying the lemma with ut-u’ and "u in the lemma"-u+
(-’).

COROLLARY 2. The solution u of (3.2)-(3.4) is monotonically increasing (=non-
decreasing) as a function of each of #,Do and (more generally, as a function of
Xzo+t.#) when Ot is given by (3.1), i.e. if DoCD, #<_#’ and t<_. then ut<_u’ (self-ex-
planatory notations).

Proof. This is just a special case of Corollary 1.
LEMMA 2. Suppose # L1,(f) for some <p <c and let u (- H(f) be the solution

of (3.2)-(3.4) with Pt given by (3.1). Define
(4.5)
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Then

(4.6) Aut-xn,-Xno-t.ix-Xz,- +tat.

Proof. By Theorems 3 and 4 utHE’p(), in particular u is continuous. Thus D is
a well-defined open set. Observe also that the definition (4.5) is consistent for t-0
since ut--- 0 is the solution of (3.2)-(3.4) for t-0 (in view of po_>0).

Define I (g " Ut( Z ) 0). Because u H2, p(), all partial derivatives of u Of
order _< 2 vanish almost everywhere on It. (This follows e.g. from [9, Lemma A.4,
p. 53 ].) In particular

(4.7) Aut--O a.e. on/t.

Hence (3.2) shows that PlY0 a.e. on It. By (3.1), using that supp/t CD0 and IX_>0, this
gives Ot 1 -XOo a.e. on It, or, using (4.7),

(4.8) mut--[kt--Xoo- a.e. on/t-

Now, since Aut--latLP() and u is continuous, the left member-of (3.4) can be
interpreted as a Lebesgue integral, and it follows from (3.2)-(3.4) and the fact that
U >0 in fl \ I that

(4.9) mut--[kt=O in fl\/t-

Equation (4.8) together with (4.9) gives

Aut--Pt=(XDo--1)’XIt--X(.\Do)AI
(a.e. or in the sense of distributions). Since (f \Do) f3 It- f \ Dr, this shows that
Aut--Xo,-- 1 + Pt, which is the desired result.

THEOREM 5. Let IX, o, and T be as before Definition 2 with Ix L (for simplicity),
let Do,,u and let Pt be defined by (3.1). Suppose utH(f) and solve (3.2)-(3.4)for
t[0, T]. Then, if f is large enough and D is defined by Dt--Dot3 (zf u,(z)>0), the
map

(4.10) [O, T Dt v,,u

is well defined and & a weak solution. Further, the function "ut" appearing in the
definition of a weak solution is identical with the u above.

Remark. This theorem, showing that solutions of the complementarity problems
give rise to weak solutions, is similar to [17, Prop. 3].

Proof. We first show that the map (4.10) is well defined., i.e. that f C CD C C
for all [0, T].

tC CD is evident since C CDo and DoCDt. Next, choose M>0 and 0<r<R
such that IX<--M.Xa<r and D0 C D(R), and define Rt>O for [0, T] by

Then I claim that DtC(Rt) for all t, and hence that it suffices to choose f such that
D(Rr) C CfL

To see this, put t-1-Xa)-tMxa) and define u’tH(f) by
XaR)--tMxat). Then it can be checked that u’t>O in D(Rt), u’t-O outside D(R/).
This shows that u’ is the solution of (3.2)-(3.4) corresponding to

But now p _< Pt. Therefore ut <- u’t by Corollary of Lemma 1. Hence ut- 0 outside
D(Rt), showing that DCD(Rt).
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It remains to prove that u and D satisfy (2.1)-(2.3) of Definition 2. (2.1) follows
from Lemma 2, (2.2) is (3.3) and (2.3) is (3.4) combined with (4.6). This completes the
proof of Theorem 5.

THEOREM 6. (corollary of Theorem 5). Let , o, f and T be as before Definition 2
and let D @,,u be given. Then, if merely f is large enough, there exists a weak solution

(4.11) [O,T]DtDt@o,
with Do- D. This solution is unique up to sets of two-dimensional Lebesgue measure zero.
Moreover, let u Hd(f) be the function appearing in the definition of a weak solution.
Then u is unique (as an element ofH(f)) and D above can be chosen to be

(4.12) Dt--DoLJ (Z’ Ut(z)>O )
(Equation (2.1) shows that u is continuous outside supp/t, in particular outside Do, so that
the right-hand side of (4.12) is a well-defined open set.) Further, the weak solution (4.11) is

monotonically increasing (-nondecreasing) as a function of each of ix, DO and (more
generally, as a function ofX Oo + t. l) i.e. if t <- t’, Do CDO and <- then D CD up to null
sets.

Proof. Suppose first that/ L(f). Since the problem (3.2)-(3.4) has a unique
solution (Theorems 3 and 4), it follows immediately from Theorem 5 that there exists a
weak solution (4.11) such that (4.12) holds. Since u0-0 for the solution u of (3.2)-(3.4),
we also have Do- D. As to the unicity, suppose we have two solutions, D and Dt’,
with Do-D-D. Then we get, by Theorem 2, two solutions, u and u’t, of (3.2)-(3.4)
for the same 0t- Thus ut- u’ and (2.1) shows that Xo,-Xo;. This is what the unicity
statement of the theorem amounts to. The last sentence of the theorem follows im-
mediately from Corollary 2 of Lemma 1. Thus the theorem is proved in case/ L(fl).

If tt S L(fl), we merely apply Proposition 2. Then we are back in the previous
case and the theorem follows as before, noting only that the function u and v in
Proposition 2 differ only inside to, in particular inside D0, so that (4.12) is not affected
by the smoothing process. Note also that the application of Proposition 2 does not
destroy the validity of the last sentence in the theorem since the smoothing process is
order-preserving (we used positive mollifiers in Proposition 2). This proves the theorem.

5. The moment inequality. We have hitherto shown the equivalence between three
concepts of solution for our moving boundary problem, namely the concept of a weak
solution, the solution of the linear complementarity problems and the solution of the
variational inequalities. There is another equivalent concept of solution which we now
want to discuss.

With/t=/=0 a finite positive measure with compact support, with to, and T as
before Definition 2, and with DO o, given, let us say that a map [0, T]
satisfies the moment inequality if for each [0, T]

(5.1)

for every function q EH2( 2) which is subharmonic in Dt.

The reason for calling this property the moment inequality is that with t-8 (the
Dirac measure at_the_origin) and by choosing q-+Rez and +Imz (n_>0) in a
neighborhood of DO hi Dr, (5. l) yields

IDtl-IDol+t (n--O) and f z"--f z" (n_>l).
Dt Do
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The quantities foz n are called the complex (or analytic) moments of the region D.
Thus, if (5.1) holds for t-o Dt, all complex moments of order _> of D are preserved
under the map t-oDt, while the zeroth order moment (=the area of the domain)
increases linearly.

The fact that solutions of the Hele Shaw problem have this moment preserving
property was discovered by Richardson ([12]). The idea to consider relations such as
(5.1) for subharmonic functions p is due to Sakai ([ 16] and [17]).

We shall now prove that satisfying the moment inequality is equivalent to being a
weak solution. More complete results in the same direction are given in [17] (our
Theorem 7 corresponds to [17, Props. and 4]).

THEOREM 7. Let l, w, f] and T be as above with IL(f) (for simplicity). Then a
map [O,T]t-oDt,o,u is a weak solution if and only if it satisfies the moment
inequality.

Proof. Suppose [O,T]3t-oDt,o is a weak solution. Since DtC C f, it is
enough to check (5.1) for all pH2(R2i which are subharmonic in D and vanish on
Of. Thus we assume p H2(R 2) N H0(f).

Let utH() be the function defined by (2.1). Then ut>_O and ut-O a.e. on
f \D (by (2.2) and (2.3)). Moreover, u is continuous and bounded.

Now let p H(f)fH2( 2) be subharmonic in Dt. Then A_>0 in D in the sense
of distributions. Moreover, since ApL2(f), the above properties of u show that
ut.AepL2(), ut.Ap--O a.e. on \D and hence ff\DtUt’Acp=O. Using these facts
and (2.1), we get

:f,lutAIBD"-’ffDdl&--fDtUtAq)"t-lfIBDd’ffDdl-o
Thus the moment inequality holds.

Conversely, suppose that the moment inequality is satisfied for [0, T]3 t-oD
,o,n. Again define u H(f) by (2.1). In terms of u/(5.1) takes the form

(5.2)
for all W H2( 2) subharmonie in Dt. Since the restriction mapping H2( 2)

_
H(f)

is onto [18, Thm. 26.7] the test class, H2() for W in (5.2) can be replaced by H2(f).
In particular (5.2) holds for all H2(f) fqH0(f) which are subharmonie in D. For
pH2() CIHo(f]) we have (fD, mut)--(ut, m)). Therefore, and since A maps H2(f])
H0(f) onto L2(f]), (5.2) can be written

(5.3) (ut,P)>_O
for all pL-(f) with p->0 in Dt. (5.3) shows that

(5.4) ut>_O (in f)

(because all nonnegative pL-(f) are allowed in (5.3)). The choice P-Xo,-1 is also
allowed in (5.3). This gives (ut, xo,- 1)_>0 and therefore, since ut>_O, Xo,- <-0,

(5.5) (ut,xo,-1)-O.
The fact that (5.4) and (5.5) hold for ut defined by (2.1) shows that our map t--,D is a
weak solution. Thus the proof of Theorem 7 is completed.
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6. Summarizing results and further properties of weak solutions. In this final
section we shall first reformulate the main result, Theorem 6, so that it becomes more
self-contained and simple, and then we shall prove some modest results on properties of
weak solutions.

Theorem 6 and the definition of a weak solution suffer from being a bit com-
plicated because of our desire to work in the Sobolev spaces H() and H-(f). The
following theorem is just Theorem 6 liberated from these complications, and it defines
implicitly a more simple concept of a weak solution.

THEOREM 8. Given a finite positive measure i with compact support in R 2 and a
bounded open set DO in 2 with supp/xCDo there exist, for each t>0, a unique open
bounded set D containing supp and a unique distribution u in 2 such that

(6.1)
(6.2)
(6.3)

XD,--XDo Aut+t’l,
ut>--O and

D/:DoU {zr2"ut(z)>O},

where (6.1) shows that u has a representation in form of a function continuous outside
supp (in particular outside Do) and (6.3) refers to any such representative.

Further, D is monotonically increasing as a function of each of Ix, Do and (more
generally, as a function ofX Do+ t. l), i.e. ifI <-- I’, DO CD and <_ then D CD. Finally

(6.4)

holds for every function q H2(R 2) which is subharmonic in Dt.

Proof (sketch). If/x is not sufficiently smooth (/1 (H-1( 2)), we first smooth it out
by convolving it with some radially symmetric mollifier (as in Proposition 2) so that
supp/x is still contained in D0. Then by choosing appropriate to,,f and T and by
applying Theorem 6, we obtain functions u and domains Dt, related by (4.12) for
arbitrary large t. It is easily seen that if we extend the u by putting them equal to zero
outside f, both the u and the D become independent of the choices of to, f and T, and
they satisfy (6.1)-(6.3) (for the smoothed out/x).

Now the D will actually provide a solution also for the original and the u will
satisfy (6.1)-(6.3) after a change inside D0. The details of this are completely similar to
the application of Proposition 2 at the end of the proof of Theorem 6 and are therefore
omitted. (The details in the case that # 2,r8 are given in [7, {}IVa].)

The unicity and monotonicity properties of D also follow easily from Theorem 6.
As to the moment inequality (6.4) it follows from Theorem 7 that

fo,-fOo>-t"fa(t*h)
for all qH2(2) subharmonic in Dr, where h, is that mollifier, defined by (1.5) for
some suitable e>0, used in the beginning of this proof. But, since tp<q,h, in a

neighborhood of supp/x by the sub-mean value property of subharmonic functions, we
have

f f



MOVING BOUNDARY PROBLEM FOR HELE SHAW FLOWS 297

and so

for tp H2( 2) subharmonic in Dt. This ends the proof of Theorem 8.
Now consider a weak solution t-D in the sense of Theorem 8. There are strong

reasons to believe that D in some sense becomes nicer as increases. One for example
expects that for any >0, D is bounded by analytic curves even if DO is not. This we
cannot prove (and it is not true for completely arbitary initial domains Do, as we shall
see in a moment). What we can prove is the following.

THEOREM 9. Let D be as in Theorem 8 and suppose that, for some fixed t, D is
connected and finitely connected, and DO C CDt. Then OD is a finite disjoint union of
analytic curves and isolatedpoints.

By an "analytic curve" we mean precisely the following: a subset of C is an
analytic curve if it is the image of 0D under some nonconstant function holomorphic in
a neighbourhood of OD. Thus an analytic curve is allowed to have singular points. For
the proof of Theorem 9 we need the following lemma which shows to what extent the
term DO in (6.3) is necessary.

LEMMA 3. Let, in the situation of Theorem 8,

ut={zeC:u,(z)>O}
where ut’ being superharmonic in DO by (6.1), is normalized to be lower semicontinuous in
DO (and continuous outside supp/x). Then, for >O,

(i) IfN is a component ofDo, then either NC U or ND Ut-- , and the latter case
can occur only ifN

(ii) D is the union of U and those components ofDO which do not meet Ut.

(iii) IfDO is connected, then Dt- U andD is connected.
Proof of the lemma.
(i) In Do, and in particular in N, u is a superharmonic function. Therefore, since N

is connected and ut_>0, if ut attains the value 0 in N, it must be constantly equal to 0 in
N. Thus either ut>O in N or ut=--O in N. Moreover, it is obvious (from (6.1)) that the
latter case can occur only if N does not meet supp #. This proves (i).

(ii) is an immediate consequence of (i) and the definition (6.3) of Dt.

(iii) Since supp/ cD0, it follows from (i) (with N D0) that DO C Ut. Thus, D Ut.

It remains to show that U is connected. But, since DO is connected and DO C Ut, if U
were not connected, there would be some component V of U such that VDo--
And this is impossible because u is subharmonic outside supp #, in particular outside
Do, ut>O in V and 0 on V. This completes the proof.

Proof of Theorem 9. Let Ut=(zC :ut(z)>O}. Then D0C CDt=DoLJUt shows
that bDo C Ut. This implies that each component of DO intersects Ut, and so, by (ii) of
Lemma 3, Dt-- Ut.

Now let /be a component of 8Dt=U and we shall show that V is an analytic
curve or a point. Let -C U (oo } denote the Riemann sphere. Since U is connected,
there is exactly one component of 2\ 3’ which contains Ut. Let V denote that compo-
nent. Then it is easy to see that bV=3,. Since is connected, this also shows that V is
simply connected.

Put W=D \Do- U\DO C V, and define

Ou
(6.5) S(z)--4
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for zWt3" (O/Oz-1/2(3/Ox-iO/Oy)). Due to the assumption that D is finitely
connected, D.t_is a neighbourhood of 3’ in V (the other components of OD cannot cluster
at 3’). Since DO is a compact subset of D (also by assumption), it follows that also W is
a full neighborhood of 3’ in V.

It follows from (6.1) that u is continuously differentiable outside ft. Hence S(z) is
a continuous function on Wtd3’. On 3’CC\Ut, u attains its minimum (u/=0). There-
fore Out/Oz=O on 3’, so

(6.6) S(z)=e on V-

In WS(z) is holomorphic since, by (6.5) and (6.1),

OS---= 1--Aut- 1--Xo,+Xzo+ t.l.t--O in W.

Now it is known (cf. [1, Lemma 6.1] or [9, p. 152]) that the existence of a function
with the properties of S(z) above gives the desired conclusion for 3’. To be precise, if 3’
just consists of one point, we are done. Otherwise (since V is simply connected and
0V=3’) Vcan be mapped conformally onto [. Let f: [ - Vbe the inverse map.

Then S(f()) is holomorphic in the neighborhood f-(W) of 0D in D and (6.6)
shows that

S(f())-f()--,O as ’0D (’).
It can be seen that this implies that f(’) extends analytically across 3 by defining
f()=S(f(1/)) for " in a neighborhood of 0D in {2\.

Moreover, it is seen that f(0D)=-t. This shows that ’t is an analytic curve and the
theorem is proven.

Remark. Theorem 9 is not quite satisfactory because of its three assumptions a
priori on Dt. The first of these, that D is connected, is however harmless and is
automatically fulfilled if Do is connected (by (iii) of Lemma 3).

The second of the assumptions, that D is finitely connected, I do not know how to
get rid of although I suspect that it is also automatically fulfilled (possibly some weak
assumption on Do is needed).

The third assumption, that Do C CDt, can be replaced by either one of the follow-
ing two assumptions.

(i) is sufficiently large.
(ii) Do is connected and is bounded by finitely many disjoint analytic curves.
As to (i), we actually have D0C CD for sufficiently large. This is seen by

comparing our solution t--,D (corresponding to the measure/ and initial domain Do)
with some suitable known solution t--,Dt’ defined by some measure /’ and initial
domain D. As indicated by Proposition 2 we can assume that # is a continuous
function. Since #0, # must be strictly positive somewhere, say at the origin. Then we
can choose #’ to be a radially symmetric function such that #’ <# and D to be a disc,
centered at the origin, such that DCD0. Then, by the monotonicity properties of D as
a function of # and D0, we have Dt’ CD for all >0. On the other hand Dt’ is a disc (this
follows from radial symmetry and uniqueness of solutions of (6.1)-(6.3)) which grows
beyond all bounds as increases (it follows e.g. by integrating both sides of (6.1) over
R 2 that ID;I--ID61 + t. f d#’). Therefore DO C C Dr’, in particular DO C C Dt, for all suffi-
ciently large t, as we wanted to prove.

To prove that (ii) can replace DOC CD we first note that, in the proof of Theorem
9, we still have D U, by (iii) of Lemma 3. The assumption that ODo is analytic implies
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that there exists a function S0(z), defined and continuous in (DO\K) tJ OD0, where K is
some compact subset of Do, and holomorphic in DO\K such that

So(z)= on aD0.

Now in the proof of Theorem 8 we change the definitions of W and S(z) to W=D \(K
t_J supp/x) and

u
S(z)--4-----z+Xoo(Z).(S0(z)-) for z WtA3,.

Here it is assumed that S0(z) is extended to WLJ y in some way, e.g. by S0(z)= for
z(WtJ’t)\Do. Then S(z) is continuous on Wt_J,, holomorphic in W (since (6.1)
shows that OS/O=O in W\ODo and OD0 is a nice curve) and S(z)= on -/. The rest of
the proof of Theorem 8 works as before and so (ii) is proved.

I am sure that the assumption DO C CD in Theorem 9 can be replaced by some
much weaker assumption on DO than (ii). However some assumption is needed as the
following example shows. Choose DO such that OD0 has positive two-dimensional
Lebesgue measure. DO could e.g. be a square with a lot of slits (of constant length)
along one side, spaced as a Cantor set of positive length. Then it will take a positive
time for D to move through 0D0 (since [Dtl-lDol--t.fdlz) and therefore D0C CD
cannot hold for small t>0. Moreover OD cannot be analytic for these t. This shows
that the conclusion of Theorem 9 is not valid if the hypothesis DO C CD is completely
omitted.

Despite its weaknesses Theorem 9 is strong enough to ensure that classical solu-
tions always are bounded by analytic curves.

THEOREM 10. Let #, and I be as before Definition and let 19 D ,,, be a
classical solution. Then

(i) If 19 D;o, is another classical solution and D;--D, for some ’I then
D{--Dtfor all tl with t>’.

(ii) OD is an analytic curve for every 1.
Proof. We can assume that # is a nice function, by Proposition 1. To prove (i)

assume, without loss of generality since the concept of a classical solution is invariant
with respect to time translations, that z-0I and then apply Theorem with T>_t.
Combined with the unicity statement of Theorem 6 this gives that Dt’ D up to null
sets. But it is easy to see that, in view of the regularity assumptions on OD and ODt’, this
implies that Dt’ D everywhere. This proves (i).

To prove (ii) take zI, z<t. We may assume that z=0. Now we apply Theorem
with T>_t. This shows that t--D is a weak solution in the sense of Definition 2.
According to Theorem 6 (uniqueness part)

(6.7) z t= oU {z e

up to null sets, where u is the function defined by (2.9).
Now using the regularity of D it is not very hard to see that (6.7) actually holds

everywhere. In fact we have Dt={zf:po,(z)>O} for all O<t<_T, and the function

po,(z) increases with t’, and from this it follows that Dt- {z" ut(z)>O} (for 0<t_<
T). Moreover, the regularity of D also implies that -Spo,/n>O on D for all t. In
view of the continuity of 0’/0t XTpn, (Definition 1) this easily implies that Dr, C C Dt2
for t <t2, in particular that D0C CD for t>0. Now it follows from Theorem 9 that OD
is an analytic curve.
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GLOBAL EXISTENCE OF CLASSICAL SOLUTIONS
IN THE DISSIPATIVE SHALLOW WATER EQUATIONS*

P. E. KLOEDEN

Abstract. An energy method of Matsumura and Nishida is used to prove the global temporal existence of
classical solutions in the dissipative shallow water equations on a spatially periodic horizontal domain. This
requires the external forcing, the initial data and the initial first order time derivatives to be sufficiently small.
The result is related to the data initialization problem in numerical weather prediction, and extends a local
existence result of Bui An Ton for the same equations.

1. Introduction. Inappropriate initial data in numerical weather predication often
leads to spurious motions of high frequency and large amplitude which soon dominate
and obscure the slower meteorologically significant motions (e.g. [2], [6]). Several
different data initialization schemes have been proposed to modify the initial data,
which is usually incomplete and inaccurate, in order to control these undesired motions
and thus to extend the time interval for which a reasonably accurate forecast can be
made. In particular, the bounded-derivative method of Kreiss (e.g. see [2]) involves
choosing the data so that initial time derivatives are sufficiently small and guarantees
that they remain small for a certain period of time.

The shallow water equations [3], [5], [6], [9], [10], with or without dissipative terms,
are the simplest type of equations in geophysical fluid dynamics for which this interac-
tion of fast and slow solutions occurs [6]. In this paper we consider the global temporal
existence of classical solutions for the dissipative shallow water equations [3], [5], [10].
We use an energy method developed by Matsumura and Nishida [7], [8], which involves
extending a solution guaranteed by a local existence theorem by repeatedly applying an
a priori estimate. This requires the norms of both the solution and its first order time
derivatives to remain small for the time period under consideration. We work with
square-integrable Sobolev spaces and then use an embedding theorem to show that the
solutions are in fact classical solutions. For simplicity we restrict attention to flows
which are periodic in both horizontal spatial variables, as are often considered in
meteorological studies, although we note that Matsumura and Nishida have used their
method in more complicated boundary value problems. Our result shows that global
temporal existence of classical solutions can be achieved provided the first order time
derivatives are kept sufficiently small. This provides some mathematical justification
for various data initialization schemes, and also extends a local existence result for the
dissipative shallow water equations obtained by Bui An Ton [10].

We state our main result in 2 and outline the proof. In 3 we show the existence
and uniqueness of a steady solution, about which we take nonlinear perturbations.
Then in 4 we state a local existence result, the proof of which is standard, and an a
priori estimate for the perturbation equations and show how it is used repeatedly to
extend the local solution. We prove the a priori estimate in 5 by successively using
eleven estimates, which we prove in6 and 7.
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2. The dissipative shallow water equations. The dissipative shallow water equations
arc a coupled system of nonlinear hyperbolic and parabolic partial differential equa-
tions [3], [5], [10]

(2.1) h,+(hu2);=O,
(2.2) h u + u u v hu

on a horizontal spatial domain , where 1, 2 and repeated indices indicate summa-
tion. Here gh is the geopotential, x
is the hofizontM velocity, v is the viscosity and =(,2) is the external force, wch
is assumed generated by a potentiM function with =-,. The positity con-
straint

(2.3)
the boundary condition

(2.4)
and the initial conditions

h(x,t)>O forallxf, t>__0,

ui(x,t)=O forallxO2, t>=0,

(2.5) ui(x,O)=uio(x) and h(x,O)=ho(x)>0 for allxfl

must also be satisfied.
A steady solution (x), =(x) of (2.1)-(2.4) satisfies the steady equations

(2.6) (J)x=0,
(2.7) lJl 11( lix.t "47 hx, i
with fti(x)= 0 on Off and h(x)> 0 on ft.

In this paper we restrict attention to doubly periodic flows, that is, those which are
which are periodic in both horizontal spatial variables, and we take the open unit
square (0,1)(0,1) as the principal flow region f. All functions are subsequently
doubly periodic on 2 and the spatial average of such a functionf is denoted by

]=f, f(x)dx.
We denote by Wk’2(fl) the Sobolev space of functions f which, together with their
lth-order generalized spatial derivatives Dtf for /--1,2,.--,k, belong to L2(), with
norm

k )1/2
by C2(0, T; Wk’2(fl)) the space of functions f: [0, T] W"z(fl) which are j times
continuously differentiable in t; and by L2(0, T; wk’2(fl)) the space of functions f:
[0, T] W"-(f) for which ](t)lk is square integrable on 0 t T.

Our main result is ts theorem.
TnEOM. Let h o, u and be doubly periodic functions with h o, u W4’2(fl),
wS’2(fl) and ho(x)> 0 on .
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Then there exists a positive number e such that if

Ilho IluGII4 110"114

the dissipative shallow water equations (2.1)-(2.5) have a unique doubly periodic solution
( h, ui) and a unique doubly periodic steady solution ( h, ft i) with

(2.8)
’/(X) 0 -’1- (I) (X), /i(x) O,

h-h( C(O, K; W4’2("))(’ cl(o, 0; W3’2(")),
ui(.C(O, oo’ W4’2(a))(’ cl(o, oo;

and

supr’ .,
,,l.lh(x,t)_lt,x)l,]u,,x,t)l0 astoo.

The solutions (h, ui) and (h, i) in the theorem are in fact classical solutions, with
all of the derivatives appearing in equations (2.1), (2.2), (2.6) and (2.7) existing in the
classical sense and continuous on f [0, oo). This follows from the embedding of the
Sobolev space Wj+ 2,2(,21 in the H/51der space CJ’X() for any 0 < < 1 andj 0,1, 2,...
[1, Thm. 5.4, Part II, Case C"].

To prove the theorem we first show the uniqueness of the steady solution (2.8)
(Proposition 1) and then perturb about it to obtain for the perturbations h’ =h-h,
u i, u ?,i= u the equations (in which we omit the primes for convenience)

(2.9) h,+ uJhxj + 0uj F

F(2.10) U vu,x + h x,

where

(2.11) F= (o-h- )UJx hxui,

(h+h)XJu(2"12t Fi= uJu’+ v
( h + h ) x,"

Next we introduce the bounded closed convex subset.

(2.131

r=r( tl, t2; E )
{(h,ui);hC(tl,t2; W’4’2())fL2(tl,t2; W’4’2()),

W3’2())fZ2(tx 2 13’2()),htC(tl,t2,
uiC(tl,t2; Wa’2())NZ:(tl,t2; 14,r5’2()),
C(tl t W2’2ut 2, ())(3L2(tl,t_,

with N( h,u; tl,t_) <= E }

of a function space C(tl, t2) which is defined as in (2.13) without the restriction on
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N(h, u; 1, 2),where

(2.14)

tl _’r_t

2 2
+ + iI u ( d

which we abbreviate by N:(tl, t:); then (h,u) is fixed. Next we indicate the proof,
which is standard, for the local existence in time of a unique doubly periodic solution in
the space of the nonlinear perturbation equations (2.9)-(2.12) with boundary and
initial conditions

0)=h (x) h(x) onfand u’(x,O)=uo(x ), h(x, o

(Proposition 2). We then obtain the global existence indicated in the Theorem by
repeatedly extending the local situation with the aid of a priori estimate (Proposition 3),
the proof of which constitutes the bulk of the paper.

The method we use here is due to Matsumara and Nishida [7], [8], who have
applied it to the equations of motion for viscous heat conducting compressible fluids.
Our restriction to doubly periodic flows simplifies matters in that we essentially only
have to establish interior estimates, though like Matsumura and Nishida we could also
derive corresponding boundary estimates and thus extend our result to the usual type
of initial boundary value problem.

We note that the inclusion of Coriolis terms in equations (2.2) does not alter the
results of the Theorem.

3. The steady solution. For any positive constant h 0 and force potential , the
function h defined by h(x) o + (x) satisfies

(3.1)

say, and hence h(x) >= -34 o > 0 on f, whenever (I) satisfies

(3.2) I(I)(x)-l-< 1/40.
By [1, Thm. 5.4] and a Poincar6 inequality [4, p. 157]

(3.3)

where the constant K, depends only on the domain f. Inequality (3.2) certainly holds
whenever

(3.4) lID(I) 114 =< E1(0) 0/(4Kp),

which implies that h (x) is positive on .
Consequently the functions (h,fi) defined in (2.8) are a steady solution and it

remains to show that it is the only steady solution with spatial average

(3.5) fa h ( x) dx=.
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To see this, we let (h, fi) be any steady solution. Then from equations (2.7) we have on
integrating by parts and using equation (2.6)

vhu2u2+(hi)x,

huxudx.
As h is positive, we have ..=0 on and as ui=0 on Of, we thus have /i 0 on -for any steady solution. Equations (2.7) then reduce to

for which the in (2.8) is the unique positive solution satisfying (3.5). We have thus
proved the following proposition.

PROPOSITION 1 (steady solution). Let h o be an arbitrary positioe constant and let
Ws’2(fl) be doubly periodic and satisfy (3.4).
Then the functions (, ftj) defined by (2.8) are the unique doubly periodic solution of

the dissipatioe shallow water equations with h satisfying (3.5).

4. Local and global existence.-The positivity constraint (2.3) requires h(x,t)+
h(x) > 0 everywhere for any solution (h, u) of the perturbation equations (2.9)-(2.12).
This certainly holds if the initial data and the force potential are restricted so that (3.1)
and

(4.1) Ih(x,t)l Z 1/2T o,
say, both hold, for then Ih(x,t)+h(x)-ol< 1/4o and consequently h(x,t)+h(x)>= 1/4o
> 0 holds everywhere. We can guarantee that (4.1) holds if the perturbation solution
( h, u i) satisfies

(4.2) N(0, T)ZE2(0)=0/(2ge)
where K is the constant in the embedding of the Sobolev space W2’2(f) in the H/31der
space CX() [1, Thm. 5.4], for then

Ih(x,t)l<=ge" sup IIh(t)ll2<=geN(O,Z)<= 1/2o.
O<t<T

It thus suffices to find a solution (h, u) of the perturbation .equations (2.9)-(2.12) with
(2.15) in 5f(0, T; E) with E_< E2(h0) and some T> 0. In fact we have the next proposi-
tion.

PROPOSITION 2 (local existence). Suppose that IlDlla<=El(ho) and that the per-
turbation equations (2.9)-(2.12) with (2.15) have a unique doubly periodic solution (h, u i)

At(0, T; E2(h0)) for some T>= O.
Then there exist positive constants , eo and CO with e0l + Co <= E2(o), which are

independent of T, such that the perturbation equations have a unique doubly periodic
solution ( h, ui)(T, T+; CoN(T, T)) whenever N(T, T) <= eo.
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The proof of Proposition 2 involves the method of successive approximations. We
pick any (#, oi)(T, T+ T1;E ) for some positive T1 and E. Then we use standard
methods to solve locally in time >= T the system

=F-Ox(4.3) h + uJh
xj

"-F h(4.4) lgt- VUxjxj xi

with boundary and initial (at t= T) conditions like (2.5), where F and F are defined
as in (2.11) and (2.12) using (p, vi) instead of (h, u). The details of the proof are similar
to those in Matsumura and Nishida [7] for the initial value problem for the equations
of motion of a viscous heat conducting gas, but are simpler. Consequently we omit
them here.

We note that Bui An Ton [10] has used Langrangian coordinates and HiSlder space
estimates to establish the local existence of classical solutions for the unforced dissipa-
tive shallow water equations. Here, however, we use Sobolev space estimates in order to
extend the solution globally in time by means of the following a priori estimate on the
"energy" (2.14) of the system.

PROPOSITION 3. Suppose that the perturbation problem (2.9)-(2.12) with (2.15) has a
doubly periodic solution ( h, ui)(O, T; E2(0)) for some T> O.

Then there exist positive constants e and Cx with e < eo and eC <_ E2(ho), which are
independent of T, such that inequality

(4.5) N(0, T) _< CN(0, 0)

holds whenever N(O, T) <= e and IID@II4 =< ex.
We will prove this proposition in the following sections of the paper, but show

here how it is combined with Proposition 2 to give the global existence of the theorem.
For this we choose the initial data (h 0, u) and the force potential so small that

N(O,O)<_min{eo,e/Co,el/Cxi + C ,e(0),e_(o)}
and

IIO II, z min ( e,E(0), E2 (0 ) }.
By Proposition 2 with T= 0 there exists a local solution (h, u) in (0, z; CoN(O, 0)) and
since CoN(O, 0) =< e =< e0 by Proposition 3 with T=

(4.6) N(O,) <= CN(O, 0).

Then by Proposition 2 with T= this solution has an extension (h,ui) in
(,2; CoN(,)), so N(,2)_< CoN(,). The solution (h,ui) on 0=<t=<2 is then
in (0, 2; 1 +CN(0, )) as

N(0, 2)=<N(0,’)+N(, 25) <=N:(O,’)+CgNZ($,’r) <_ (1 + Co)N:(O,’r).
In view of (4.4) we have 1 +C N(0, )__< C1 + C0 N(0, 0)=< el and so by Proposition
3 with T 2- we obtain N(0, 2) =< CN(0, 0). Then by Proposition 2 with T= 2- the
above solution has an extension in Ar(2,3; CoN(2,2)) and hence the solution
(h, u) on 0 < t < 3 is in At(0, 3; (1 + C N(0,2)). Continuing in this way, we obtain
global existence of a solution, which is in fact unique for given initial data.
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To obtain the asymptotic property stated in the Theorem we note that such a
solution (h,ui) in fact belongs to .r(0, c;ex). Hence from definition (2.4) of
N(h,u;O, ) with tl=0 and

lim IIDh(t)ll3=O and lim IIDu(t)ll4---O.
t--* t--* o

The result then follows from an application of the Poincar6 and Sobolev embedding
inequalities. It remains thus to prove the a priori estimate of Proposition 3.

5. Proof of Proposition 3. We need the following a priori estimates for a doubly
periodic solution (h,ui) in some space .(0, T; E) of the perturbation equations (2.9)
and (2.10), where F and F are considered as given functions of (x,t)with

F(.C(O,T; /V3,2(2))I’IL2(0, T; W4,2()),
e’c(o,;

and

/c(o, 7"; w:,:(n))cz.(o, 7"; w,:(e)).
The boundary conditions are given by (2.15), but for simplicity we write h o for h o- h.
In each case the constant C is independent of the h, u, F, F and the time T> 0.
L. . =0 andllh(t)ll2 <_ CIIDh(t)ll .
LEMMA 2. For k O, 1, 2 and 3

[Io+lh(t)ll2 fo+ [[DIC+lh(,r)ll2d,r

<C(llo+Xholl + IIDu011-+ IIDu(t)ll= + N(O,t)

+ fo (llDIC+2u(t)l]2+ IIDk+lf(’r)l]2 + IJDkF(’t’)l] 2} dr).
LEMMA 3. For k 1, 2, 3 and 4

IlDh(t)ll fo d,/llzu(t)ll=/ IIo/u()ll=

C (ll.Dkhol]2-t II/kUoll2---/’3(0,,) -t 0 { II.DkF(’r)ll2 + II.Dk-ltT(’r)ll 2}
LNNA 4.

Ilu(t)ll C(llDh(t)ll+ Ilut(t)ll__-< + IIF(t)ll

L.MMA 5. For k 1, 2 and 3

Ilh,(/)ll= -_< c{llDu(t)ll=+ IIF(t) =to + N (0, t)}
and

for IIh,() f0IId<-_C (llOu()ll+ llF()ll} d+ CN3(O,t).
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LEMMA 6.

We prove these lemmas in the next section. Usin them, we have

2
]]h(t)ll4 / [Iht(t)ll / Ilu( t)11:4 / Ilu,(t)ll:

t( 2 2
+ [[Oh()[13+llh,()ll+[lOu()ll,+llu,()[[ de

c (llnF()ll+ llF()ll

by Lemma 1, Lemma 2 with k 0,1, 2 and ,3, and Lemma 4

z c + Ilu,(o) ll=+ II(,)l]d" + C(... )

wC(llht(t)ll2 t
by Lena 6, where indicates terms repeated from the previous inequality

+ Ile(,)lld, +c IIu(t)ll+ II(,)lld,

by Lemma 5 with k 3

+ ]lOuol] + [[DF()II + ]]F()II de

S c Ilholl + IlUoll4 + IIF(0)II: + IIF(t)ll + N3(O,t)

using the fact that equation (2.10) is satisfied at 0, so

IlU
Tang the supremum in over the inteal 0 T, we obtn

+ IIF(t)ll +N3(0, T)
OtT
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To continue we need to estimate the quantities in (5.1) involving F and F which
we now consider as functions of h and u defined by (2.11) and (2.12). We obtain
Lemmas 7-11.

LEMMA 7.

sup IlFO(t)ll-_< C ( N2(0, T)+ IID114} -N:(0, T).
O_tT

LEMMA 8.

f0 IIF() IId c { g-(O, T)+ Ilo*ll} "N=(O, T).

LEMMA 9.

3

sup IIF(t)Ilzz C" E ( N:(O,T)/ IIDII3)’N:(O,T)
O<t<T k--1

LEMMA 10.

LEMMA 11.

These lemmas will be proved later. We use them in (5.1) to obtain

(.) ,(o,)(lloll:+ Iluolll)

+C N(O,T)+ _, (N(O,T)+IIDII "N(O,T),
k=l

from which we deduce that there exist positive constants e and C1 such that

0,
_

Cx(llholl + Ilu011)_ c1. 0,0

whenever N(0, T)=< e and IIDII4 -< el. This completes the proof of Proposition 3.

6. Proofs of Lemmas 1-6.
Proof of Lemma 1. Integrating equation (2.1) and using the boundary condition

(2.4), we find that the perturbation h satisfies

fft h(x,t)dx- ff h(x,O)dx- fot ff ((h+l)UJx)dx=O
and as

fu h(x,t)dx= fu (ho(x)-h(x))dx=O,
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we have

=(t)= fah(x,t)dx=O.
The inequality in Lemma I then follows from a Poincar6 inequality [7, p. 157].

Proof of Lemma 2. We denote by L=L(h,u) and Li=Li(h,u) the fight-hand
sides of the perturbation equations (2.9) and (2.10). Then

(6.1)

(DkL)x,’Dkh + "D dxdzx p x

W Dk
tDkhxi Dk(ht+uJhx+u)xi r

khxi
ho=f (D )2dtdx+ S(Dkhxi)2dxd

holl+h(t)ll-ll+Xhol{+ IID+h()lld+
Replacing L by F and Z by F in (6.1) and rearranging, we obtain

(6.)

ll+h(t)ll+

< ll+lholl IFI+, IF’l +olDk(uss uss)l dxdz

+ oh Ofuhx, ., +-- "hx .xi

+- {llo+,Fo(,)ll+ IIvF’(,)ll+ II+=u(,)ll

K+ (11+’holl + uo11+ I1 (,)11)
t( 2 2) N3

where we have used Young’s iequality in the first integral terms and the estimates for
k=0,1,2 and 3

(6.3) {t SDhx,D(uJhx,)x,dXd, =K.N3(O,t)
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and

(6.4)

fotfuDkhx,Dkudxd* llo+ ih ( )11=+ 7K (llo+h 011 = +11ouoll=+llOu(t)ll)

for ( )d’r+K’N3(O,t)+g IIOu(’)ll+ o+xF(’)ll=

Here K is a constant which is independent of time and the particular functions, and e
is an arbitrary positive constant. By picking e sufficiently small and rearranging (6.2)
we obtain the inequality in Lemma 2. It remains to establish estimates (6.3) and (6.4).

For (6.3) we use Leibniz’ rule to obtain for k 0,1 and 2

(6.5)

k

t=o l fo f Dk-lh( Dkh x, Dk-lhxDluJx,+. Dkhx, xxDtu
j } dxd’r[

SUPx ul { liD I1- + D hll }

sup ID’ul(llD+ 1hl[2 + lID-’+ Zhll2} } d,
x

where we have used Young’s inequality (with e 1)

Z E k g sup D’+ull=. (11o+hl12+ liD k-l+hll2} d,
t=0 1

dr- Ke. i supt IlDlul122" fot (]lDk+1hl12-l-IlDk-l+2hll2)d’r)
<__K’N(O,t)’N2(O,t).

where we have used the embedding of W2’2(’) in CX().
The above argument is also valid for k 3 and l= 1 or 2. For (k,/)= (3, 0) we must

first integrate the second term in (6.5) by parts to get

lot ff(nkh )2 j
x, udxd’r

from which we extract SuPxlDu I, and for (k,/)=(3,3) we must extract supxlDhl from
the first integral instead of supxlDaul.

For the estimate (6.4), we first integrate by parts in and obtain
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fOt ffl Dkhx,Dkudxd

<llo,+h(t)ll 1 2
/ -IID"u <t)ll / II’ ’+h oll IIDuoll =

+ t SDkiDk(FO_,jhxj_oj)xydxd,I,
where we have used Young’s inequaty twice and equation (2.9). The integral term here
is bounded by

+ Du’D(u:hx,)x,dx+ollD+u(z)ll
where we have used Young’s inequality in the first term and integrated by parts in the
spatial variable for the trd. The ddle term is bounded by a constant times N3(0, t),
wch is shown in exactly the same way as above after integrating by parts in the
spatial variable.

Ts completes the proof of Lemma 2.
Proof of Lemma 3. Ts is proved in a silar way to Lemma 2, estimating the

identity

Silar caution must be taken with the k 4 term wch is bounded by KN3(0, t). We
ot the details.

ProqofLemma 4. We write equation (2.10) as in elliptic boundary value problem

=F i_hxP
XjXj

U

with homogeneous bounda condition ulau =0, for wch the estimate [3]

u’ _KIIF’- i-hx,[[(6.6)

is valid. The lemma follows from (6.6).
Proqqmma 5.

II*h,(t)ll= f. DkhtDkh,dx

<2ellDh + --Ilo+au(t)ll

where the last integral is bounded by KN(0, t) for k O, 1, 2 and 3.
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This is proved in a similar way to that in the proof of Lemma 6. The first
inequality in Lemma 5 follows by addition, whereas the second is proved similarly with
time integration included above.

Proof ofLemma 6. We prove this by estimating the identity

D Lt.D u D .Dkudxdt

for k =0,1 and 2. The details are similar to those in Lemma 2 and are omitted. Note
that for k 1 and 2 the order of differentiation on Ft is reduced by integrating by parts
before using Young’s inequality.

7. Proofs of Lemmas 7-11. We now prove Lemmas 7-11, where F and F are
defined by (2.11) and (2.12) for a given solution (h,u) of the perturbation equations in
some space 5f(0, T; E). Here E is sufficiently small that h (x, t) + h (x) >= 1/4 0 > 0. This
with the facts that

and

imply that

h + h . C(O, T; W4,2("))(L2(O, T; W4,2(’))

htC(O,T; W’2(f))Lz(O,T; W3’2())

k

(7.) II(h/h) lllk<=g, {llO(h/h)ll )
1=0

for k 1, 2 and 3, and

(7.2) ]]((hdth)xJ)ll<gllhti[22(h+h)2
1=0

([[D(h+h)[I221)’
where the constant K is independent of h, h and t, but depends inversely on 0> 0.

ProofofLemma 7. From (2.11)

sup ]lF()ll sup
0<-<t 0<a-<t

<K sup {[Ihll 2 hll ])I1 0- Ilohll Ilul14
Ot

by the Banach algebra property of the Sobolev space V3’2(") [1, Thms. 5, 23]

< K(NZ(Ot) 4- lifo h =
3+ IlDhll N2(0, t)

<= K (N2(O,t) + IID’113} N=(O, t)

by the definition of and inequality (3.3).
Proof ofLemma 8.

0 2 j2f0 IIF ()114d---f0
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by the Banach algebra property of the Sobolev space W4’2(f)

2 2
ZK {llhll4+ IIoll}llulld

__<K sup { llh(’l’)l124-l- IIDcl124} fot llu(’i’)lld’i
O_rt

_<K{ N2(0, t)+ IIDll} N2(O,t)
Proof ofLemma 9.

sup IIF’()II
0<’r<t

sup uau +
O_t 2 (h+h) u_
g sup ( Ilull-Iloull== + I1( h + h)- 11i1 h + h)ll=lloull)
0,_t

by the Banach algebra property of W2’2()

sup IIDull Ilull / IID(h + h)ll E (llo(h + h)ll
0’_t 1=0

where we have used inequality (7.1)

<= KN2(O, t) sup Ilull =.+ E IIDh + E IID
0<’<t I----1 1---1

3

<=KN2(O,t)" E { N21(O,t) + IID*II’}
11

The proof of Lemma 10 is similar, so is omitted.

ProofofLemma 11. Let Rj (h + h)x/(h + h ). Then

fo I{Ft’()Jld= fo’ (-uvuL +RyuL)tllld

<gfot( I1( + till)
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by the Banach algebra property of W2’2()

__<g sup Ilu,(,) Ilull + IIk ll= d,

+g sup {lul = IDuI=){IINIIN
x

_KN2(O,t) Nz(O,t)+ IIR,II2d,

Ot

KN2(O,t){N2(O,’)+ t {IIRIIX+ [IRtIIX)
2

ZKN2(O, t) E { N2k(o,t) + IIDOII by (7.1) and (7.2).
k=0

Ts completes the proof of Lemma 11.
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ON COHERENT GROWTH OF CONFIGURATIONS*

STEPHEN J. WILLSON"
Abstract. A configuration X is an m-tuple of subsets of Euclidean n-space. A transition rule F assigns to

any X a new configuration FX. If X is bounded but sufficiently large, the sequence X, FX, F(FX),... is
studied by computing upper and lower bounds for the collection of limit points of the sequence (Fp X)/p. If
F is coherent, these upper and lower bounds coincide with a certain convex polytope depending only on the
rule f and not on X. These results may be interpreted to study patterns of growth in certain cellular automata
and may be applied to study the growth of crystals.
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1. Introduction. Considerable work has been done on cellular automata, homoge-
neous structures, and their applications to biological or physical phenomena. (See, for
example, Aladyev [1] or Wolfram [13]). The idea is that one is given a "configuration"
X--perhaps a pattern of zeros and ones on an infinite checkerboard, or some generali-
zation-and a "transition rule" F which acts on X to give a new configuration FX. The
basic problem is to study the iterates X, FX, F2X= F(FX),... ,F’X,

In the literature can be found some very detailed analyses of particular kinds of
rules F and configurations X. For example, Butler and Ntafos [3] are able to char-
acterize those squares in an infinite checkerboard which ultimately contain a one if F is
a particular rule studied by S. Ulam and X is a finite configuration. As another
example, Greenberg and Hastings [4] address the question as to when a pattern will
disappear ultimatelymi.e., F’X will be entirely zeros for some p--for a particular
collection of rules F.

Our questions are analogous, but our approach is somewhat different. Instead of
dealing with a particular F we shall only put abstract hypotheses on F and obtain
approximations to F’X.

This paper is a generalization of Willson [11]. In that paper, X was any finite
"sufficiently large" configuration of ones on an n-dimensional checkerboard otherwise
filled with zeros, while F was assumed "ordered". The main result asserted that there
was a convex rational polytope W depending only on F so that for large p, FPX was
well approximated by placing ones at the lattice points inside the polytopepW.

The generalization in this paper is of two sorts. Primarily, the intention is to study
structures where cells may have more than two states. (If I try merely to encode the
other states in terms of zeros and ones, I do not get systems susceptible to the analysis
in [11].) It appears that the tools of [11] generalize best when cells have 2" states.
Accordingly, we shall treat the situation where the state of each cell is given by an
m-tuple of zeros and ones.

The second mode of generalization is that the notion of approximation in [11] is
weakened. This weakening allows us to avoid many technicalities which unfortunately
encumber [11]. Instead of approximating FPX directly, we study limX, the collection of
limit points, in Kuratowski’s sense, of the sequence (FPX)/p. Thus, a weakening of the
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main result of [11] discussed above would assert that for all sufficiently large finite X,
limX= W.

The analysis is facilitated by reinterpreting the configurations. Let n and rn be
positive integers. For us, a configuration X will be an m-tuple (X1,... ,X,) where each
X is a subset of Rn. .Suppose we are given a configuration Y in the sense of cellular
spacesmthus Y is a map from Z to the set of m-tuples of zeros and ones, where Z" is
the lattice of integer points in R". We interpret Y as a configuration X in our sense in
the following way: for i=l,...,m let Xi={oZ: Y(v)=I}, so X is the set of
locations v where the th coordinate of Y(o) is one and not zero. Then the correspond-
ing configuration X is X= (X1, X2,.-., X,).

Our major result is analogous to the major result in [11]" Suppose the transition
rule F can be expressed in a certain kind of local form. For 1,. -,m we should like
to compute the set of limit points of the sequence (FPX)/p, where /p indicates
division by the scalar p. In the case where F is "coherent", it will turn out that the limit
points will be independent of and X unless X is degenerate. This common limiting
shape will then be a convex polytope depending only on F. We call it lim X.

This result has a natural physical interpretation in the context of crystal growth.
Regard X as describing the state of an n-dimensional crystal in which each fundamental
cell may contain rn atoms; X describes the locations of the atoms of the th type. The
rule F corresponds to passage of time, so that FX describes the crystal one unit of time
later. It is observed in real life that such crystals tend to grow toward a preferred shape,
usually polyhedral, characteristic of the type of crystal. This preferred shape corre-
sponds to limX. Whether a vacancy for one type of atom is filled at a certain moment
depends on what is happening to all types; yet still the macroscopic crystal tends
toward one shape common to all types of atom in that particular crystal. The author
finds it intriguing that in this situation (Theorem 5.4) limX will be a convex rational
polytope just as physical crystals tend toward a rational polytope preferred shape.

The notation is simplified if we allow each Xi to be an arbitrary subset of R,
rather than just of Zn; we are then able to apply F to disks, for example, rather than
just to sets of lattice points. For this reason most of the paper seems to apply to a
slightly different situation from that of cellular spaces, as indicated above. The return
to cellular spaces is made in 7, where the results are restated in that context.

This paper is organized as follows: Basic notations and definitions are presented in
2. In {}3 we obtain two growth rate functions gl(v) and gu(v) which give respectively
lower and upper bounds on growth rates in the direction v. We show they are continu-
ous functions. In 4 we use gl and gu to construct configurations W and W, and we
show that these are respectively lower and upper bounds on limX. In 5 we char-
acterize coherent growth and prove that in this case limX= Wt= W is a convex
polytope. In 6 we show that the notion of coherence is not void by giving a simple
sufficient condition for coherence. Finally in 7 we re-express our results in terms of
cellular spaces.

For more details on the motivation for this paper and applications to crystal
growth, the reader should consult Example 2 of 2. In particular, this example should
be regarded as an extension of this introduction.

2. Notation and basic definitions. We denote n-dimensional Eudidean space by
R; it possesses the standard inner product denoted by (x,y) for x, y R, and it has
norm given by Ixl-- x,x) 1/2. The set of points (xl,... ,x)R such that each x is an
integer is denoted Zn and is called the integer lattice of R. The set of unit vectors in R
is denoted X- 1.
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DEFINITION. Throughout this paper, m and n will be fixed positive integers. A
configuration X is an ordered m-tuple (Xx,...,Xm) where each X is a subset of R". The
th component may be variously denoted by X=(X)=(X,.. ",Xm). The set of all
such configurations (for fixed n and m) is denoted, or more commonly just when
there is no risk of confusion. If X, Y we write X_ Y provided that we have X Y
for 1,...,m.

Heuristically, we interpret X in terms of crystals as giving the locations in R" of
atoms of m different types: If x X, then there is an atom of type at position x. We
allow the same xR to be in several different X simultaneously; this is justified
because in the applications x will locate a translate of the primitive cell (see Kittel [6, p.
11]), and this cell may contain many atoms.

Certain special configurations are particularly important for this paper. Given any
unit vector vR" and any rR, we let H(v;r) be the closed half-space (xR:
(x,o) _<_r}. If ax,.. ",amR, we define the configuration H(V;al,.. ",am) by let-
ting its ith component be H(v; ax,.. ",am)i n(t); ai) for i= 1,. .,m. Thus the compo-
nents of H(v; a,-.-,am) are closed half-spaces with parallel bounding hyperplanes; we
shall refer to H(v; ax,.. ",am) informally as a half-space.

If L is a-positive constant, we denote the ball of radius L by D.= {xR"
]xl=<L}. We will also use D. to mean the configuration (Da, DL,...,D). No
confusion should arise from this abuse of notation. We will say X is bounded if for some
L we have X_Da.

If X and rR", we will frequently consider the translate X+ r of X by r,
defined as the configuration whose th component is (X+ r)= ( x + r" x X }.

Our principal object of study is defined next:
DrrxmTOr. An ordered transition rule F on is a map F: such that all the

following conditions (2.1) through (2.4) hold"
(2.1) F is monotone, in the sense that X_FX for all XY.
(2.2) F preserves inclusions, in the sense that, whenever X, Y and X_ Y it

follows that FX_ FY.
(2.3) F is invariant under translations; i.e., for all wR and for all Xwe have

F(X+ w)=(FX)+w.
(2.4) If denotes the configuration each of whose components is empty, then

F .
(2.5) F is finitely determined. This means that there are finitely many vectors

v, vVR called the neighborhood vectors, such that for each y R, for
each i=l,...,m and for each XYa, the fact as to whether y(FX) is
completely determined by which of the vectors y + v lie in the various compo-
nents Xk. Still more explicitly, for each y,i, and X the truth of the assertion
"y(FX)" shall be determined entirely by which of the Nm statements
"y + v Xk" are true, where 1 =<j_<N and 1 =< k =< m.

It will be important to have explicit descriptions of ordered transition rules F, and
the notation needed is unfortunately cumbersome. In this paragraph we shall show how
objects which we shall call "generators" can be used to define an ordered transition
rule F. Fix the allowed neighborhood vectors vt, vs. Let E ((j, k): j 1,-.. ,N; k
=1,-.-,m}. For each i=l,...,m suppose there are given finitely many nonempty
subsets S,..., S/of E, called i-generators. Make the further assumption that

(2.6) vX=(O,O,...,O)Zn and for each ((1,i)}=S.

We can then define a map F: --, as follows: for each i= 1,. .,m, y(FX) if and
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only if there exists an/-generator S/such that y + vJ Xk for all (j, k) S/. In symbols,

(2.7) (FX)i=I,.J (Xk--Vj)
(j,k)S]

where Xk- v denotes the subset Xk translated by the vector -v. It is trivial that (2.1)
through (2.5) hold for the map F so defined; for example, (2.4) is a consequence of the
assumption that the sets S/are all nonempty, while (2.1) is a consequence of assump-
tion (2.6). Thus F is an ordered transition rule.

Conversely, one may easily prove that any ordered transition rule may be de-
scribed as in the previous paragraph, using generators. Explicitly, suppose F is an
ordered transition rule. From (2.5) we may obtain neighborhood vectors v, vu and
we may ensure vx= (0, 0,..., 0), if necessary by inserting it into the list of neighborhood
vectors.

For each 1,...,m let A be any subset of E such that y (FX) is true whenever
y + vJ Xk for each (j, k) A yet y + vJ Xk for each (j, k) E A. List all such sets A
for each as A A i.

2," ",At, we shall see these constitute the/-generators for F. First of
all, from (2.1) if X= ((0, 0,.-., 0)} but X= forj 4: it still follows (0, 0,...,0) (FX).
Hence A ((1, i)} is someA which we may take to be A; and (2.6) holds.

Next, suppose X; we show that if for some 1 and some yR" we have
y+ vJXk for all (J,k)At, then y (FX). The difficulty we encounter is the possibil-
ity that y+ vJXk for some (j,k)E-A; if there were no such (j,k), then y would
be in (FX)i by the choice of A. Let B= ((j,k) E: yWvJXk), so A_B. Define
configurations XA and XB by (XA)k=(V2: (j,k)A}, (XB)k=(V2: (j,k)B}
for k=l,...,m. Then X_X since A_B. Moreover, (O,O,...,O)(FXA)i by the
choice of A. From (2.2) it follows that (0, 0,...,0) (FXn)i, whence by (2.5) we see
that y (FX).

Thus each set A is an/-generator for F, and it is clear that the list of/-generators
for each gives a complete description of F. Thus any ordered transition rule is
described in terms of generators.

DEFINITION. If F is an ordered transition rule, its neighborhood parameter M is
defined as M= maxlvI, where v ranges over the neighborhood vectors of F.

The neighborhood parameter will be a useful measure of how far the influence of a
point may extend. It is easy to obtain the following results:
(2.8) If L is a positive real number, then F(D)__c Dz/t-
(2.9) For each positive integer p, suppose F is the result of a p-fold iteration of F.

Then F’ is an ordered transition rule on with neighborhood parameterpM.
Example 1. Let n m= 2. Define the ordered transition rule F on as follows:

The neighborhood vectors are o= (0, 0), 02= (- 1, 0), 03= (0, 1) and N= 3 since there
are three neighborhood vectors, while the neighborhood parameter M 1. We choose F
to have two 1-generators, namely S=((1,1)} and $21=((2,1)}. We choose three
2-generators: S2= ((1 2)) $22= ((3,2)}, $32= ((1,1),(2,1),(2,2)}.Thus by virtue of S -3we know that y (FX) 2 if y + o X1, y + o2 X1, and y +/32 X2. By virtue of S we
know y (FX)2 if y +/33 X2" Suppose the initial configuration is X where X1 X2

((0, 0)). The reader can verify the following:

(FX) ( (0, 0), (1,0) },
(F2X) ((0,0), (1,0), (2, 0) },
(V3X) ( (0, 0), (1,0), (2, 0), (3,0)),

(FX)2 ( (0, 0), (0,1) },
(F2X)2 { (0, 0), (0,1), (0, 2), (1,0) },
(F3X)2 { (0, 0), (0,1), (0, 2),

(0, 3), (1,0), (1,1), (2,0) }.
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Example 2. This example illustrates the relationship between this current paper
and crystal growth and may be regarded as motivation for this paper. Let n 3, m 2.
For the remainder of this section we interpret a configuration Y=(Y1, Y2)2 as a
description of a crystal. The locations of the cells of the crystal lattice will be indexed
by vZ3. We shall assume that the primitive cell (see Kittel [6, p. 11]) may contain
m= 2 atoms of different types The "cell at vZ3’’ is a translate of the primitive cell,
but in an incomplete crystal lattice not all atoms will be present in each cell. We
interpretYas follows: If v Y1, then the cell at vZa contains an atom of type 1;
and if v Yx, then the cell at v does not contain an atom of type 1. Similarly v Y2 if
and only if the cell at v contains an atom of type 2. Thus if v Y U Y2, the cell at v is
empty.

We shall say v and v’ are adjacent if v-v’ is one of the vectors (+/- 1,0,0),
(0, 4-1, 0), (0, 0, + 1); we say two atoms are adjacent if the indices v and v’ of their cells
are adjacent. Let us assume that there is a binding energy e between adjacent atoms of
type i, for i= 1,2; a binding energy e12 between adjacent atoms of different type; and a
binding energy el2’ between two atoms in the same cell. Assume e, e2, el2 e12 are
positive, and let 1, k 2 be positive numbers (regarded as threshold energies).

We define an ordered transition rule F on #a23 as follows: If X=(X,X2), then
where nl is thev(FX) if and only if either vX or elnl+elEn2+elEnl2_>_.l,

number of w Z3 adjacent to v such that w X, n 2 is the number of w Z adjacent
to v such that wX2, and n2= 1 if vX2 while n2=0 if v Xg.. Thus v appears in
(FX)I if it is already in X or if the total energy released by the appearance of an atom
of type 1 in the cell at v exceeds the threshold energy . Similarly we let v(FX)2 if

> where n and n are as above andand only if vX2 or e2n 2 + el2n + e12r/21__ 2, 2

n’21 1 if v X while n’21 0 if v Xx.
It is not hard to see that F is an ordered transition rule. There will be numerous

generators, depending on the numbers e1, e2, e12, e2, ’1, ’ 2.

Hopefully, the transition rule F corresponds to the growth process of the physical
crystal. Thus, if X describes the initial seed crystal, then FPX describes the crystal after
p units of time. With reasonable restrictions on ex, e2, e9_, e2, X1, A 2 the theorems in
the remainder of this paper will apply to this F. In particular, (7.2) will show why the
crystal should grow into a polyhedral shape, provided that the initial seed crystal X is
"sufficiently large."

The description of F above is very close to descriptions of crystal growth made in
the 1920’s but never exploited mathematically. (See, for example, Stranski [9].) Instead
of developing those ideas, the physics literature has emphasized approaches using
differential equations. Recently, some researchers have returned to discrete methods,
especially computer simulation using Monte Carlo probabilistic techniques. (See
Swendsen et al. [10] or Jackson [5].) In [11] the author obtained abstract theorems
rather than examples of simulation, but that paper applied only to the case m 1. The
present paper extends the methods to crystals where the fundamental cell contains
more than one atom.

3. Growth rates on half-spaces. In this section we study the result of applying an
ordered transition rule F to a half-space H(v; al,.. ",am). It turns out that the image of
such a half-space is another half-space with different parameters a,...,a but the
same v. This face permits us to analyze which parameters a,. ., a lead to slow growth
and which lead to fast growth. Our ultimate problem--the study of the sequence X,
FX, FX, for bounded X--will be reduced later to the special case studied in this
section, where X has form H(v; al,’" ",am).
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Throughout this section, F will be an ordered transition rule, and v will be a unit
vector. The fundamental result is the following:

THEOREM 3.1. The image under F of a half-space is another half-space. More
specifically, if v is a unit vector and (al,.- .,am) Rm, then there exists (bl,.- ",bm)R
such that FH( v; at," ", am) H( v; bt," ", bin). The numbers b are given by

hi=max min .(ak--(v,vJ))
(j,k)Sl

where I indexes the different i-generators S].
Proof. By (2.7),

[FH( o; at,"" ,am)] i=O N
(j,k).Sl

H( o’, a1, ",am) k

=U f’ [H(o; a,)-oj]
(j,k)-S[

=U (’] [H(v;ak-(v,vJ))]
(j,k)Sl

=H(o;max min (ak-(v,vJ))),(j,k).Sl

and the conclusion follows. U1
If H(v;bl,. "’,bin) were a translate of H(v;ax,...,am), say H(v;bl,.. ",bin)=

H(v; at,. ., am)+ cv for some constant c, then iteration of F would be easily described;
we would have FPH(v;ax, .,am)=H(o;at,...,am)+pcv for all natural numbers p,
since F is assumed to be invariant under translation. Unfortunately, this nice state of
affairs need not occur. In any event, for each v and (at,.. ",am) there is a lower growth
rate l(v; at,. ., am) such that

FH( v; al,. ,am) __D H( 0; al,’’’ ,am) + 1( 1); al,..- ,am) o

while (3.2) would be false if l(v; at,...,am) were replaced by any larger number. From
(3.1) it is easy to see l(v; at,...,am)=Ilfini(-ai+ hi) or more explicitly,

(3.3) l(v;at,"’,am)=m/’n [-ai+maxt j,k)slmin (ak-(v,vJ))].
Similarly there will always be an upper growth rate u(v; al,...,am) such that

FH( v; al,. ,am) C__ H( o; al,. ,am) + U( V; al,’’’ ,am) V

while (3.4) would be false if u(v;at,...,am) were replaced by any smaller number.
Explicitly, u( v; at,...,am)=maxi(-ai+ hi), or

(3.5) u(o;at,...,a )=max[-ai+max rnin (ak-(v,vY))
[ (j,k)S]
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It is clear that both u and are continuous functions of v; al,...,am. Moreover, they
are invariant under translation in the sense that for any constant k,

(3.6)
l(v;al-k,...,am-k)=l(V;al,...,am) and

u( v; k,. ,a,,- k) u( o;

What is the fastest guaranteed growth rate in the direction v under application of
F? Since l(V;al,...,am) measures the minimal growth rate in direction v of
H(v; ai,...,a,) by (3.2), the fastest growth we can guarantee is obtained by choosing
(al,-- ",am) tO make l(v; ai,.. ",am) as large as possible. Similarly, the lowest guaran-
teed bound on the growth in direction o is found by making u(o; al,-. ",am) as small as
possible. Hence we make the following definitions:

DEFINITION. The lower growth rate in direction o is gt(o)=sup l(v; ai,.. ",am), and
the upper growth rate in direction o is gu(v)=infu(v;al, .,a,,), where in each case
(a1," "’ a ) ranges over all of R".

The functions gt and g will be crucial to this paper. The remainder of this section
will be devoted to showing that gt and g are well-behaved functions on the set of unit
vectors in R.

PROPOSiTiON 3.7. For any unit vector v, gt(v) and g(v) are well defined. IfM is the
neighborhoodparameterfor F, then 0 <= gt( o ) <= g( o) <_ M.

Proof. Since F is monotone, (2.1) and (3.4) show u (v; at,. -,a,,)>= 0; hence u is
bounded below and g is well defined. Moreover,

g,(v)<_u(o;O,O,...,O)=max rain .(-(o,oJ))<_M.
(j,k)eS/

Thus 0 __< g(v) =< M.
Similarly, since F is monotone, (3.2) shows l(v;a,...,am)>=O. We shall prove

l(o;a,.. ",am)<=g(o) for each (a,-.-,a,,). It follow that gt(v) exists and indeed the
proof of the proposition will be complete, since then 0 =< gl(v)<= g(v).

To see that l(o;a,.. ",am)<=g(o ), we choose any (b,...,b,,)R and show
l(v; ax,.. ",am)<_ u(o; bl," .,bin). Let c= max(a/- hi) where the maximum occurs when
i=j, so c=aj-bj. Then a-c<=b for i=l,--.,m; hence H(o;a-c,...,am-C)
H(v; bx,.-., b,,). It now follows that H(o; a c,..., a
Fn(v;a-c,...,a,,-c) [by (3.2)] Fn(v;b,’",bm) [by (2.2)] c_n(V;bl,...,bm)+
u(o; b,. .,b,)o [by (3.4)].

The jth component of this inclusion says aj-c+l(o;a-c,...,am-C)<=bj+
u(o; bt,. .,b,). Since c=aj-b2, it follows l(O; al-c,. ",am-C)<=u(V; bl," .,bin). Fi-
nally, the invariance under translation (3.6) shows l(v;at,.. ",am)<_u(O;bl," .,bm).
The proposition follows.

The next result shows that the parameters (at,... ,a,) may without loss of general-
ity be restricted to a compact subset of Rm. Hence the values gu(O) and gt(v) are in fact
attained.

PROPOSITION 3.8. There exists a compact subset Kc_R such that, for each unit
vector oR there exist (Cl,’",Cm)K and (dl,...,dm)K for which gt(v)
1( v; Cl, ", Cm) and g(v) u( v; d, din).

Proof. Let K be the set of (al,.. ",am)Rm such that lal=< 3(m-1)M for each i,
where M is the neighborhood parameter of F. We prove this K works by showing that if
v is a unit vector of Rn and (ax,...,am)Rm, then there exists (bl,.. ",bm)K for
which l(v; al,’’ ",am) l(v; bl," ",bin) and u(v; a,.. ",am) U(V; bl,’" .,bin). The
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supremum of l(o; bx,.. ",bm) for (bl,.. ",bm)K is attained since K is compact; from
the preceding sentence, this will be the supremum for (al,.. ",am) Rm. Similarly, the
infimum of u(v; b,.. ",bin) for (b,.. ",bm)K is attained, whence this same value will
be the infimum for (a,. ",am)Rm.

Suppose then that (ax," ",am)- Rm. We seek (b,. ",bm)K so l(v; al,. ",am)=
l(v;bl,...,bm) and u(o;al,’",am)>_u(o;b,.",bm). Without loss of generality we
may renumber the components so a =<a2_< =<am, and by (3.6) we may translate by
a and thereby assume a =0. If for everyp 1,. .,m- 1 we have ae+x-ae<=3M, then
(al,...,a,,,) is obviously in K and we are done. If on the other hand for some p we
have ap+l-ae> 3M, let L=ae+-ae-3M>O. Write di=a for i>=p and di=ai-L
for i>__p+l. Then I claim l(V;al,’",am)=l(v;dl,.",dm) and u(v;al,...,am)>
u(v;d,. .,dm).

To see this, note that by (3.3),

l(v; al," ,am)= min max min (- a + ak-- (v, vJ).
(j,k)S]

Supppse the extrema are realized at parameters ,,j,/. Then since 0_<-a;.+ a-
(v,vj) _M by (3.7), we cannot have I-aT+ a;,l> 3M. Hence either (1) __<p and k =<p or
(2) i>=p+ 1 and k>=p+l. In either case -aT+a[,-(v, vJ)=-d;+d,-(v, vJ). By a
similar argument since O<=l(o;ax,...,am)<_u(v;O,O,.. ",0)=<M by the proof of (3.7),
we see that for no parameters i,l,j,k will the values of -ai+ ak- (v,vj) be relevant to
the computation of l(V;al,...,am) unless O<=--a+ak--(v, vJ)<=M; and for such
parameters -di+ dk- (v,oj) -ai+ ak- (o,vj) since either =<p, k_<p or else i>=p
+ 1, k_>p + 1. Hence l(v; al,.. ",am)= l(v’, dl,-" .,dm). The reader may supply further
details.

For the case of

u(v; a,-.. ,am)= max max min (- a + ak-- ( V, Uj)),
(j,k)S1

one argues similarly. If for any parameters i,l,j,k we have -d+d,-v,vj) > -ai+
a,-(v, oJ), then clearly i>=p+ 1 while k<=p, so a>a+ 3M and -a+a-v,vj) <
-3M-(o,oj) <=-2M. Since u(o;a,.. ",am)>=O, such parameter values will not be
relevant to the computation of u(o;al,...,am). Hence u(V;dl,"’,dm)<_
U(V; al,.. ",am) where again the reader may provide further details.

In both cases the claim has been proved. If for every p= 1,...,m-1 we have
de+x-de<=3M, then (d,.. ",dm)K and we are done. Otherwise there exists p so

de+1-de > 3M and we may repeat the above argument. After finitely many repetitions
we clearly reduce to the case where de+ de 3M for all p, and the proof is complete.

Recall that n- denotes the set of unit vectors in Rn.
PROPOSITION 3.9. gu and gt are continuous functions on ,-1.
Proof. Note that by (3.8), there is a compact set K so gt(o)=supycl(v;y) and

gu(v)=infycu(v;y). We prove (3.9) only for gt- Suppose for some sequence v in
-1, vi--, Oo; we must show gt(o)--,gt(oo). Since- is compact, we need only show
that gt(Vo) is the unique limit point of the sequence gt(oi). A choice of subsequences
lets us assume gt(oi)--,L for some L, and we must prove only that L=gt(oo).

Since K is compact, we may choose y K so gt(vi)= l(vi; Yi). By another choice of
subsequence, using the compactness of K again, we may assume there exists Y0 K so
Y’-’Yo. Since l(v;y)---,l(oo;Yo) by the continuity of l, L=l(vo;Yo); hence by the
definition of gt(vo), gt(vo)> L.
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On the other hand, pick zK so gt(oo)=l(Vo;Z). Since l(oi;z)<_gt(vi)=l(oi;Yi),
we may let oo and obtain l(vo;Z)<=l(oo;Yo)=L so that gt(oo)<=L. Hence gt(oo)=L
and the proof is complete, r3

4. Growth on bounded configurations. In this section we consider a bounded
configuration X and study certain limit configurations associated with the sequence X,
FX, F2X, The idea is to compare X in each direction v (where v is a unit vector)
with some half-space n(v;al,...,am). Since the behavior of the half-spaces under
iteration of F is understood via 3, we can infer information about the behavior of X.

The main definition of this section is that of limX, which will now be given.
SupposeX and F is an ordered transition rule on . Define limsupX to be the
configuration such that (lim sup X) is the set of limit points from the sets (FPX)/p R
as p- oo, where/p indicates division of each vector by the scalar p. More specifically,
(limsupX) is the set of yR such that for some sequence Pk -- oo there is a choice
y, (FpkX)i such that y,/p,-y as k oo. Similarly define liminfX as the configura-
tion such that (liminfX) is the set of all y R such that for all sufficiently large p
there exists a point y (FX) such that y,/py as p - oo. Clearly liminfX_
lim sup X. If there is equality, we call this common set limX and say the limiting shape
for X exists.

Intuitively, liminfX and lira supX describe the rough behavior of the sequence X,
FX,...,FPX, as p oo. If, for example, limX exists and (limX) is an equilateral
triangle of side L, then for large p, (FX)g is approximately an equilateral triangle of
side pL. Our major objective it to tell when limX exists and, if it does exist, what it
looks like, because this summarizes much information about FPX for large p.

The above definitions are related to the notion of Kuratowski convergence of
sequences of sets ([7] or [8]). In the notation of Salinetti and Wets [8, p. 19], (liminfX)

lim inf(FPX)i/P.
It is not hard to verify that both (liminfX) and (limsupX) are closed subsets of

R for i= 1,. .,m. If X is a bounded configuration, then limsupX is compact; this is
because, if M is the neighborhood parameter for F and for some L we know X_c D,
then FPXc_ DL+,Mby (2.2) and (2.8), whence lim sup Xc__ Dm. Moreover, if Xis bounded,
lim infX is compact also, since lim infX_c lim sup X.

One can also easily see the following facts:

(4.1)
(4.2)
(4.3)

lim infX lim infFX; lim supX lim sup FX.
If XG Y, then lim infX

_
lim inf Y and lim sup X___ lim sup Y.

lim inf( X+ a) lim infX and lim sup( X+ a) lim supX for a R.
Most of this section will be spent using the functions gt and gu from 3 to compute

a lower bound W for liminfX and an upper bound Wu for limsup X. We shall first
define these shapes W and W and then show that they are bounds in the appropriate
sense:

DEFINITION. The upper limiting shape Wuc_ Rn is W=(v; g(v)), and the lower
limiting shape W is Wt=(v, gt(v)). Here the intersections are over all unit vectors o
in Rn. (Recall that we may also regard W and W as elements of g in the standard
way.)

It is clear that W and Wt, regarded as subsets of Rn, are convex and closed since
they are the intersections of closed convex sets. By (3.7), 0 Wt__C W _c Dt fqH(v, M),
so it follows that, in addition, W and Wu are compact and nonempty.
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PROPOSITION 4.4. Let X, be bounded. Then W is an upper bound on lim sup X
in the sense that lim supX_ W

Proof. Let vR be a unit vector. By (3.8) there exists (al,...,am)R so
gu(v)=u(v; al,.. ",am). Since X is bounded, we may choose a constant c so X_ H(v; a
+ c,. .,a + c). For p >= 1 it follows FPXc_ FPH(o; a + c,...,a + c)_ H(v; a +
c,...,am+C)+pu(v;al,.. ",am)V by (3.4) and invariance under translation. Hence, if

xp(FPX)i, then (xp, v)<_ai+c+pgu(V) and (xp/p,v)<=gu(V)+(ai+c)/p. It fol-
lows that any limit point y of (FPX/p)i satisfies {y,v) <_g,(v). Since v was arbitrary,
this completes the proof.

DEFINITION. If Yc Rn and/>0, let Int Y= (y Rn: y+Dc Y}. This is a subset
of the interior of Y, Int Y; indeed Int Y=UInt Y where the union is over all/ > 0. We
remark that the closure of Y is denoted Cl(Y).

The hard work in showing W is a lower bound on liminfX is obtained in the
following lemma"

LEMMA 4.5. Let F be an ordered transition rule on . Let ix> 0 and assume

Int, Wt . Then there exist a natural number p and a positive number J so that
wheneverR >= J it follows that Fg(DR)D_ D

Proof. Let the neighborhood parameter of F be denoted M, and let L 3M(rn- 1).
Choose a positive number and a natural number p so large that p#-L >_ > 0, and
then defineJ=p2M2/(2t). We show that thesep andJ work. To do this, let wo Int W,
choose R>= J, choose so 1 =<i=<m, and suppose yD+pwo. We must show that
y(FPDR)i.

Since DRy_ F(D) by (2.1), we may assume yqDR. Write Wo=lWolOo, y=lylo for
unit vectors o0 and o. By the proof of (3.8) choose (cl,.. ",Cm) R with maxlci- Ckl<= L
such that gt(o) l(o; cl,.. ",Cm).

Iterate (3.2) p times, using invariance under translation, to obtain

F’H( o; cl,. ,Cm) H( o; cl," ,Cm) +pl( o; cl,"" ,Cm) o.

By (2.9), Fp is an ordered transition rule, and we may apply (3.1) to F’ (not F) to
show for each 1,..., m.

pl(v;cl,.. ",Cm) --C +max
(j,k)Sl

where I indexes all/-generators for F (not for F). Let St be the/-generator realizing the
maximum. Then for all (j,k) S/ we have pgt(o)<= -ci+ ck- (o,o) <=L- (o,o. Yet
each such o is a neighborhood vector for Fp, so Io <=pM by (2.9).

Hence, it suffices to show that for all rR such that Irl<=pM and o,r)<=L-
Pgt(o) we have lY + rl _-< R. Once this is shown, the proof of the lemma will be complete,
because then y(FPD) since St is an/-generator for Fp, and for each (j,k)S/we
have Y + o1 -< R.

Suppose Irl<=pM and o,r) <=L-pgt(o ). Then

[y + r 12=(y + r,y + r)=(y,y)+ 2(y,r)+(r,r)

=( y -Pwo,y -PWo+ 2p( y, Wo-p2(wo, Wo) + 2( y, r+( r, r)
<_ R2 + 2p( y, Wo)-p2( wo, Wo)+ 2( y,r)+p2M2

[since ly-pwo 1<= R and [rl<=pM]
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<=RZ + 2p( y, w0)+ 21yl( v,r)+p2M2

<_ R2 + 2p( y, Wo) + 2[y [( L -Pgl( v)) +p2M2

<_ R2 + 2p( y, Wo)+ 21y IL- 2ly Ip( v, Wo)- 21Y [pl +p-M2

[since gl(v)>__(v, w0)+ # since Wo Int Wt]
R2 + 2p(y, w0)- 2p(y, w0)- 21y l( pl- L) +p2M2

<=R2-2Rt+p2M2

=R2-p2M2+p2M2

[since lyl_>_ R andp#- L >= >_ 0]
[since 2Rt >= 2Jt_>_p2M2

The lemma follows, rq

Now we can show that I/V is a lower bound for liminfX in the sense that
W
_
liminf X, provided that x meets some technical requirements:
PROPOSITION 4.6. Let F be an ordered transition rule on . Suppose Int l/It4: .

There exists a positive real number J such that for any configuration Xfor which X_ D:,
we have W c_. lira inf X.

Proof. We use (4.5) to bootstrap our way to (4.6). Since Int Wt4: , there is a
positive number /x so IntWt4: . Obtain p and J from (4.5) so that for R>= J,
FPDR

_
DR +pw for each wIntWt. We show that this J works in (4.6). Note that

F2pDj=F(FPDj)D_F(Dj+pw)D+2pw, and in general FkpDsDs+kpw for k=
1,2,.--. Hence kpw(Fk;Ds) for i= 1,...,m. If a is a positive integer, write a=
q(a)p+r(a) where q(a) and r(a) are integers and O<_r(a)<p. Then q(a)pw
(Fq()Dj)i_(FDj)i for each i. Since q(a)pw/a-w as a---,oo, it follows w
(lim infDj) i.

Hence, if X_ Dj it follows from (4.2) that Int W_liminfDs_ liminfX.
On the other hand, for any e > 0 if Int, W/4: we may again by (4.5) find p and

K; so for R >= K, FDR >= DR+w for each w Int, W/. Clearly there exists q such that
Dj+ qp Int, Wt_Dr. Hence FqPDjD_ DK. By a repetition of the argument in the first
paragraph, Int, Wt_ liminfDr. Hence Int, Wc_ liminfFqDs [by (4.2)]= liminfDj [by
(4.1)]

_
lira infX [since Dj X].

Since each point of Int W is in Int, W/for some e > 0, we see Int Wt liminfX.
Finally, since W is closed and convex with nonempty interior, Wt Cl(Int Wt); because
lim infX is closed it follows that W/___ lim infX.

5. Coherent growth. The bounds found in {}4 may be summarized by saying that
W lim infXlim sup Xc_C_ W, for appropriate X. In general, these inclusions may be
strict. This section treats the special case where all the inclusions are equalities. We say
an ordered transition rule is coherent if gt(v) gu(V) for each unit vector v R". If F is
coherent, then Wt= W, by their definitions, so that all the above inclusions are equali-
ties. We thus obtain the following result from (4.4) and (4.6):

TrIEOIM 5.1. Suppose F is a coherent transition rule, and suppose W has nonempty
interior. There exists an R > 0 such that whenever X is a bounded configuration containing
a translate ofDR, then limX exists and limX= IV/= W,.

We shall see in {}6 that coherent rules are common. Our objective in this section is
to show that if F is coherent, then W is particularly nice. More specifically, we prove in
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(5.4) that is a convex polytope. In order to obtain this result, we first need some
other descriptions of coherence:

PROPOSITION 5.2. Suppose F is an ordered transition rule and v is a unit vector. The
following are equivalent:

(i) gt(v)=gu(V);
(ii) there exist (cl,. .,c,) Rm anddR so FH(v; cl,. ",Cm)--H(v; Cl," ",Cm)’+"

do;
(iii) there exists (c,. .,c,) R" so l(o; c,. .,c,)=u(o; c,. ",Cm).
Note that once (5.2) is proved, it is obvious that d= I(I);Cl,’’’,Cm)

u(o; c,..., c,)= gt()= gu(). Thus the result gives several descriptions of gt(o)-
Proof. It is immediate that (ii) and (iii) are equivalent. If we assume (ii), then

deafly gu(o)<=d and gt(v)>=d by the definitions of gu and gt, while gt( o) <= g( o) by
(3.7). Hence gt(o)=gu(o)=d and (i) follows. There remains to prove only that (i)
implies (ii).

So suppose g(o)=gt(o). By (3.8) we may choose (al,..-,a,) and (bl,-. ",bin) so
gt(o)=l(o; a,...,a,) and g(o)=u(o;b,...,b,). Subtracting a constant k from each
a and applying (3.6), we may assume ai<=b for i= 1,. .,m. Let

E {(cl,.. ",Cm).Rm: ai<_ci<=bifor i=1,..-,m}.

Define a map f: E E by

f(ci,... ,c,) max min .(c-o,o))-g,(o).
(j,k).S

We verify thatf(c,-. ,m)E as.follows" By (3.1),

FH(o; c,. .,Cm)=H(o;f(cl,. .,Cm))+gt(o)o.

But since H(o; a,.. ",am) C_ H(o; Cl,. ",Cm) CC_. H(o; b,. .,bm) it follows
FH(o; a,. ",am)C_ FH(o; c,. .,c,,) FH(o; bl,. .,bm). Applying (3.2) and (3.4), we
obtain

H( v; a,,. ,am) d- gl( l)) l) (T. FH( o; a,. ,am) c_ H( v;f( Cl,’’’ ,Cm)) -" gl( O) l)

FH( v; b,... ,bin) H( o; bl,... ,bin) + gu( o ) o H( o; bx,... ,bm) +g,(o) o.

Hencef(cl,-- -, c,) E.
Since E is homeomorphic with a Euclidean cell, Brouwer’s fixed point theorem

implies f has a fixed point (cx,.. ",Cm). For this point it follows FH(o; c,.. ",Cm)=
H(o; Cl,. ",Cm)+gl(o)O. !-]

We can now show that, when F is coherent, the function gt(v) must have a very
special form:

LEMMA 5.3. Suppose F is an ordered transition rule on . Suppose v S and
g(v)= gt( v). Then there exists an integer q so 1 <_ q <= m and there exist distinct neighbor-
hood vectors x1," ", xq - R for F such that

g/( /3) =( (X1+ +Xq)/q,13.
Remark. This says that point gz(c)c lies on the sphere through the origin on the

diameter -(x + + Xq)/q.



328 STEPHEN J. WILLSON

Proof. By (5.2) there exists (1,.. ", m) such that FH(o; cl,..., Cm)
H(v; cl,...,c,)+gt(v)o. By (3.1) it follows that for each i= 1,. .,m,

gt(v)=max min .(Ck--(v,vJ))--ci.
(j,k)S]

For each let l(i),j(i), k(i) realize the extrema, so

By considering the iterates 1, k(1), k(k(1)), in the finite set {1,---,m } we see there
exist q<__m and 1, i2,...,iq such that k(il)=i 2, k(i2)=i3,...,k(iq_l)=iq, k(iq)=i1.

Adding the expressions (,) obtained by replacing successively by i,...,iq, we obtain

qgt(v)=(v,-dl)+(v,-0’2)+ +(v,
The result follows by writing xj vii. D

DEFINITION. A convex polytope is the convex hull of finitely many vectors. A
convex polytope is rational if each of those vectors has rational coordinates.

THEOREM 5.4. Suppose F is a coherent transition rule on ,. Then Wt= W is a
convex polytope. If, in addition, each neighborhood vector lies in Zn, then W is a convex
rationalpolytope.

Proof. There are only finitely many neighborhood vectors xiRn and finitely
many q so 1 __< q =< m. By the lemma then there are finitely many spheres through the
origin so that all points gt(o)v lie on the union of these spheres. Since gt(o) is a
continuous function, the result follows from Willson [12, Prop. 6.6]. D

6. A sufficient condition for coherence. In this section we show that there are
many coherent transition rules.

DEFINITION. Let F be an ordered transition rule on #m"" Let S be a nonempty
subset of { 1,---,m }. Let ,s { X#a,: X/= for all S }. We say S is invariant
under F if F restricted to ,s has range in m,S; i.e., if F induces a map,s ,s.

LEMMA 6.1. The following conditions are equivalent:
(1) S is invariant under F.
(2) Ifls, is defined by (ls)i=Rn if S and (ls)i if q S, then F(ls)=ls.
(3) If q S, then for every i-generator S/there exists ( j, k ) S/with k q S.
Proof. Trivial.
THEOREM 6.2. Let F be an ordered transition rule on ,. Assume { 1,...,m } has no

proper inoariant subsets. Then F is coherent.
Remark. Since the third condition in (6.1) is easy to check, this theorem gives a

practical sufficient condition for coherence. One can then construct numerous examples
of coherent transition rules for any m. Note that if m 1, any ordered transition rule is
coherent.

Proof. For v an arbitrary unit vector in Rn we show there exists (c,.. ",Cm)Rm
so FH(v;c,.. ",Cm)=H(o;cl," .,Cm)+do for some constant d. Coherence will then
follow by (5.2). If rn 1, the result is trivial; so we assume rn > 1.

Definef: Rm-x Rm-1 as follows: If (ci,. ",Cm_)Rm- define Cm=0;

bi=max min .(Ck--(v,vJ),
(j,k)Sl

and f(ct,...,c,)i=bi-bm for i=l,...,m-1. Thus by (3.1) FH(V;Cl,...,Cm_I,O)--
H(v;bl,...,b,)=H(v;f(ct,...,c,_l),O)+b,v. Hence, in order to show coherence, it
suffices to showfhas a fixed point.
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We establish notation as follows: If (al,.. ",am). Rm define a =ai and for p_>_2
define a/ by H(v;a,...,am)=F’-iH(V;al,’",am). (A formula may be obtained
from (3.1).) Let ail----maxay. Let M be the neighborhood parameter of F.

CLAIM. For all i, ai (m -1)M<= aT’ <= ai + (m -1)M.
We prove the claim by induction on a parameter r. Assume inductively we know

distinct i,.., SO a > air--(r-- 1)M for j= 1,... r; and also a<ai+(r- 1)M for
1,..-,m. (The case r= 1 is immediate.) We show if r < m, then we can obtain the

case (r+ 1). Since r<m, the set (i,.-.,i) is not invariant. Hence by (6.1) there ests
i+ (i,...,i) and an i+-generator T with k (i,.-.,) for every (j,k)T.
Then a + >n a: j 1,..., r ) M; hence by the inductive hothesis, a + ar+l r+l

rM. Trivially a + a a (r 1)M ai rM for j 1,. ., r. And silarly a

(supja})+M ,x +.ehce inductiocontinues until r m, at wch point the clai
is proved.

It follows immediately from the clMm that for all (a,...,am)R and for all
andj we have la-al2(m- 1)m.

We may now complete the proof of the theorem. Let E={(cx,’",Cm_t)
Rm-l" Icil2(m-1)M for all i}. If (c,’",Cm_)Rm-1 is arbitral, define
(al,...,am)Rm by (al,’",am)=(Cl, C2,’",Cm_l,O). Then H(v;a,...,a)=
Fm-IH(v; cl,." .,Cm_l,O)=H(v;fm-l(Cl, .,Cm_l),O)+kv for some constant k by the
definition of f. It follows that for each i, m-l(ct,’" ",Cm_)il2(m--1)M and hence
fm-(Rm-)c E. Since E is compact, by a fixed point theorem of Felix Browder [2, p.
292] we concludefhas a fed point. The theorem follows.

7. Configurations supported on the integer lattice. Recall that the integer lattice Zn

consists of the set of points (x,...,xn)Rn such that each x is an integer. In this
section we extend the results from 4 and 5 to the case of configurations X supported
only on Zn; i.e., we assume Xc_Z for i=l,...,m. The reason for making this
extension is that, as in Example 2 of 2, the configurations which describe crystals are
supported on Zn. Thus, this extension is needed for applications. The difficulty we
must face is that, for example, (5.1) cannot apply to configurations supported on Z
since it is impossible for such configurations to contain a translate of DR. It turns out,
however, that the hypotheses in (5.1) can be easily modified to deal with this case.

DEFINITION. Let m and n be positive integers. An integral configuration X is an
m-tuple (Xx,...,Xm) where each X is a subset of Zn. We may alternatively regard X as
a map from Z into the set (Z/2)’ of m-tuples of zeros and ones, by identifying X with
the map 0 so 0(v)i= 1 if and only if v Xi.

A transition rule F on #, is called integral if each neighborhood vector lies in Z.
An ordered integral transition rule F may be regarded as a special type of global
transformation rule for a cellular automaton or homogeneous space. (See Aladyev [1] or
Wolfram [13].)

If Kc R, then KNZ denotes the lattice points inside K; and if X=(X,.. ",Xm)
#Om, then XNZ=(Xl CZ,. .,XmZn).

The major results obtained in this paper apply, with minor changes to the context
of integral configurations:

THEOREM 7.1. Let F be an integral ordered transition rule on #m, and suppose
Int W/#: 0. There exists a positive real number R such that any integral configuration X
containing all the integer lattice points ofsome translate ofDR satisfies Wc_ liminfX.

Note that the hypothesis means that we assume there exists v R so (DR + v)Z
c_ Xi for 1,..., m.
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Proof. Suppose Int, Wt for some/> 0. Choose R to be the larger of the two
numbers vrn-/2 and the number J obtained in the proof of (4.5). As in the proof of
(4.6), the theorem will follow once we show Int, Wt___ liminf((DR + v)NZn).

SupposewIntWt. By (4.5) there exists p so FP(DR + v)_DR +pw+ v. Since F is
integral, it is dear the integer lattice points in FP(DR + v) are present only by virtue of
the lattice points in DR+ v; i.e., FP((DR+ o)NZn)_(DR+pw+ o)NZ. As in the proof
of (4.6), for each q, FqP((DR + o)(qzn)_ (DR + qpw + o)ozn., Writing a= q(a)p + r(a)
as in (4.6),

( DR + q(a)pw+ o) n Z’___ Fa((DR +
Finally, since R>_ V-/2, some lattice point za lies in (DR+q(a)pw+o)nZ, whence
lim oo Za/a w liminf((DR + o)nZ ).

THEOREM 7.2. Let F be a coherent integral transition rule on . Suppose W has a
nonempty interior. There exists an R > 0 such that whenever X is a bounded configuration
containing all integer lattice points of some translate of DR, then limX exists and limX=
W Wu. Moreover limX is a convex rationalpolytope.

Proof. Analogous to (5.1). For the second assertion, see (5.4).

Acknowledgment. The author is indebted to the referees for suggesting many
clarifications and simplifications in the original version of this paper.
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LIlq,iN’S PROBLEM FROM
COMBUSTION THEORY, PART II*

S. P. HASTINGS" AND A. B. POORE*

Abstract. LihCm’s problem is a boundary value problem which governs the thin reaction-diffusion zone in
many diverse problems in combustion and chemical reactor theory. Mathematically, the problem as it arises
from matching in activation energy asymptotics is that of the existence of a unique positive solution of
u" exp(ax u), u’( 0o)= 1 and u’(+ oo) O. In earlier work we established the existence and unique-
ness for positive a, and in the current work for < a

_
0. Also we show nonexistence for a __< .

1. Introduction. With the advent and success of activation energy asymptotics as
an effective analytical technique for dealing with the Arrhenius rate function in com-
bustion and chemical reactor theory [1], [6], a host of mathematical problems has
arisen. One such problem that has a demonstrated permanence is LffaAn’s problem
which first appeared in Liatn’s paper in 1974 on counterflow diffusion flames [7]. Since
that time, this problem and minor variations have been found to govern the thin
reaction-diffusion zone in such diverse problems as the burning of monopropellant
drops [9], [10], detonations and fast deflagration waves [8], the flame-front region
problem [2], and the nonadiabatic tubular chemical reactor problem [6]. No doubt this
Lihtn’s problem will continue to arise as a problem which is fundamental to the success
of matching in activation energy asymptotics for a wide variety of combustion phenom-
ena.

The canonical form of Lihhn’s problem [8] is that of the existence of a unique
positive solution of

(1) u"(x) 1/2u(x)exp(ax-u(x)), u’(-oo) 1, u’(+ oo) =0
where all values of the real parameter a are of interest. In our previous work [5], we
established the existence of a unique positive solution of

(2) u"=1/2uexp(ax-u), u’(-m)=-O, u’(+m)=0

for all positive a and/7. (The inclusion of a positive/7 for positive a was motivated by
the work of Bush and Fink [2] on the flame-front-region problem.) Also, it was shown
that a condition equivalent to u’( + oo)=0 in (2) is u(+ oo)=0 for positive a.

In our present work we show that problem (1) has a unique positive solution for
1/2 <a_<0. Nonexistence of a solution of (1) for -1 <a_<- 1/2 was established by

Ludford, Yannitell and Buckmaster [11]. We also establish nonexistence for a =<- 1,
thereby completing our analysis of this problem.

There is a difference in both the physics and the mathematical analysis of Lffahn’s
problem for positive and negative a. For example, in the burning of a monopropellant
drop as treated by Ludford, Yannitell and Buckmaster [9], [10], a positive a corre-
sponds to a heat gain from the atmosphere and negative a to a heat loss, the latter
being more physically realistic. Also, in chemical reactor theory [6], a is negative.

Received by the editors June 21, 1983. This research was partially supported by the National Science
Foundation under grant MCS8101891.

Department of Mathematics, SUNY at Buffalo, Buffalo, New York 14222.
* Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523.

331



332 S.P. HASTINGS AND A. B. POORE

In our previous analysis of Lifihn’s problem [5] for positive a we used the mono-
tonicity of u exp(ax- u) for u =< 1 and the fact that u( + )=0. For negative a, u( + )
> 0 and is in fact greater than one for et close to 1/2. This necessitates a more involved
analysis. Finally, we observe that when et =0, the only value of 0 for which (2) has a
positive solution is 0= 1 as in problem (1). (This can be seen by integrating the
equation in (2).)

The paper is divided into three additional sections. In 2 we establish the existence
of at least one positive solution for 1/2 < a =< 0 using a topological "shooting" method.
Uniqueness is contained in {}3 and nonexistence for a

_
1/2 in 4.

2. Existence. The main objective of this section is to establish Theorem 1.
THEOREM 1. The boundary value problem

(3) u’’= 1/2ue ax-u,

(4) u’(- oo) -1, u’(+ o) =0

has at least one positive solution for each a in (- 1/2,0]
For a 0 the proof can be accomplished by integrating the equations and using a

phase plane argument. Thus we consider only the case in which a is in (-1/2, 0). The
proof is based on a topological "shooting" method in which we consider the equation
(3) together with the initial conditions

u(0)--c, u’(0)

where (c, d) lies in the strip S of the plane 2 defined by

’1s={(ca).c>O, <a<o}

Let u denote the solution of (3) and (5) and define four subsets A, B, C, and D of S by

A { ( c, d ) e S: there is an x > 0 such that u’(x) > 0},
B { ( c, d ) e S: there is an x > 0 such that u (x) < 0},
C { (c, d ) e S: there is an x < 0 such that u’(x) < 1 },
D= ((c,d)S" -1 < u’(x)<0 for all x <0 and limx_ u’(x)> 1 }.

Since any (c,d) which lies in S-(A U Bt3 CUD) corresponds to a solution of (3) and
(4), our goal is to show that A U BU C D 4: S. The basis of our proof is Lemma 1.

LEMMA 1 [11, p. 112]. Let M and N be open subsets of the plane with connected
components M cM and N cN such that M1

qN is disconnected. Then MtO N is not

homeomorphic to R 2.
However, a corollary that is more directly suited to the present setting is Lemma 2.
LEMMA 2 [4]. Suppose A,B, C and D are open subsets of a set Sc [2 which is

homeomorphic to [ 2, with A 0B and C0D both empty. Assume further that these sets
have connected componentsA cA, B c B, C C C and DIcD such that A
B (3 C and B f3D are all nonempty. Then A t3 Bt3 Ct3D S.

It is convenient in discussing C and D to let y=-x, v(y)=u(x) and fl=-a.
Then v satisfies

(6) v"(y) 1/2o(y)e 13y-v(y),
(7) v(0) c, v’(0) -d.
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Assuming for the moment that A, B, C and D are nonempty, we first establish Lemma
3.

LEMMA 3. The sets A,B, C and D are open subsets of S and A CB and CnD are
empty.

Proof. The sets A,B and C are open by continuity with respect to initial data. To
show that D is open, we consider the solution v of (6) and (7) with (c,d) D. Then
v’(+ oo)< 1 by the definition of D. If v’(+ oo)__< fl, then v’(y)<= fl for all y >_ 0 so that
fly-v >= -c and v">= 1/2ve which implies v’(+ oo)= + oo, a contradiction. Thus fl <
v’(+ oo)< 1.

Next, let vo be the solution of (6) with the initial conditions vo(O)= co and V’o(O)=
-do with (co, do) D. Let y= v(+ oo) and choosey so large that

(8) e-(V+O)/2(c+y)e-(V-)(Y-’l)/2dy< 1-7,

(9) Vo(Y) > (g+fl)

(10)  a(yl)> 2

for all c in a neighborhood of co. If (c,d) is sufficiently close to (co, do), then

(11) 2 Yl <v(yl)<c+y,

(12)

v’(y)>
2

It then follows from (8) and (11)-(13) that v’(+ oo)< 1, which shows that D is open.
Finally, that A (B and C D are empty follows easily from the definition of the

sets A, B, C and D, and the observation that uu" > 0 if u =/= 0. Q.E.D.
Next we establish in Lemma 4 the existence of continuous functions which define

the subsets A,B, C and D of A,B, C and D, respectively.
LEMMA 4. There exist continuous functions d(.), c=(.), d(.) and c4(. ) with the

followingproperties:
i) d1" [0, oo) --+(-1,0), and ifc>O andO>d>d(c), then (c,d)eA.
ii) c=" 1,0) --+ (0, oo) and if 1 < d< 0 and c > c.(d), then (c, d) e B.
iii) d: [0, oo) --, (-1,0], d(c)=Ofor sufficiently small c>0, and/re>0 and

1 <d<d(c), then (c,d)e C.
iv) c4: (-1,0] --+[0, oo), and if c>c4(d ), then (c,d)eD.

In particular, the sets A, B, C and D are nonempty.
For part (i) we first observe that u >= c + dx >= c/2 for x on [0, e] where e min(1,

u axc/2d). Then for x on[O,e], u"= 1/2ue _<(e- /2)e __<1 implies u<c+dx+x2/2<_c
ax--u c+ae e2/2+e2/2. Next, u"=1/2ue >_(c/4)e- implies u’(e)-d>=e(c/4)exp(-c+ae

e2/2). If we choose d(c)= -e(c/4)exp(-c+ ae- e2/2), dl(C) has the desired prop-
erties, since d> dx(c) implies u’(e)>= d- d(c)> 0.

To establish part (ii), we first need some estimates. For a given d ( 1, 0), pick an

Xo > 0 such that

d(14) e"- dx 2k for some k <
xo 2
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and a positive e so that

e" ex <

Further choose u > 0 so large that 1/2ue-’< e if u >= u. Finally choose c > u- dxo and
obsee that xo<(C-Ul)/(-d)<-c/d and u(x)c+dx>O on [0,xol. Then, since
u’(x)d on [0,x0], u(x)u on [0,xo]. Hence, by (12), u’(xo)<d/2. Also u"(x)N
e"-/2 and so by (14), u’(x)<d/2 + k <0 on [0, m). Therefore, u(x) must eventually
become negative so that (c,d)B whenever c > c(d)" u- dxo.

For parts (i) and (iv) we turn to equation (6). To verify there is a function d as
described in (iii) we first construct d for large c and then show how it can be modified
for small c in such a way that d(c)= 0 for small c.

Let H(v)= (1 + v)e-. If -1 <d<0, c>0 and

(16) d2+H(c)>l,
then we claim that (c,d) C. To see ts, we first obsee that v" {ve-o> ve for
y>0 implies that (v’)2+H(v) is increasing with respect to y. If v(0)=c>0 and
v’(0)= -d> 0, the differential equation impes that v(+ )= + so that (0’(+ ))2
d 2 + n(c)> 1, as desired. We define for the moment d3(c)= i H(c). Ob-

sere that d3(0)= 0. Next, we modify ts d for small c.
We now show that if c > 0 and -d> 0 are sufficiently small, then (c,d) C. First

pick a Yo sufficiently large so that

b
+ l/2 eay- dy > 1.

By continuity with respect to itial data one can then choose e > 0 and 6 > 0 suffi-
ciently small so that if O<ce and 0< -d6, then 0<v(y)< on [0,y0]. Thus there
is ay >Y0 for wch v(y)= {. If o’(y) 1 for ally 0, then v1 on [Yl,Yl + {] and

v’( yt + ) v’( yt) +v+1/ e#y_ dy > 1,

a contradiction. Thus if O<ce and 0<-d6, then (c,d)C. Thus we may choose
0 < c < c2 e and m so that

ONcNc,
da(c)= m(c-cl), cl ScSc2,

is continuous and the line segment m(c-cl) lies in 0_<c_<e, 0__< -d=</ for cl <__c<__c2.
Finally, we come to (iv). We relegate to the Appendix (Lemma A.1) the fact that

o’(+ oo)> fl and exists as a finite number. Now, we multiply the differential equation
for v in (6) by v’, integrate from 0 to y and let y + oo to obtain

(17) (v’(+ oo)+v’(O)-2fl)(v’( + oo)-v’(0))= (1 +v(O))e-()+fl fo et-dt.

(We make the observation that since the right-hand side is positive and v’( + oo)-v’(O)
>0, v’(+oo)+v’(O)>2fl. If v’(+ oo)=< 1 and v’(0)(0,1) is arbitrary, then we see that
fl < 1/2 is required.) Our objective now is to show that 0 < fl < 1/2 and v(0) sufficiently
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large imply o’( + 0)< 1, but first we need to estimate

(18) eaY-dy=2 ----dy

=2 (-0 +fo ()dy

o’(o) (o’(+ ))
<-2 o-+2 o(0)o’(0)

The combination of (17) and (18) yields

o(o)o’(o) (o’(+ ))- - o(o)o’(o) (’())

2/3( v’( + o)- o’(0))- (1 + o (0)) e-()< 0.

From this equation we have

o(o)o’(o)

where

v(0)v’(0) 2/3v’(0)-(v’(0))2-(l+v(0))e-()+ v(O)

The right-hand side of (20) can be shown to be positive and less than one if oo > %(d)
where

-2c4(d) max (l_fl)d,l, 8[(1-fl))-a(a+ fl)] )d[(d+]3 -(1-]3)2]
and

(1 + vl)e-01 (1- fl )2- (a+ fl )2

This completes the proof of Lemma 4.
The four subsets Ax, B1, C1 and D are defined by

= {(c,a): a(c)<a<o, O<c< ),
Bx= ((c,d)B: c>c2(d ), -l<d<0},
cx= ((c,a)c. -l<a<a(c), O<c< },
Dx= ((c,d)D" c>c4(d ), -l<d<0}.

Figure 1 depicts the conclusion of Lemma 4, the sets A1, B, C1 and D and the
completion of the proof of Theorem 1.
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FIG. 1.

3. Uniqueness. In this section we establish the uniqueness of the solution to
problem (3) (4) in Theorem 2.

THOREI 2. If fl > O, then the problem

(21) v"= 1/2re-,
(22) v’(- oo) =0, v’(+ oo) =1

has at most one solution.
The case fl 0 can be treated by simply integrating the equations. We concentrate

on fl > 0. The following technical lemmas are required for the proof.
LEMM 5. For each Oo >_ 0 there is a unique solution v(y, Oo) of(21)such that

(23) v(- oo)=Vo, v’(- oo) =0.

This solution exists on (-oo, oo), and v(y, Vo) is continuous in vo for Vo > 0 and ally. Also,
v(y,O)=O.

LEMMA 6. The derivative Ov(y, vo)/Vo "= z(y, vo) exists for each y and each Vo>0,
and satisfies the equation

(24) z" =f’( v(y, oo)) e#Yz
wheref(v)= 1/2ve- and z"= 2z/y. Also,

(25) z(-oO,Oo)=l and z’(-oO,Vo)=0.
LEMMA 7. For each Vo>0 the limits v’(+ oO,Vo) and z(+ c,Vo) exist. Also, both

limits are continuous in vo, o’( + oo, Vo) > fl, and z’( + oO, Vo)= (d/dvo)v’( + c, Vo).
The proofs of these lemmas involve straightforward techniques and are outlined in

the Appendix. Theorem 2 is proved by showing that (d/dvo)V’(+ ,Vo) 0 for each
Vo>0. Fix oo and let v(y)=v(y, vo) and z(y)=z(y, vo). By Lemma 3 we must show
that z’( + oo). 0.

Suppose, on the contrary, that z’(+ oo)=0. To obtain a contradiction, we first
differentiate (21) to get

(26) v =f’(v(y))e#Yv + fleYf(v(y)).
Now multiply (26) by z and (24) by v’ and subtract to obtain

(27) v" z-v’z"=elYf(v(y))z.
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Since v’ > 0, f’(v) > 0 for 0 < v < 1, and f’(v) < 0 if v > 1, equations (24) and (25)
show that one of the following must hold:

a) vo

_
1 and z’(y) < 0 for all y;

b) Vo> 1 and z"(y)= 0 for at least one y;
c) 0 < vo < 1 and z’(y)> 0 for all y;
d) 0<vo < 1 and z’(y)= 0 for at least oney.
We now proceed to show that each of these cases (with z’(oo)= 0) is impossible,

thereby establishing the contradiction. If (a) is the case, then there must be a Yo such
that z > 0 and z" < 0 on (- oO,yo) while z < 0 and z" > 0 on (Yo, oo). Also,

(28)
Next, we need Lemma 8.

LEM 8. The limit z( + oo) exists, and neither z nor z’ oscillates infinitely often on

Proof. From Lemma 3 it follows that there is a 8 > 0 such that

(29) [/’(v)etYl<_e-sy for largey.

The result follows from (24). Q.E.D.
We can now integrate (27) from -oo to + o, getting a convergent integral, and

by integrating by parts on the left and using (28) we find that

(30) f_oo f( v( y))etz(y) dy =0.

On the other hand, since z’( + oo)--0, it follows from (24) that

(31) foo f’(v(y))etz(y)dy =0.

Sincef(v)+f’(v)= 1/2e-, the addition of (30) and (31) yields

(32) etY-(Y)z( y ) dy= O.
--00

However, v > 0 and v’ > 0 on (- oo, oo), so that the definition ofYo and (30) show that

0 ve#y-Vz dy oe#y-vz dy + ve#y-vz dy

<v(yo)f_’v fe#y-z dy + v ( yo ) e#y-z dy

v(Yo) eOY-zdy=O.

This contradiction alienates possibifity (a).
To discuss (b), we let yx be the largest zero of z’, wch exists by Lemma 8. Either

(i) z’> 0 on (y, ) or (fi) z’< 0 on (Yl, ). Consider case (i). The assumption that
vo > 1 implies z’ < 0 near -. It follows that z < 0 on some inteal (Yl,Y) and z > 0
on (y2, ). As before we arrive at (27) and integration by parts yields
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This time z(+ oo)> O, v"(+ oo)=0, v’(+ oo)=1 and z’(+ oo)=0 while v"(yl)> 0 z(yx)
< O, v’(yx)> 0 and z’(ya)= O, so that

fy f( v ) e/Yz dy > O.

Since z’(yl)=z’(+ ot)= 0, it again follows from (24) that fyf’(v)eaYzdy=O. Combin-
ing these as before, we obtain 0 < fe eBY-z dy, while

0 vel3Y-zdy>v(y2) el3y-zdy,

again a contradiction. The case (b) with z’ < 0 on (Yt, o) is similar.
If for case (c), z’> 0 on (-o, o), then one again obtains (27) and (28) which

leads to f_f(v)elYzdy=O. However, in this situation z >0 on (-o, oo), which shows
that (c) cannot occur.

If case (d) holds, then there is a y where Z’(y)=0, z(y)> 1 and z"(y)<0, so that
f’(v)< 0 and v(y)> 1. The proof then proceeds as for case (b).

Since none of (a)-(d) can occur, we reach the desired contradiction and the
completion of the proof of our uniqueness theorem.

4. Nonexistence. The results of Theorems 1 and 2 combined with our previous
work [5] show that for each a>- 2, Lihhn’s problem as posed in (1) has a unique
positive solution. The nonexistence for -1 < a =< -1/2 is due to Ludford, Yannitell and
Buckmaster [10]. One can multiply the equation (1) through by u’(x), integrate from
-o to + oo, and arrive at a contradiction in the sign of the sides of the resulting
equation for -1 < a _< 1/2. The same type of argument is used in the proof of part (iv)
of Lemma 4 (see the remark following equation (17)).

To treat the case a =< -1, we prefer to work with the equivalent problem (4) where--- a. Suppose there is a positive solution v of equation (4) with v’(+ o)= 1 and
v’(- oo)= 0 for fl >__ 1. Then

so that

v" 1/2veOY- >= 1/2 ( v (O) + v’(O)y ) e/y-<)-y

>_ 1/2(v(O)+v’(O)y)e-)

v’(y)-v’(O)>= 1/2(v(O)+v’(O)s)e-()ds,

which tends to + as y r + o. This, of course, contradicts limy__, / v’(y)= 1. Thus
there is no positive solution v for fl_ 1 or no positive solution u of (1) for a =< 1.

Appendix. We give here the proof of sketches of some of the facts and lemmas
used in the text.

LEMMA A.1. Given the initial value problem

o"= 1/2oe/y-, v (0) c, v’(O) d,

where c > 0 and -1 < d< 0, limy+dv/dy exists as a finite number and is greater than

Proof. Since v" is positive, v’ is increasing on the maximal interval of existence for
y>_0 with v’(0)=-d>0. If -d_fl, then v’(y)>fl for y>0. Suppose -d<fl and
o’(y) _< fl for all y >= 0 for which v exists. Then the maximal interval of existence is [0, o)
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and

(y)--’(o)+ 1/2-d

a’(0l+ 1/2( e)xp( (+))e

’(0+ (-ele-e,

wNch for largey contradicts v’(y)N B for N1 y 0. Thus there isy > 0 wNch v’(y)> B,
and tNs is yard, of course, whether -d< B or -d ft. Then we have

(A.1) v’(y) v’(y)+ _fv v(s)e-o()&
Yl

Nv’(y)+’ [v(y)+v’(s)(s-y)]

xp[-(o’(y,)-y,)+o(y,)] d
where we have used v(s)N v(y)+v’(s)(s-y) and v(s) v(yl)+ v’(y)(s-y) for s Yl-
Equation (A.1) can be written as

’(,(+ (l’(e

where

a(y)=o’(y)+ 2 exp[(-o’(yx))s+o’(y)yx-o(Yl)]ds,

,(s)=
(s-yx) exp[(B-v’(yx))s+v’(y)y-o(y)]2

Gronwall’s inequality [3] may be applied to yield

’(y,(l+ (,()xp (,le, e.

Since/3- v’(yx)< 0, the fight-hand side is bounded as y + oo so that v’(y) is bounded
above for all y >= 0. Thus the maximal interval of existence is [0, oo) and the conclu-
sions of the lemma follow. Q.E.D.

ProofofLemma 5. Consider the integral equation

f"(A.2) v(y)=vo+ (y-s)f(o(s))eOds,

which can be solved by successive approximations via v(y) vo and

f/(yl;o+ (-)f((/)e.

Sincef(v)<_f(1) for all v > 0, it is easily seen that each on is well defined on (- o, ).
Let L= maxoof’(v)l. Chooseyo so that Letyo/4fl2_ 1/2. Then by induction

v"+X(Y)-v"(Y)[ zf(vo)eOY/2"fl 2
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for oo <y <Yo and n=0,1,2,.... The existence of a unique solution of problem (21),
(23) follows routinely. This solution obviously exists on [-,Y0], and existence for all
y follows becausef(v) is bounded on 0 =< v < oo. It is also clear that v =-0 if Vo=0, while
if oo > 0, then o, o’ and o" are positive, and we have the estimate

(A.3) Iv (y, o0) Vo[ _< 2/( vo) eaYl 2

for y =<Yo- Q.E.D.
ProofofLemma 6. From (A.2) it is seen that for small Ihl,

v(y,yo + h )-o(y,yo)
h

=1+ (y-s)eIs f(v(s’o+h))-f(v(s’)) ds
h

Since f,f’,f" are bounded on 0 =< v < oo, the proof can be completed by standard
analysis, with the help of (A.3). Q.E.D.

Proof of Lemma 7. As in the proof of Lemma A.1 there is a Yl >0 such that
v’(y)>=fl+28 for some >0 and all y_>yl. This implies [f(o)elYl<=e-Y for y suffi-
ciently large, which leads to the conclusion that o’(+ oo) exists. The remaining conclu-
sions of Lemma 7 are easily established using the equation v’(y, vo)=
fY_oof(v(s, vo))elSds and the estimate (29). Q.E.D.
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EXTREMAL PROBLEMS FOR EIGENVALUES WITH APPLICATIONS
TO BUCKLING, VIBRATION AND SLOSHING*

DAVID C. BARNES

Abstract. Let ,,, denote the n th eigenvalue of the equation R (x) y’]’ + hP(x)+ Q(x)]y 0 subject to
self-adjoint boundary conditions. Many applications of this equation involve calculating extremal values of,,, when the coefficients are subjected to some kind of additional constraints. For example the shape of the
strongest column can be determined by maximizing an eigenvalue h

In this work we will give a new method for solving extremal problems for h which unifies many
previous works and provides (in some cases for the first time) a mathematically rigorous approach to these
extremal properties. As an example of our method we determine the shape of the strongest "Profile" column.
Our method can also be used to study fourth (and higher) order equations.

We reduce the problem of maximizing or minimizing hn to an elementary problem of minimizing or
maximizing a real valued function of one real variable. One salient feature of this work is that it is completely
independent of the theory of Rayleigh quotients.

1. Statement of the problem. Consider the eigenvalue problem

(1.1) [R(x)y’]’+[,P(x)+Q(x)]y=O, O<=xZl

where we assume self-adjoint boundary conditions are prescribed at x =0 and I. We
will allow the possibility that R(x)= 0 at x 0 or which gives a singular eigenvalue
problem.

Let us now suppose that each coefficient function R, P, Q depends on some other
function, say p(x), so that

R(x)=f(x,p(x)), P(x)=g(x,p(x)), Q(x)=q(x,p(x))

and (1.1) becomes

(1.2) [f(x,p(x)) y’]’ + [)tg(x,#(x))+q(x,p(x))] y=O.

We assume that p(x) is piecewise continuous and that h <__p(x)<=H. Suppose also that
f(x, p), g(x, p) and q(x, p) are piecewise continuous on [0, l][h, H] and thatf(x, p(x)),
g(x,p(x)) are positive for 0<x</. The eigenvalues of (1.2) are then real valued
functionals of p(x) and we denote them accordingly by X,(p). We will now consider
some examples of (1.2).

The buckling problem for a slender column leads to the equation (see [11], [12])

(1.3) y"+X[p(x)l-my=O.

The interesting values of m are 1, 2 and 3. Assuming the column has given mass leads
to a condition on 0(x) of the form

(1.4) p(x)dx= V.

*Received by the editors January 14, 1983, and in revised form August 10, 1983.
tAssociate Professor of Mathematics, Washington State University, Pullman, Washington 99164-2930.
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The characteristic frequencies of a vibrating string are determined by the equation

(1.5) y"+hp(x)y=O.

Assuming the string has given mass leads to a condition of the form (1.4).
Troesch [14] has studied the "sloshing" frequencies of liquid in certain containers

using the equation

[xp(x) y’]’ + [)x-m2p(x)x-t] y=0
where rn is a given constant. Assuming a given container volume leads to a condition
on O(x) of the form

’0(1= v.

We will also consider fourth order problems of the general form

-[r(x,o(x))y"]"+ [[(x,o(x) y) y’l’+ [Xg(x,o(x))+q(x,o(x))l y=o.

Niordson [10] has studied the vibrations of a tapered beam using the equation

-[p2(x)y"]" +
Assuminga beam has given mass leads to a condition on p(x) of the form (1.4).

In these examples it is of considerable interest to maximize or to minimize
over all functions p(x) satisfying certain constraints. For example Keller [6] found the
shape of the strongest column, pinned at each end, by maximizing ,(p) over all
p(x)>__ 0 satisfying (1.4). Later E. R. Barnes [3] showed how to solve the same problem
with the additional constraint p(x)_ h > 0.

To generalize these examples consider a class ff of admissible functions #(x)
defined by the following conditions:

1. Constants h, H are given and

(1.6) h=<0()=</ v[0,1].

We allow the possibility that H + oo or h
2. A finite constant V is given and w(x)_>_ 0 is a given weight function and

(1.7) fotW(X)O(x) dx= V.

The constants h, H and V satisfy

fo’w( ) <

3. All of the functions O(x), f(x,o(x)), g(x,#(x)) and q(x,o(x)) are piecewise
continuous and if x (0,1) then

/(,o())>0, g(,o())>0.

4. The eigenvalue problem is self-adjoint so

(.9) (, ())[y’- y’l -’_o=0
for all functions y, z which satisfy the boundary conditions.
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The major purpose of this work is to provide a mathematically rigorous way of
solving some problems of the following type:

Problem I. Find a function p,+ ff for which

Problem II. Find a function p,- for which

E. R. Barnes [3] has studied a problem similar to our problem I in the special case
n 1. However that work considered a dual kind of problem in which the differential
equation wasy" + )tP(x)y=O and constraints of the form

fo’ e ( x l ) ax v*h*<__e(x)Zm, F(x,

were used. If we take P(x)= g(x, p(x)) and assume that we can solve this equation for
p(x) to get p(x)=F(x,P(x)) then we see that [3, problem 1.2] is equivalent to ours in
this special case.

It is common practice to assume the existence of the extremal functions p,(x). For
the most part we must also assume this. However in a few special cases (see [1], [4], [9])
it is possible to prove p(x) exists. More work needs to be done on this existence
question.

2. The basic method. In this section we will introduce our method and give some
ways of solving problems I and II for the simple equation

(2.1) y" +hg(x,p(x))y=O

where the boundary conditions are of the form

(2.2) B (y) alY(0) + a_y’(O) + a3Y(l ) + a4y’(l ) 0,

(2.3) S2(y ) flly(O) + f12 y’(0) + fl3Y(l) + fl,y’(l) =0.

Such a problem is self-adjoint if and only if the constants ai, fli satisfy a2f14-a4f12
alfl3-- a3fl

One of the classical problems in calculus of variations is that of finding cxtremal
values for functionals of the form fF(x,y,y’)dx. One way to do this is to use the Eulcr
equation 8F/Oy-(d/dx)(OF/Oy’)=O. We will now develop an analogous procedure
for finding extrcmals of the functionals (#). Equations (2.5), (2.6) or (2.8), (2.9)
below can be thought of as the analogue of the Euler equation.

We will need to impose some convexity conditions on g(x, #). We say that g(x, p)
is convex in p if gpp(x, p) >= 0 and g(x, p ) is concave in p if gpp(x, p ) _< 0.

THEOREM I. Let hn(p) denote the nth eigenvalue of (2.1), (2.2), (2.3) and suppose
there exists some p* for which ,n(p*)>0. Suppose also thatthere exists a function
#,+ (x) which solves problem I so

Let g(x, p) be conoex in p, (g, >_ 0).
Then there exists a constant ! such that for each x[0,1] the minimum ooer all

p h,n of the function 8(x, p) defined by

(2.4) 3 ( x, p ) y,2g( x, p ) +#w(x )p
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is attained when 0 O+(x ). That is,

(2.5) min (X,p)=(X,pn+(X)).
h<o_H

Here y, y,(x) is an nth eigenfunction corresponding to (x), so

(2.6) y;’
(2.7) Bx(y,)=B2(y,)=O.

TnOM II. Let X,(O) denote the nth eigenvalue of (2.1), (2.2), (2.3) and suppose
there exists a function (x) which solvesprob&m II so

Suppose also that h,(O)> 0. Let g(x, p) be concave in p so that
Then there exists a constant such that for each x [0,/] the maximum over

p h,H of the function (x, p) defined by

(x,O ) yg(x,o ) +w(x)O

is attained when O O(x ). That is

(2.8) max (x,o)=(x,o(x)).
hoH

Here y, y,(x) is an nth eigenfunction corresponding to O(x), so

(2.9) y;’
=,0.

For a proof of these theorems see 4 below. We will first make a few remarks
about them and give some examples.

In order to use Theorem I to calculate a mammal function O(x) we may, in
principle anay, proceed as follows. First pick x [0, l] and then treating y, and as
unknown parameters we solve the elementa minimum problem (2.5). Ts ves a
function, O, which depends on x as well as the parameters y, and . Call it O(x,Y,, ).
Substituting ts function into (2.6) we obtain a (generally nonlinear) differential
equation for y,,

y;’ +X,(O;)g(x,o;(x,y,,,))y,=O.

Ts equation, together with the bounda conditions and the constraint

are then solved to find y, X(02) and 02(x). The eigenfunction y of (2.6) could be
normalized in any way wNch is convenient. Multiplying y by a constant C simply
multiplies the constant in (2.4) by C.

If these equations have a unique solution it must by Theorem I be the extremal
function. Even if the solution is not unique the equations severely restrict the form
0](x) may take.

Of course silar remarks apply to Theorem II and 02(x). We will now look at
some applications.
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3. Some applications. As usually formulated [2], [6], [11], [13] the buckling prob-
lem for a slender column leads to the equation

(3.1) y"+X[o(x)]-2y=O,

where various boundary conditions may be used:
Pinned at x 0 and x 1,

(3.2) y(0) =y(t)=0.

Clamped at x 0, pinned at x 1,

(3.3) y(t)=0, +y(0) 0.

Clamped at x----0, free at x 1,

(3.4) y’(0) =0, y(t)=0.

Clamped at x 0 and x l,

(3.5) y’(0)-y’(0) 0, ly’(O)-y(l)+y(O)=O.

They are all self-adjoint boundary conditions. The critical buckling load is proportional
to the smallest nonzero eigenvalue.

Comparing (2.1) and (3.1) we see g(x,p)=p-2 which is a convex function of p.
Thus we may use Theorem I to maximize hn(p) and find the shape of the strongest
column for any given set of boundary conditions.

We will first reproduce some results of Keller [6] by taking h =0, H= + o and
using boundary conditions (3.2). Theorem I requires that we minimize (x, p)=y2p-2
+/xp over p >__ O.

Setting /Op 0 gives 2y)p- #. Normalizing the eigenfunction appropriately
yields y,= (p,+)3. This optimality condition was used by Keller [6] and by Tadjbakhsh
and Keller [12] to solve for p+(x) using the boundary conditions (3.2)-(3.5). Assuming
the existence of p,+, Theorem I provides a rigorous proof the optimality of those
solutions which is valid for all boundary conditions. In this regard see [2, p. 176].

As a further example of our method we will now determine the shape of the
strongest "Profile" column which is pinned at each end. A profile column is one which
is formed from a flat slab of material having constant thickness say T. We assume that
only the width, call it p(x), varies. Let h >0 be a given constant and suppose also that
p (x), h and T satisfy

r Vx [0,t].

Since we assume the width p(x) is always larger than the thickness T when such a
column buckles it will buckle in a plane parallel to its axis but perpendicular to its flat
side (the z-x plane in Fig. 1 below). Actually if h/T is large then the "Column" might
be called a "Plate".

Since we have a profile column the governing equation (see [11, p. 136]) becomes

(3.6) y"+,[p(x)]-ly=O, y(O)=y(l)=O.
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Y
T

FIG. 1. The shape of the strongest profile column having both ends pinned and constrained by p(x)>= h >= T.
The curved parts are parabolic arches and #(x) is defined by (3.9).

Assuming a given volume Vwe see

(3.7) o(x)ax= Zr-.
Thus we take w(x)= 1 and g(x, p)= p-a which is a convex function of p. Theorem I
requires that we minimize (x, p)=y2p-1 +/p over p >=h.

It is easy to see that if y2 is small (as it is when x 0 or x = 1) then the minimum of
3 occurs when p h. However as x increases from 0 or decreases from I there will come
points at which the minimum of 3 occurs when O/Op=0 which implies y2=#[p]2.
Assuming, as we may, that the eigenfunction yl is positive and properly normalized we
obtain p =y for values of x near the center of the column and p h for values of x
near the ends of the column. Substituting p / =Ya into (3.6) shows that Yx must be a
quadratic polynomial near the center. Using (3.2) we see thaty must be of the general
form

(3.8)
C Sill( Xh )1/2x,

y= h+ha(x-s)(t-x),

C2 sin(xh )a/2(l- x ),

O<=x<=s,
s<=x<__t,

t<=x<=l,

where C1, C2, a, s and are parameters to be determined. The function p(x) must be
of the form

(3.9) p-(x)= h ha(x-s)(t-x),
h

O<=x<__s,
s<=x<=t,
t<=x<=l.

Using (3.9) and (3.7) we find

(3.10) a=6[VT-lh--l](t-s) -3.
Now Yl must be continuous at x s and x t. This implies C- h sin(hh)X/2s and
C=hsin(,h)I/2(l-t). Furthermore y; must also be continuous at x=s and at x= t
which yields the equations

(3.11) h(Xh )/cot( Xh )/ h(t- ),
h (hh)t/2cot(Xh)X/2(l- t) ha(t- s).
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It follows that cot()h)l/2s=cot(Ah)l/2(l-t). Since we are solving for the smallest
eigenvalue Ax this implies (hh)l/Es=(h)l/E(l-t) so s=l-t. Thus the column is
symmetric about 1/2. From (3.8) and (3.6) we see that at x= 1/2, y’= hx(0) 2ha.
Using this relationship and (3.10) and (3.11) we see that s is defined (as a function of h,
l, V, T) to be the smallest positive root of the equation

(3.12) h3/2(1- 2s)2cot s(l- 2s )-1[3h(VT-1_ hl)] 1/2= 3(VT-- hl).

Using s determined by (3.12) we obtain a using (3.9) and O(x) using (3.8). We have
proved"

ThEOReM III. The strongest profile column pinned at each end and having length 1,
volume V and thickness T satisfying #(x)>=h>= T>0 will have a width function p(x)
defined by (3.9). Equation (3.12) defines s andfor any # we have

,(#) __<Xx(0)= 12hi VT-x- hi][ 1- 2s ]-3.
As a further example of our method we will determine the shape of the strongest

profile column which is damped at x 0 and pinned at x and is unconstrained in
width so p(x)>= 0. The critical buckling load is determined by the second eigenvalue of
the system

(3.13) y"+h[p(x)]-y=O,
y( l ) O, ly’(O) +y(O) O.

The first eigenvalue of this system is zero and the eigenfunction is yl(x) 1-x. We
must therefore maximize A2(P) over all p(x) satisfying p(x)>_ 0 and (3.7).

THEOREM IV. The strongest unconstrained profile column which is clamped at x 0
and pinned at x 1 and has volume V and thickness T will have a width function p(x)
defined by

C(s-x)(x+a),(3.14) #(x)
C(x-s)(l-x),

The constants s, C and a are given by

(3.15)
(3.16)
(3.17)

O<_x<_s,
s<x<l.

s=l(1-f/2)= .2931,

C= 3(3V/ + 4) V(2TI3) -1 12.36V(TI3) -1,
a I(V--1)= .4141,

andfor any O(x) it follows that

’ 2 (P) -<X2(#)= 3(3V-+ 4)V(TI3) -x.
The proof is based on Theorem I, which we may use since g(x, 0)= 0- is convex

in 0. We must minimize y20-+/#. Setting its derivative to zero and normalizing Y2
yields the condition y22(x)=[p(x)] 2 so p(x)=ly2(x)l for all x[0,l]. Putting this
into (3.13) yields

Y’= A2 (0;) sign(y2).

From this it follows that in each nodal domain the function y2(x) is a quadratic
polynomial. Nowy2(x) has two nodal domains, say (0,s) and (s,/), so for any choice of
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normalizing constant C we obtain

C(s-x)(x+a), O<=x<=s,
(3.18) y2(x)

C(s-x)(l-x), s<=x<=l.

This function satisfies y2(s)=0 and the boundary condition y2(/)=0. We select the
constant a so that the other boundary condition, ly’(O)+y(O)=O is satisfied. This
implies that

(3.19) a=sl(1-s) -1.

Now y(x) is continuous at x=s so y(s-O)=yz(s+O) which (using (3.18)) yields
a=l-2s. Combining this with (3.19) yields (3.15) and (3.17). Using (x)--ly_(x)l
and (3.18) we obtain the formula (3.14) for p(x). Finally to determine C we integrate
(3.14) directly and use (3.7). After some manipulation we find C is given by (3.16). This
proves the theorem.

Many generalizations of these results are possible. For example the other boundary
conditions (3.3)-(3.5) could be used in the constrained or unconstrained mode. In any
of these cases it would be possible to maximize hn(p) for any n= 1,2,3, .

The generalized equation

y"+,[p(x)]my=O

has been studied by Tadjbakhsh and Keller [12] and by E. R. Barnes [3]. Our theorems
could be used to maximize Xn(O) if m < 0 or if m >_ 1 since then 0 is convex. If,
however, 0 < m =< 1 then #’ is concave and we could use Theorem I to minimize ,(p).
In all of these cases arbitrary self-adjoint boundary conditions may be used.

If m 1 then p’ is both concave and convex so we could get both upper and lower
bounds and generalize the result of Krein [9] to include arbitrary self-adjoint boundary
conditions. To pursue that idea consider the differential equation

y"+,#(x)y=O,

where p(x) is subject to the constraints

h<=p(x)<=H, p(x)dx=M.

We will consider the lower bound kn(P-). Take g(x,p)=p and (x,p)=p[yf+l].
The maximum of 3 is at p=h if y2 +/ <0 but is at p=H if y+/>0. Let x;,

0,1, 2,..-, m be the zeros of y.. In each nodal domain x;_ -< x

_
x which does not

include x 0 or x the extremal function will be a symmetric step function having
two jumps. It will also be periodic in these interior nodal domains. In each of the two
nodal domains 0 =< x =< x and x,_ =< x =< the function p(x) will be a step function
having at most two jumps. Depending on the boundary conditions used the solution
can be quite involved from this point on and we will not give the details.

4. Proof of Theorems I and II. We will give a detailed proof for Theorem I and
then indicate modifications necessary to prove Theorem II. Along the way we will need
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to use standard theorems to solve problems of the following type:

Problem III. Minimize

( o ) ’Fo ( x, o ( x l l ax
subject to constraints

fotFi(x,p(x))ax=v., i= 1,2,. .,N,

and
h<_p(x)<_H.

The book by Hestenes [5, p. 215] provides the following theorem used for solving
problem III. There is a dual theorem used for maximizing J(p) which we do not state
here.

THEOREM V. Let F/(x,p) be continuous and let po(X) be a solution of problem III.
Then there exist constants .1o>= 0 and .11, .12," ",.1v not all zero such that for each x [0, l]

(4.1) min [oFo(x,p)+*11Fx(x,#)+... +r/NFN(x,p)
h_o_H

Conversely if a function po(X) and constants .10 > 0, .11,"" ",*IN exist which satisfy (4.1) and
if the conditions

( X, Oo ( X ) ) V,

hold then Po(x ) solves problem III.
We now proceed to the proof of Theorem I. Let p,+(x) be a solution of

problem I and let y, be an eigenfunction of (2.1), (2.2), (2.3) corresponding to
Under certain conditions there may be two linearly independent eigenfunctions. If this
happens simply select y, to be any one of them. Normalize it so that

(4.2) y;,g( x, p.+ ( x ) ) dx l.

For any p {g define the functional J(p) by

  , (x,o(xllex.

In order to prove Theorem I we will first show that O+(x) minimizes J(O) over all

(4.4) J(p)>=J(p+)

Assuming this has been done we see that Theorem I will follow directly by applying
Theorem V to the functional J(p) using N 1 and

ro ( x, o ) y. g ( x, o ), Vl ( X, O ) ( x )

and taking .10 1. Actually we need to first show .10 4:0 in order to justify dividing it
out of (4.1). Suppose then that .1o=0. Then ’110 and (4.1) becomes

rain
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Thus it follows that p+(x)= h for all x if x > 0 or else p+(x)=H for all x if 1’11 < 0.
Either case contradicts (1.8) so */0 > 0. We only need to prove (4.4) to finish the proof of
Theorem I.

Let e be a parameter satisfying 0 =< e =< 1 and let 0 ft. Define functions p(x, e) and
G(e) by

(4.5) #(x,e) (1 e)p+ (x)+ep(x),

(4.6) G(e)=J(o(x,e))= y;,g(x, (1-e)#+(x)+e#(x))dx.

Now we may recast inequality (4.4) in the form G(0)=< G(1). To prove this inequality
we will show G(e) is an increasing function of e. Denoting derivatives with respect to e
by (), we easily obtain

(4.7) 2()-- ygo(,(,))[()-+()]

and

(4.8) fo’ (x, (,))[p()d()= y;g, p

Since g(x, p) is convex in p it follows that G(e) is convex in e so we only need to show
G’(0) >= 0 in order to prove G(e) is increasing.

Let z, be an eigenfunction of (2.1) corresponding to X,(p(x, e)). Thus

(4.9)

and

(4’10) y,’ +X.(pn+(x))g(x,p.+(x))y.=O.

We multiply (4.9) by y. and (4.10) by z. then subtract the two equations then integrate
by parts. Using the self-adjoint condition (1.9) (withf(x,p)= 1) we find

(4.11) fot[h,,(p(x,e))g(x,#(x,e))-X.(t).+(x))g(x,#+(x))] y,,z,,dx=O.

After some manipulation we transform this equation into

(4.12) AX X. ( p.+ ) f/y.2Agdx + O(e2),

where to simplify notation we have collected together all terms which are O(e2) and
used

(4.13)
(4.14) Ag=g(x,p(x,e))--g(x,Pn+ (x)).

Now in the special case we are treating here we have f(x,o)= 1 for all x, . It
follows that the class ff is convex. This implies that

(4.15) p(x,e)=(1-e)p+(x)+ep(x) Ve [0,1].
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Since O+(x) maximizes X,(#)we see AX_<O for all e (0,1]. We now divide (4.12) by e
and then let e 0 + to obtain

(4.16) 2Xn(Pn+) Y;go(x,p(x,O))(x,O)dx>=O.

Since ,,(p+)>0 and O(x,0)=O+(x) and i(x,O)=o(x)-o,+(x) we see that (4.16)
implies G’(0)=> 0 which was to be proved.

The proof of Theorem II is much the same. Now however Yn is an eigenfunction
corresponding to ,,(#,-), we have AX>=0, inequality (4.4) is reversed and G(e) turns
out to be a concave decreasing fucntion since G’(0)=< 0.

Incidentally (4.12) implies that the first variation 8X, of ,n(p) is given by

2-x.(o.+) +

where Sp+ =e[O(x)-o,+(x)]. This generalizes a result of Banks [4] (where g(x,o)=O
and go(x,p) 1) based on an idea due originally to Nehari. Keller [8] has also used
similar ideas to minimize ratios Xx(O)/X 2().

5. Generalizations. Our method can be generalized to handle equations of the
form

(5.1) (f(x,o(x)) y’)’ + [Xg(x,o(x))+q(x,p(x))] y=0

coupled with arbitrary, self-adjoint boundary conditions of the form (2.2), (2.3). Now,
however, we will also allow the coefficients a and fli in (2.2), (2.3) to depend on the
values of p(x) at x=0 and x=l. Thus we include boundary conditions like p(x)y’(x)
0 as x 1 which were used by Troesch [14]. It is also possible forf(x,p(x)) to vanish
at x 0 and/or x which then leads to a singular eigenvalue problem. The self-ad-
joint condition (1.9) might also impose a nonlinear constraint on the function p(x) so
the class defined by (1.6)-(1.9) may not even be convex.

In order to avoid these difficulties at the end points we will define a new subclass
of . Let 8>0 be a small number and let p+(x) be the solution of problem I for (5.1),
(2.2), (2.3). Let +() be the class of all functions p which agree with p+(x) near
the ends,

(5.2) O(x)=o,+(x) ifx[0,Sl or x[l-8,l].

Similarly we define -() using p-(x) instead of p,+ (x). Clearly +() is a convex
subclass of and

max
0i+() 0t

Thus we may do our analysis on the interval [i, 1- ] and afterwards let 0 +. We will
first state our theorems and then show how to carry out this process.

THEOM VI. Given self-adjoint boundary conditions let h,(p) denote the nth eigen-
value of (5.1). Suppose there exists a function p,+ which solves problem I so that

x.(o)__<x.(0.+)

Let g(x, #) and q(x, p) be convex in p and letf(x, p) be concave in p.
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Then there exists a constant l such that for each x[O,l] the minimum over all
h, HI of the function (x, p) defined by

t)2(x p)=X,(p,+)y,2g(x,p)+q(x p)y2-f(x p)(y;, +txw(x)p

is attained when p p.+ (x ), that is

(5.4) min (x,p)=(x,p,+(x)).
hpH

Herey,=y,(x) is an nth eigenfunction of (5.1) corresponding to O+(x), so

(5.5) [f(x,p+(x))y’]’+[X.(O.+)g(x,p.+(x))+q(x,p+(x))lY.=O.

THEOREM VII. Given self-adjoint boundary conditions let k,(O) denote the nth eigen-
value of(5.1). Suppose that there exists a function p(x) which solves problem II, so

Let g(x, O) and q(x, O) be concave in O and let f(x, O) be convex in O.
Then there exists a constant I such that for each x[O,/] the maximum over all

O h,H], of the function (x, O) defined by

(5.6) v)2(x,p)=,,(p:)y2,g(x p)+q(x p)y2,-f(x,p)(y;, +txw(x)p

is attained when O P(x), that is,

(5.7) max (x,o)=(x,p-(x)).
hpN_H

Herey=y,(x) is an nth eigenfunction of (5.1) corresponding to On(x), so

(5.8) [f(x,p:(x))y,]’ + [X,,(p;)g(x,p:(x))+q(x,p:(x))l y,,=O.

The proof of Theorem VI proceeds much like that of Theorem i with a few
modifications. In this case we replace J(p) as defined by (4.3) with

(5.9) J(I)=[kn([:) y:g(x,p(X))-l-y:q(x,o(X))--(y)2f(x,[il(X))] dx.

We will first show that O+(x) minimizes J(o) over all O +(8). Assuming this has
been done, we then let iO and we see that O+(x) minimizes J(o) over all p. We
now apply Theorem V using N 1 and

Fo(x,#)=hn(O+)y2g(x,o)+y2q(x,o)-(Y)2f(x,O),
Fx(x,o)=w(x)p.

This will prove the theorem.
Let O +(8). We need to show J(#)>J(p+). Define p(x,e) for e[0,1] by (4.5)

and let
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We See

and

(5.11)

+

Thus G(e) is convex in so we only need to show d;(0)>= 0.
To do this we proceed along the same lines as (4.9), (4.10), (4.11), (4.12). The

generalization of (4.12) now reads

(5.12) --Ah= fo’[h.(p.+)y:Ag+yffAq-(yj Af]dx+Afy,,yj] +O(e-)2
x’=l

x’-0

where the boundary term results from integration by parts and Af=f(x,p(x,e))-
f(x, p+(x)). Now however p ff +(8) and so Af= 0 for all x in the intervals 0 __< x __< 8 or
l-8 _< x __< I. The boundary term in (5.12) drops out and we now divide (5.12) by > 0
and let e---,0 +. Since A,_<0 for a maximum we obtain G’(0)>__0 which finishes the
proof. The proof of Theorem VII is similar and will not be given.

Theorems VI and VII have converses which, interestingly enough, do not require
convexity conditions on the coefficients.

THEOREM VIII. Suppose p+(x) is any solution of (5.4), (5.5) and p;(x) is

any solution of (5.7), (5.8). Then p+(x) is a very weak maximum of A(p) meaning that

(5.13) d--d h, [(1-e)p+(x)+ep(x)][___o<O=

andp(x) is a very weak minimum of n(P), meaning that Vp ,
d

(5.14) d--hn [(1- +,o(x)] I,=0>_ 0.

We will prove (5.13). We first let --, 0 in (5.12) and rewrite the result as

(5.15)
Now p+(x) solves the minimum problem (5.4) so by the converse part of Theorem V
we see that p+(x) minimizes J(p). Thus (5.15) implies -A),>_ O(e2). Dividing by e> 0
and letting e 0 gives (5.13).

As an example of Theorem VI we will take h 0, H= oo and reproduce some of
the results of Troesch [14] on the sloshing frequency of liquid in a container. The
governing equation is

(5.16) [xp(x)y’]’+[hx-m2p(x)x-t]y=O
with boundary conditions

y(0) 0, p(x)y’=0 at x=l.
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Assuming the container has given volume the function p(x) will satisfy

fotxp ( x ) dx V,

and m is a given constant describing the "symmetry class". Thus we will take

w(x)=x, f(x,p)=xo, g(x,o)=x, q(x,o)=m2ox-1,

and we must minimize

) (X, p ) Xn ( Pn+ ) y2nx y2n m2px- (y )2Xp q I.txp

over all O >-O. Ignoring the first term which is independent of O, we see that we must
minimize the expression 0 where is defined by

=[--m2y2n --x2(y)2+lXXg-]X-1.
Now if > 0 at any point then it is positive in a neighborhood. Thus the minimum of
p is at p 0. However this and (5.15) implies that y, 0 for all x in the neighborhood
which is impossible for an eigenfunction. Thus =< 0. If however < 0 at any point
then it is negative in a whole neighborhood so the minimum of p is at O + m. This
however contradicts (1.7). It must therefore be the case that 0 for all x which yields

,)2 2m2y2 + x2( y;, txx

When y, is properly normalized this is Troesch’s optimality condition [14, eq. 12]. We
could now use Theorems VI and VII to obtain maximum and minimum values for
sloshing frequencies with depth functions p(x) constrained by h <=p(x)<=H. We will
not pursue that matter here.

6. The tourth order lroblem. We will now give theorems which can be used to
solve extremal problems for the fourth order equation

(6.1) -[r(x,p(x))y"]"+ [f(x,o(x))y’]’+ [hg(x,#(x))+q(x,o(x))] y=0,

where we assume that self-adjoint boundary conditions are also specified.
THEOREM IX. Given self-adjoint boundary conditions let (p) denote the nth eigen-

value of (6.1) and suppose there exists a function p+ which solves problem I, so

X (p)zX (p.+) Upon.

Let g(x, p), q(x, O) be convex in O and letf(x, p), r(x, O) be concave in p.
Then there exists a constant I such that for each x[O,/], the minimum over all

# h,H of the function f8 (x, O) defined by
(6.2)

Pt) 2, ,)2 r( )(y;, +tw(x)ox
is attained when p p,+ (x ). That is,

(6.3) min 3(x,p)=3(x,o+(x)).
h_p_H
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Here yn=yn(x) is an nth eigenfunction of (6.1) corresponding to )kn(Pn+), SO

(6.4) --[r(x,p+(x))y[,’]"+ [f(x,p+ (x)) y[,]

+ [X(#+)g(x,#+(x))--q(x,p+(x))]y=O.

TrIEOllSM X. Gioen self-adjoint bounda conditions &t X(p) denote the nth eigen-
oalue of (6.1) and suppose there exists a function pf which soloes prob&m II, so

Suppose that g(x, p) and q(x, p) are concaoe in p and that f(x, p) and r(x, p) are conoex
in p.

Then there exists a constant such that for each x[0,1] the maximum of the
function (x, p) defined by
(6.5)

,)2 (x,O)(y)2(x,p)=X,(p;)y)g(x,p)+q(x p)y-f(x p)(y -r +w(x)p

is attained when p=p(x), that is

(6.6) max (x,p)=(x,p(x)).
hpH

Herey is an nth eigenfunction of (6.1) corresponding to X(p), so

(6.7) -[r(x,p(x))y’]"+ [f(x,p;(x))y]’
+ [X(p:)g(x,p(x))-q(x,p(x))]y=O.

The proofs of Theorems IX and X are much like those of the second order case
using

J( O)=t[X,( P: ) Yg(x,p(x)) + q(x,o(x))Y

-f(x p(.x))(y)2’ (x,p( ( ]]"

We leave the details to the reader.
The analogue of the converse Theorem VIII also holds for the fourth order case.
As an example we will consider Niordson’s problem [10] of mizing the

fundamental frequency of a vibrating beam by selecting an appropriate tapering. This
leads to the problem

+ Xp(x)y= 0.

We see that (x, p) is ven by

X y p- +

Thus (x,p) is concave in p so, assuming the estence of p, we could use
Theorem X to minimize h,(p). But alas, Theorem IX cannot be used to reproduce
Niordson’s optimality condition for a mamum.

It turns out that Niordson’s problem leads to strange and unexpected difficulties.
Suppose for a moment that we assume only that p(x)20. Then X(p)>0, Vp. If,
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however, we define ph(x)( by

O(x)=(h, O<_x<_s,
H, s<x<_l,

then one can show that Xl(Ph)’-’0 as h 0. Thus in this case there is no function
p(x) which minimizes hx(P). It is probably true that if we assume H>_ p(x)>= h > 0
then there does exist a minimizing function Pi-(x) in which case Theorem X implies
that if 01(x) is not equal to h or H then it satisfies

(6.8) 2p; ( x )( y’)2= XlYx2 + #.

Thus the calculation of Oi-(x) seems to be much more difficult than appears at first
glance. We will not pursue this problem at this time.

Strangely (6.8) is the same optimality condition employed by Niordson to solve for
the maximum of ’I(P) subject only to the condition 0(x)>__0 and fdp(x)dx=l.
Niordson [10, p. 53] says:

The variational method employed yields a stationary value of X. Although there is little doubt that
this value is the true maximum, a strict proof of this is lacking. Also, there is no proof concerning
the supposed convergence of the sequence of functions obtained by the iteration formulas. We may
hope that such proofs will eventually be given.

We will now take h=0, H= + oo and assume the existence of a maximizing
function #-(x) for Niordson’s problem. Remember that the minimizing function O-(x)
does not exist in this case. We will prove that p(x) and its eigenfunction Y1 satisfy
Niordson’s optimality condition [10], eq. 3.6

(6.9) 2p? (x)( y,)2 , y2 + a2

where a some constant and

-[ [,i()]r,],, + x,;-()r o.

We will do this by proving that the maximizing function O(x) also maximizes J(#)
V0,

J(,) fo’[X,(x)r’?-[,()lr;’]ax.
To do so we examine G(e) defined by

G(e)=J[(1-e)p (x)+ep(x)]

We see G(e) is a concave function of e. Now since we are dealing with the uncon-
strained problem we see that 8X1=0 at P=O. It follows that G’(0)=0 so G(e) is
decreasing. Thus G(0)>= G(1)which gives

J(p)>=J(p)

An application of Theorem V shows that p= p(x) maximizes

(, p) xY?p- ( Y’)’-p: +
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This yields (6.9). To prove that/(=a 2) is positive we multiply (6.9) by #(x) and
integrate over 0 _< x __< 1 to find

a2 f01 P(x)] 2[ r{’]2dx.

We remark that if we look at the constrained problem h<=p(x)<=H then we can
only conclude that 8’1 G’(0)>= 0 and the above proof fails.

7. Extensions. Many extensions of these results seem to be possible. One exten-
sion would be to allow the coefficient functions to depend not only on p(x) but on
derivatives and integrals of p(x). This would include problems like the Tallest Column
considered by Keller and Niordson [7]. Another possible direction would be to consider
the extremal values of functions of eigenvalues similar to those problems considered by
Keller [8]. These questions are under consideration and will be published later.

Note added in proof. The new book by T. L. Troutman, Variational Calculus with
Elementary Convexity, Springer-Verlag, New York, 1983, appeared while this article
was in press. The methods and notation given there could be used to shorten and
simplify some of the proofs given here.
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n-SERIES PROBLEMS AND THE COUPLING OF
ELECTROMAGNETIC WAVES TO APERTURES:

A RIEMANN-HILBERT APPROACH*

RICHARD W. ZIOLKOWSKI

Abstract. An effective approach to the solution of a large class of mixed boundary value problems (those
reducible to an n-series problem) is developed. The method is based on the deduction of the equivalent
Riemann-Hilbert problem and its solution. This generalized n-series approach leads to analytical descrip-
tions of the coupling of electromagnetic waves through apertures in canonical structures into open or
enclosed regions. In particular, it is applied to the canonical problem of plane wave coupling to an infinite
circular cylinder with multiple infinite axial slots. Numerical results for currents induced by an H-polarized
plane wave on a circular cylinder with a single slit are given.

1. Introduction. Mixed boundary value problems occur in many areas of physics and
engineering. A particular class, the electromagnetic and acoustic coupling problems as
they apply to an enclosed region, an external source and a coupling aperture, are of
major importance, both theoretically and from a practical point of view. Nonetheless,
the separable geometries in which one might expect to obtain an analytic solution have
not been amenable to treatment until recently, and purely numerical techniques present
difficulties largely due to the edge at the rim. Moreover, approximate solutions, such as
the one developed by Bethe [1], are limited in their range of applicability.

Techniques borrowed from the analysis of the Riemann-Hilbert problem of com-
plex variable theory and recent developments [2]-[5] in the theory and applications of
dual series equations have made it possible to obtain analytical solutions to families of
canonical problems descriptive of electromagnetic and acoustic coupling via apertures
into enclosed and open regions. Examples of the canonical problems amenable to
solution by these techniques include a plane wave incident (with an arbitrary angle of
incidence) on a perfectly conducting diffraction grating, on a perfectly conducting
circular cylinder with an infinite axial slot, and on a perfectly conducting spherical shell
with a circular aperture. They all involve a scattering body with a single aperture (the
unit cell of the grating corresponds to the slitted cylinder). Canonical problems involv-
ing structures with (n-1)-apertures (n>__2) require the solution of n-series problems.
For instance, the coupling to a cylinder with two axial slots is described by a triple
series equations problem.

These coupling problems constitute only a small subset of a large class of mixed
boundary value problems that can be reduced to equivalent n-series problems. Standard
techniques available from potential theory, such as the ones described in connection
with the dual and triple series equations in [6], are cumbersome and are tailored to
specific problems. On the other hand, the Riemann-Hilbert problem techniques pro-
vide a unified, systematic approach to these equations. The resultant general n-series
approach is applicable to all separable geometries. Therefore, it represents a generaliza-
tion of the Wiener-Hopf method.
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It has been brought to the author’s attention recently that the Riemann-Hilbert
problem techniques have actually been applied in this manner to the dual series
equations problems of the diffraction grating [7] and the slitted cylinder [8]. Nonethe-
less, the parallel approach to the general classes of n-series problems that will be
discussed in this paper does not appear to have been reported. Several of the notations
in this paper were chosen to resemble those employed in [7] for convenient reference.

The connections between the Riemann-Hilbert problem, n-series problems and
the electromagnetic coupling through an aperture will be made in this paper. In
particular, in 2 the solution of a general class of n-series problems is developed with
Riemann-Hilbert problem techniques. A brief review of the Riemann-Hilbert problem
itself is included in the appendix for completeness. The application of the resultant
generalized n-series approach to the electromagnetic aperture coupling problem is
discussed in 3. Analytic solutions for the coupling of E-polarized and H-polarized
plane waves to a perfectly conducting infinite circular cylinder with multiple infinite
axial slots are derived. Typical numerical results for the currents induced by an
H-polarized plane wave on a circular cylinder with a single axial slit are described.
Various comments concerning the main aspects, of the generalized n-series approach are
given in 4.

2. The Riemann-Hilbert approach to n-series problems. As shown in [6], there are
many generic problems of the dual and triple series equations type. Only the n-series
canonical problems encompassing those related to the slitted cylinder examples to be
discussed below will be considered. They are sufficient to illustrate the proposed
Riemann-Hilbert approach. The solutions to other genetic classes of problems can be
inferred from these results.

The Riemann-Hilbert problem, as described in the appendix, is concerned with
finding the analytic function that satisfies a prescribed transition condition across an
open or a closed curve. Let the unit circle S be divided into two sets, F and L, the
closure of I" being the complement of L in S1, and let each of these sets consist of
(n-l), n>__2, open nonintersecting segments: F={F,...,Fn_} and L=
{ Lx,-..,Ln_}. Also let I(I’)= { I(F1),-.-,I(F_x)} and I(L)= { I(L),...,I(Ln_x)}
be the angular decomposition of the interval [0,2r] corresponding to those sets. In
particular, set

(2.1a) Fy= {ei’lckI(F)=(O2y_2,O2y_) } (j= 1,...,n- 1),

(2.1b) Lj=(ei*lI(Lj)=(O2j_x,Og_j)} (j= 1,...,n-l).

Consider first the basic n-series problem (n >_ 2):

(2.2a) E ameimq’=O, epI(L),
m

m=

(2.2b) emlmlameim’t’=lao+f(ep), q,i(r).

Depending on the specific problem, em=Sgn(m) or em=[sgn(m)] 2-- +1, where it is
assumed that

(2.3) sgn(m) ( -1+ 1
for m<0.frm>=0,
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It can be reduced to a Riemann-Hilbert problem as follows. Differentiating (2.2) with
respect to and substituting x,= mam(m:kO) in both (2.2a) and (2.2b), one obtains the
modified n-series problem

(2.4a)
(2.4b)

., xmeim’t’= O, rb
_
I(L )

m4O

E e,,,x,,,lm---!ei’’=ao+f(q) qI(F).

The symbol E,,,0 indicates the sum over all terms from m= -o to m= + oo except
the term with m 0. Now, introduce the functions

(2.5a) x + (g) E XmZm,
m>0

(2.5b) x_(z)=- E x,,,z"
m<0

which are assumed to be analytic, respectively, on the interior and the exterior of the
unit circle S1. The n-series equations (2.4) can then be rewritten as

(2.6a) [ x+(A)-x_(h) =0,

(2.6b) x+(v)-r(’,l)x_(v)=F(v),

where

(2.7) r(ei*) { + 11 forfr e,,em=Sgn(m)’=+ 1,

and

(2.8) F(e"t’)=1ao+f(tk), I(r).

Equation (2.6a) means that x /(z) and x_(z) coincide on L, i.e., they continue analyti-
cally across L and thus become the same analytic function,

x(z)---[x+(z)’ Izl<a,
(2.9)

x_(z), Izl> 1.

Similarly, the functions x +(V) and x_(v) in (2.6b) represent, respectively, the limiting
values on I" from the interior and the exterior of S of the same analytic function (2.9);
hence (2.6b) describes a discontinuity in that function across the open curve F.

It is assumed that the solution x(z) has singularities of order + 1/2 at each of the
endpoints aj=exp(iO2j_2) flj=exp(iO2j_l) of Fj(j=I,.- .,n--1) and is zero at infin-
ity. This properly models the behavior of the solution in the electromagnetics case near
the edges of the aperture and at infinity. Moreover, for the moment, let the transition
function F be a least H/51der continuous on S1. As indicated in [9], the Riemann-Hil-
bert problem techniques can actually handle solutions with other singularities, e.g., any
of those whose order lies in the interval (0,1), with a nonzero behavior at infinity and
with a transition function satisfying a relaxed continuity condition.

Rewriting (2.6b) as the transition condition

(2.10) x+(’r) T(y)x_(’)+F(’),
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an inhomogeneous Riemann-Hilbert problem with discontinuous coefficients on an
open curve is realized. The factors T and F are called, respectively, the coefficient and
the free term of this Riemann-Hilbert problem. Its solution, x(z), is developed in [9,
Chapter VI, 42]. This problem is first reduced to one with discontinuous coefficients
on the dosed curve S by setting

(2.11) To(.) { T(’)+I for "Lfr
F,

and

for I’,(2.12) F(’)--
0 for ’L,

so that (2.10) becomes

(2.13) x + (’) To()x_()+Fo(), fS.
Next the problem is reduced to one with continuous coefficients by introducing the
characteristic function [1/G(z)] of the problem, i.e., the function that has the same
singular behavior as x(z) at the endpoints (aj, flj) of the segments Fj(j= 1,...,n-1),
and which makes the product xG nonsingular at those points, and satisfies the homoge-
neous Riemann-Hilbert problem

(2.14a) 1/G+(’) To()/G_(), S,
Note that (2.14a) also means

(2.14b) To()=G_()/G+(), S.
Thus, mulitplying (2.13) by G+(’) and defining the functions

(2.15) (z) =x(z)G(z),
(2.16) (z ) G+ ( z ) Fo( z ),

one obtains

(2.17) @ + (g’) @_ (’) + t’(’), ’S
This represents the transition condition of a Riemann-Hilbert problem with continu-
ous coefficients on a closed curve. Its solution is simply [9, pp. 96-99]

1 fs (,)dv+p. :z(z )(2.18) (I)(z)=,
where P,_ 2(z) is a polynoal of degree (n- 2) in z"

(2.19) e,_2(z)=co+cxzX + +c,_2z"-2.

Consequently, the desired solution of (2.13) is defined as

1 1 frG+(*)F(*)d* 1+ e.
The procedure to obtain the characteristic function or equivalently the function G

is given in [9, 42]. It depends on the index of the coefficient To(), the index of the
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problem. It is readily shown that the index is (n- 1) for the present problem and that

(2.21)
for e,, sgn(m),

for

The results for the Em + 1 case are presented explicitly in [9, [}42.2]. For that case the
branches of G will be chosen so that as z,F from the interior of SX: G(z) G+(),
and from its exterior: G(z)G_(’)= -G+(’). This choice satisfies the restriction of
(2.14b) to F:

(2.22) G_ ( ) T(" )G+ ( " ) r
The polynomial term, P,-2(z), in (2.18) and (2.20) is introduced to account for the

assumed behavior of x at infinity. In particular, as 121--, (2.21) yields

(2.23) IG(z)l--Izl-1.
Therefore, in that limit the magnitude of the solution

(2.24) Ix( )l-IP"-2(z)l Ic._21
,0

IG(z)I Izl

as desired.
The solution (2.20) provides a means to generate another relation between the

limiting values x/ and x_ on F. Let

1 fr G+ ( , )F( , ) d,(2.25)

where Pf means to take the Cauchy principal value of the integral. The
Plemelj-Sokhotskii formulas [see (A.3) in the appendix] together with (2.20) and (2.22)
give

(2.26) x+(7)+r(7)x_(7)=2[f()+P,_2()]/G+(), v r.
The coefficients x,,(m 4: 0) and the constants ao, Co,...,c,_ 2 can now be obtained as
follows.

First consider the ease in which m sgn(m). Combining (2.5), (2.6) and (2.12), one
obtains for all " e* $!:

(2.27) x+(ei’t’)-x_(ei*) _, xmei"’t’=Fo(eiq’).
m=b O

Fourier inversion of this expression gives the terms
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If the solution (2.20) is desired, the constants c0,.-.,c,_ 2 are then obtained from a
system of (n- 1) equations:

(2.29a) , I-r[xe’V=2[2(e’V)+_P,_2(e’V)/G+(e’V)] (j=l,. -,n- 1),
rnO

derived by evaluating the relation (2.26) at the midpoints

1
(2.29b) ’j=’(O2j_ + 02j_2)

of the intervals I(Fj)(j 1,..-,n- 1).
On the other hand, for the case in which era= + 1 the combination of (2.5), (2.6a)

and (2.26) yields for all ’ e i* S1"

(2.30) x+(ei)-x_(ei) , xmeim*=2g(ei)[f(ei)+P_2(ei)],
mO

where,

’) for ’F,
(2.31) g(’)=

0 for ’L.

Defining the terms

1 /" G (’)dz(2.32a) o(’) =-PJr +

G ()f(z)d
(2.32b) V(’) i-"PJr

+

(2.32c)

(2.32d)

(2.32e)

1 foZ,v ,, 1 fFo(eiq’)e-imq’ddpUm " ( e ) g( ei’t’ ) e imq’ ddp "-’ G+ ( eiq, )
1 fo2 i i,t, l frV(ei)e-imdqVm=’ V(e )g(e )e imq’d,=- G+(eiq,)

1 fo2 g( i,t, 1 fre-im d R rn e ) e imq’ddp
G+ ( e , )

Fourier inversion of (2.30) yields a linear system of equations for the coefficients a0 and
xm(m O) of the form:

(2.33a) Xm liaoVm + Vm + 2 cRm_ (m 0),

(2.33b) 0 liaovo + Vo + 2 _, cR_ (m 0).
0

This system is completed by the (n- 1) relations

(2.34a) ao E Xm"

rn
m :b O

(/--1,...,n-l)
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obtained from (2.2a) by setting equal to kt, the midpoint of the interval I(Lt)"
1(2.34b) 1/= "" (02/_ +02/)

With (2.33a) this constraint system becomes

n-2

(2.35) ao t2aow + W + 2 ., cjS/
j=0

(l=l,...,n-1),

where

(2.36a) wt= E --ei"’*’,
m

m*0

(2.36b) Wt ,. Vmeim’l’,,
mmO

(2.36c) S/ ., Rm-J i.,,,
mmO

Note that the introduction of the (n-1) constraint relations (2.29) and (2.34) is
necessitated by the appearance of the n- 1 constants Co,..., cn_ 2 in the Riemann-Hil-
bert solution (2.20). They have, however, a direct effect only on the solution of the
n-series problem (2.2) with e== + 1. Furthermore, the choice of those particular rela-
tions is somewhat arbitrary. Their evaluation at any one point in each of the intervals
I(Fj) and I(Lj)(j= 1,...,n-1) instead of the angles j and 6j(j= 1,...,n-1) would
equally suffice. Nonetheless, the midpoint rule is systematic and computationally con-
venient.

These general results are considerably simplified if the forcing function f has the
Fourier expansion:

(2.37) f(

Defining the additional coefficient

(2.38) Om=’ff dpe -im’t’

the solution system (2.28) becomes

(2.39a) ma,,=t2aoQo+ ., fQ_,,,

(2.39b) a0=- Y’ LQ_,,/IQo.

Similarly, defining the coefficients

(2.40a) V,, ( e i’t’ )
"r-- ei

fo
2 l fr, Vn ( e ’t’ ) e ’f’ ddP1 ’V,, (ei’) g(e i’t’) e-ira,d

G+ (ei)
(2.40b) V,, ----
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eimk
(2.40c) I,V"= Y’. V

the solution system (2.33) and (2.35) becomes

Note that (2.41b) and (2.41c) can be solved simultaneously to obtain the n constants ao,

Co,. .,c,_ 2 and then the values a,,(mO) follow immediately from (2.41a) or (2.41a),
(2.41b) and (2.41c) can be solved simultaneously as an entire system. However, because
(2.41b) and (2.41c) are decoupled from (2.41a), the former would be numerically
superior to the latter.

The solution to the basic n-series problem

(2.42a) ., bmeim’t’=h(k), keI(L),

(2.42b) E .,,,b,,Imleim’t’=O, kI(F),

which is complementary to the one defined by (2.2), follows in an analogous manner.
Let

(2.43a) y + (Z) bmgm,
m=0

(2.43b) Y- (g) E embmgin.
m<0

Integrating (2.42b) and setting

(2.44) b0= E e,,,I-l-b,,,e’’’v’ (1= 1,...,n- 1).
m0

Equations (2.42) can then be rewritten as

(2.45a) y + ( X )- T( X ) y_ ( h ) h ( , ),
(2.45b) Y + (3’) -Y- (3’) 0, 3’ .F.

The (n- 1) relations (2.44) are analogous to the constraint system (2.34). Moreover, the
system (2.45) has the same form as (2.6) except that the line of discontinuity is now L
rather than F. Consequently, the characteristic function G(z) of the corresponding
Riemann-Hilbert problem is (2.21) with aj and flj, the endpoints of the arcs F.,
replaced with t= exp(iO2_l) and fl= exp(iO2j), the endpoints of the complementary
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arcs Lj. However, since S is a closed curve, 02(n_1)0 Therefore, 0---G. Assuming
the forcing function h has the Fourier expansion

(2.46) h(ff)= E h,ei"’t’,

the preceding Riemann-Hilbert techniques then yield for the em=sgn(m) case the
solution coefficients

1 f? imq(2.47a) bm () e d E hnOm_ n (all m),

where

(2.47b)

and for the era= + 1 case the solution system

where

(2.49a)

(2.49b)

(2.49c)

(2.49d)

(2.49e)

1 fL e-imcdqRm’-’’ G+ ( ei )

E im’tV,e
mqO

/--" E hm jelm’"
m*O

Note that the solution of the general n-series problem

(2.50a) E

(2.50b) E
m --o0

Cmeim= h ( dp ), I( L ),

emcmlm leim*=ao+f( ),

can now be obtained. Solving independently the problems defined by (2.2) and (2.42),
the solution of (2.50) follows immediately by setting c, a + bm.
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More complicated n-series systems of the form

(2.51a)
m

(2.51b)

ameimq’= 0, I(L),

emamlm Irmem’= li,ao +f( ),

and

(2.52a) E b,,,ei"’=h(q), q.I(L),

(2.52b) E e,,,b,,,lml’r,,,e’m’t’=O, qI(F)
m --oO

are encountered in mixed boundary value problems such as those describing aperture
coupling. Assuming that the coefficient function r,,, has the decomposition

(2.53) rm= 1 +X,,,

where the function X,, satisfies the limiting condition

(2.54) lim X-o( 1 )
these n-series problems can be reduced to the basic problems (2.2) and (2.42) by
treating the X,, dependent terms as forcing functions. In particular, define the functions
)7 /(z) and )7_(z) by (2.43a) and (2.43b) respectively, with b,, replaced by the modified
coefficient

(2.55) =bm’rm,

and define the modified forcing functions

(2.56a) (ei’t’) lao + Y’ ,,e i’’t’

and

(2.57a) /]r(ei*)= Y’. /,ei",

where the Fourier coefficients

(2.56b)

and

(2.57b) & h,, + b,,x,, h,, + 1 +-’--’.
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Systems (2.51) and (2.52) can then be replaced by the equations

(2.58a) x+ (,)-x_ (,)=0, , L,

(2.58b) x + ( 3’ ) T( 3’ ) x ( 3" ) le( 3" )

and

(2.59a) )7+ (X) T(X))7_ (X) =/]r()), ,L,
(2.59b) .9+(3,)-)7_(3,)=0, 3,F.

The associated constraint relations in the e-m -I- 1 case are (2.34) and (2.44), the latter
having each b replaced with/rn. The Riemann-Hilbert technique can now be applied
to (2.58) and (2.59). The solutions for the e.m= sgn(m) cases"

(2.60)

(2.61)

Xm liaoQo + f.Q,,,_,,- I-nnl xnXnQm-n
ao L-[x,,x,,Q-,,- E f.Q-,, liQo

n--- -- n- --oo

n=-o n=-o 1--’n

(m 4= 0),

(m=0),

(all rn),

and for the e,, + 1 cases"

(2.62)

x,,, liaoVrn + E f,V="-
oo n-- 2

E LXnXnVmn+2 E cjRrn-j
n= -oo j=O

0 liaoVo + _, fnV-
tm n-- 2

I-Ix,,x,,V+2cjR-j
n= -oo j--O

0 (1 + 5Wt) ao + E f.Wt"- E
n= -oo n= -o j=O

(m =/= 0),

(m=0),

(2.63)

b.x.Vg ,,-2

sgn(m)& E h,,Vrn" + E 7-- + 2 E cj_j
n----- -m n---- --o j=0

bo~ E h,,Wt" + E 7(_-- + 2 E cj3/
n=-o n=-m j=0

(all rn),

(l=l,..-,n-1)

follow immediately from (2.39), (2.41), (2.47) and (2.48).
Note that all of these solution systems have the general form

(2.64) Urn Y’. Amnun.+ Orn, rn O, _+ 1, _+ 2,--.

where the matrix Arn, and the vector v are known quantities. This infinite system of
equations represents a Fredholm equation of the second kind and may be treated with
a variety of methods. The technique utilized in the slitted cylinder examples will be
described in the next section. It also should be noted that the assumption (2.54) is made
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because it causes, for example, the combination x,xn to behave as ann -, e>0, as
n---, , thereby insuring the convergence of the associated sums in (2.60) and (2.62). If
desired, this condition could be relaxed. It suffices for the slitted cylinder examples.

Finally, as a further generalization of the above results, consider, for instance, the
n-series problem

(2.65)

., ajej(rk)=O, kI(L),

Z ajOj(,)=f(,),
j-- -

where the functions {e,,(q),m=0,1,..-} form an orthonormal basis of the Hilbert
space .,eg_ ([0, 2r ]). Since this system is constructed from the mixed boundary conditions,
the functions {,,(q,)} must be linear combinations of the basis functions {e,,(q)}.
Moreover, because the set {ei"SS, m=O, +__ 1,-..} is also a basis of e2([0,2r]), each
function e,(q); hence, each m(q) can be expanded in terms of those basis functions.
In particular, set

Thus, defining

(2.67) Xm= ,, U,,aj,

the n-series system (2.65) becomes, for example,

(2.68a) ., Xmeimq=O,

(2.68b1 E
m --0

XmSgn(m ) eimq’= F( dp ),

kI(L),

,l,I(V),

where the Fourier coefficients of the forcing function F are

(2.69) F, =f, + [sgn(n)-(n)]x,.

The solution to the system (2.68) follows immediately from the preceding results.

3. Electromagnetic coupling to a slitted cylinder. A variety of problems including
those describing the coupling of electromagnetic waves to an enclosed region can be
reduced to an n-series problem. For instance, if the shape of the scattering body
coincides with a constant coordinate surface in one of the coordinate systems for which
the vector ,field equations are separable, the incident and scattered fields are first
expanded in terms of the corresponding eigenfunctions. The n-series equations are then
realized by enforcing on that surface the boundary conditions for the tangential electric
and magnetic fields over the aperture and on the perfect conductor.
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In particular, consider the electromagnetic coupling of a plane wave to a thin
infinite perfectly conducting circular cylinder with (n-1) infinite axial slots. The
magnetic field vector of the plane wave is taken to be parallel to the axis of the
cylinder. This H-polarized plane wave is assumed normally incident on the cylinder;
hence, the problem is two-dimensional. A cylindrical coordinate system (p,4),z) is
centered on the axis of the cylinder; the z-axis coincides with the cylinder’s axis. The
angle of incidence, q)in, of the plane wave is arbitrary. The radius of the cylinder is a.
The angular extent of the metallic portions of the cylinder coincides with the interval
I(F), the apertures with I(L). This geometry is illustrated in Fig. 1 for a cylinder with a
single axial slot (n=2). The currents induced by the plane wave on the metallic
portions of the cylinder are desired. This problem is reduced to an n-series problem as
follows.

For the given polarization Maxwell’s equations decouple and only the E, E and
H components of the field are excited. The components of the field tangential to the
surface of the aperture and the cylinder are of particular importance. They are related
by

(3.1)

where, as throughout this paper, a eJ’t time dependence is assumed.
The incident magnetic field has the Fourier mode expansion:

--Z
--jninc(3.2) HinC=AoeJk’es(’t’-’t’")=Ao ., [jlnljl.l(ko)e ]e

From (3.1) it follows that

(3.3) /;7- inc _jnq,ine

"-’,t, =jZoAo

where J(x)=dJ,,,/dx and Zo=k/oe is the free-space characteristic impedance. The
corresponding Fourier expansions of the scattered fields are"

(3.4c) E,>=jZoAo Z a,4’,,l(ka)Sl’,,l(k))e’* (>a),

E, ,=jZoao E

where H,, is the Hankel function of second kind and order n and H,(x)= dH,,/dx. The
boundary conditions for the tangential electric and magnetic fields at the surface p a
are now enforced to obtain the n-series equations.

Since the total tangential electric field is zero on the metal, the scattered and the
negative of the incident electric fields are equal there:

(3.5) Eq (a, (])) inc-e,
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Substituting (3.4c) or (3.4d) ((3.4c) and (3.4d) guarantee the continuity of the tangential
component of the scattered electric field across the interface 0=a) into (3.5), one
obtains

(3.6) JZo E a,Jl’nl(ka)Hl’,l(ka)eJ’e=-(q), q,I(F).

The dc components of the fields can be extracted from this relation by introducing the
functions K,(x) so that

(3.7a) -jrJs(x)Hs(x)= 1 + Ko(x ) (n 0),
(3.7b) jrx2j(x)H,(x)=n[1 +K,(x)] (n>0)
where K,(0)=-0. As defined, the K,(x)--O(n -2) as n---, oo for any fixed x, and
therefore, satisfy (2.54). Equation (3.6) thus becomes

(3.8t

E lnla[l+Kll(ka)]eJnq’=(ka)2[l+K0(ka)]a0+ Zo
q,I(F).

On the other hand, continuity of n across the apertures and the Wronskian relation-
ship

(3.9)

give

Ji’,,l(ka) Hl.l(ka) -Jl,,I (ka) Hl’,,l(ka)
2j
7rka

(3.10) Y’ a,eJ"*=O, qI(L).

Defining the quantities

(3.11a) Xm=Klml(ka),
(3.1lb) = (ka)2[1 + x0(ka)],

(3.11c) f(q) (ka)2vr
Zo

(3.8) and (3.10) constitute the n-series problem:

ameJm*= o, dp I( L )

alm IZmeJ" a0+f(),

(3.12a) E
m----- -oo

(3.12b) E
m--- 4,I(r).

It is clearly seen that (3.12) coincides with the em= + 1 case of (2.51). Consequently, the
unknown amplitudes am(m=0, + 1,-.. ) are obtained from the solution system (2.62).
The currents induced on the cylinder then follow immediately from (3.4a), (3.4b) and
(3.9) as

2A oo
imq,(3.13) J(a,q)=H<(a,q)-H>(a,q)=jrka E ame

m--- -oo
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The complementary problem, an E-polarized plane wave incident upon a circular
cylinder, the metal and apertures now coinciding with L and I’, respectively, has an
analogous solution. Only the E, I-Io and/-/, components of the field are excited, the
tangential components being related as

-J(3.14) H, -ff
The Fourier expansions of the incident and scattered fields are now"

(3.15a) E-in=A0 E [jlnlJInl(kO)e-Jnq’in] ejn4’,
n

(3.15b) E:>=A0 Y’ c,,Jl,,l(ka)Hl,l(kp)eJ"q’ (p>a),

(3.15c) Ez<=A0 E c,,Jl,,l(kp)Hlnl(ka)eJ"’ (p<a),

(3.15e) n;. -jv0a0 Z

where Yo k/w is the free space adttance. Continuity of H, across the apertures
and the WronsNan relation (3.9)

(3.16) c,e;"*=O, I(r).

Furthermore, satisfaction of the boundary condition E(a,)= -Ein(a,) yields

(3.17a) E c,Jl,l(ka)Hl,l(ka)e’*=(O), ,el(L),

where

(3.17b) (q)= E ,(q’) ej’’t’= E -jl"lJl,,I ( ka) e -J’q;"

However, in contrast to the H-polarized case, the dc components of the field are
properly extracted by introducing the functions ,,(x) so that

(3.18a) [j,n’Jo(x)Ho(x)]-1 =0(x),
(3.18b) [_j,rrJ(x)Hm(x) -1

=m (1 + ,,(x)), m>0,

where m(0)= 0. This choice is made to account for the logarithmic singularity of Ho
near x=O. Furthermore, (2.54) is satisfied since m(X)" O(m-2) as m--, oo. Defining
the coefficients

(3.19a)
(3.19b)
(3.19c)

b CnJinl(ka) Hlnl(ka) n,
?,, (1 + R,,) -= 1 +/1,,I (ka),
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the n-series system defined by (3.16) and (3.17) reduces to the form

(3.20a) E bmejm’=O,

(3.20b) E b,lm Imejm*=bo+f(),
m

kI(L),

i(r),

where

(3.21a)

(3.21b)

Therefore, since this system is of the same type as (3.12), its solution system also
follows from (2.52), and hence has the same form as tb.e one found in the original
H-polarized problem. On the other hand, the currents on the cylinder are now defined
as

2YoA oo

(3.22) J(a,,)=H;>(a,,)-Ht<(a,,)= rka E c,eJ"’.
n

slot.
FIG. 1. Configuration of the scattering of an H-polarized plane wave from a ylinder with an infinite axial

To illustrate the calculation of the induced currents, consider an H-polarized plane
wave coupling to a circular cylinder with a single axial slot. The geometry of this
problem is shown in Fig. 1. Equations (3.12) reduce in this case to the dual series
equations:

(3.23)
ameJm’l’=O, (0,2r-0),

amlm IZmem*= ao+f(d),
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PHI (DEG) PHI (DEG)

3 1oo

-1oo

ID LO iI{)

PHI (DEG) PHI (DE:G)

FIG. 2. Currents calculated by the dual series and the method of moments for an H-polarized
plane wave incident at inc 180 on a cylinder of radius 1.0 X with an aperture angle tg,,--,r-/ 45.

PHI (DEG) PHI (DEG)

If) ID ID

PHI (DEG)

1oo

PHI (DEG)

FIG. 3. Currents calculated by the dual series and the method of moments for an H-polarized
plane wave incident at oinc= 135 on a cylinder of radius 1.0 A with an aperture angle Oap=,r-O=45.
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These dual series equations have the solution system

(3.24)

Xm=mam= o+ ., fV,- E L-[X,,x,,V,+2coRm (m:/:0),

n
E LV E Inl

TXnXnVt + 2c0R0 (m 0),

0 (1 +W)aO+
n--’-ofnWn- n=’-o XnxnWn+2cS (=’n’),

where So S and

(3.25) f -jl"l+l(ka)2.trJ(,,l(ka)e

The coefficients V, Rm, Wn and S are given explicitly in [5]. They are combinations of
Legendre functions and are readily computed. It has been found [5] that truncating fn
and Xn in (3.24) for Inl greater than some large value N and using Gauss elimination to
solve the remaining finite system yields good numerical approximations for the coeffi-
cients c, ao, x +/- 1,’" -,x +/- N. The remaining coefficients, Xm, for N< Iml _M are given by
the expression

N N

(3.26) Xm---- mam=Vmao+ E .fnVmn- E rt la,,x,,V,,7 + 2coRm.
nffi -N nffi -N

As N approaches , this solution scheme becomes exact. The rate of convergence of
the current sum (3.13) is then enhanced by handling the edge behavior analytically. In
particular set

(3.27) ., ameJm’t’= ao+ . Xm- ’m eJm’l’ + E Xm eJm’l’
m-- oo mO m m.O m

where the term "m is a large m approximation of xm. The first sum on the right-hand
side of (3.27) is rapidly converging. The second sum is obtained analytically (see [5] for
the details); it contains the singular component of the current near an edge of the
aperture.

Currents generated with this dual series scheme (solid lines) and with a two-dimen-
sional method of moments code (dotted lines) are shown in Figs. 2 and 3. In Fig. 2, the
angle of incidence qbinc= 180; in Fig. 3, tinc= 135. The radius of the cylinder in terms
of wave length (a/h)= 1.0 and the aperture angle O,u,=,r-0=45 in both cases.
Moreover, the truncation numbers were chosen to be large: N= 25 and M= 190, to
guarantee the accuracy of the dual series results. Note that both figures demonstrate
that the dual series solution readily models the singular behavior of the fields near the
edges of the aperture. Furthermore, as discussed in [5], the dual series solution has
revealed that the moment method solution will properly describe the current (especially
in the shadow region) only if a nonuniform gridding that is finer near aperture edges is
employed. The slight inaccuracy of the moment method solution present in both figures
disappears when finer gridding is utilized.
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4. Comments. The description of coupling to more complex structures such as
slitted parabolic or elliptic cylinders leads to the more general n-series problem (2.65).
As noted in 3, the structure is assumed to lie on a constant coordinate surface, and the
incident and the interior and exterior scattered fields are expanded in the eigenmodes
corresponding to that geometry. For instance, for a two-dimensional elliptic cylinder
the fields would be expanded in terms of modified and periodic Mathieu functions. The
n-series problem follows from enforcing the electromagnetic boundary conditions over
the aperture and the metal.

The terminology "n-series problem" needs to be clarified since it is confusing to
discover that in general one has a system of 2(n- 1) equations for an n-series problem.
For a single slit n 2 and a dual series equation system is obtained which agrees with
the notation. On the other hand, for two slits n 3 and a system of four equations is
obtained in general. However, assuming that the metal-aperture configuration is sym-
metric about the r--0 axis, only a triple series equation system need be treated. These
symmetric problems are the only ones that have been treated in the past, for example,
in [6]. The present approach is not restricted to problems of this type. Nonetheless, the
terminology and the subsequent inconvenient notations were chosen so that they
reduced to the standard ones encountered in dual and triple series problems.

Note that the Riemann-Hilbert results also explicitly contain, in addition to the
correct edge behavior, the multipole behavior of the static solution of infinity. For
instance, for a single slit case the dual series system leads to a solution (2.20) which has
the limit limll_ oo x(z)-Co/Z. (In fact, since one also has from (2.5) that limll_, oo x(z)
x_ 1/z, co x_ in that case.) This indicates that at infinity, the static solution for the

slitted cylinder behaves like a line charge or monopole. Similarly, for a cylinder with 2
slits (2.20) has the limit limlzl_, oo x(z)- Coz-2 + cz-. Thus, the static solution contains
a dipole as well as a monopole component at infinity.

N-series equations and their solution with Riemann-Hilbert techniques provide an
effective approach to a large class of mixed boundary value problems. For instance, this
generalized n-series approach generates analytic descriptions of the coupling of elec-
tromagnetic waves through apertures into open or enclosed regions. This was illustrated
succinctly with the circular cylinder examples. The coupling to a circular cylinder with
two axial slits and to a thin spherical shell with a circular aperture are currently under
investigation with this method. The analytic solutions to such canonical problems are
particularly useful because they are leading to the development of engineering "rules of
thumb" for coupling to more general structures. Furthermore, they establish a standard
to which large numerical coupling codes can be compared.

5. Appendix: the Riemann-Hiibert problem. Suppose that one is given a simple
closed, smooth curve F dividing the complex plane into two open sets, the (bounded)
interior S+ and the exterior S_ and two HOlder continuous functions of position on
that contour, T(y) and F(’), T(/) being nonvanishing. Let x(z) be a sectionally
analytic function, i.e., over the domains S+ and S_ let x(z) equal, respectively, the
analytic functions x +(z) and x_(z). Then the Cauchy integral

1 frF()d(A.1) x(z) =-- ’-z
solves the problem: Find a piecewise analytic function x(z) vanishing at infinity that
satisfies on r the prescribed transition condition

(A.2) x+(’)-x_(7)=F(y), rsr.
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Note that on F, the function (A.1) is defined as a Cauchy principal value and satisfies a
Hi31der condition of the same type as F and the Plemelj-Sokhotskii conditions:

1F(3, )(A.aa) x+(3,) =x(,)+
1(A.3b) x_(3/l=x(3/)--F(.3/).

Moreover, the additional condition x_(oo)=0 can be modified. For instance, if x(z)
has a pole of order n at z oo, the solution of (A.2) is

1 frF()d+pn(z)(A.4) x(z) - ._-Z---
where Pn(z) is a polynomial of order n in z, Po(z) being a constant.

The Riemann-Hilbert problem is a generalization of this problem. In particular, it
is desired to find the sectionally analytic function x(z) which satisfies on the contour F
either the transition condition

(A.5) (homogeneous problem),

or

(A.6) x+() T(’)x_(/)+F() (inhomogeneous problem).

A further extension of this problem to open curves and discontinuous coefficients is
possible. Note that by generating a solution, y(z), of the homogeneous problem (A.5):

y+(,)=T(/)y_(’),

and defining the functions x/y and xI, Fly+, the inhomogeneous problem (A.6) is
reduced to the problem (A.2):

(A.8)
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POLYNOMIAL EXPANSIONS FOR SOLUTIONS OF THE
SYSTEM ’o ,v<x,, ,x,)=o y<x,,

HANS KEMNITZ

Abstract. This paper is an extension of results by P. C. Rosenbloom and D. V. Widder [Trans. Amer.
Math. Soc., 92(1959), pp. 220-266], [Duke Math. J., 29(1962), pp. 497-503] concerning the expansion of a
solution u(x, t) of the heat equation, Dx u(x, t) Dtu(x, t), in a series of polynomial solutions.

It is found that a polynomial expansion

anPr,n(Xl,’",Xr)
n:0

converges in an infinite strip IXrl<O, where the polynomials

Pr Xi " Xr ) II k-’- kr--k! +2k2+ +rkr=n

satisfy the system DIU XI,. ",Xr)= DxkU XI,. ",Xr).
This paper includes several applications of classical initial-value problems of parabolic differential

equations. For example, it is found that there exists a solution of (ArDf+ +A2D,,2)u(x,t) Dtu(x,t
which has a Maclaurin expansion in a strip [t[<o and which reduces to f(x) for t=O if and only ill(x) is an
entire function of special growth.

Introduction. In a recent paper [9], the author established criteria for the expan-
sion of a solution of the parabolic equation

(El) Drxu(X,t)-Dtu(x,t),
r__>2 a fixed positive number, in a series of polynomial solutions Vr,n(x,t ), where

Xk

)r’n(X’t)--"! k] 1!"
k+rl=n

It was found that a polynomial expansion (a,/n!)Vr,, exists in a strip Itl<o, where o is
calculated by a Hadamard formula, i.e. limsup(re/n)laf/"=o-. This is also a neces-
sary and sufficient criterion for the representation of a solution of (El) by a Maclaurin
series. These results were extensions of the work of P. C. Rosenbloom and D. V.
Widder 14], 17].

Our present goal is to establish that analogous criteria hold for a system of r-
partial differential equations (k= 2,.-., r):

(s) Dkx!U( X, Xr ) DxU(X Xr)

The starting point of this research was the parabolic equation

(E2) ADf u(x, ) Dtu(x, ), Ar=/=O
,-- 2

which is the natural generalization of (El). (S) and (E2) are related by the following
fact" If P(X,.. ",Xr) is a polynomial solution of (S), then p(x,t)’- P(x,A2t,.. ",Art )
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380 HANS KEMNITZ

will be a polynomial solution of (E2). We define such polynomials as the coefficients of
z n/n!in the expansion

oo znexp(X,z+...-JI-Xrzr) X Pr,n( Xl Xr) -.
n:0

By use of Cauchy’s rule for multiplying power series, we obtain the explicit expression

[n/r] rk( gl,’; Xr-1)(0.1) Pr,n(Xl, ",Xr)-n] X Xrk Pr-, n-

g=0
k! (n-rk)W

where [n/r] means the largest integer <-n/r. The polynomials have several obvious
properties

(0.2) Pl,n(Xl)"-X,

(0.3) Pr.n(X,," .,Xr)-n!
kl+2k2+ +rkr=n

(0.4) h"Pr,.( XI,. ,Xr) Pr,n( kXl,. ,Xr)
(0.5) IPr,n( XI," I," IXrl),

n!(0.6) DxkPr’n( XI ’’’’’ Xr ) (, k )! Pr,n-k( XI ,’’’, Xr)"

From (0.6) we see that for fixed r, Pr,. is a solution of (S), and we also see that
Vr,.(x,t)= Pr,.(x, 0,’" ",O,t). In this paper we use as the field of real or complex
numbers, therefore D:u means the partial derivative of u with respect to z +, and I’l
stands for the Euclidean norm in .

1. Strip of convergence. In this section we show that polynomial series

(1.0) n a,

converge in a strip IX.l<o, where o is calculated by Hadamard’s formula. For a
discussion of series (1.0) it is essential to know the behavior of P,. as n-+ +. In [14]
Rosenbloom and Widder created a method to estimate the heat polynomials: v,.(x, t).
For this purpose they used the Poisson representation

v2,,(x,t)-f_ k(x-y,t)y"dy,

where k(x,t)=exp(-x2/4t)/(4rt)/2 is the fundamental solution of the heat equa-
tion. This was the beginning of extensive research into other partial differential equa-
tions of second order [2], [3], [5], [6], [7], [8], [10], [11], [16], [17]. In [9] the author
presented a new method, based only on elementary calculus, for estimating the poly-
nomials v,n(x, t), in particular the heat polynomials. In this paper we follow the same
methods.

LEMMA 1.1. For 0 <8< +
P,(lXll Ix l)

Cn! [n/r]!
where c 1, c+ cr.pexp(8 .p+ ) with p= ( + IX,D/&
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Proof. We use an induction argument. For r- it follows easily from (0.2). Now,
let r_>2 and n-rm+s(O<_s<_r- 1), then from (0.1) we obtain

1pr, (lX, ISrl)-- Igrl P l’<m-k)r/s(lS’l"" Igr-,I)
k=O

k!

, k (iXr_l+)m-k+
Cr--

k=O (m-k+a)!

where a’- [(m-k+s)/(r-1)]. Since (m-k)!a!<_(m-k+a)! we have

’Cr-I ’ k--’- (m-k)! a’
k=O

Since m-k<_(r- 1)(a+ 1) and <--(IXr_l+8)/8=pr_

m [VIk

r--I I’eXrl m-k ( "P-- 1)
Cr--lPr--I ’ kl(m-k)V" a!

k=O

Since Izla! explzl, the lemma is thus established. An appeal to Stirling’s formula,
n!--nne-n(2n)1/2. eO/12n(o<o< 1), yields

COROLLARY 1.2. ForO<8< +, n-- 1,2,3,.. ",lXkl<Mkfor k- 1,. .,r- 1

n! n

where Mo is a constant depending on , r and Mg.
LEMMA 1.3. For n-- rm+ s, s E (O, ,r--1), Y vOv Y,

O <-- YkY-k/r< + o for k-1,. ,r,

Pr,n(Y,, Yr) >..I.Yrl
m er-,,(lY, I,

n! m! s!

Proof. Note first that the fight-hand side is a positive number. By use of relation
(0.4), we have

Ier,n( YI," Yr)l Iyrl,,/r er,n( Y, Yr-l/r,. YrYr-r/r)
n! n!

and from (0.1)

," Pr_l,s(YiYr-I/r Yr_iYr--(r--l)/r)Ipr,,(yly{-l/r .,YrYr--r/r)l >
n! m!s!

But this completes the proof.
COROLLARY 1.4. For n 1, 2, 3,.-..

Yl =][= O =/= Yr O YkYr- k/ < -I" for k- l,. ,r,

where mo is a constant depend on r and Yk, for <--k <_r-- 1.
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Proof. This fact is easily proved by Stirling’s formula.
Next, we will show that if series (1.0) converges at a point Y’= (Y,. ., Yr), where

Y satisfies the hypothesis of corollary (1.4), then it converges in a whole strip Z’=
(Y:

THEOmM 1.5. If the series (1.0) converges at Y:--(Yl,’", Y), where Y #0# Y
and 0 < YY-/r< + for k- 1,..., r, then

i) the series converges absolutely in the strip Z
ii) the series converges uniformly in any compact region ofZ
iii)

Proof. Since the series (1.0) is assumed to converge at (Yl,. ", Y), the general term
tends to zero as n oo. It follows that by Corollary 1.4

and hence

) n/r

la=[<-cnl/Z rell n>l

for some constant c which depends on Yk. By use of Corollary 1.2 we have for IXkl <M,

-,Pr,n(Xl Xr) n-->l,

where C is a constant which depends on Yk, and M,. But the series

converges for [xA<IYA-& Since may be taken arbitrarily small, an application of
Weierstrass M-test completes the proof.

We are now in a position to establish the principal result of this section.
THEOREM 1.6. If

re la ir/.(*) limsup "n- "’
--o- < + z

n.-. oo

then the series

X ",Pr,n(Xl,"" ,Xr)
n--O

has the followingproperties:
i) if it converges in a strip zr,, then <-o;
ii) it converges absolutely and uniformly compact by in Z.
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Proof. If 0 <oo <o, then the assumption (.) implies that, for n >-n(oo),

[a[_<( n )n/r.reoo

With an application of Corollary 1.2 wc obtain

---(Pr,n(Xl,... Xr) <_Mon’/2 n>_l.
00

But it follows immediately that

n,/= Igrl n/r

O0

converges for IX,]<o0-. Consequently, for arbitrarily near 0 and oo arbitrarily near
o, conclusion ii) is established. Now, suppose that the series (1.0) converges in the
whole strip Z,r, where >o. Then in particular it would converge at Y=(Y,..., Yr),
with Y vO4: Yr and 0_< y,y;-t,/r<_ + OO, where o <IY,]<. By Theorem 1.5, we obtain

lim sup re
n

-1

The desired contradiction is evident and i) is proved.
We can now say that o is the radius of convergence of the series (1.0). But there

exist series some of which converge for all Y, while others fail to converge when Yr 4: 0.
From [9,p. 645] we have an example of convergence outside the strip Zr. Let, for
n=rm+s,

s-O,
(1.7) an- (rm+s)!

((r-- 1)m)! s :/=0;

then the strip of convergence is bounded, r(r/(r-1))r- -o -l, but series
E(a,,/n !)Pr, n(O, ", O, Xr) converges over the whole Xr-aXis.

2. Related series expansions. In (0.6) we noted that the polynomials Pr,,, satisfy
the equation

n!
Dx’Pr’n (rt-k)! Pr,n-k,

and therefore they are solutions of the system

(S) Dkx,U-DxU, k-2,. ,r.

From the 1, we know that the polynomial series E(a./n!)Pr,. converges in a strip Zo.
Since, every finite sum of the polynomials Pr,. satisfies (S), we would expect an
analogous result for an infinite series.
LE 2.1. If

ani) U( XI,. ,Xr)’- 2 . er,n( Xl," ,Xr),
n-O
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re
ii) limsup "-n-lal o < / oo,

then U satisfies (S) and is analytic, as a function of r variables, in the whole strip Z. The
coefficients satisfy

(iii) akn-- D,U(0,...,0).
Proof. By Theorem 1.6 the series in i) converges uniformly in any compact region

of Z. Hence U(XI,...,Xr) is an analytic function in Z. Setting all X-0, for v k,
we obtain from (0.3) that Pr,n--=0 for n vkm. But Pr,km(O,’" ",0, Xk, 0,’" o,O)--
((km)!/m!)X. Now we have

oo (kn)’U(O,...,O,X,O,...,O)- E a,, ,,
n=0 (kn)! n! Xg

and iii) follows from Taylor’s formula. For fixed integerp

re la+l/.
_

lim sup -n- o

which follows directly from ii). By applying Theorem 1.6 the series

E(a+,/nt)Pr,,(X,...,Xr) converges uniformly in any compact region of Z. Conse-
quently, we obtain in zor:

E (a,+,/n !)P,,,- EDda,/n !)P,,,--Dxp E (an/n

so that U is a solution of (S).
There is a close relation between polynomial series and analytic function. In the

following, we will show that the expansion i) holds in some infinite strip IX,] <o if and
only if U(X,-..,X) is analytic, as a function of r variables, at some point of the
X-axis and satisfies the system (S).

THEOREM 2.2. Under the conditions of Lemma 2.1 U(X,...,X) has the Maclaurin
expansion

U(X,,... X,.)- X X am,+2m2+ +rm,
ml mrmi=O mr’-O

Proof. From the hypothesis, it follows that the series Yn(a,/n!)Pr,,(lXll,..-,IX,l)
converges absolutely for [X<o. Hence, by (0.3)

= x,
U(X,,...,Xr)- X a,, ,

k---y.., k---Yn=O k+2k:+ rkr=n r"

E E ak,+2k2+...+rk, k,,k =0 kr=0

kr

kr

and the result is established.
THEOREM 2.3. Iffor k- 1,. .,r ek >0, IXkl<e

i) Dx,U DxU, U(X1,". mr) E X aml,’",mr rnmr=0

mr

mr
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then U( XI,. ., Xr) can be extended to an analyticfunction l in the whole strip zr,

ii) O(X,,...,X,)- (a,,In !)P,,,,(X,,...,X,),
n--O

where a a n,o, ,o.
Proof. Since a power series may be differentiated term by term, we have for

m --0 mr’-O

Using (D,-Dxk)U(X,.. ",Xr)=--0. For [Ski <ek, we obtain the formula

am ,m ,m am +2m ,0,m ,m

am +2m! +-’. +rmrO 0

Since the series in ii) converges for ISkl<ek (and hence absolutely for 0< Yk<F,k) we
have

But by Theorem 1.5 the latter series converges absolutely and uniformly compact in
Z.,r. Since Yr may be taken arbitrarily near er, we obtain an analytic function
U( X,...,Xr) which is the continuation of U( X,...,Xr). This completes the proof.

We know that an analytic function U(XI,...,Xr), which satisfies the system (S),
has an expansion of polynomials Pr,n" And conversely, a polynomial expansion of
possesses a Maclaurin series which performs (S).

THEOREM 2.4. If
re(,) limsup - lanlr/n- o <+

then the series _ _
am| q-2m2h-,..-i-rm

ml mr!m -0 mr’--O

converges in the strip Z and, except perhaps when X 0, diverges for IX, >a.
Proof. The convergence of the power series follows immediately from Lemma 2.1

and Theorem 2.2. Suppose now that the Maclaurin series converges at some point
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Y-- (Yl,’" ", Yr) with Y 0 and Y, >o. Since the general term

ylml ymr
am +2m2+ +rm m m

tends to zero, for mi o0, we have, in particular,

trstrm
.l ras+rmr S lm

"->0, m --> OO

and hence

e l/n
lim sup -las+rn[

-1

Combining these r inequalities yields

re -1limsup-la,lr/<lYl <t-.

But this contradicts the condition of convergence for the related polynomial series.

3. Classical Cauchy problems. Before we start our discussion about initial-value
problems, we intend to show some general aspects of transformations.

Setting X-" x, for k>2Xk=Gk(t), with GkC(I), I an open interval, G’k--gk,
then we have for an expansion U=X(an/n!)Pr,n

DxU(x, G2( t )," Gr( )) DxU( X,, ,Xr),

DtU(x, G2(t),’",Gr(t))- g(t)Dx(X,’",Xr).
v=2

If the series converges in Z, then u(x, t)" U(x, G2(t),-.., G,(t)) satisfies the equa-
tion.

g(t)Du(x,t)--Dtu(x,t)
v:2

for all (x,t)NI with IGr(t)l<o. It is also remarkable that there is no restriction of
singularities which could result from g(t). In the following we confine our research to
equation

(E2) Lxu(x,t)’- ADu(x,t)-Dtu(x,t ), Ar:/=O
v:2

at which we combine the results of [9] and [15]. Some other important aspects of (E2)
are discussed in [4], [12], [13]. If we define Vr,n(x,t)-Pr,,(x,A2t,’" .,Art ), we obtain
explicit expression

Vr,n(X t)--n! E A--2 Ar Xn’
n2! nr! hi!

tn2+

nl+2n2+ +rnr=n

Now, we transfer the most important results from the first two sections.
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THEOREM 3.1. If

then the series

re
la r/ -lim sup -n- ,,, < IAr O’[ < + O0

:o
)

387

i) converges absolutely in Z" {(x, t) K 2. Itl <o} and converges uniformly in
any compact region ofZ;

ii) is an analyticfunction ofx and t, and it satisfies (E2)
iii) has a Maclaurin representation in Z

n

where bin, is given by

X

bm’nm! n!

Ak2 A
n! E k"-’-’(’’’ k---’(am+2k2+...+rkr

k2+k3+ +kr=n 2" r"

Proof. i) and ii) are immediate consequences of Theorem. 1.6 and Lemma 2.1. We
only have to show the determination of the coefficients bin, .. But this follows from
Theorem 2.2 since

E (an/n!)Vr,n(X,)
n:0

n=0 k + +rkr=n

Ak2 Akr xkl.._S_ tk2+ +k

k2 kr! kl

(: m!
k=O m=O

A Akr ) xk m

k2! kr! ak+2k2+"’+rkr kV mV
k2-b kr’- m

Now we can apply our results to solve analytic Cauchy problems of (E2). For that we
need to define the growth of an entire function [1,p.ll]" f(x)-.m(am/m!)xm has
growth {a, fl} if and only if limsuPm_.oo(e/m)a-laml/m<afl. The first classical Cauchy
problem consist in finding a solution of

(P1) Lxu(x,t)-Dtu(x,t ), u(x,O):f(x).

A solution is given by"
COROLLARY 3.2. For o >0 andf(x)-,m(am/m!)x
i) Iffhas growth {r/(r- 1), ((r- 1)/r) (ro)l/(l-r)}, then

o0

u(x,t)’: E Lf(x).
n:O

is defined in Z and is a solution of (P1)for It[
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ii) If
O0 xm n

U(X,t)--

_
bm,nm .!

m, n--0

satisfies (P1)for Itl<o, then u(x, O) has growth (r/(r- 1), ((r- 1)/r)(ro)l/(l-r)}.
Proof. Since L-(ArD+ +A 22D, ) we obtain

k

L n 2 k2 A
[) 2 k + + kr

k2! /Lrl"xk2+ +kr= n

We derive from this that

A2 Akr XmLnxf(x) 2 n! 2 k"---’" "rlam+2k2+’’’+rkr-’"
m-"0 k2+ +kr= n 2"

Now, with an application of Theorem 3.1, i) follows from the equivalence of

and

limsup
re la.lr/. -<1 4 oln

-1

e) l/(r-- 1) [r/n(r-- 1) 1/(1--r)
lim sup - [a,, <lrarOl

We have seen, that a Maclaurin series has a representation of polynomials Vr, (Theo-
rems 2.3, 3.1). Thus we obtain the growth of u(x, 0) from the last two equations. This
completes the proof.

Corollary 3.2 shows us that a solution of (P1) exists over the whole x-axis. It is
remarkable that a solution of the Cauchy problem

AoW(X,t)+alDxW(X,t)+Lxw(x,t)-Dtw(x,t),w(x,O)- E (am/m!)xm
m=0

has the same property, because w(x,t)’-u(x+At,t)expAot is the solution of the
latter problem if u(x,t) solves (P1) with f(x)-(am/m!)xm. An explicit expression is
given by

w(x,t)-expAot E -. V,k(x+A,t,t)
k=O

gl k n-

k ALx kf(x+At)."
n=0 k=0

Now, let us return to the equation (E2). The second classical Cauchy problem is
described by

(P2) Lxu(x,t)-Dtu(x,t), Dfu(O,t)-g(t), fors--0,...,r-- 1,

where gs(t) is an analytic function.
For the special case (Ai-0, 2-<i-<r- 1), the solution is given in [9, p.649] by

oo r-- xrm+s
u(x,t)-- 2 0gs(t)(rm+s)l"m--O s-
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This can also be written as

u(x,t): XmA’g(t),
m:0

where Xm’-(xrm/(rm)!,"’,xrm+r-l/(rm+r-1)!), g’--(go,’’’,gr--l) and A is a
(r r)-matrix with dik--8ikDt, 8i is Kronecker’s index.

In general we have to construct a suitable matrix. Let us assume that

oo
X m n

U(x,t)-- E bm,nm! n!
m, n--0

is a solution of (P2). Then from Theorem 3.1iii

bm,n’-n E
n2+ +nr=n

we immediately obtain

i) bm,,,+,=A,,bm+.,,,.
v=2

A Anrrbm+2n2+. +r.r,On2! nr!

Consider now an (r r)-matrix A t’ SO that

U(X,t)-- E XmA’g(t)"
m--0

Since the power series converges, and hence absolutely at a point(x0, to) we have

k oo
tl(m) (t)-- E brm

tn
s+ l,igi- +s,n n--.i=l n:O

Using A’+ AtA’, we obtain

AT+’g(t)-Atn=O brm’n"" " " brm+r- l’n n---(

From this we derive

d<) ,kbrm+k
t"

ii) br(m+l)+s,nn! s+l l,nn!"
k=l

Combining i) with ii), we obtain a representation of the matrix A t,

COROLLARY 3.3. If
re --1

tim sup -n-- [a.lr/"-
rtA A

b,n-n!
rt 2 n s+2n2+" +rnr

n2+ +nr:n

gs(t)-- , (bs,/n!)t,
n--O
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then

u(X,t)= XmAtg(t)= . Vr,n(x,t)
m=O n=O

is the solution of(P2) which exists in the whole strip Z2o. A is given by (d})) At)

sl A r--I Av_s/(I)-- r--s+ d(l) _F. xs+ l,k "a’-r v+ l,k
P--O P-"$

where A r+ --A -A 0, andAo- Dt.
Proof. From Theorem 3.1 we know

Lxu(x,t)-Dtu(x,t),

u(x,t)- bmn
xm tn

m, n=O

and hence D]u(O,t)=gs(t). We have only to show the determination of the coefficients
d,k. But this follows directly from a comparison between

and

r--I

i) Arbr(m+ l)+s,n-" brm+s,n+ 1-- X Avbrm+s+v,n
v=2

ii) d() kbrm+k_b_
(m+ t)+s, n + ’ ’ nk=l
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A NOTE ON SUMMABILITY AND ASYMPTOTICS*

K. SONI" AND R. P. SONI"
Abstract. The asymptotic expansions of the Fourier and the Hl)-transform are discussed. The objective

is to investigate the necessity and the sufficiency of the conditions under which such expansions have been
obtained in recent years.

1. Introduction. The summability technique introduced by Olver [2] to obtain the
asymptotic expansion of a class of integral transforms together with the error terms is
well known. In certain cases, his basic ideas can be used without explicitly introducing
a summability kernel. In particular, the Fourier transform expansion can be obtained
from the Laplace transform expansion. Similarly, the Hankel and the Y-transform
expansions can be obtained from the corresponding K;transform expansion. However,
if we use this approach, and compare our conditions with those under which the same
expansions have been obtained earlier, some interesting questions arise. For example,
Olver [2] gives the Fourier transform expansion of functions f(t) which belong to
CP(0, oo) under the condition that each of the integrals

(1.1) I(x)= eitf<)(t)dt,

k= 0,1, ,p, converge uniformly for all x sufficiently large. If we derive the same
expansion from the corresponding Laplace transform expansion by using Abel’s limit,
we find that we do not require the convergence of the integrals Ik(X ), k= 1,2,- .,p- 1.
It is enough to assume that Io(x ) and Ip(x) converge uniformly for all x sufficiently
large. These conditions appear to be less restrictive than Olver’s. On the other hand, if
we want that similar expansion should be valid for every q, 1 <=q<=p, we see that
Olver’s conditions are also necessary. Therefore, we ask the following question: Does
the convergence of the integrals Io(x) and Ip(x), p > 1, imply the convergence of the
integrals Ik(x) for k= 1,2,...,p-1? Here we should mention that we do not impose
any conditions on the behavior of f(k)(t) as t-- oo. In 2 we prove that if Io(x ) and
Ip(x) converge at least for p distinct values of x different from zero, then f (k)(t) 0 as
t--. oo and consequently all Ik(x), k <=p, converge for those x. Whether the conclusion
holds when the number of such points is less than p, remains an open question.

In 3 we discuss similar questions in connection with the asymptotic expansion of
the Hl)-transform. Furthermore, due to the singularity of Hl)(t) near the origin, the
remainder in the Hl)-transform expansion cannot in general be expressed as an
integral. We give an alternative form of the remainder which, we believe, is new. Then,
by using a connection formula for the Bessel functions, we obtain the asymptotic
expansion of the Hankel and the Y-transform from that of the H)-transform.

In [}4, we state analogues of Watson’s lemma for the Hankel and the Y-transforms
and compare our conditions with those given by Wong [7]. Finally we give some
examples to emphasize the significance of certain conditions in the statement of these
results.
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2. Notation and main result on Fourier integrals. Unless otherwise indicated, we
assume that f(t) is complex valued and belongs to C’(O, o). Following the notation
used in some recent papers on asymptotics, we write

(2.1) f(t)=fn-l(t)+Rn(t)
where

n-1

(2.2) fn_l(t)--" Y’ akt xk, a,4:0, --1 <X0<X < <Xn_ 1.
k-’-0

Furthermore, we assume that

(2.3) R,(t)=O(tX"), t-->O+,
RT)(t)=O(tX"-P), t0+, p<+l.

We say that an integral converges if it converges either absolutely or as an
improper Riemann integral.

TI-IORElVi 1. Let y be a fixed positive number and let kn_ <P < kn + 1. IfI(y) are

defined by (1.1), then

(2.4)
n-1

eiytf(t)dt

_
y-(X+l)ei(Xk+l)"/2F(,k+ 1)a+y-Peip,/2 eiytRT)(t)dt

k -’-0 "0

if. and only if the integrals 10(y) and I,(y) converge.
THEOREM 2. If Io(Y ) and Ir(y) converge for p distinct, positive values of y, then

I(y), k 1, 2,...,p 1, also converge for those y.
Although we make no assumptions regarding the behavior of f(t) as t m, the

convergence of lo(y) and I,(y) for p distinct values of y implies that f(k)(t)O as
m for k 0,1,- .,p- 1. The practical significance of our results is that if we know

that lo(y ) converges for at least p positive values of y and I,(y) converges uniformly
for all y large enough, we can conclude that the expansion (2.4) is asymptotic. We
should mention here that the condition p > X,_ in Theorem 1 is not essential. It can be
removed by using the complementary incomplete gamma functions as in an earlier
result of one of the authors [3, Thm. 1]. Also, the lower limit in the integrals Ik(x ) is
not important. It can be replaced by any positive number.

Proof of Theorem 1. Since R(,]’) ( ) f (’)( ) -f(l ( ), the necessity of the condition
is clear. We will show that it is sufficient. Let

(2.6)

+(t)= eiyUf <’)(u)du,

f<t’-l)(t)-f<l-a)(1) fl’ e u)du

=k(1)e iY-(t)e-iyt-iy e (u)du.

Since q (t) 0 as t , it follows that f <’- 1)(t) o(t) as . Therefore

(2.7) fk)(t)=o(t’-k), t-->, k=0,1,. .,p- 1.
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Now let s=x-iy, x>0. By (2.3), Rk)(t)=O(tx"-k) as t0 and by (2.7), f<k)(t)=
o(e xt) for every x > 0 as oo. Therefore, by a familiar technique in asymptotics which
involves replacing f(t) by fn_x(t)+Rn(t) and then integrating by parts p times (see, for
example, [3]), we obtain

(2.8)
n-1

e-Stf(t)dt

_
1)ak+s-e e R, (t)dt.

k--0

The equality (2.4) follows from (2.8). As x 0 +, s x iy e-i/2y and the integrals in
(2.8) approach the corresponding integrals in (2.4). The last assertion is justified by the
convergence of the integrals Io(y ), Ip(y) and the well-known Abelian implication (see
[2, Lemma 2]).

Proof of Theorem 2. Without loss of generality, we may assume that f(t) belongs to
Ct’(0, oo) and as t0+, f(t)=O(tx) where ,0>p. Assume that Io(y) and Ip(y)
converge for y =yj,j 1, 2,. .,p. By Theorem 1,

(2.9) eiytf(t)dt=y-PeiP"/2fo eiYtfP)(t)dt, y=yj.

Let 0 < a < oo. By using integration by partsp times,

0
a

(2.10) eiy’f(t)dt= -eiya(y,a)+y-peie"/2fo eiytf t’)(t)dt,

where

p

(2.11) q(y,a)= Y’. y-keik’/2f(k-1)(a).
k=l

By comparing (2.9) and (2.10) we conclude that xI,(y,a)0 as aoo for y=yj,
j 1, 2,-.. ,p. This provides a system of p linear equations with nonsingular coefficient
matrix. Therefore, f (k-X)(a) 0 as a oo, k= 1,2,. .,p. Since,

fl
a

eiyuf (k- 1)(U) du= ( eiyaf (k-X)(a)- eiyf (k-1)(1))/(iy)

(1/iy) fa eiyuf (,)(u) du
"1

and Io(yj) converges for each yj, it follows that each I,(y), k= l, 2, ,p l, also
converges for these values of y.

3. Hl)-trans|orm. We will need the modified Dirichlet test to obtain an expansion
for the HX)-transform from that of the K-transform. We state it here in a form needed
in the proof of Theorem 3 (see [1, Thms. 17.2d, 17.3b]).

LEMMA 1. Let c > O. If
(i) g( t ) is continuous in [a, oo) and fg( ) dt converges,
(ii) q(x,t), qt(x,t) are continuous in [0,c][a, oo],
(iii) q(x,a) and flq,,(x,t)ldt are uniformly bounded in O <=x <=c, then

(3.1) G(x)= ,(x,t)g(t)dt
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converges uniformly in [0, c] and

(3.2) x--,lir+ ,(x,t)g(t)dt= ,(O,t)g(t)dt.

In Theorems 3-6 below we assume that f(t) satisfies the conditions stated at the
beginning of 2, that is, fit) belongs to CP(O, o) and satisfies (2.1)-(2.3).

THEOREM 3. Let y be a fixed positive number and let 0=<Rev<,0+ 1, Rev+ 2p<
3n + 1. Define the integralsk(Y) by

(3.3) o,(y) eiytt++x/2’(t--tf(t))dt,

where

(3.4) _._ t_
d

’ k=k-1,

and the function E(y) by

E(Y)=(-Y)-Pfol HO+I, (yt)t+p+Io@P( t--lR (t))dt

+(_y)_pfOO H(1),,+p,(yt)t+e+lp(t--lf(t))d

m-1

-(-y)-P

_
(-y)t+lHl+)p+t+l(y)(P+tt--lfn_l(t))t=

1=0

--(-y)-p-mf Hl+)p+m(Yt)t+p+m+l’+m(t--lfn_l(t))dt

where 1--P- 1/2 < m. Then

(3.6) fo HX)(yt)f(t)dt

)(1e+v+l) r -v+l))a+E(y)
if and only ifdeo(y) andJe(Y) converge.

This theorem is analogous to Theorem 1 except for the comparatively complicated
form of E(y). In case hn_ 1/2 <p <(X,+ 1-Re v)/2, we can write

(3.7) E(y)=(-y)-Pfo H(l+)p(yt)t+p+lp(t--lRn(t))dt.

In general, however, this is not possible because for a given function f, no p may satisfy
the condition necessary for the representation (3.7). The following theorem is an
analogue of Theorem 2 for the differential operator.

THEOREM 4. If oo(y) and d(y) converge for p distinct positive values of y, then
dek(y), k 1, 2,. .,p- 1, also converge for those y.

From (3.6), we obtain the following expansions for the Hankel and the Y;trans-
forms.
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THEOREM 5. Ill(t) is real and the integrals

(3.8) eiyttk-’-l/2f <)(t) dt, k=1,2,. .,p,

and

(3.9) fl e’Y’t-1/2f(t)dt

converge, then for Re v + Xo > 1, p > ,
n- 1/2,

(3.10)

andfor 0<= Rev <ho+ 1, Rev+ 2p <n+ 1,

n-1

(3.11) Y(Yt)f(t) dt=r-x E 2XY-X-sin(Xk--v)rr/2
k-O

r r ()-v+l) a+F(y)

where F(y) is obtained from E(y), defined in (3.5), by replacing the Hanke! functions
HO) by the Neumann functions Y+

If f is complex valued, we can obtain the expansions (3.10) and (3.11) from (3.6)
provided that the integrals (3.8) and (3.9) converge when y is replaced by +__y. The
convergence of the integrals (3.8) implies the convergence of the integral (y), (see
(3.3)). In the last theorem, we give a more precise relationship between them.

THEOREM 6. Ifyj, j= 1,2," -,p, is a set ofp distinct positive numbers, the following
three sets of conditions are equivalent.

I. The integrals (3.8) and (3.9) convergefory yj, j 1, 2,...,p.
II. The integrals do(y) andS(y) convergefory yj,j= 1,2,. .,p.

III. The integrals

-1/2f (k)(3.12) eiytt (t)dt, k=0,1,. ,p,

convergefory =y2,j 1, 2,...,p.
Remark. In Theorems 1, 3, and 5 we have given certain expansions which hold for

one or more values of y under the given conditions. We make no claim that these
expansions are asymptotic. In fact, even if the corresponding integrals converge for all y
sufficiently large, the expansions may not be asymptotic unless some additional condi-
tion such as the uniform convergence of the integrals appearing in the remainder terms,
is satisfied. The asymptotic nature of these expansions has been discussed by Olver [2],
Soni [3], [4], Soni and Soni [5] and Wong [7]. (For other references, see [8]).

Proof of Theorem 3. Let

(3.13) rl ( s ) (2s/,r )l/2eSK ( s )
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where K,(s) is the modified Bessel function of the second kind. Thus rl(S) is analytic
except perhaps at s 0 where it may have a branch point. By [6, p. 202],

(3.14) rl(S)-- E (,,n)(2s) ", I1, largsl<---,

where

(...) r(.+ n+})(ntr(-n+1/2)) -.
Therefore, rl(-iy) 1 asy oo. Since, by[6, p. 78, (8)] and (3.13),

(3.16) Hl)( y ) (2/rr)1/2e- i’/2+/4)eiyy-1/2 rl ( iy )

rl(-iy) is nonzero for all y sufficiently large. Therefore, the integral

(3.17) ,g’k (y) f Hk(Yt)t"+k+lk(t-"-lf(t))dt

converges if and only if the corresponding integral k(Y) defined by (3.3), converges.
Thus, if the convergence of ’0(Y) and (y) is a necessary condition, then so is the
convergence of 0(Y) and 3(y). To prove that this condition is also sufficient, we
follow the technique used in the proof of Theorem 1. By the convergence of the integral
(y) it follows that k(t--lf(t))=o(t2P-9-k), k= 0,1, ,p -1. In particular, for
every x > 0,

(3.18) k(t-"-f(t))=o(eX’), t.
Now, by the standard technique that was used to obtain (2.8) (see also [5, p. 166]), it
follows that for Res > 0,

(3.19)
n-1

(1 ) (1 )fo K,(st)f(t)dt= E 2x-ls-Xk-lr ()kk+’+l) r (Xk-,+l) al+Ex(s )
k=0

where

(3.20) -foEI(s)=s

For successive integration by parts, we use the relation

(3.21) f t+K,(t)dt=-t+K,+(t).

We will prove that (3.6) follows from (3.19) when Res0+. If s= x-iy and x0+,
x- iy e-i,/2y. We note that

(3.22) K, ( iyt) (r/2)e‘"+ 1)/2H1)(yt).

Let

(3.23) tk(x,t) e-xtrl((x- iy)t)
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where (s) is defined by (3.13). If y is a fixed positive number, (x,t) satisfies the
conditions of Lemma 1 in [0,c) [1, o) for every c > 0. Therefore, by the convergence
of the integral 0(Y) and the relation (3.16),

(3.24)

limo/
oo
K((x-iy)t)f(t)dt= lira/ (r/2)t/2(x-iy)-X/2f q(O,t)eiytt-t/2f(t)dt

(r/2)ei(+ t)’/2f HO)(yt)f(t) dt.

Similarly, by Lemma I and the convergence of(y),

(3.25)
x0+lim fo K+,((x-iy)t)t+’+lp(t--f(t)) dt

=(/2)ei(+t’+l)’/2f HO+)p(yt)t+,+ll,(t--f(t))dt.
"1

The other limits follow in a straightforward manner. To find the limit of E((x-iy)t)
as x0+, we replace Rn(t) by f(t)-fn_l(t) in the interval (1, ) and then use (3.25)
and the following expansion

(3.26) fl K.(st)t+*’(t--tf_t(t))dt
m-1

E s-’-lg,.p+l*l(S)’P*l(t-v-lfn-l(t))t=l
1=0 .. S fl

O0

K,+p.m(st)t+P*m*l.cfP*m(t-v-lfn_ l(t))dt.

Proof of Theorem 4. As in the proof of Theorem 2, assume that f(t) belongs to
CP(0, ) and as tO+, f(t)=O(tx) where h0>Rer+2p. If 0(y) and p(y) con-
verge for y=yj, j= 1,2,. .,p, and we compare the Hl)-transform expansion (3.6) with
that obtained for the interval (0,a), (see [5, eq. (2.4)]), we find that the function (y,a)
defined by

(3.27)
p

t(y,a) Y’. (--y)-ga+kHk(Ya)(k-lt--tf(t))t=a
k--1

is such that ’(yj, a) 0 as a o,j 1, 2,-- -,p. This implies that

(3.28) lim t+-l/2-t(t--tf(t))=O, k=1,2,. .,p.

By the convergence of 0(Y) and (3.28), it follows that each of the integrals (y),
k 1, 2,- -,p 1, converges.

Proof of Theorem 5. We note that

p

(3.29) P(t--tf(t)) E Cpkt-’*k--f()(t),
k=0
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for some constants Cpk. Therefore, the convergence of the integrals (3.8) and (3.9)
implies the convergence of the integrals oa0(y) and oap(y). Therefore the expansion (3.6)
holds. Since f is real valued, the integrals (3.8) and (3.9) converge even when y is
replaced by (-y). Thus we obtain the expansion (3.6) with Hl)(yt) replaced by
HE)(yt). By using the relations

Hk(yt)=J(yt)+(--1)-liy(yt), k=1,2,

we obtain the corresponding expansions for the Hankel and the Y;transform. In the K
and consequently in the Y;transform expansion, the conditions 0 __< Re , < X 0 + 1 and
Re v + 2p < A + 1 are due to the behavior of these functions as 0 +. In the case of
the Hankel transform, these.conditions can be replaced by the condition Re r + X 0 > 1.
The condition p > hn- 1/2 is simply due to the representation of the remainder term as
an integral.

Proof of Theorem 6. In the proof of Theorem 5 we have shown that I II. Since
III I, we only need to prove that II - III. The convergence of the integrals oa0(yj) and
oae(yj) implies (3.28). Since k(t-r-lf(t)) can be written in the form (3.29), it follows
that for k 0,1,. .,p- 1,

(3.30) f (k(t)=o(ti/2), t-

Since the integrals do(yj) converge, by using integration by parts and (3.30) it follows
that II III.

4. Analogues of Watson’s iemma and examples. By using the condition III of
Theorem 6, we can state analogues of Watson’s lemma for the Hankel and the Y;trans-
form as follows.

THEOREM 7. Assume that
(i)f(t) belongs to C(O,
(ii)

(4.1) f(t)- aktx, tO+,
k=0

where Ak <Ak+I, k=0,1,...,Akoo as k, and the asymptotic expansion for the
successive derivatives of f(t) as 0+ can be obtained from (4.1) by term by term
differentiation,

(iii) each of the integrals

(4.2) eiytt-1/2f (k)(t)dt,

conoerges uniformly for all y sufficiently large.
Then the asymptotic expansions of the integrals

(4.3) o’(y) J(yt)f(t)dt,

and

k=0,1,...,

Rev+ho> -1

as y o can be obtained by substituting the expansion (4.1) for f(t) and integrating term
by term in the generalized sense.

(4.4) #-2 (y) Y,(yt)f(t)dt, 0=<Rev<,0+ 1,



400 K. SONI AND R. P. $ONI

The analogue of the Watson’s lemma for the Hankel transform was first given by
Wong [7, Thm. 2]. In the statement of his result he gives the following condition in
place of (iii)"

(4.5) t-1/2f(k)(t)O asto, k=0,1,....

It is reasonable to assume that he also requires the uniform convergence of the integral
-I(Y) for all y sufficiently large [7, 2]. However, his proof of the theorem prompts us
to investigate whether any conditions besides those stated explicitly in his Theorem 2,
are indeed necessary. In particular, we want to examine the extent to which the uniform
convergence of ’I(Y) for all y sufficiently large, is a necessary condition. (y) can
have an asymptotic expansion of the type given in [7] or in Theorem 7 above only if it
is defined for all y sufficiently large and furthermore, is reasonably well behaved as
y---, o. Therefore, we ask the following:

1. Does the convergence of the integral (4.3) for all y sufficiently large follow from
(4.5) together with, perhaps, the convergence of (4.3) on a smaller set?

2. Does (4.5) together with the convergence of (4.3) for all y sufficiently large,
imply that -1(Y) is reasonably well behaved as y c?

We give examples to show that the answer to both of these questions is in the
negative. This indicates that some condition such as the uniform convergence or
uniform boundedness of the integral (4.3) for all y sufficiently large, is necessary.
Again, the condition (iii) implies (4.5) (see proof of Theorem 6). However, (4.5) does
not guarantee the uniform convergence of the integrals (4.2) even when the integral
(4.3) converges uniformly. As we have remarked earlier, without some such condition,
we may have finite expansions of the type that we have discussed in the earlier sections
but these need not be asymptotic.

It is possible to weaken the condition (iii) for the Hankel transform as well as for
the Y-transform by replacing the integrals (4.2) by some other integrals but it is
questionable whether (iii) can be replaced by (4.5) alone (see [7, p. 804] and Example 3
below).

In the following examples, we assume that ,= 1/2 so thatJ(t)=(2/r)l/2t-1/cost
and J+l(t)= (2/’tr)l/Et 1/2 sin t. Io(y) and Ii(y ) are defined by

(4.6) Ik(Y)= J+(yt)f()(t)dk, k=0,1.

Example 1. Let

(4.7) f(t) t1/2 (ln(t + 2)) -1 y,. e-" cos nt.
n----1

Clearly Io(y) converges for all y>0 except y=n, n=1,2,.... Thus (4.5) and the
convergence of the integral Io(y ) for almost all y fail to guarantee the convergence for
all y sufficiently large.

Example 2. Let

(4.8) f(t) 1/2 (ln(t + 2)) -1 E e-" sin nt.
n----1

Again, f(t) satisfies the condition (4.5), Io(y) converges for every y > 0 but not uni-
formly. In fact, in the neighborhood of y= n, n= 1,2,..., Io(y ) is unbounded and
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therefore, cannot have an asymptotic expansion in the usual sense as y o. Further-
more,

(4.9) f’(t)=tl/2(ln(t+2)) -1 E ne-ncosnt
n-----1

+ E e-"sinnt ((2tX/Zln(t+2))-X-tl/2(t+2)-X(ln(t+2))-2}.
n--’-I

It is clear from (4.9) that Ix(y ) does not converge for y= n, n 1, 2,.-.. Therefore,
even the convergence of Io(y ) for all y > 0 and the condition (4.5), fail to guarantee the
convergence of 1l(y) for all sufficiently large y.

Example 3. Let

(4.10) f(t) x/2 sin 2 (ln(t + 2))- 1.

In this case Io(y) converges uniformly for y >= 1, t- 1/2f(t) -’-) 0 as and Ix(y)
converges but not uniformly for all y sufficiently large. In fact, II(y) is unbounded.
(The proof of this is rather involved and is given in the appendix).

Appendix. Let

f( ) t/2(ln( + 2))- sin 2, t>=O.

We prove that if Io(x ) and Ix(x ) are defined by (4.6) and v= 1/2, then
(a) Io(x ) converges uniformly in [1, ).
(b) lx(x ) converges for x_> 1 but fails to converge uniformly in [X, o) for any

X>_I.

Proof of(a).

fIo(x) x-/2cosxt sint2(ln(t+2))-Xdt.

Let e > 0. Choose NO such that 0 < (InN0) < e/4. For N>M>_ No,

(A.1) J;(M,N,x) x-1/zf cosxt sin t2(ln(t + 2))-dt

1 _1/2[N 2=x sin(t +xt)(ln(t+2))-ldt
"M

1 _l/2fN 2+x sin(t -xt)(ln(t+2))-ldt
"M

By the second mean value theorem,

(A.2)

.,x=2-Xx-/2(ln(M+ 2))-X(2M+ x)-XfM" (2t+ x)sin(t2 + xt) dt, M<N’ <N.

Therefore, for x >= 1, Ixl < e/8.
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Before we apply the second mean value theorem to 2, we must provide for the
possibility that 2t-x may become zero for some in the interval of integration. For
this reason, we consider the following three cases"

(i) 1/2x + 1

_
M,

(ii) 1/2x- 1 _<M__< 1/2x + 1,
(iii) m__< 1/2x- 1.
Case (i). We can apply the second mean value theorem directly and obtain

Case (ii). Let a min(1/2x + 1, N). Then

(A.3) oa2= + 2-1x-X/2(ln(t+ 2))-lsin(t2-xt)dt=dta +d4

Clearly, Ial </4 for x=> 1. If N< 1/2x+ 1, oa4 =0. Otherwise, as in Case (i), Il<e/8.
Therefore Ioa21 < /2.

Case (iii).

(A.4) oa2 fx/2-1 + fxrV"M /2-1
2-1x-X/2(ln(t + 2))-lsin(t2- xt) dt

=+6.
Note that (2t-x) is negative and increasing in [M, 1/2x-1] and, takes the maximum
value -2 at t 1/2x- 1. By two applications of the second mean value theorem,

(A.5)

;5=2-1x-1/2(ln(M+2)) -1 sin(t--xt)dt, M<=<= -x-1
=2-1x-1/2(ln(M+E))-(E,-x)-XfI (2t-x)sin(t2-xt)dt, M<=lff <=l.

Therefore [’51 < e/8 and as in Case (ii), 161 < e/2. This gives. 121 < 3e/4 in Case (iii).
By combining the estimates for 121 with the estimate for I11, we obtain,

[(M,N,x)I < e for all x >= 1. This proves that Io(x ) converges uniformly in [1, c).
Proof of(b).

(A.6)
1 oo l(ln( + 2)) Xsin 2 dt11(x) -x-1/2 sin xtt

-x-1/2f sinxt(ln(t+2))-2(t+2)-sintV-dt

+2x-1/2f sinxt(ln(t+2))-xt 2cost dt
"1

-""ffl1-1"’12 "]"fl3"

Clearly, oa12 converges absolutely and uniformly in x >= 1. Also, by using the same
technique as in (a) above, we can show that lx converges uniformly in x >= 1. There-
fore, we need to show that3 converges, but not uniformly, in [X, oo) no matter how
large X.
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(A.7) 3=x-1/2f t(ln(t+2))-sin(t2+xt)dt
"1

x-/2foo t(ln(t / 2)) sin(t 2 xt) dt
"1

=14 --15"

By two applications of the second mean value theorem (as in 5), we can show that o’14
converges uniformly in x >= 1. Again,

(A.8) Jx5= x-/2f (ln(t+ 2))-l(2t-x)sin(t2-xt)dt
"1

oo
-x/2f (In(t+ 2))-lsin(t2-xt)dt+2 "]1

1 1
"’A6 q- "A7"

By the second mean value theorem, dr16 converges uniformly in x >= 1. Also, for each
fixed x, 17 converges (see 2 in (a) above). Therefore, Ii(x) converges for each fixed
x => 1. To complete the proof, we must prove that 17 does not converge uniformly in
[X, ). For this purpose, consider the following integral:

(A.9) Q(M,x)= xl/2(ln(t+2))-lei(:-Xt)dt

x1/2 exp( ix2/4)f (ln(t + 2)) -lei(t-x/2)2dt

=xl/2exp(-ix2/4) ft_x/2 (In(u+ x+ 2))-leiu2du.
For each M sufficiently large, consider those values of x for which x=2M-2C,
1 =< C =< C1 where C is some fixed number greater than one. Then, using integration by
parts,

(A.10) x-1/2exp(ix2/a)a(M,x)

(2C)-le’C(ln(M+ 2)) -1

i2-1f: ei,2u 2(ln(u +M- C+ 2)) ldu

i2- f: eiU2u l(ln(u+M C+2))-2(u+M-C+2)-ldu

i(2C) -leiC2(ln(M+ 2)) -1 i2-101 i2-102.

By the second mean value theorem,

(A.11) IQ=I < k(ln(M+ 2))-2(M+ 2) -1
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for some constant k. To obtain the behavior of Qx, let

(A.12) if(t)= u-2eiU’-du.

Using integration by parts,

(A.13)

Q1 (ln(M+ 2)) 1’ (C) q(u)(ln(u+M-C+2))-=(u+M-C+2) -ldu.

Since (t)= O(t-3), --+ t:, the last integral in (A.13) is less than a constant multiple of
(In(M+ 2))-2(M+ 2) -1. Therefore for x=2M-2C, as M--+

iM1/2

_i(M_C)2{ iCa(M,x)--
vfClnM

e e -C(C)}.

Since 017 in (A.8) is the imaginary part of Q(M,x), the conclusion follows.
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N-WIDTH AND ENTROPY OF H,-CLASSES IN Lq(- 1,1)*

H. G. BURCHARD" AND K. HOLLIG *
Abstract. The n-width d approximation numbers 8n and entropy e of the Hardy spaces Hp in

Lq(--1, 1) are estimated. More precisely, denote by F the space of continuous functions which satisfy a

Lipschitz condition of order r at - 1. It is shown that

exp(-- 2omi/2 << Sn( Hp Fr, Loo ) dn( Hp f"l Fr, Lo) << exp(- otnl /2 ),
exp(-2fln’/2)<<8,,( Hp,Lq),dn( Hp,Lq)<<exp(-fln!/2) forp>q,

exp( 2TnI/3 ) << en( Hp Fr,L) << exp( -n’/3 ),
where "<< indicates that the inequalities hold except for polynomial factors in n. The constants a,B,
depend onp, qd r. Forp= ,,the factor 2 in the lower bound of the first inequality can be omitted.

AMS-MOS subject classification (1980). Primary 41A46, 30D55

Key words. Hardy spaces, n-width, entropy, upper and lower bounds, Wittaker series

1. Introduction. For analytic functions many of the standard approximation
processes converge at an exponential rate. Using more sophisticated methods, it is still
possible to obtain exponential convergence, even in the presence of singularities at the
endpoints of an inverval of approximation.

In this paper we obtain precise upper and lower bounds for optimal convergence
rates of approximation processes for the natural imbeddings of Hardy spaces into
Lq(-1, 1) in the sense of n-width, approximation numbers (linear n-width) and also
entropy. This makes it possible to assess the optimality of bounds previously obtained
for special approximation operators.

As a model example, consider the class Hoo of analytic functions f bounded in the
unit disc. To obtain convergence in Loo(- 1, 1) of approximation methods, some mild
additional assumptions must be imposed about the behaviour of f at +--1. For this, let
F denote the class of functions in Loo(- 1, 1) which satisfy a Lipschitz condition of
order r>0 at --+ (cf. (2.4)). In [6] A. Goncar has constructed piecewise polynomial
approximation operators Pn of rank n such that

(1.1) IIf- fll(-l ,,) << exp( xn1/2 )( Ilfll + Ilfll
where a= log(1 + r)r/-. Here, "<< indicates that the inequality holds except for a
polynomial factor in n. R. De Vore and K. Scherer [4] showed that exp(-Canl/-) is a
lower bound for approximation by piecewise polynomial operators. In [9], [13]-[16]
F. Stenger developed a theory for approximating analytic functions using Whittaker’s
cardinal series. In particular he obtained (1.1) with an improved value of the constant,
ot=(’tr/2)r 1/2. For the approximation of functions f in Hoo f3F we obtain the sharp
lower bound: For some nonzerof in Hoo t"l F

(1.2) rr 1/2)
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valid for an arbitrary rank n operator P, (cf. Theorem 1). This establishes that ap-
proximation by Whittaker’s cardinal series is optimal and exp(-(cr/2)(rn)1/2) is the
precise asymptotic order of the n-width of H fqF in Loo(- 1, 1) up to a polynomial
factor in n. We obtain results analogous to (1.1) and (1.2) for the n-width and ap-
proximation numbers of H,CqF in L(- 1, 1) (el. Theorem 2) and of Hp in Lq(-- 1, |),

p >q (cf. Theorem 3).
For entropy, however, the asymptotic behavior is different. For our model example

we obtain (cf. Theorem 4)

exp(-- 2,/n 1/3 ) <<e,( Hoo f3 Fr,L) <<exp(--yn1/3 )

where /=((r2/2)rlog2)1/3. Thus, our results show that n-width tends to zero more
rapidly then entropy. These estimates are in remarkable contrast to the results for
Sobolev spaces where e,_<d, [7]. The slower decay of entropy seems to be typical for
classes of analytic functions. The best known example appears to be the following. Set
A {w C: Iw[< }. Then we have for p<

d,( Hoo,L(pA)) ><exp(- Ilog pin ),
%(H,L(pA)) ><exp(-log 21log pin’/2).

After stating our main results in {}2 we prove in 3 auxiliary results regarding
n-width and entropy. In {}4 we introduce equivalent approximation problems on the
real line and obtain basic approximation properties of weighted cardinal series. The
proofs of Theorems 1-4 are given in 5.

2. Main results. Let T: X Y be a bounded linear operator between Banach
spaces X and Y. The n-width dn, the approximation numbers (linear n-width) 8 and the
entropy en of T are defined by

(2.1)

(2.2)

(2.3)

d,(T) inf sup dist ,(Tx, V),
VC Y Ilxllx_<ldim V<n

6,,(T) inf T- P: x+ YII,
PUL( X, Y)
rank P<--n

en(T)-inf e" :iyl,...,y2,e Ysuch that TB(X)C [,.] (y+eB(Y))
v-’l

where B(X) denotes the closed unit ball of the B-space X. If T: X Y is a continuous
embedding, we write an(X, Y) in place of an(T ). Here and in the sequel a stands for
either one of the numbers dn, 8n or en.

Let H,, 1 _<p_<o, denote the Hardy space [5], i.e. H, is the class of analytic
functions in the unit disc A for which

Ilf[l.-- sup If(se’)ldO
0_<s<

Ilfll- sup If(z)l
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is finite. Given a conformal homeomorphism h of A onto a simply connected region
fl C C, one can define [6]

Hp(g)- (f: g-C" f o hHp}.
Different conformal maps result in equivalent norms.

We denote by F the class of functions in Loo(- 1, 1) which satisfy a Lipschitz
condition of order r>0 at --+ 1. Let Jr] ([r]) denote the least (largest) integer not less
(greater) than r. F is the direct sum of P2 rj- l, the space of polynomials of degree at
most 2 [rl- 1, and the space prLoo(- 1, 1) of functions with zeros of order r at --+ 1,
p(w)- 1-w2. Let Pr be the projection of F onto P2 trj-I defined by the conditions

(f-prf)tl’-rCLoo(-1,1).

Then a norm on F" can be defined by
(2.4) Ilfllr-Ilprfllo-

We study approximation of functions in Hp NFr. To state our results we use the
following notions of asymptotic equivalence. Let an, bn, n C[ be two sequences of
positive numbers. We write a,<b if there exists a positive constant c such that
a <_cbn, and an<<b if there exists a positive constantj such that annJbn. The symbols
>, >> and -, >< are defined similarly.

THEOREM 1. For r>0 we have

("ir(rn) /2)8n(HooNf’,Loo(-1,1)),dn(Hoofqf,Loo(-1,1))><exp -This result has already been mentioned in the introduction (cf. (1.1), (1.2)). The upper
estimate is due to F. Stenger [13] and our lower bound shows the optimality of the
order exp(--(r/2)(rn)/E).

THEOREM 2. For r>0 and <-p <-oo we have

exp( 2an 1/2 ) <<n(Hp f"l Fr, Loo( 1,1)), d,,( Hp ("l Fr, Lo( 1,1))<<exp(- an’/2)

where a= rr/(2(r+ 1/p)l/E).
It is interesting to compare these rates with the estimates of F. Stenger [15], who

considered the classes H,-H,, where p(w)-1-wE, and obtained

exp(- (/r+ e)n’/-) <_#*(H:,L(-1, I))

_<exp 2(p,),/z--e n n>_n(e).

Here i,* is defined analogous to i$
n but restricting the class of rank n approximations P

to methods based on point evaluation, i.e.
n

j=l

As we shall see in {}5, H is similar to the (smaller) class Hoo fq F r, r= 1- 1/p-- 1/p’.
We obtain the bounds (valid also for *, d,)

(2.5) exp --rn <<
2 n
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In view of Theorem we conjecture that the factor 2 in the lower bound of Theorem 2
can be omitted and exp(-an 1/2) is the precise asymptotic rate of the n-width.

THEOREM 3. For <--q <p <-- oo we have

exp(--2fln/2 ) <<n( Hv,Lq(- 1, 1)), dn( Hv,Lq(- 1, 1)) <<exp(- fln 1/2)
where fl=(1/q- l/p)/2.

Remark. The proofs of Theorems 1-3 will show that the results are true for any
s-number in the sense of Pietsch [11 ].

As mentioned in the introduction, Vitushkin’s [19] estimates for entropy of classes
of analytic functions show exponential decay of e(Hoo,Loo(pA)) as exp(-cn 1/2) for
0 <p< 1. Notice that in this case the functions approximated are analytic in a neighbor-
hood of the domain pA of approximation. In this paper we obtain estimates for entropy
of imbeddings of analytic functions with singularities on the boundary (- l, } of the
interval of approximation, the rate being exp(-cnl/3). We attribute the curious expo-
nent 1/3 to the fact that singularities are allowed here. A typical result is as follows.

THEOREM 4. For r>0 and <_p <_ oo we have

exp(--2yn’/3) <<en(HvfqF,Loo( 1, 1)) <<exp(- 3,n ’/3)
where V=(rralog2/(2(r+ l/p)))1/3.

3. General properties off d., d,, and e,,. A. Pietsch has developed in [11] a general
theory of "s-numbers" which includes n-width and approximation numbers as special
cases. We list below some basic properties of dn and 15, which hold for entropy as well.
Let a, denote either one of the numbers d,, 15, or e, and let T: X Y be a bounded
linear operator, then we have

The numbers anform a monotone decreasing sequence, i.e.

(3.1) IlZll--ao(Z) >_a,(Z) >--....
R T’ S

If T admits the factorization T: Y-o y’ -o X’ -o X we have

(3.2) an(T) <-IlRIla,(Z’)llSll.
The numbers a are additive, i.e.

(3.3) a,0+,(T0+ T)<-ano(To)+an,(T).
Properties (3.1)-(3.3) are direct consequences of the definitions (cf. [11 ]).

The following result is useful for obtaining lower bounds for n-width and ap-
proximation numbers,

LEMMA 1. [8]. Let V be an (n+ 1)-dimensional subspace of X and let i: V-oX be the
canonical injection. Then we have

dn(i)--Sn(i)’-l.

We shall need some estimates for a in sequence spaces. By l, lo we denote ’,
z with supremum norm. In addition, we define the weighted space l,0

by

(3.4) loo,,-- {flo" IIf[I, --supexp(olvl)lf, <}-
LEMMA 2. For rn >n we have
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andfor N 2n- 1, 2n

dN(loo,p,loo)--SN(loo,p,loo)--exp(--#n).

Proof. The first part of the Lemma is a consequence of Lemma 1.
Let PN be the projection of loo onto the span of the first N basis vectors (8,,),,,

II--<N/2- Then

is an upper bound for N(i), i: loo,p--, 1oo being the natural injection.
For the lower estimate consider the factorization of the identity

/ooN+l
I Pu+ N+I
=-)

oo o oo
--)

where I is the canonical injection. Using (3.2) and Lemma this yields

1-du(t+’,t+’) <-IlIIIdu(ho,o,h)llPu+,ll<-exp(o[(N+ 1)/2])du(t,o,t).
LEMMA 3. For t >0 we have

e-exp(--(pn log2)1/2)’’n(loo,o’ loo)Zeexp(--(on log2)’/z).
Proof. For e >0 the unit ball B of loo,p contains the finite subset

A(e)- {a_l" a,eT/, lal<_exp(-lvlo)}.
For the upper bound note that A(2e) is an loo e-net for B. It suffices therefore to

show cardA(2e) _<2n when e= 2e-, (on log 2)l/2_ O. We estimate

_< IIcarda(2e) IIz (2[exp(-Ivlo+)/4] + ) Il<a/

_<exp --# --1 0 2+1 --exp +02 _<2"

as claimed.
For the lower bound fix -1/2e-, -(onlog2)/+ 20. Then

cardA(2g)- z(2[exp(-lulo+8)]+ 1)> H exp(-1ulo+8)

_>exp -0 +1 + 2-:-1 -exp ---2 _>2n.
0

Given any l e-net N for B with cardinality 2", since cardA(2)>2’, at least one of the
/,-balls of radius e with center in N must contain two distinct points of A(2), and this
implies _<e. This establishes the lower bound.

4. Approximation processes on the line. For the proofs of our theorems in [}5 it
will be convenient to consider equivalent approximation problems on the line. The
conformal mapping

l+w
z-log

1-w
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transforms the unit disk A one-to-one onto the parallel strip
and at the same time maps the interval (-1, 1) onto R. This substitution induces
isomtries from/-/ onto/-/() and from L(- 1, 1) onto the weighted space /L(),
where

dz(z)=- +coshz.

The norm on ql/qLq(g) is given by

II >- /q

We also need other weighted function spaces. Let

fa=
2d

f 0 <d_<rr,

i.e., z f]d iff Ilmzl<d. Then, for real h, fcbXHoo(fd) iff ck-XfH(fd) and

Notice that ,k maps 0, onto C\{xI" x_<0} and so qbx is holomorphic on
We note some simple properties of if(z). If z-x+ iy fl, then

(4.1) cyem<_[q,(z )1- coshx+ cosy _<2 el ,

where cy=1/2 for Lvl-<rr/2 and Cy-(l+cosy)/2 for r/2<Lvl<rr. If wA, then
z- log((1 / w)/(1- w)) fl,,/2 and

(4.2) -Iwl 2 cosy/[q( z )l.
We now establish equivalent approximation problems on the line. To do this, we

first replace F" by the simpler space k’L(- 1, 1).
LEMMA 4. Let r>0, k-2 [r], <_p, q<_oo. Then for a,=8,, d,

a,+k(HtqF’,Lq(-1,1))Za,(H/’Loo(-1, 1),Lq(-1,1))
<-a,,(Hs, f’IFr, L<(-1,1)).

For a,-- en, the second inequality is still valid but the left-hand inequality is replaced by

em+,,(Hs, flFr, Lq( 1,1))-2-m/#’<.e,,(H,f’llkrL( 1, 1),Lq(--1, 1)).
Proof. Write the natural injection i: H, NF +Lq(-- 1, 1) in the form i--(i--pr)+Pr,

where Pr is the projection of F onto Pk-t, cf. (2.4). When a--i, d it follows from
(3.3) and rankpr-k that

(4.3) an+(i)<-a(i-p,).
This is the only step in the proof where entropy requires a different treatment, and we
have

(4.4) e+,( ) <-e(i-Pr) + era(Pr) Zen( i--Pr) + 2-m/"

The second inequality comes from the factorization

p," HpfqFr--->l LI-->Lq(-1,1),
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wherej is the identity on 1 and era(j)"’2-m/k. We now proceed with a.-6.,
We may factor i-p as

T
Pr He nF ---> Hp rq b rLoo( 1, 1)--)Lq(--1, 1),

with Tf=(i-Pr)f and IITII- 1 in view of (2.4) and the inequalities

The left-hand inequalities of the Lemma now follow from (4.3), (4.4) and (3.2). The
right-hand inequality is obvious from (2.4).

The substitution z- log((1 / w)/(1-w)) induces isometries He He(f]), Lq(-1, 1)
Jbl/qLq([) and krLo(-1,.1)-2rb-rLoo(g),notingthatqffz)-2/(w). As a conse-
quence we obtain the following equivalence.

LEMMA 5.

a,,(He n +rL=( 1,1), Lq(-- 1,1)) a,,( He( ) fq ,-rL,(R), ,’/qLq())
As one might expect when approximating functions on the fine, the precise behav-

ior of the functions near the boundary of fl is not important for the rate of a,. In fact,
it turns out that what matters is merely the approximate rate of growth of [f(z)l for
fHp(). The next lemma is what we need for the reduction from He(f]) to XHo(fd)"

LEMMA 6. For e >0 one has

Proof. The lower bound follows from ,an inequality of Hardy and Littlewood [5].
For g He-- He(A)

lg(w ) ]--< 21/e( -lwl’) -I/’l[gll

For fHe(f) let g(w)=f(log((l+w)/(1-w))). Then Illne)=llglln and hence by
(4.2)

If(z) 1_<cos- ’/ (Y)I*(z)ll/’llfll.,()
For the upper bound we observe that

II-’/+=gIf.,, -< l’/’-
and

Remark. In analogy to similar characterizations of Hardy spaces on the upper
half-plane tSl, one can show that He(f)-q}/ee =/: e’ wherefGe ifff is analytic in
f and

Ilfll%- sup
lyl<r/2
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The proof of this nonelementary result makes use of the factorization theorem for
the Nevanlinna class N+ and the fact that (1-w2)-1/p is an outer function.

LEMMA 7. Let e>0. Then
This inequality is useful when proving upper bounds, as it implies an( X, k/qLq(R))

e- 1/qan( X, dpI/q-L([)). The lower bounds require a different technique employing
a regularization mapping kl/qLq(R) into a weighted Lo-space, cf. Lemma 9 below.

Next, we describe the approximation processes on the line to be used in the proofs
of our main theorems in [}5. Let p >0, >0, , 7/and define the functions

s( z ) sto( z ) -o(z v/t )
sin r( tz , )

Notice that s is holomorphic in f, and s(#/t)-8,. Let Stp-span(stp" [vl<n ) and
define the interpolatory projections

P,,p" C() S,to,

Pntof f(u/t)stp.

In addition to these finite-rank appromations we also need the series

etof E f(v/t)s,,,.

For p-0 this is the Whittaker cardinal series [18]. As mentioned in the introduction,
the cardinal series was employed by Stenger [13] in obtaining his upper bounds. Lundin
and Stenger [9] and Stenger [15] also used weighted cardinal series similar to ours. The
next lemma implies that the series Pwf converges uniformly on if (f(/t))z is a
bounded sequence.

We now establish bounds on the condition number of the basis (s). It is perhaps
surprising that these crude estimates, where the coefficients grow as powers of n (the
parameter t will turn out to be proportional to n/2), suffice for determining the order
of a

LEMMA 8. For (a)z in 1(7/), t>

Z Lo(n

ep/t

P

Proof. For the upper bound we must estimate the Lebesgue function L(x)-
Ezlsto(x)l. By (4.1)

The value of the last sum evidently depends only on the residue of xtmod 1, hence let
O<_xt<_ 1. Then Ix-/tl_>(ll-1)/t and for t_>

A similar estimate can also be proved for L() replaced by Lq(R).
LEMMA 9. For a positive integer m, >0 and <_q <_

(4.6) (od-t)-l/qn-l/qll(a)ll<_n]]12+,<[] a,s,tol] -----[p] <zrt Lq() (pq)l/q
-+,.
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Proof. The right-hand inequality follows from (4.1). To show the lower bound, for
each Ivl<_n extend to Lq([) the linear functional on antp given by ,lrl<_nastp--->av. A
convenient extension is L, where

L s X b -e f
/ +

( x ) dx s (_. g
q(R )

and B (b) is the inverse of A (a,),
l’/t+,a-e J/t_, s,,to[ x ) dx,

As stp(Iz/t ) , we have the bound

-<e sup <-Me(p+t)

where M is a constant. We choose e-(1/(8M))(p+ t)-ln -1 and obtain

IIA ill -< (2n + )Me( # + ) <_.
Therefore

oo- 1-11a-IIIoo
This gives for 1/q’+ 1/q-

< l--el/q’--e-l/q(p+ t)l/qnl/q

Finally, in this section, we state a formula for the error of approximation f-Pntf
which follows from the calculus of residues and was extensively used by F. Stenger [13].

LEMMA 10. lff Hoo(fd), 0 <d<r and x fd, then

(4.7) sinrrtx fo d#-’(x--z)f(z)
dz(f-Pt’f)(x)- 2ri ua(z-x)sin(,rtz)

Proof. Denote by R the rectangle

{x+iYd-" lxl<n+ l/2 }
If we replace Pt, by Pt, and 0fd by 0R, then (4.7) follows from the residue theorem
when xR. We now let e0 and no and apply the dominated convergence
theorem. Here we are using the existence of nontangential limits in Lo(3A ) forfHo

Hoo(A), as the lines IRezl- const, z fd, transform conformally to nontangential
curves in A under the substitution z-log((1 + w)/(1- w)). We also make use of (4.1)
and of

(4.8) 112 cosh 2y 2 cos 2x
/2>[sin(x + iY)l- _-(etvl- 1).
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LEMMA 11. Under the hypotheses of Lemma 10, when d= r/2 and >-1

(4.9)

Proof. From (4.7) and (4.8)

IIf-P, fll,   , z exp -t
For reference below we note

(4.10) sup
zd

sinr(tz-- ’)
r( tz , )

<exp(rdt),

a consequence of the maximum modulus theorem and (4.8).
We note that approximation in L(R) can be replaced by approximation in C(R),

the subspace of continuous functions in Loo(). More precisely, for a compact linear
operator T: X C() we have

(3.5) an(T)-an(jT)

wherej: C L is the injection. It is clear from (3.2) that an(jT)<--an(T ) as IlJll- 1. To
prove the reverse inequality note that the compactness of T implies that there exists a
modulus of continuity w(8, t) such that

and for allf T(B(X))

w(8,t)<_w(8,t,), t<_t,,

sup [f(s’)-f(s)[<-w(,t).
1, ’1-<t
ls-s’l__<

For e >0 we choose a function h >0 such that w(h(Itl),t)<e and define a smoothing
operator R,: Lo --, C by

ft+h(Il) )

Then IIRII---1 and an(jT)>--a,,(RjT)=an(RT)>_an(T)-IlT-RTII by (3.1), (3.2)
and (3.3). From the definition of h we see that liT-RTII <_e which, since e is arbitrary,
finishes the proof.

5. Proofs. To simplify notation we shall use the abbreviations Sr,d-"-trnoo(’d),
X,.=X,.,,/2, X=Xo, Y=brc(n), Y= Y0-

Proof of Theorem 1. By Lemmas 4 and 5 it suffices to estimate dn(i), in(i) with
i: Xfq Y_ Y. In view of the obvious inequality dn_<t$ we shall bound 8n from above
and d from below. To prove the upper estimate we write i=(i--Ptr)+ Pt; and by (3.1),
(3.3) we have
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By Lemma 11 we have

(5.1) IIi-Pll<exp ----t
To estimate the second term we factor Ptr as

I J
(5.2) Ptr: Y-r 1oo, lo Y

where (If)=f(r/t) and Ja--,arsrtr. Clearly IIIII- and since by Lemma 8 IIJIlt we
obtain using (3.2) and Lemma 2

(5.3) ,,(Pt)<texp(- -tn )
Combining the estimate (5.1) with (5.2) and choosing t=(rn)l/2/rr gives the upper
bound.

To prove the lower estimate we consider the following factorization of the identity
on 12oom+ 1,

2m+ J" I. 2m+lXfq Y-r Y1

where Im and J, are defined analogous to I and J. Using the estimates

II ,ll  <exp --t
IIs llr_ < exp 7m I l-<m

for the norms of the basis functions s we obtain, choosing t-(2rm)l/2/rr, m- In/2]

IIj ll <m exp -m + exp -- <n exp -- (rn)

The lower bound follows now from (3.2) and Lemma 1.
We now formulate a general result which allows a unified treatment of the proofs

of Theorems 2-4 and is of independent interest.
THEOREM 5. Let a, denote either one of the numbers d,, or %. For X-->0, p >0 and

>0 we have

(5.4) a,( 1oo ,o/t, 1oo ) exp (

As a consequence we obtain

(5.5) exp(

2

2 +0 ) <<a=( Xx fq Y_, Y)

<<a,( loo,o/t, too ) + exp (

<<dn( XxO Y_, Y), 8.( Xxt3 Y_, Y)

<<exp---- x+pn
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and

(5.6) exp (- (4,r 21og 2) /3 (Ou)1/3)X+ p
n <<e,,( Xx fq Y-o, Y)

<< exp -log2 XO /3)
Proof. To prove the upper estimate in (5.4) we write the embedding i: Xx fq Y_o Y

in the form i-(i-P,o)+ Pto where we choose o >,, 0. As in the proof of Theorem we
estimate

a,( ) _< Iii- e,oI1+ a,( Pto )
and obtain for the second term (cf. (5.2))

a,,(Pto)<--ta,(lo,o/t,loo)
Therefore we have to show

[li-Ptll<<exp ( ,22 P t )
To estimate supxulf(x) Ptof(X )[ we set A (r2/2)t/(X/ p) and consider two cases.

(i) [x[<_A. Lemma 10 and the estimates (4.1), (4.8) imply that

If(x)-e,f(x)lexp exp(-olx-zl+Xlzl)dzllfllx
exp +hA Ilfllx.

(ii) ,Ixl >A. Since If(x)[ exp( plxl)ll v_ it follows that

IPtof(x )]z exp(- /tl- olx- /tl)Ilfll v_ztexp(- plxl)Ilfll _.
This implies that for Ixl>A

If(x ) P,of(x)lzexp( pa )Ilfll _..
Combining the estimates (i) and (ii) completes the proof by our choice of A.

To prove the lower bound in (5.4) we consider for e >0 and A-[(r2/2)t2/(h+ p)]
the following factorization of the embeddingj:

loo,o/t+, -- X
where (I,f),,=f((r+b(r))/t) and JAa--Y,,,za,,s,,+b(,,),t,o. Here b(v) is defined as b(v)
=A sgnr and o is chosen larger than h and O. Using the inequalities (4.1), (4.10) we
obtain by a simple calculation, keeping in mind the choice of o,

[[S+b()llXx< exp’ "- XA/t
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Therefore

and by our choice of A we get

Since III11- this implies

[IJ[l<e- exp( r--2 Pt)"2

a"(J)e-exp( q1"22 P---P---t)a,,(i).
Taking into account the asymptotic behaviour of a,,(j)=a,,(loo,p/t+,,lo ) the lower
estimate follows by the appropriate choice of e.

The inequalities (5.5) and (5.6) follow form (5.4) by substituting the bounds for
an(loo,t,/t, loo ) obtained in Lemmas 2 and 3 and choosing appropriately. More precisely
for an=$n, dn we choose t=((2/r2)(,+ p)n)/2 and for an=e let

41og2(h+p)2n )1/3t

Using Theorem 5 we can now easily give the proofs of Theorems 2-4.
Proof of Theorem 2. In view of Lemmas 4 and 5 we have to estimate the n-width

and approximation numbers of i: Hp(f]) f’l Y_r Y.
For the upper estimate consider for e >0 the following factorization of

H()n Y_’ ’-’ Xl/p,ct/2-v, 0 Y-r --’ Xx/pn Y-xr Y - Y

where (r/2- e)/(r/2) and T is defined by

(Tg)(z)=g(hz).

Since by (4.1)

we have that

I.,(z)l-I.,(Xz)l for z, ,zfa,

d, d/A<r

Using (3.2), Lemma 6 and (5.5) we obtain from the above factorization

*() -< II/, rlla.(j=) r-’ <<-1/exp( --f( e)n ’s2 )
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where

,r (Xr X-f(e) =. Alp +Xr /2

Sincef is a smooth function of ,, we get by setting e-n-/2

8n(i)<<exp(--f(O)nl/2--f’()), [0,n
This proves the upper bound in view of

_r( r2 )1/2f(O) - r+ l/p

To prove the lower bound we consider for e >0 the embedding

j" X/_,fq Y_r-+ Y,

which may be factored as

Xl/a f"l Y-
j
Hp(al Y_r Y.

By Lemma 6 we have IIJ211<e-l/. Applying (3.2) and substituting the estimate (5.5)
for dn(j), we get

( ( r2 ) 1/2 )n 1/2 <<dn(Jl)e-l/Pdn(i)exp--,r
1/p--e+r

As in the proof of the upper bound we write this inequality in the form

el/r exp(-g(e)n ’/2) <<dn(i )
Writing g(e) g(O)+ ,g’() and setting e- n- /2 finishes the proof.

The proof of Theorem 4 is completely analogous and therefore omitted. We simply
use the estimate (5.6) for e instead of (5.5).

Proof of Theorem 3. Recall that by Lemmas 4 and 5 we may estimate dn(i), 8n(i),
where i: Hp(fa) gp/qLq(R).

To prove the upper estimate we consider for e>0, A-2(r/2-e)/rr and
# 1/q- (A/2)(1/q+ 1/p ) the following factorization of i:

H,(2)
Jl T J2 T-1 J3

1-"> gl/p,r/2-e --> Ship "-> Y1/q-a --> Y(l/q-a)/h --> /qtq(R)

where T is defined by (Tg)(z)=g(Az). As we already pointed out in the proof of
Theorem 2, IITII, liT-11< 1. By our choice of h, ) and sincep >q, we have /p< l/q- p
and (l/q-p)/A< 1/q. Therefore the embeddings j, J2, J3, are well defined. By Lem-
mas 6, 7 IIJll<e-l/’, IIJ311< 1. Using (3.2) we obtain

6,(i)<e-/’6n(J2 )
Since an( Xo, Y)- an( Xa_,, Y)<an(Xf Yo_, Y) this and (5.5) imply

8n(i)Ze-/Sn(X Yh/p-l/q+#, Y)Ze-1/Pexp(-h(e)nl/2),
where h(e)-(r/2)(A/p-1/q+p) with ,-,(e), t)-t)(e) as defined above. Since
A(0)- 1, p(0)-0 we may set e-n-/2 and complete the proof as in the previous cases.
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The lower estimate, however, cannot be obtained by this technique since there is
no embedding Lq(l) Yh. But we may work with Zq directly and proceed similarly as
in the proof of Theorem 1. By Lemma 6 and isometrics we obtain

dn( np( ), dpl/qZq([ )) el/Pdn( Sl/p_ dpl/qZq([ )) 81/Pdn( Sl/p_ 1/q_e, Zq([ )).
Let ta- l/q-- 1/p + e. Then p->e and we can factor the identity

I2 I!
I: 12oon+l J-->Lq(a)-=>12oon+l-=> X_

Here, I2((a))-,ll<_narsto. From Lemma 9 and the Hahn-Banach theorem there exist
linear functionals L, on Lq(R), Igl_<n, such that

L( asto)-a, I[Lll(p+t)l/qnl/q

<--n

(actually, an explicit construction of L is provided in the proof of the lemma). Let 11
be defined by I f= (Lf)l_<n. Then

IIIlll( + t)l/qn l/q.

To estimate 111211 we have from (4.1), (4.9)

IlSvtOllrk-pHoo(fl) sup elXl--/exp --- --exp O[vl/t +--
Therefore

III=lln exp tn/t+--t.
From Lemma and (3.2) there follows now

1 d=(I) <_ll611d=n(J)llI=ll,
hence

dn(j)>(la+t ) l/qn-l-1/%l/Pexp--pn/(2t)----t
The proof is completed by the choice of t- pVrp-ff/r and then e- n -1/2.

Remark. Combining the ideas of the preceding proofs, we obtain the estimates
(2.5). Indeed we have, cf. Lemma 5,

6(H,Loo(- 1,1)) 2(-IHp(f), L(R)).
XA Y-o, Lemma 6, (3.5),Let p 1/p 1/p’. From the obvious injection X_o

(5.5) and using T, , as defined above

n(*--IHp(), L.()) Ze-I/Pn( X_p,/2_t, Y)

( 1:te-’/’8(X_o, Y)e l/PSn(X Y-o’ Y) <<exp (on)
e- n- 1/2, as in the proof of Theorem 2.
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For the lower bound

8"(+-’H,(), L(R))>e)/’$,,(r_o_, Y)>>exp(-r(pn)’/2),
where we proceed as in the proof of Theorem 3, but using Lemma 8 instead of
Lemma 9.

The following slight extension of our results is now easily obtained. It concerns the
question about the dependence of a,,(H,(D) fq F r, Lq(- 1, 1)) on the domain D. A
domain much smaller than A might be useful to consider when it is a matter of
approximating functions with singularities very near interior points of the interval of
approximation (-1, 1). Or, conversely, one might be interested in functions known to
have singularities far from (- 1, 1). Suitable domains generalizing A are given by

Ad=(WC" arg l+Wlw <d}, 0<d<r, A--Ar/2.

These were considered by Stenger [13-16], who obtained upper bounds. The substitu-
tion z-log((l+w)/(1-w)) maps Ad conformally and 1-to-1 onto fd- Using the
isometry (Tg)(z)= g(Xz), 2d/r, we find we can reduce the problem of bounding

an(Ht,(Aa)fqFr, Lq(- l, l))
to that of bounding

a.(H(f) n Y_hr,’/qLq())
which we have already solved. We state only two of the resulting estimates for illustra-
tion:

( ’r/" 1/2)d,(Hoo(ad) (3Fr, Loo( 1, 1))><exp (Xrn)
where r>0, X 2d/, and forp >q/

exp(-2n’/) <<d.(H.(ad),Lq(-- 1,1)) << exp( n1/2)
where --(/2)(A/q-l/p)l/2 and silarly in the remMning cases.
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SYSTEMS OF DIFFERENTIAL EQUATIONS
THAT ARE COMPETITIVE OR COOPERATIVE II:

CONVERGENCE ALMOST EVERYWHERE*

MORRIS W. HIRSCH"
Abstract. A vector field in n-space determines a competitive (or cooperative) system of differential

equations provided all of the off-diagonal terms of its Jacobian matrix are nonpositive (or nonnegative). The
main results in this article are the following. A cooperative system cannot have nonconstant attracting
periodic solutions. In a cooperative system whose Jacobian matrices are irreducible the forward orbit
converges for almost every point having compact forward orbit closure. In a cooperative system in 2
dimensions, every solution is eventually monotone. Applications are made to generalizations of positive
feedback loops.

Introduction. This paper studies the limiting behavior of solutions of systems

d(1) dt -Fi(xl" .,x") (i=1,...,n)

which are either cooperative"

OF
.>0 fori:j,

or competitive"

OF
.<0 for i:/:j.

The main results are as follows:
If (1) is cooperative, there are no attracting nonconstant periodic solutions (Theo-

rem 2.4).
If (1) is cooperative and irreducible and its flow is (@t), then t(x) approaches the

equilibrium set for almost every point x whose forward orbit has compact closure
(Theorem 4.1).

If n 2 every solution to (1) is eventually monotone (Theorem 2.7).
The author’s earlier paper [6] investigated compact limit sets of (1) from a geomet-

rical and topological point of view. The present paper is concerned more directly with
dynamical behavior. While it is formally independent of [6], it uses some of the same
techniques.

Most of the results concern cooperative systems which are irreducible in the sense
that the matrices [(OFi/OxJ)(p)] are irreducible. This has the important consequence
that the flow {t} corresponding to (1) has positive derivatives for t>0, i.e. the
matrices Ddpt(p ) have only positive entries. By Karnke’s theorem such a flow is strongly
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monotone, that is,

kt(x)<ckt(y) ifx<=y, xq:y, t>0.

The class of irreducible cooperative vector fields is contained in the wider class of
vector fields whose flows have eventually positive derivatives: DdPt> 0 for all > 0, for
some to_> 0. A flow of this type is eventually strongly monotone, which is as useful as
being strongly monotone for most purposes. Moreover suitably small perturbations (in
the weak C topology) of such a vector field have positive derivatives in a given
compact set, and thus are eventually strongly monotone in such a set. This has the great
advantage of allowing the use of perturbation methods. In particular we make crucial
use of the Closing Lemma of C. Pugh in the proof of Theorem 4.1.

Section 1 contains results on the monotonicity of various kinds of flows. Section 2
studies equilibria and closed orbits of eventually monotone flows. The key result is
Theorem 2.2 which gives a useful sufficient condition for a solution to converge.

In [}3 the Closing Lemma is exploited to prove basic results (3.7), (3.8), (3.9) about
the relative position of to-limit sets. These are applied in [}4 to derive conditions under
which almost all bounded forward trajectories converge (Theorems 4.1 and 4.4). Theo-
rem 4.6 implies that compact attractors contain equilibria. Theorem 4.7 shows that
invariant functions are usually constant.

Section 5 shows how the theorems proved in earlier sections can be applied to
systems in the nonnegative orthant R _. The positive feedback loop (Selgrade [13], [14])
is used as an example. The Closing Lemma is discussed in the Appendix.

Many of the results in this paper can be extended to strongly monotone semiflows
in ordered Banach spaces, including those defined by solutions to certain parabolic
evolution equations. For these results see the author’s paper [19].

The following terminology will be used throughout the paper" R is the field of real
numbers; real n-space is n, the vector space of n-tuples x=(xl, .,x) of real
numbers. F: WR is a C (continuously differentiable) vector field on a nonempty
open set Wc R . For any x W we denote the maximally defined solution of the
vector differential equation

d_ F() (0) x
dt

by tckt(x), tI(x)cg. For each tR the set of xw for which q,t(x) is defined is a
(possibly empty) open set W(t)c W and qt: W(t) IV(-t) is a C diffeomorphism.
The collection of maps { qt }tea is called the flow of F, or of the differential equation
dx/dt=F(x). Forx Wwe also write x(t) for kt(x).

The forward trajectory of x Wis the parametrized curve qt(x) (t >= O, I(x)).
Its image is the forward orbit of x, O/(x). The backward trajectory of x and the
backward orbit O_(x) are analogously defined.

A subset Xc W is positively (respectively, negatively) invariant if O/(x) X (resp.
O_(x)c X) for all x c X. It is invariant if it is both positively and negatively invariant.

The to-limit set to(x) of a point x IV, or of a solution x(t), is the set ofp W
such that x(tk)p for some sequence t, o. The a-limit set a(x) is similarly defined
with k

If O+(x) has compact closure in W then w(x) is a nonempty compact connected
invariant set. An analogous statement is true of a(x).
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We say a forward trajectory x(t) approaches a subset S c W if 0+(x) has compact
closure in W and 0(x)c S. This implies

lim inf Ix(t)-yl--O.
t---o y-S

If VcR is open, h" VR is C andp V, then Dh(p) denotes the nXn matrix
[(ahi/axJ)(p)]. In particular there are the matrices DF(p) and Dq,(p).

Let x, y n. We write:

x<y ifxi<y’ for alli,

x=<y ifx i<_yi for alli.

The notations y > x, y_>_ x have the obvious meaning. We call x positive if x > 0 (the
zero vector). Similar notation applies to matrices.

The closedpositive orthant is the set

+= {xen". x>=0}.

If X, YcR" are any subsets we write X<Yif x<y for all xX,yY. We
analogously define X> Y, X=< Y, etc.

An n n matrix A =[Aq] is irreducible if whenever the set (1,-..,n } is expressed
as the union of two disjoint proper subsets S, S’, then for every S there exists j,
kS’ such that Ai4:0, Aki4:0. This means the linear map A" n_..)Rn does not map
into itself any nonzeo proper linear subspace spanned by a subset of the standard basis.
Equivalently: the directed graph with vertices 1,...,n and directed edges (i,j) for
A ij

=/= O, is connected by directed paths.
If x then Ixl is the Euclidean norm (Y’.x/2)1/2o If A is a real n n matrix then

IIAII is the operator norm

If K, L are sets then

max(lAx[" x R" and Ix[= 1 ).

KL= (xK: xL ).

1. Monotone flows. For reference we quote a corollary of a result of Kamke [8].
KAMKE’S THEOREM. Let Vc g be an open set and G: g V g a continuous map

such that Gi(t, xl, .,x m) is a nondecreasing in x, for all kq: i. Let

be solutions of

,’[a,blV

such that (a)<,/(a) (resp. l(a)<=,l(a)). Then (t)<,/(t) (resp. l(t)<=,l(t)) for all
t[a,b].

For a proof see Coppel [2] or W. Walter [16].
Notice that the assumption on G is satisfied if OGi,/Ox k >= 0 whenever k 4: and V is

convex. In fact V need only be p-convex: whenever x, y V and x =<y then V contains
the entire line segment joining x and y.
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Now consider the system

() dx
dt =Fi(x)’ i=l,. .,n

defined by the C vector field F: WR n. The flow ( qt } of the system is called:
cooperative if the off-diagonal entries of DF(z) are => 0 for all z w;
competitive if the off-diagonal entries of DF(t) are _< 0 for all z w;
irreducible if DF(t) is irreducible for all z IV.
These adjectives will also be applied to the system (1) or the vector field F, with

the same meaning.
It is a well-known consequence of Kamke’s theorem that when IV is convex, the

flow of a cooperative system (1) preserves the ordering =< in R n. In 1.4 and 1.5 below
we extend this result.

We say ( lt } has nonnegative (resp. positive) derivatives if Dt >= 0 (resp. > 0) for all
t>0, z W.

TrIOlM 1.1. Let F be a cooperative vectorfieM. Then:
(a) { qt } has nonnegative derivatives.
(b) IfF is also irreducible then { kt } has positive derivatives.
Proof. Fix W. For all J(z) define matrices

A(t)=DF(ckt(z)), M(t)=D*t(z ).

Then M(t) satisfies the variational equation

dM(2) dt -A(t)M

with initial condition

(3) M(0) =I,

where 1 is the n n identity matrix. The right-hand side of (2) is a matrix function
G(t, M) whose entries are

Gik(t,Mll," ",Mnn) Aij(t)Mjk.
j=l

It is easily verified that (because F is cooperative)

Gij
OMrs>_0 if(i,k)4(r,s).

It follows from Kamke’s theorem that the solution M(t) to (2), (3) satisfies Mik(t)>=O
for all i, k and all >= 0 because the constant map N(t) 0 (the n n zero matrix) is also
a solution to (2), and M(0)>= N(0). Thus M(t)>= 0 for all >= 0.

Now assume F irreducible. If t0>0 and M(t0)>0 then Kamke’s theorem implies
M(t) > 0 for all > 0. Suppose it is not the case that M(t)> 0 for all > 0. Then there
exists /1>0 such that Mij(tl)=O for some i,j. It follows that for every t[0,tl],
Mij(t)= 0 for some i,j (depending on t). One of the sets

[O, tllOMi-l(o)



COMPETITIVE AND COOPERATIVE SYSTEMS II 427

must have an interior point. Therefore there exist i,j and an interval [a, b]c R+ such
that Mij(t) 0 for all a, b]. But the following lemma contradicts this.

LEMMA. Suppose i, k,{1,.-.,n} and t0>0 are such that Mik(to)=O. Then
(d/dt)Mik(to)>O.

To prove the lemma define

S=(r’Mrk(to)=O).
Then S is nonempty (since S) and S 4: {1,-..,m } (since the matrix M(to) is nonsin-
gular for all t). Now the matrix A(t0) is irreducible. Therefore there existsj (1,.--, }\S
with Aij.(to)4: 0. Clearlyj 4: i, so Aj.(t0) > 0 since F is cooperative. We now have

n

dMik(to)= E Air(to)Mrk(to)dt
r=l

Since Mk(to)= 0 we can write the sum as

n

Y’Air(to)Mok(to).
r=l
ri

In this expression each summand is the product of nonnegative numbers, and the terms
with r=j are positive. Thus all Mk(t)>O. This proves the lemma; the proof of the
theorem is now complete. QED.

Perturbations of a cooperative irreducible vector field need not preserve the prop-
erty that its flow have positive derivatives. But a slightly weaker, equally useful prop-
erty is preserved" that of having eventually positive derivatives. A flow (qb ) has this
property in a set V provided there exists o > 0 such that D@t(z) > 0 for all >= o, z V.

THEOREM 1.2. Assume K W is a compact set in which the flow ( qt } has eventually
positive derivatives. Then there exists i > 0 with the following property. Let (+t } denote
the flow of a C vectorfield G such that

(4) Ir(x)-G(x)l+llDr(x)-DG(x)ll< forallxK.

Then there exists t, > 0 such that if > t, and q(z) Kfor all s [0, then D+t(z) > O.
In particular: if K is positively invariant under (qt} then ( +t) has eventually positive
derivatives in K.

Proof. Fix to>0 so that Dq,t(z)>O for all t>=to, zK. Fix 8>0 so small that (4)
implies

Dt(z) >0

Now fix >= 2t0. Write

where

ift0<=t<=2to ifzK.

t=r+kto

o =< r < 2t0 and k is an integer >= 1.

Putjto=S for j=0,...,k. Let z be such that q(z)K for all s[0,t]. Put qj(z)=z.
By the chain rule

(5) Dd,,’t(z)=Dr(zk)Dto(Zk_)"" Dq,’to(tO).
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Now D/to(Zi)>O for i=0,...,k-1 because ziK. Also D+r(tk)>0 because zkK
and.to<=r<2to. QED.

Let W’c R be a subset. A map f: W’--, R is monotone in W’ (resp. strongly
monotone) provided x __<y implies f(x) __<f(y) (resp. f(x) <f(y) when x 4: y).

LEMMA 1.3. Suppose f: W’-N" is C1. If Df(z)>O (resp. Df(z)>O) for all z W’
and W’ is p-convex then f is monotone (resp. strongly monotone) in W’.

Proof. Let a, b W with a _< b. For s [0,1] put as a + s(b a). The lemma
follows from the formula

f(b)-f(a)= fol Df(as)(b-a)ds. QED.

The flow (qt is eventually (strongly) monotone if there exists to>_ 0 such that qt is
(strongly) monotone for all t> 0. If this holds with o =0 then the flow is called
(strongly) monotone.

THEOREM 1.4. Let Vc W be p-convex. If the flow (ht) has (eventually) positive
derivatives in V then it is (eventually) strongly monotone in V. If the flow has (eventually)
nonnegative derivatives in V then it is (eventually) monotone in V.

Proof. This follows from Lemma 1.3. QED.
THEOREM 1.5. Let Vc W be p-convex. If the vector field F is cooperative (resp.,

cooperative and irreducible) then its flow ( Ot ) is monotone (resp. strongly monotone) in V.
Proof. Apply Theorems 1.1 and 1.4. QED.
Notice also that every open set W is locally convex, hence the flow of a cooperative

vector field in W monotone in some neighborhood of any point.
The following theorem is a converse to Theorem 1.4.
THEOREM 1.6. Suppose ( q,t) is (eventually) monotone in an open set Vc W. Then

( qt ) has (eventually) nonnegative derivatives in V.
Proof. Fix > 0 such that q’t is monotone in V. Fix x V and v R _. Then

DOt(x)v= limh-l(Ot(x+hv)-O,(x)).
h-.O

If h>0 is sufficiently small we have x + hvv and Ot(x + hv)>=Ot(x ). Thus Dqt(x)v is
a limit of vectors in _, so DOt(x)v>=O. This shows DOt(x) maps

_
into itself.

QED.
For convenience we present a summary of some of the implications between

various kinds of systems. The following abbreviations are used:

C
CI:
ND:
PD:
EPD:
M:
SM:
ESM:

x

cooperative,
cooperative and irreducible,
nonnegative derivatives,
positive derivatives,
eventually positive derivatives,
monotone,
strongly monotone,
eventually strongly monotone,
implications,

implication is valid in p-convex sets.
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THEOREM 1.7.

M

C ND M

CI PD SM

EPD ESM

2. Equilibria and close orbits. Let (qbt} denote the flow of a C vector field F
defined on the open set Wc R n.

A point p W is an equilibrium if F(p)= 0, or equivalently, if t(P)=P for all
tR.

Let p be an equilibrium. Then D@t(p)= exp(tDF(p)). The spectrum (set of com-
plex eigenvalues) of D@t(p) is related to that of DF(p) by

Spec Dckt ( p ) ( e tx" 2 SpecDF( p ) ).
The equilibriump is called"
simple if 0 SpecDF( p); or equivalently, if 1 SpecDckt(p) for some ;
hyperbolic if Re?4:0 for all XSpecDF(p); or equivalently, if I/14:1 for all

# SpecDq, (p) and some (hence all) 4: 0;
a sink if REX<0 for all ?SpecDF(p); or equivalently, if I/1<1 for all

Spec Dckt(p) and some (hence all) > 0.
It is well known that a sink p is asymptotically stable; that is, every neighborhood

of p contains a positively invariant neighborhood N of p such that

(1) t ( x ) converges to p uniformly in x N as -
A weaker notion is that of a trap" an equilibrium p such that there is some open set

N, not necessarily containing p, such that (1) holds.
It is not known how to characterize traps in terms of the vector field without

integrating it. It is easy to see, however, if p is a trap then REX=<0 for all , in
SpecDF(p). It follows that a simple trap is a sink, and DivF=< 0 at a trap.

An o-colimit point of points u, v in W is a point p W such that

p lim u(tk) lim v(tk)

for some sequence k
LEMM. 2.1. Let ( kt } be eventually monotone in an open set Wo c W. Let p Wbe an

w-colimit point ofpoints x,y in Wo where x <y. Then p is an equilibrium.
Proof. Let T>0 be so large that x(t)<y(t) for all t>= T. Let t, o, p, y(t)--.p.

Choose k0/ + so large that t, >__ T for all k >= k0. Put tk0 s. The set

is a nonempty open set. If u U then
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Therefore for r > T

i.eo

qr(X(S)) < r(u(s))< r(y(s)),

x(r+s) <u(r+s)<y(r+s).
It follows that for all k such that tk>_ T+ s,

X( tk) < U( tk) <y(tk).
This implies u(t)p as k o, uniformly in u U.

As a consequence,

lim diamtk(U) 0
k--- o

where for any Xc R n,

diamX= sup ([a- bl" a, b X }.
Now each t maps solution curves to solution curves, preserving parameterization up
to an additive constant. It follows that there exists z > 0 with the following property.
For every [0, ’] and every e > 0 there exists z in the e-neighborhood ofp such that

Iz(t)-zl<e for all te [O,z].
Letting e 0 we get

Ip(t)-p[=O for all t [0,-1
which implies p is an equilibrium. QED.

The following result is basic to the rest of the paper.
THEOREM 2.2. Assume the flow (t } is eventually monotone in an open set W0: let

>= 0 be such that qt[ Wo is monotone for all > 1. Let x(t) be a solution defined for all
t>=O. Suppose T>0 is such that x(O) Wo and x(t) Wo, and either x(O)<x(T) or
x(0)> x(T). lfp W is a limitpoint of ( x(kT): k. +} then the following are true:

(a) p is a trap.
(b) p lim/_, o x( ).
(c) Assume p Wo. If x(T)> x(0) (resp. x(T)< x(0)) then p > x(t) (resp. p < x(t))

for all > 1.

Proof. We assume x(0)< x(T), the other case being similar.
For all > we have

x(t)<x(t+T).
Letting T, 2T, 3T,- ., we find that for all sufficiently large integers k > 0:

(2)
It follows that

(3)

x(kT)<x((k+l)T).

p= lim x(kr), (kT]+).
k--- ot

Now apply Lemma 2.1 with x= x(0), y= x(T): clearly p is an 0-colimit point of
x,y so p is an equilibrium. For all s [0, T], k Z /, we have:
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as k o. This shows

qt(x)-,p as t.

Similarly qt(Y)-*P as - . Finally, p is a trap because if x < z <y, z wo then

which shows t(z)---)p uniformly for z is the nonempty open set

(z Wo" x<z<y).
To prove (c) assumep W0 and set

C=(yWo’y<p }.
Since q,t(p)=p it follows that q,t(C)c C for all t> tt. By (2) and (3), xc. Therefore
x(t) C for all > t, proving (c). QED.

THEOREM 2.3. Let { t } be eventually monotone.
(a) Ify o (x ) andy < x ory > x then y is a trap and limt_ x ( ) y.
(b) There cannot exist u, o in o(x) with u < o.
(c) If the flow is eventually strongly monotone there cannot exist u,v in o(x) with

u<=v, uv.
Proof. (a) Suppose y > x, the other case bcin similar. There exist arbitrarily large

T> 0 such that r(x)> x. The conclusion now follows from Theorem 2.2(a) and 2.2(b).
(b) There exists x’ in the forward orbit of x so close to u that x’< v. Part (a)

implies limt_. x’(t) v. Therefore 0(x) ( v }, contradictin u v.
(c) Apply part (b) to U(to), V(to) where t0>0 is so large that U(to)<U(to).

D.
COROLLARY. Let (t} be eventually strongly monotone and suppose E is totally

ordered. Ifx W is such that o(x) is a nonempty compact subset ofE then x(t) converges
to an equilibrium as --->

Proof. Suppose q)(x) contains two equilibria u and . Then u < by strong mono-
tonicity, contradicting Theorem 2.3(b). QED.

By a closed orbit we mean the image of a nonconstant periodic solution.
THEOREM 2.4. An eventually monotoneflow cannot have an attracting closed orbit.
Proof. Let , be a closed orbit of an eventually monotone flow. Let y ,. In every

neighborhood of y there exists a point x >y. Since y is not an equilibrium it follows
from 2.3(a) that yqo(x). Since V is invariant, c0(x)= . This shows that ,/is not
an attractor. QED.

More generally, a similar argument shows that if a minimal set M is an attractor
then M is a single point. We consider attractors again in Theorem 4.6.

The following convergence criterion can be considered an infinitesimal analogue of
Theorem 2.2. For cooperative systems it is well known.

THEOREM 2.5. Let (t) have eventually nonnegative derivatives. Suppose x W is
such that F(x) >__ 0 (or F(x) <_ 0). Then all coordinates xi(t) are eventually nondecreasing
(or eventually nonincreasing). If o(X)4: then x(t) converges to an equilibrium p. If
F(x ) > 0 ( or F(x ) < O) then p is a trap. If ( ckt ) has eventually positive derivatives then p is
a trap.

Proof. Suppose F(x)<__ O, the other case being similar. Let to> 0 be large enough so
that Dqt(x)>=O for all t>__ o. Now

F(x( t)) DOt(x)F(x )
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Therefore for all >__ o it follows that F(x(t)) < 0. In other words (d/dt)xi(t) <= 0 for all
1,...,n,t >= o. Thus x(t) is eventually nonincreasing.
If p (x) then x(t) must converge to p. Each of the last three hypotheses implies

the existence of >0 such that F(x(t))<O for all t>=tx. Put y=x(tl). Then y(T)<y
for sufficiently small T>0. By Theorem 2.3(a) o(t) converges to a trap as t .
QED.

The following lemma says that solutions lying in certain two-dimensional affine
subspaces are eventually monotone.

LEMMA 2.6. Let y(t) be a trajectory of a flow having eventually nonnegative deriva-
tives. Suppose y(t) defined for all t>_O. Suppose there exist to>=O, and distinct j, k
(1,...,n), such that yi(t) is constant for all t>=to, i4:j, k. Then yj(t) and yk(t) are
monotonefor sufficiently large t. If o(y)4: then y(t) converges.

Proof. We may assume F(y(t))4O for all t>=to. If F(y(tl) >=0 or F(y(tl))<=O for
some >= o the conclusion follows from Theorem 2.5. In the contrary case, the vector

(Fj.(y(t)),Fk(y(t)))R 2 is confined, for all t>=to, to the second or fourth open
.quadrant. This implies eventual monotonicity of yj(t) and y(t). QED.

THEOREM 2.7. Let F be a vector field in an open subset of the plane. Assume that F is

cooperative, or competitive, or that the flow has eventually nonnegatioe derivatives. Let
x( ) be a solution defined for < <= O, or for 0 <= < o. Then each xi( ) is monotone

for tl sufficiently large.
Proof. It suffices to consider the case where the flow has eventually nonnegative

derivatives: this holds if F is cooperative; and if F is competitive it suffices to prove the
lemma for -F (which is cooperative).

If x(t) is constant there is nothing more to prove. Assume x(t) is not constant.
Suppose x(t) is defined for -o < t__<0. Let t0>0 be such that qt has nonnegative
derivatives for >__ 0.

Case 1. Assume there exists 0 such that F(x(tl)) is in open quadrant II or IV
(i.e. it is neither =<0 nor >__ 0). Then Theorem 2.6 implies that for all <= o, F(x(t))
is in quadrant II or IV. Since F(x(t)) 4: 0, F(x(t)) cannot pass directly from II to IV.
Therefore F(x(t)) is in the same quadrant for all t<=tl-to. Therefore xl(t), x2(t) are
monotone for =< tl to.

Case 2. F(t) is never in II or IV. Then F(t) must stay in I or III for all < 0 and
again x;(t) is monotone, 1, 2.

When x(t) is defined for all > 0 a similar argument applies. QED.
COROLLARY 2.8. Let ( qt } be a cooperative or competitive flow in for which the

nonnegative quadrant is positively invariant. Then every bounded trajectory [0 ) -*+

2+ converges.
Versions of the last result have been proved many times" see for example Albrecht

et al. [1], Grossberg [4], Hirsch-Smale [7], Kolmogorov [9], Rescigno-Richardson [12].

3. w-Limits. Throughout this section we assume given a C vector field F on a
p-convex open set Wc n, whose flow (qt} has eventually positive derivatives. It
follows from Theorem 1.5 that (tt } is eventually strongly monotone.

The following notation is used"
E c W is the set of equilibria;
x,y are distinct points of W and x =<y.
The main results of this section are Theorems 3.7, 3.8 and 3.9.
LEMMA 3.1. Let p be an w-colimit point of x,y (see 2). Then pE. If x(t), y(t)

converge to p as o, then p is a trap.
Proof. Follows from Lemma 2.1. QED.
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Throughout the rest of this section we assume that o(x) and o(y) are compact and
nonempty.

LEMMA 3.2. Ifp o (x)\E then p < q for some q o ( y ).
Proof. It is easy to see that there exists q 0(y) such that for some sequence

p= lim x(tk), q= lim y(tk).

Monotonicity implies p __< q. If p q then p is an 0-colimit point of x,y. Then p E by
Lemma 3.1, a contradiction. Therefore p 4: q.

Let T> 0 be so large that q’t is strongly monotone for all g >= T. Since 0(x) and
0(y) are compact and negatively invariant, we can define

Clearly Po 4: qo, and

po=q_r(p)o(x),
qo=q_r(q)o(y).

po lim qtk_r(x),
k--*

qo lim q’tk-r(Y).
k---*

By the argument above it follows that Po =< qo- Therefore

P =qr(Po) < qr(qo)= q- QED.

COROLLARY 3.3. o(X)No(y)c E.
Proof. Suppose p o(x)fo(y)\E. Then by Lemma 3.2 there exists q o(y) with

q>p; and alsop o(y). But this is impossible by Theorem 2.3(b). QED.
LEMMA 3.4. Let K, L be compact invariant sets such that K>= L. Then either K> L or

else there is an equilibrium b such that K L { b } and a < b < c for all a ICk { b },
cL\(b}.

Proof. Clearly KL is compact and invariant and K>=KL>=L. Suppose b,
d K L. Then b __< d and d__< b, so b d. Therefore Kt L ( b ). Since ( b } is invariant
bE.

Choose T> 0 so large that r is strongly monotone. Let x K, y L be distinct.
Then

_
(x)>__

_
(y) because K>__ L, so x >y. This implies K> L if KNL= ; and

also if K L ( b ) then Kb > b > L\b. QED.
LEMMA 3.5. Let Kco(x), Mco(y) be nonempty subsets with K<M. If one of the

sets K,M is compact andpositively invariant then o (x ) <= o ( y ).
Proof. First assume K is compact and positively invariant. Set

V= (z W: z>K }.
Then Vo(y)4: and monotonicity implies y(t) V for all sufficiently large t>0.
This implies o(y)>__K. I claim o(y)> K. If not, by Lemma 3.4 there exists an equi-
librium b such that K<=b<(y) andKo(y)= {b}. Now {b} o(y), otherwise c> b
for some co(y), contradicting Theorem 2.3(a). But then bKM, contradicting
K< M. Therefore 0(y) > K.

Put Mo=o(y). Then Mo is compact and positively invariant and nonempty. By
what has already been proved it follows that 0(x)<Mo, i.e. o(x)< o(y). In a similar
way one shows that if M is compact and positively invariant then o(x)<o(y).
QED.
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LEMMA 3.6. Let p to(x), q to(y), p< q. Ifp or q is a periodic point then to(x)<
(y).

Proof. If p is an equilibrium, apply Lemma 3.5 with K= ( p ), M= ( q ).
A similar argument is used if q is an equilibrium.
Supposep belongs to a closed orbit 3’ and q is not an equilibrium. By Lemma 3.4 3’

is disjoint from to(y). By the Closing Lemma (Pugh [10], or see Appendix) there is a C
vector field G whose flow (kt) has a closed orbit fl through q. Moreover G can be
chosen to coincide with F outside any given neighborhood of the orbit closure of Q,
and to Cl-approximate F as closely as desired. Now the orbit closure of q is in the
compact set to(y)c W’k3’. Therefore we can choose G so close to F that (Pt) is
eventually strongly monotone, by Theorems 1.3 and 1.5; and we can choose G to
coincide with F in a neighborhood of 3’. Therefore 3’ is a closed orbit of ( Pt )-

We have closed orbits 3’,fl of (Pt) and points p 3’, q fl with p < q. It follows
from Corollary 2.9 that 3’ < ft. In particular, 3’ < q.

We now consider the original flow (t). From Lemma 3.5 (with K=3’ and
M= ( q }) we conclude that to(x)< to(y). QED.

TrIEOREM 3.7. Suppose there existp to(x), q to(y) with p < q. Then to(x)< to(y).
Proof. If p is an equilibrium then the theorem follows from Theorem 3.5. From

now on assumep is not an equilibrium.
By Corollary 3.3 the orbit ofp is disjoint from to(y). We apply the Closing Lemma

of Pugh [10] (see Appendix) to obtain a vector field G whose flow (Pt) has a dosed
orbit 3’ through p. As in the proof of Lemma 3.6, we can choose ( Pt ) so close to ( ’t )
as to be eventually strongly monotone. Moreover there exists T> 0 with the following
property. For any e > 0 we can choose G so that G= F outside the e-neighborhood N of
the solution arc

(,(p)" [tiT}.
For small e, N is disjoint from to(y; (’t)). Therefore for sufficiently small e, to(y; (’t))
is also an to-limit set for the flow (kt), of some point Y0- It is easy to see that we can
choose Y0 >P- It now follows from Lemma 3.6 that

Thus

3’ "-to (p (t })< to(yo;

P < to(Y0;
Now apply Lemma 3.5 to ((t), with K=p,M= to(y; ( t))- QED.

THEOREM 3.8. Exactly one of the following conditions holds:
(a) to(x) < to(y).
(b) to(x)=to(y)c E.
Proof. For any pto(x) there exists qto(y) such that x(t)p, Y(tk)---) q for

sOme sequence tg ---) o. Then p =< q. If p q then p < q by eventual strong monotonicity;
and then to(x)< to(y) by Theorem 3.7. If p=q then p is an to-colimit point of x,y and
so p E by Lemma 2.1.

Suppose (a) is false. Then the results just-proved show that for all pto(x),
whenever q is chosen as above then p q E. Thus to (x) c to (y) cq E. A similar argu-
ment shows to(y)c to(x)CE, and thus (b) holds. QED.

4. Convergence almost everywhere. We continue the assumption of 3: Wc I" is
a p-convex open set and (t) is a flow in Whaving eventually positive derivatives.

Let WCc Wbe the set of points whose forward orbit has compact closure in W.
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THEOREM 4.1. There is a set Q c W having Lebesgue measure zero, such that x(t)
approaches the equilibrium set E as o, for all x WC\Q.

The proof of Theorem 4.1 uses Lemma 4.2 and 4.3 below. Put

Q= (x WC: o(x)C-E}.

It is easy to prove that W and Q are Borel sets. We must prove that Q has measure
zero.

Fix a vector v > 0 in R ". Let E"-1c R, be the hyperplane orthogonal to v and let
rr: " E"-1 be orthogonal projection. To prove that Q has measure zero it suffices by
Fubini’s theorem to prove:

(1) For all wE"-, QCr-(w) is countable.

We need two lemmas. Let ri:n be the ith coordinate projection. Let a and
b > a be two points of W. Since W is a p-convex, W contains the line segment L from a
to b. For each {1,..., n } define

Si ( L ) ( x Q N L: r ( (x)) has more than one element}.

LEMMA 4.2. Si(L) is countable for i= 1,..., n.

Proof. For any zS(L) let Kz be the interval spanned by r(o(z)). Let x,
ySi(L) be distinct. Since a<b we may assume x<y. Since x, yQ, Theorem 3.8
implies o(x)<(y). Therefore KxNKy= . Thus the intervals Kx, xSi(L), are
pairwise disjoint. Each interval contains a rational number, so this family of intervals is
countable. Hence S(L) is countable. QED.

LEMMA 4.3. Q L is countable.
Proof. If xQc3L then (x) is not a single point. Therefore xS(L) for some

( 1,..., n }, so Q L LI’=S (L). It follows from Lemma 4.2 that Q L is counta-
ble. QED.

Proof of 4.1. Lemma 4.3 implies (1) since WNr-l(w) is the union of a countable
family of line segments of the type L. This completes the proof of Theorem 4.1.

By imposing some slightly generic behavior on the equilibria we obtain stronger
conclusions.

THEOREM 4.4. (a) Assume E is countable. Then x(t) converges to a trap as , for
almost all x Wc.

(b) Assume all equilibria are simple. Then x(t) converges to a sink as , for
almost all x Wc.

Proof. Since a simple trap is a sink, (b) follows from (a). Recall the definition

Q= {x W: o(x)E},

and define

N= { x WC\Q: o (x) is not a trap}.

If x W\Q then (x) is a compact connected nonempty subset of E. Therefore, since
E is countable, (x) is a single equilibrium, which we denote by e(x). We obtain a
map e: W"\Q E.

Let L be a line segment in W parallel to a positive vector. The map

e: Lf3NE
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is injective: If x,y are distinct points of L&N we may assume x <y; then e(x) is not a
trap so e(x) e(y) by Lemma 3.1.

This proves that L&N is countable. In Lemma 4.3 we proved that LgQ is
countable. Therefore an argument using Fubini’s theorem, similar to the proof of
Theorem 4.1, shows that Q t9 N has measure zero, which proves Theorem 4.4. QED.

The stable set of an equilibriump is

S(p)=( W: ()-- (p)).

COROLLARY 4.5. Assume E is countable. IfpE is not a trap, then S(p) has
measure zero.

Proof. Use Lemma 4.3(a). QED.
Even without assuming countability of E one can sometimes prove the existence of

traps.
THEOREM 4.6. Let Kc W be a compact attractor. Then K contains a trap. If all

equilibria in K are simple then K contains a sink.

Proof. By definition K is a compact nonempty positively invariant set having a
neighborhood U such that

f 4o(x)cK for allx U.

It follows easily from Theorem 4.1 that K contains an equilibrium. Let p KE be
maximal for the vector ordering _<. By Theorem 4.1 there exists y U such that y >p
and o(y)KcqE4 f. Let qo(y)NKE. Then q>=p since y>p and the flow is
eventually monotone. Therefore q=p by maximality. In this way we can find Y2 >Yl >P
such thatyi(t)p as o, i= 1,2. This impliesp is a trap (hence a sink if it is simple),
since y(t) p uniformly in y ( x W: Y2 > x >Y2 }. QED.

We turn to invariant functions. As an example, consider the cooperative irreduci-
ble system

dt
2x3 +y + z

dy-=x -2y+2z,

-=x+y- 3z.

The function x +y + z is invariant, as is seen by adding up the right-hand sides of the
equations. The equilibrium set is the curve z (3/4)x 4, y (5/4)x 3. Thus the equilibria
are quite degenerate. This is not an accident: Theorem 4.3 shows that when E is
nondegenerate there are very likely to be traps, whereas a continuous invariant function
must be constant on the domain of attraction of a trap. The following result strengthens
this conclusion.

THEOREM 4.7. Suppose the equilibrium set is countable. Let A c W be a connected
open set such that almost every point of A has compact forward orbit closure. Then every
continuous invariant function f is constant on A.

Proof. Let the traps be Px, Pz,’"; let the domain of attraction of Pi be D By
Theorem 4.4(a) the set t.J iA Dg is dense in A.

Clearly f is constant on each Dg. Thereforef(A) is countable. Since A is connected,
f(A) is connected and countable, hence f(A) is a single point, and the theorem is
proved. QED.
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5. Systems in R _. In this section we consider a C vector field F: R n_ and the
corresponding system

(1)

such that

3)
4)

dx
dt -Fi(xl )," ,x i= l, ,n

the system is cooperative and irreducible;
F(O)>= O;
for any xR there existsy > x with Fi(y)<O, i= 1,... n.+
An example is a "positive feedback loop" of n species, of the form

dx
dt

dx
dt

-f(xn)-A1xl,

-xJ-l-Ajxj forj=2,. .,n

where f: is C and the following conditions obtain:
(5a) Aj>O, j= l,. .,n;
(5b) f(s)>0 for alls>0 and f’(s)>0 for alls=>0;
(5C) f(Sk)/Sk <hi"’" A for some sequences sk .
Systems of this kind have been studied by Selgrade [13], [14] and Griffiths [3]. See also
Walter [15].

TIaEOREM 5.1. Let system (1) satisfy (2), (3), (4). Then:
(a) R

_
is positively invariant;

(b) every forward orbit closure in n+ is compact;
(C) the forward trajectory of almost every point of + approaches the set of equilibria.
The next result shows that small perturbations of (1) enjoy similar properties. Let

-(Rn) denote the space of C vector fields on R" with the weak topology (see
Appendix).

THEOREM 5.2. Let Kc be a compact set. Then there exists a weak C neighbor-+
hood I/’ ’() of F such that if G’and+ is positively invariant for the flow of G,
then"

(a) the forward orbit closure of any point ofK is compact;
(b) the forward trajectory of almost every point ofK approaches the set of equilibria.
Proof of Theorem 5.1. By (1), (2) and Theorem 1.5 the flow { q’t) is strongly

monotone. Evidently (3) implies (a), and (3) and (4) imply (b); given y > x as in (4), for
all g >= 0 we have

0 Z t (0)Zft(x) < bt (Y) _<y

showing that the forward orbit of x is bounded. Finally, (c) follows from Theorem 4.1.

Proof of Theorem 5.2. Fix q int R

_
such that

using property (4). Set

q>K and F(g)<0,

r=(xn.O<x<q}

Because F is cooperative and irreducible and F(x) < 0 < F(q), it follows that F(x)
points into intF for any x 3F\(0}. If G is sufficiently near F then G(x) points into F
for all x c3F such that xi=qi for some i{1,.--,n}. If we assume that "/ is
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positively invariant for the flow (qt} of such a G, then qt(F)c F under (qt} for all
> 0. Conclusion (a) is now obvious.

If, in addition to the properties above, G is sufficiently near F, then { kt} has
eventually positive derivatives in F by Theorem 1.2. Conclusion (b) follows from
Theorem 4.1. QED.

THEOREM 5.3. In the feedback loop (5) assume that 0 is a regular value of the function

s--f(s)-A1. "Ans.
Then the forward trajectory of almost every point of R + converges to a sink.

Proof. The hypothesis is exactly the condition that the vector field in (5) have
simple equilibria. The theorem now follows from Theorems 5.1 and 4.4(b).

THEOREM 5.4. In the system (5) we have:
(a) Theforward trajectory of almost every point in + converges to an equilibrium.
(b) Iff(s) is an analyticfor s > 0 then every invariantfunction on + is constant.

Proof. Part (a) follows from the Corollary to Theorem 2.3 because the set E of
equilibria of (5) is totally ordered. Part (b) follows from Theorem 5.1 and (5a, b) once
we show that E is countable. But in the contrary case one proves easily that f(s)=A

A,s, violating (5c). QED.

Appendix. The Closing Lemma.
Let M be a smooth manifold without boundary. Denote by f/’(M) the set of C

vector fields on M in the weak C topology.
THEOREM (Closing Lemma). Let FY/’(M) have flow (q,/}. Let pM be a non-

wandering point of (t } which is not an equilibrium, and which belongs to some compact
invariant set. Let .W’c ’(M) be a neighborhood of F. Then there exists T> 0 with the
following property. For every neighborhood U M of the solution curve ( qt( P )" T<= <=
T } there exists Go/ff such that G=F in MU and the flow of G has a closed orbit
through p.

COROLLARY. For every F,p,.Aas above and every neighborhood N M of the closure
of the orbit of p there exists G V’having a closed orbit through p, such that G F in

M’xN.
In this paper we need only the case where M is an open set in R n. From now on

we assume M is of this kind.
A basic neighborhood of F (M) is then a set of the form

,A/’="(F; K,e)

where K M is compact, e > 0, and g o,V’if and only if

[a(x)-F(x)l+ IlDa(x)-DF(x)ll<e

for all x K.
A point p M is nonwandering for a flow { 4t) provided that for every neighbor-

hood VcM of p and every real number T> 0 there exists > T such that qt(U)N U is
not empty. In particular, a- and 0-1imit points are nonwandering.

The Closing Lemma was proved in Pugh [10]. The proof has a gap, but a complete
proof has been given by Robinson [11]; see also Robinson [17] and a forthcoming
paper by Pugh and Robinson [18]. The gap has also been filled by D. Hart [5].

The gap concerns the topology of, Y(M). What is actually proved in [10] is that
the vector field G can be chosen so that for a given e > 0, compact Kc M, and s > 0 the
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flow (t) of G satisfies

IF(x)-a(x)l/
for all x K, [-s,s ]. This result in fact suffices for the applications of the Closing
Lemma in this paper.

REFERENCES

[1] F. ALBRECHT, H. GATZKE, A. HADDAD AND N. WAX, The dynamics of two interacting populations, J.
Math. Anal. Appl., 46 (1974), pp. 658-670.

[2] W. A. COPPEL, Stability and Asymptotic Behavior of Differential Equations, D. C. Heath, Boston, 1969.

[3] J. S. GRIFFITH, Mathematics of cellular control processes, II: Positite feedback to one gene, J. Theor.

Biology, 29 (1968), pp. 209-216.
[4] S. GROSSBERG, Competition, decision and consensus, J. Math. Anal. Appl., 66 (1978), pp. 470-493.
[5] D. HART, On the smoothness of generators for flows and foliations, Ph. D. Thesis, Univ. California,

Berkeley, 1980.
[6] M. W. HIRSCH, Systems of differential equations which are competitive or cooperative. I: Limit sets, this

Journal, 13 (1982), pp. 167-179.
[7] M. W. HIRSCH AND S. SMALL, Differential Equations, Dynamical Systems, and Linear Algebra, Academic

Press, New York, 1974.
[8] E. KAMKE, Zue Theorie der Systeme gewohnlicher differentialgleichungen, II, Acta Math., 58 (1932), pp.

57-85.
[9] A. N. KOLMOGOROV, Sulla teoria di Volterra della lotta per l’esistenza, Giorn. Ist. Ital. Attuari, 7 (1936),

pp. 74-80.
[10] C. PUGrI, An improved Closing Lemma and general density theorem, Amer. J. Math., 89(1967), pp.

1010-1021.
[11] C. ROBINSON, The C Closing Lemma, Northwestern Univ., Evanston, IL, 1970 (typewritten notes).
[12] A. RESCIGNO AND I. RICHARDSON, The struggle for life, I: Two species, Bull. Math. Biophys., 2 (1967),

pp. 377-388.
[13] J. SELGRADE, Mathematical analysis of a cellular control process with positive feedback, SIAM J. Appl.

Math., 36 (1979), pp. 219-229.
[14] Asymptotic behavior of solutions to single loop positit)e feedback systems, J. Differential Eq., 38

(1980), pp. 80-103.
[15] C. WALTER, Stability properties and periodic behavior of controlled biochemical systems, Nonlinear Prob-

lems in the Physical Sciences, Lecture Notes in Mathematics 322, Springer-Verlag, New York, 1973.

[16] Differential and Integral Inequalities, Springer-Verlag, New York, 1970.

[17] C. ROBINSON, Introduction to the Closing Lemma, Lecture Notes in Mathematics 668, Springer-Vedag,
New York, pp. 223-230.

[18] C. PUGH AND C. ROBINSON, The C Closing Lemma, including Hamiltonians, ergodic theory and dynami-
cal systems, Ergodic Theory and Dynam. Sys., 3 (1983), pp. 261-313.

[19] M. W. HIRSCII, Differential equations and convergence almost everywhere in strongly monotone semiflows,
Contemporary Math., 17 (1983), pp. 267-285.

[20] K. P. HADELER AND D. GLAS, Quasimonotone systems and convergence to equilibrium in a population
genetic model, J. Math. Anal. Appl., to appear.



SIAM J. MATH. ANAL.
Vol. 16, No. 3, May 1985

(C) 1985 Society for Industrial and Applied Mathematics
002

GROWTH PROPERTIES OF STATIONARY KLEIN-GORDON
EQUATIONS*

TAKAI KUSANO AND CHARLES A. SWANSON

Abstract. Elliptic partial differential equations of the stationary Klein-Gordon type are considered in
exterior domains in Euclidean n-space. Sufficient conditions are found for the existence of infinitely many
positive solutions, and explicit asymptotic behavior as Ixl is given for both bounded and unbounded
positive solutions. Variable signed and unbounded nonlinearities are allowed in the differential equation with
respect to any of the variables.

1. Introduction. Our purpose is to prove existence of positive solutions of the
semilinear differential equation

(1.1) Au-q(Ixl)u+f(x,u)=O,
in an exterior domain 2cRN, N>2, where q is nonnegative and locally HSlder
continuous in R/=(0, o) and f is locally Hrlder continuous in fR+. Explicit
asymptotic behavior of both bounded and unbounded positive solutions of (1.1) will be
obtained as Ixl . Unlike earlier work [2], [3], fix, u) is not required to be one-signed
or monotone in u, and q is not required to be bounded in R/. Furthermore, fix, u) is
allowed to change sign with respect to x for fixed u. An example of (1.1), for which
explicit results are obtained in 3, is

(1.2) Au-PZlx[2ru+p(x)(um-bun)=O, xf,

where b, m, n and p are positive constants, rn < n, 2r is a positive integer, and p is locally
Hrlder continuous in

Solitary waves in nonlinear quantum field theory arise as solutions of the
Klein-Gordon (wave) equation [1], [6]

tt--" ml qo (Ixl) +f0(x, I 1)

In particular, standing waves (x,t)=eitu(x) (where to denotes a real constant) exist
corresponding to any positive solution u(x) of a stationary equation of type (1.1) with
exponential decay as Ixl .

2. Positive solutions of semilinear ODE. Let Po,Pl and P2 be positive continuous
functions in a positive interval [t0, ), and define

(2.1) Zl(t)=Po(t),
for > 0, where

z2(t)=Po(t)Pl(t)

Pl(t) pl(S)ds.
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It is assumed throughout that limt Pl(t) + , zl(t ) is bounded above, and z2(t ) is
bounded away from zero in [to, ). Clearly z and z_ are linearly independent, asymp-
totically ordered, positive solutions of the linear differential equation

1 d[ 1 d

We use the notation

z)Po(t)
=0, t>to.

M=suPzl(t), /= inf z2(t ).
t>_t t>-to

Sufficient conditions will be established for the semilinear differential equations

(2.3_+) Ly+_h(t,y)=O, t>_to,

to have positive solutions yx(t), y2(t) which have the same asymptotic behavior as z(t),
z2 (t) as o. The hypotheses on h (t,y) will be selected from the list below.

(hi) There exists a positive constant c such that h(t,u) is continuous, nonnegative
and nondecreasing in u for 0 < u _< c and for all >_ 0.

(h2) There exists a positive constant c such that h(t,u) is continuous, nonnegative
and nonincreasing in u for 0 < u _< c and for all >_ 0.

(h3) There exists a positive constant c such that h(t,u) is continuous, nonnegative
and nondecreasing in u for u >_ c and for all >_ t0.

(h 4) There exists a positive constant c such that h(t, u) is continuous, nonnegative
and nonincreasing in u for u >_ c and for all >_ 0.

(h) ft Px(t)p2(t)h(t, kpo(t))dt< for all k(O,c/M].
(h6) ftpz(t)h(t, kz2(t))dt < o for all k > C/l.
THEOREM 2.1. Conditions ((hl),(hs)) or ((hz),(hs)) imply the existence of infinitely

many positive solutions y( of equations (2.3 +) such that

(2.4) lim
y(t)

constant > 0.
tOZl(t )

Proof. The proof will first be given for (2.3+) under hypotheses (hl),(hs). For
arbitrary k (0, c/M], choose T= T(k) > o such that

(2.5) Pl(t)P2(t)h(t,kP0 (t)) dt <_-.
The integrand is continuous and nonnegative for t>_T by (h), since kpo(t)<_
(c/M)supt>_rpo(t)<_c for t>_ T. Let be the space of all continuous functions in [T, )
with the compact open topology, and define

(2.6) = y" po(t)<_y(t)<_kpo(t) fort>_T

a closed convex subset of . Let /’ be the mapping on N defined by

(a.t (y)(t)=po(t) - p(o)clo p(s)h(s,y(s))ds t>_r.

The Schauder-Tykhonov fixed-point theorem shows that ’has a fixed point YN, i.e.
(’y)(t)=y(t) for all t> T, since one easily verifies that ’ is a continuous mapping
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from g into itself such that ’g is relatively compact (using Ascoli’s theorem). Differ-
entiation of the integral equation gy=y twice completes the proof that y(t) is a
positive solution of (2.3 /), and dearly limt_ooy(t)/po(t)=k from (2.7).

In the case of (2.3 _), the mapping (2.7) is replaced by

(2.8) (/gy)(t)=Po(t) + pl(o)do p.(s)h(s,y(s))ds, t> T,

and virtually the same argument yields the existence of a positive solution of (2.3_)
with lim t- oY( )/po( ) k/2.

If (h2), (hs) hold, condition (2.5) is replaced by

(2.9) fPl(t)p2(t)h(t,kpo (t)) dt < k

for some T> 0, and (2.6) is replaced by

(2.10) = ( yCg’kPo(t)<y(t)<2kpo(t ) fort>T).

Positive solutions y(t) of (2.3+) or (2.3_) such that limtooy(t)/po(t)=2k or

limt_oy(t)/po(t)=k, respectively, are then obtained in the same way as fixed points
of the mappings

(2.11) (y)(t)=Po(t) 2k- p(o)do p2(s)h(s,y(s))ds

t 1(2.12) (y)(t)=Po(t) k+ pl(O)do p2(s)h(s,y(s))ds t> T.

t>T,

THEOREM 2.2. Conditions {(h3),(h6)} or ((h4),(h6)) imply the existence of infinitely
many positive solutions y( ) of (2.3 _) such that

(2.13) lim
y(t)

t-’- Z2 (t)
constant > O.

Proof. We indicate the proof in the case of hypotheses (h3),(h6); the proof is
similar in the other case and will be omitted. For arbitrary k > c/l, (h6) shows that
T T(k)> o can be chosen so that

k

The integrand is continuous and nonnegative for t> T by (h3), since kz2(t)>_
(C/l)inft> rz2(t)> c for > T. The set (2.6) used in Theorem 2.1 is now replaced by
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A parallel argument to that used in Theorem 2.1 establishes fixed points of the
mappings defined by

(gy)(t)=Po(t) --Pl(t)+ 1(S) p,(o)h(o,y(o))dods t>_ T,

(s) p2(o)h(o,y(o))dods t> T,(y)(t)=Po(t) kPi(t)-

yielding positive solutions of (2.3 +), (2.3 _), respectively, satisfying (2.13).

3. Stiona ein-Gordon equations. Existence and growth properties of posi-
tive solutions of (1.1) in an exterior domain c Rm will be established under hypothesis
(H0) below and under other hypotheses listed in the sequel.

(H0) q is nonnegative and locally HOlder continuous in R+= (0, ), and f is locally
HOlder continuous in R +.

The radial component of the linear part of (1.1) (i.e. f replaced by 0) is

Since (3.1) is nonoscillatory in (t0, ) for some to>0, the Trench disconjugacy theory
[7] shows that (3.1) has linearly independent, eventually positive, asymptotically ordered
solutions z(t), z(t), and furthermore that (3.1) has the factorized form (2.2), where

(za)’ 1(3.2) P0 =zl, Pl
Zl

P
PoP1

Then z and z are given by (2.1), and it is easily seen that Zl(t ) is bounded and z(t) is
bounded away from zero in (to, ).

We use the notation

t--(x:lxl>t), t>0.

Hypotheses for the main theorems are to be selected from the following list:

(H1) There exist a locally HOlder continuous function t:R+R+R and a

positive constant c such that (t, u) is nonnegative and nondecreasing in u (for fixed t)
for all u (0,c], t>_ 0, and such that If(x, u)[_< (Ix[, u) for all xfto, O<u<_c.

(H2) The same as (HI), except that "nondecreasing" is replaced by "nonincreas-
ing."

(H3) There exist a locally HOlder continuous function :R/R+R and a

positive constant c such that (t, u) is nonnegative and nondecreasing in u (for fixed t)
for all u >_ c, >_ 0, and such that

If(x,u)l<_(Ixl,u) for allxto, u>_c.

(H4) The same as (Ha), except that "nondecreasing" is replaced by "nonin-
creasing."

(Hs) P2(t) z2(t) t(t kz(t))dt<o forallk(O,c/M].
Zl(t)

(H6) p2(t)b(t,kz2(t))dt< o for allk>_c/l.
to
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THEOREM 3.1. Either (H0),(H1),(Hs) or (H0),(H2),(Hs) imply the existence of
infinitely many positive solutions u(x) of(1.1) in some domain 2 such that u(x)/zl(lX[) is
bounded and bounded away from zero in

THEOREM 3.2. Either (Ho),(Ha),(H6) or (Ho),(H4),(H6) imply the existence of
infinitely many positive solutions u(x) of (1.1) in some domain f such that u(x)/ZE(lXl)
is bounded and bounded away from zero in

Proof of Theorem 3.1. Consider the ordinary differential equations

(3.3) Ly+dP(t,y)=O, t> to,
(3.4) LYo-OP(t,Yo)=O, t> o,

where the linear operator L is given by (3.1), or, equivalently, (2.2). Equations (3.3) and
(3.4) have the form (2.3 +), and Theorem 2.1 is applicable. In view of (3.2), Px(t) can be
taken to be z2(t)/Zl(t ), and hence condition (hs) reduces to (H). Then Theorem 2.1
implies that (3.3) and (3.4) have positive solutions y(t) and yo(t), respectively, in an
interval [T, o) such that

(3.5) lim y(t)=k, lim Y(t)-ko

for any positive constants k (0, c/M], ko (0, c/M]. With any choice k0 < k it follows
that there exists a number > T such that 0 <yo(t)<y(t) for all > ’. Define

v(x)=y([xl), w(x)--yo(lX[) for

Then v, w satisfy the partial differential equations

At,- q(Ix[)o + ’I’ (Ix I, ,-,) --0,
Aw- q(Ixl)w- (Ixl, w) ---o,

and so (H1) or (H2) shows that they satisfy the partial differential inequalities

Av q(Ixl) o +f( x, v ) < 0,

Aw- q(Ixl)w +f(x, w) > O,

Therefore v is a supersolution of (1.1), and w is a subsolution of (1.1) in f such that
0 < w(x)< v(x) throughout f,. Furthermore, the second partial derivatives of v and w
are locally HNder continuous by the regularity hypothesis (H0) for (3.3) and (3.4). It
follows from a theorem of Noussair and Swanson [4, p. 125] that (1.1) has a positive
solution uC2oc+"(f) (O<a<l) satisfying w(x)<_u(x)<_v(x) for all xf. The
boundedness properties in Theorem 3.1 are immediate consequences of (3.5). q

Proof of Theorem 3.2. Since (H6) is equivalent to (h6) Theorem 2.2 shows that
(3.3) and (3.4) have positive solutions y(t) and yo(t), respectively, in some interval
T, 0) such that

lim y(t)=k lim Y(t)=ko,-z(t) ,z(t)

for constants k and k0 which can be chosen to satisfy 0 < k0 < k. The proof is then
completed in the same way as that of Theorem 3.1. El
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Example 3.3. In the case of the prototype (1.2), (3.1) becomes

d( N_ldZ)_p2t2rz(3.6) N - - 0.

A fundamental set {Zl(t),z2(t)) of eventually positive, asymptotically ordered solu-
tions of (3.6) has the asymptotic behavior [5, p. 285]

Zl(t)" t-Xexp 7]- z2(t)’- t-Xexp

as o, where ? (N+ r- 1)/2. Hence

p2(t)--pexp as t--> oo
r+l

P2(t)z2(t)tx- (Pt+1 )zx(t ) 20
exp

r+l
ast.

Define d(t,u)=P(t)g(u), where

P(t)=maxlp(x)l, g(u)=um-bu n.

Thenf(x, U)--p(x)(um- bu n) satisfies

If(x,u)l  (Ixl,u)
for all xf and O<u<_(1/b)/(n-’). Also g’(u)>_0 if O<u<_(m/nb)1/(n-m). It fol-
lows that (H) is satisfied with the choice c=(m/nb)1/n-m. Hypothesis (Hs) reduces
to

(3.7) fo ( (m_a)ptr+ )P(t)t-m-x)x- exp dt < o
to r+ 1

which is evidently satisfied, for instance, if m > 1 and P(t) is bounded by a polynomial
in t. If (3.7) holds, Theorem 3.1 shows that (1.2) has a bounded positive solution u(x)
in 2, for some z > 0, such that

c lxl -Xexp ;-i <u(x)<c[xl-Xexp PIxIr+I
r+l

for some positive constants cl and c2.

To obtain unbounded positive solutions, define d(t,u)=P(t),(u), where now

(u)= bun- u and P(t) is as before. Thenf(x,u)=p(x)(um- bu n) satisfies

for all xf and u>_(llb)/(n-m), and hypothesis (H3) is satisfied with the choice
c=(1/b)i/(n-m). Hypothesis (H6) reduces to

(3.8) s ( )P(t)t -(n-1)x-r exp (n- 1)pt r+l

to r+l
dt<m.



446 T. KUSANO AND C. A. SWANSON

Theorem 3.2 shows that (3.8) is sufficient for (1.2) to have an unbounded positive
solution u(x) in f such that

pillCllXl-xexp PiX[
r+l

) xeU ,

for some positive constants c and c2.
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ELEMENTARY WAVE SOLUTIONS OF THE EQUATIONS
DESCRIBING THE MOTION OF AN ELASTIC STRING*

MICHAEL SHEARER

Abstract. The equations of planar motion of an elastic string form a 4 4 system of first order
conservation laws. Two of the characteristic fields correspond to genuinely nonlinear longitudinal shocks and
rarefaction waves, involving changes in the tension in the string, but not the slope. The other two fields
correspond to contact discontinuities, across which the slope of the string jumps, reflecting the absence of any
resistance to bending.

Here, the tension T is related to the local elongation > 1 in such a way as to ensure strict hyperbolicity:
T’()> T()/>_O. The other main assumption is chosen to reflect properties of typical materials such as
nylon and rubber. That is, T"() is negative for <I and positive for > for some i> 1. The principal
result of the paper is that the Riemann problem has a unique solution among combinations of centered
waves, with a natural entropy condition placed on shocks. That is, any initial jump discontinuity in the
tension, slope and velocity of the string can be resolved into combinations of longitudinal waves and contact
discontinuities. This is illustrated for the plucked string problem, whose solution (valid until a wave first hits
an end of the string) necessarily involves longitudinal waves.

1. Introduction. Consider an elastic string whose configuration in R at time is
specified by a function r(.,t): [0,1]- R 3. The interval [0,1] is the reference configura-
tion, each point of which identifies a material point in the string. Let n(x,t) denote the
tension in the string, taken to act tangentially to the string. In the absence of external
forces, the equations of motion for the string are ([1])

](1.1) n(x,t)
Ir (x,t)l

O<x<l, t>O,

where we have additionally assumed the mass density p(x) is constant (and have
incorporated it into n). It will be further assumed that the tension n(x,t) depends
explicitly only upon the local extension Ir,,(x, t)l

(1.2) n(x,t)=T(lr(x,t)[),
for some smooth function T" (0, oo) R satisfying

(1.3) r’()>0 for all>0.

Assumption (1.2) ignores other possible material properties of the string such as
viscoelastic and memory effects; the absence of an explicit dependence of T upon x
corresponds to a uniformity assumption on the string. (See [1], [2] for more general
constitutive assumptions on n.) Inequality (1.3) states that the tension increases with an
increase in the local extension, and guarantees that system (1.1) is hyperbolic providing
the tension is not negative.

In {}2, we analyze the structure of elementary wave solutions of equation (1.1),
namely shocks (involving jumps in Irxl), rarefaction waves and contact discontinuities.
Since (1.1) is readily written as a first order system of hyperbolic conservation laws (see

Received by the editors May 10, 1983, and in revised form September 9, 1983.
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(1.7) below), the specification of elementary waves is straightforward, and has been
given elsewhere ([2], [4]). The principal purpose of this paper is to characterize solutions
of the Riemann problem, which involves resolving an initial discontinuity in (G, rt) into
a combination of elementary waves. The waves may be characterized as longitudinal or
transverse. The longitudinal waves are genuinely nonlinear providing T"( rx l) :# O,
whereas the transverse waves are linearly degenerate. To solve the Riemann problem,
we make some basic assumptions. First, only plane motion of the string will be
considered. This reduces system (1.1) to a pair of coupled wave equations, and we may
take

r( x, ) ( rl ( x, ),r2 ( x, )) 11 2.

Since there are no external forces, the added degree of freedom of three-dimensional
motion simply allows the string to bend in any direction. As remarked in 2, this
corresponds to a rather uninteresting extra degree of freedom in the contact discontinu-
ities, which involve jumps essentially only in the slope of the string.

The second assumption concerns the stress-strain law specifying T as a function of
the local extension Irxl. It will be convenient to let the reference configuration corre-
spond to an equilibrium and unstretched configuration of the string, so that

(1.4) T(1) =0.

The following material properties appear to be typical (see [2]), and dictate our assump-
tions on T.

1. Either (a) T"(f)< 0 for all f, or (b) there exists f> 1 such that

(1.5) (-t)r"()>0 for all>O.

Case (a) would simplify our analysis, and may be included in (1.5) for our purposes by
simply taking t very large. A piecewise affine stress-strain law will not be considered.

2. There may or may not be values of at which

r( )
f

This is important because the characteristic speeds for (1.1) are roots of T’(f) and
T(f)/f. To solve the Riemann problem, in 4, it will be assumed that (1.5) holds and

T(f)
for all f.(1.6) T’() >--

Under (1.4), (1.6), system (1.1) is strictly hyperbolic providing IGI> 1, since the char-
acteristic speeds [T’(IGI)] 1/2 and [T(IGI)/IGI]/ are distinct. If (1.6) is violated, the
structure of the individual elementary waves is unchanged, but the solution of the
Riemann problem is substantially more complicated. The paper of Keyfitz and Kranzer
[4] solves the Riemann problem when the initial values lie in some neighborhood of a
hypersurface vs where strict hyperbolicity breaks down i.e., T’(fvs) T(fws)/fws-
The implications of such a failure of (1.6) are discussed briefly in 6; the solution of the
Riemann problem in this case, and under condition (1.5), will be presented in a future
paper.

The graph of a typical T satisfying (1.3)-(1.6) is illustrated in Fig. 1. In 4, the
Riemann problem is solved for any initial jump in (G, rt) for which the tension is
everywhere positive.
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/"

I

FIG. 1. The graph of T satisfying (1.3)-(1.6).

Under (1.3)-(1.6), system (1.7) below is a 4 4 system of first order strictly
hyperbolic conservation laws (where $> 1). Two of the characteristic families are
linearly degenerate, while the remaining two families lose genuine nonlinearity precisely
due to the presence of an inflection point in the stress-strain curve, Fig. 1. Systems for
which genuine nonlinearity breaks down on hypersurfaces were studied by Wendroff
[6] and Liu [5], with Riemann problems being solved using a construction of rarefac-
tion-shocks. A similar construction of longitudinal rarefaction-shocks is used here (see
the definition of P_(Uo) in [}3). It is the presence of two linearly degenerate fields that
places the current work outside the scope of the general results of [5]. In particular, the
coordinate system that arises here in solving the Riemann problem resembles that of
plane polar coordinates, whereas that of [5] is a curvilinear version of Cartesian
coordinates.

In 5, the plucked string problem is solved for small time (i.e., before waves hit the
ends of the string) as an example of a Riemann problem. A feature of the solution is
that it necessarily involves longitudinal waves, which are specifically excluded by
equations modelling small transverse vibrations of an elastic string.

In what follows, we write r,=(p,q), =lrl, and rt-(u,o ). Equation (1.1), for
planar motion, then becomes the first order 4 4 system

(1.7) - ---F(p,q,u,v)
where

(1.8) F(p,q,u,v)=

U
0

qT( l )/t

The characteristic values for system (1.7) are eigenvalues of the Jacobian matrix F’(U),
where U= ( p, q, u, v), namely
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k +(U) +() + [T’()] 1/2 [ T() 1/2

2. Elementary waves. In this section, we restrict attention to single elementary
waves separating regions in (x, t)-space where r and r are constant. For this purpose,
we consider system (1.7) for - <x < o, t>0, and all elementary waves will be
centered at the origin. The standing assumptions are (1.2)-(1.5), and we shall consider
only planar motion, described by (1.7), (1.8), except for a remark concerning three-di-
mensional motion.

Let Uo=(po, qo, Uo, Vo)R 4 be a given state of the string. U0 may be joined to a
state U=(p,q,u,v) by a shock x=st with speed s if U0, U,s satisfy the
Rankine-Hugoniot conditions

(2.1) -s(U- Uo)=F(U)-F(Uo)
where F is given by (1.8). We distinguish two types of solutions of equations (2.1).

Genuinely nonlinear shocks.

4:o, Pqo=qPo, s=+_[(T()-T(o))/(-o)] 1/,

-Y- sgn(- 0) P0
v vo o qo

Note that the slope q/p of the string is unchanged across such a shock wave, while the
tension T() undergoes a jump. Only the tangential component of the velocity experi-
ences a jump.

Linear waves or contact discontinuities.

(2.3)

=0, S= + [T()/] 1/2 if (p,q)=(cosO,sinO),

v v0 qo sin 0

Across linear waves, the slope tan 0 of the string jumps, .while the tension is continuous.
In the (p,q)-plane, (2.3) describes a circle centered at the origin with radius J0; in the
(u,v)-plane, (2.3) describes a circle centered at (Uo, Vo)+[T()]l/2(po, qo)/o with
radius [T()]/2. Note that (2.2), (2.3) are together equivalent to the jump condition
(2.1).

Next we describe the rarefaction waves. These are solutions of (1.7) of the form
U= U(x/t), with x/t +(U(x/t)). For such a solution, we must have

(2.4) U’( q ) w + ( U( ))

where w +(U) is the right eigenvector of -F’(U) corresponding to the eigenvalue
+(U), normalized by w +.gradh +=1. For a rarefaction wave to separate constant

states Uo on the left and U on the right, (2.4) leads to

4=o, qp0 =pq0,

v v0-o _+(u)d. q0
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with , +/-()= rl. In particular, , +/-(v) must be increasing as v varies from 0 to :
(2.6)

+(-0)<0 and <z if0<z,
_+(-0)>0 and >z if0>i.

In order for solutions of the Riemann problem, discussed in 4, to be unique, the
following additional "admissibility" condition will be imposed on genuinely nonlinear
shocks: If the shock x st separates states U0 on the left and U on the right, then the
shock is admissible if

(2.7) s[(T()-T(o))/(-o)-(T(l)-T(o))/(l-o)] >_0

for all between 0 and 1.
Remarks. 1. Condition (2.7) is a condition on the slopes of chords in the graph of

T, analogous to the chord condition appropriate for a single second order quasilinear
wave equation [6]. That it is natural here arises from the observation that shock waves
represent purely longitudinal motion of the string. In particular, by choosing a coordi-
nate system (for r(x,t)) that moves with the string near the shock, system (1.1) reduces
to a single quasilinear wave equation.

2. Let

rt fllr’lT(v rt
rl r.-+ )dr, a=-rx.lrxl.

The energy rl and energy flux Q play the role of an entropy/entropy-flux pair, in the
sense that smooth solutions of (1.1) satisfy the conservation law

(2.8) rtt + Ox= O,

while admissible genuinely nonlinear shocks satisfy

(2.9) nt+Q<O

in the sense of distributions. Linear waves however satisfy (2.8) in the sense of distribu-
tions. Shock wave solutions of (1.7) satisfying (2.9) are not necessarily admissible in the
sense of (2.7). However, a short calculation shows that they do satisfy the following
viscosity criterion. Replace T() by ’e(,t) T()+et. The term et reflects a simple
rate dependence of the tension (see e.g. [2]). Each admissible shock wave solution of
(1.7) is the pointwise limit as ---,0+ of a travelling wave solution of the modified
system

rtt= xl x"
3. Genuinely nonlinear shocks and rarefaction waves will be collectively referred to

as longitudinal waves. For fixed U0, the locus of points U to which U0 may be joined by
a longitudinal wave forms straight line segments with slope q/p in both the (p, q) plane
(where it passes through (Po, qo)) and in the (u,v) plane (where it passes through
(Uo, Vo)).

4. For three-dimensional motion, both the longitudinal waves and linear waves
described above occur, but now the linear waves have the extra degree of freedom that
the discontinuity in r may occur in any direction (while keeping Irxl continuous). The
corresponding jump in velocity r is computed from the wave speed + [T()/]1/2 and
the jump in rx, by noting that r(x, t) remains continuous. This degeneracy in the linear
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waves arises from the fact that the string approximation neglects any resistance to
bending. Three-dimensional motion will not be pursued further here, although the
solution of the Riemann problem in the next section may easily be suitably generalized.

For each Uo R 4, define the shock curves S +/-(Uo) to be the locus of points U R 4

satisfying (2.2) and (2.7) for some s, with s>0 on S+(Uo) and s<0 on S_(Uo).
Similarly, let C +/-(Uo) be the linear wave curves, of points U 4 satisfying (2.3), and let
R +/-(Uo) be the rarefaction curves of points U4 satisfying (2.5), (2.6). Note that
C +/-(Uo) are defined only for o> 1.

3. The structure of the wave curves. Let Uo=(po, qo, Uo, Vo) be fixed. The curve
),_(U0) in 4, to be constructed in this section, will consist of points U to which U0
may be joined by successively slower centered longitudinal waves moving to the left,
with U0 on the left of this family of waves, and U1 on the right. Similarly, points U on a
curve ), +(U0) will represent a family of successively faster centered longitudinal waves
moving to the right separating U0 on the left from U on the right. Correspondingly, we
define curves 5’ +/-(U0) by

(3.1) U+/-(Uo) if and only if Uo),+/-(U ) (respectively).

The structure of , +/-(U0) is complicated by the fact that genuine nonlinearity breaks
down at the inflection point -i of T(). The way to overcome this for a single wave
equation is described by Wendroff [6], a procedure generalized by Liu [5]. As remarked
in 2, the longitudinal waves may be regarded as weak solutions of a single wave
equation (governing longitudinal motion), and indeed our construction of ), +/-(U0) closely
follows that in [6], except that we also keep track of C +/-(U) as U varies on +/-(U0).

If 0 < 4:, define * by

(3.2) T’() (T()- T(li*))/(li-li*),

with the proviso that *= oe if no finite * can be found to satisfy (3.2). Under
assumptions (1.2)-(1.5), * is uniquely defined, and is necessarily finite for > i.
Similarly, let 4: satisfy

(3.3) T’() (r()- T())/(-)
unless no finite can be found to satisfy (3.3), in which case set = o. Again is
uniquely determined, and is necessarily finite for > t. The significance of equations
(3.2), (3.3) is that they express equality between the shock speed of certain longitudinal
shock waves, and a corresponding characteristic speed k +/-, thus defining limits upon
the validity of the admissibility criterion (2.7). Note that

(3.4) g.n( ,) sgn(,- *) sgn(,-) sgn(- *),

In the construction of +/-(Uo), the two cases 0 > I and o’(i have to be consid-
ered separately.

A. o<- Let 5a_(Uo) be the section of S_(Uo) with <o, and let 5*(U0) be the
section of S_(Uo) with >. Note that the corresponding shock speed s coincides at= with the characteristic speed )_. Now R_(U0)^corresponds to values of with

o<<: For t<x<, we have (0< <I’ and defines a point on R_(Uo).
Further U1 may be joined to a point U (for which =(x) by a shock, with speed
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--[T’(I)]1/2, the slowest speed in the rarefaction wave joining U to 1 (see Fig. 3). Let
P_(Uo) denote the curve of such points U1, parameterized by 1 (i,)- Note that
P_(Uo) joins R_(Uo) to 6a_*(Uo). Now set

(Vo) (Vo) uR_ (Vo) ue_

A similar analysis leads to

(3.6) 3" + ( Uo ) R + ( Uo ) LJ S+ ( Uo ) L-J R + (o),

where o S+(Uo) is the end point, where=o.
B. o> z- The formulae (3.5), (3.6) again define 3’ +(Uo).
To discuss the behavior of C_(U) as U varies along 3’-(Uo), and of C/(U) for

U +(Uo), it will be convenient to use the same labels for the projections of all
quantities U, 3’ /, etc. onto either the (p, q)-plane or the (u, v)-plane.

PROPOSITION 1. Suppose (1.2)-(1.6) hold, and let Uo R 4 be fixed.
i) The family (C_(U) U 3" _(Uo)) of circles in the ( u, v )-plane is nested, and fills

the entire plane.

FIG. 2. Definition of ,/*.

uj

FIG. 3. U1 P-(Uo).
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ii) The same is true of the family ( C+(U)" U l +(Uo)).
Proof. Let U7_(U0), with > 1. Then C_(U) is a circle in the (u, v)-plane with

center U given by

(3.7) (t)m(U) (P)"v q

Let d()--[(Uo-gl)2+(Vo-)2]1/2 be the distance from U to U0 in the (u,v)-plane.
For <0, U lies between U and U0 in the (u,v) plane, on 3,_(U0), whereas for > 0,
Uo lies between U and U. Since the radius [T()]1/2 of C_(Uo) in the (u,v)-plane is
zero when 1, and increases with , to prove part (i) of Proposition 1, it is sufficient
to observe the following fact, which follows from (1.6) and a case-by-case calculation.

LEMMA. If (1.2)-(1.6) hold, then d’( ) > 0 for all > 1.
The proof of part (ii) involves a similar calculation.

4. The Riemann problem. The Riemann problem is the initial value problem

(4.1) Ut=F(U)x, -oe <x< o,

(4.2) U(x,0) ( Ur if x<0,
UR ifx>0,

t>0,

where F is given in (1.8), and Ur 4: UR are given points in NI 4.
THEOREM 1. Suppose T satisfies (1.3)-(1.6). Let Uz, U g 4 have > 1 and R> 1.

Then the Riemann problem (4.1), (4.2) has a unique solution among those functions
U U(x/t) that are piecewise C, whosejump discontinuities are admissible shock waves
or contact discontinuities, andfor which the tension T satisfies T> 0 everywhere.

Proof. For a fixed U0, let U C_(Uo). The corresponding linear wave moves to
the left with speed Co=[T(o)/o]/2. Suppose U0 is on the left of this wave. If U could
be joined to another state U by a combination of longitudinal waves moving to the left,
with U on the left, then we have U,_(Ux). But every wave in such a combination
necessarily has speed greater than Co, by (1.6). Thus, in any centered combination of
linear and longitudinal waves moving in the same direction, the longitudinal waves
travel faster than the linear waves. This property depends crucially upon assumption
(1.6) (see also {}6.).

To solve the Riemann problem, we need to show that U may be joined to a state

Ux 3,_(U) by a combination of longitudinal waves moving to the left, and UR may be
joined to a state U /(U) by a combination of longitudinal waves moving to the
right, in such a way that U is joined to U3 by a combination of linear waves, one
moving to the left and one moving to the right. The intermediate state U_ between these
two linear waves must satisfy

(4.3)

Let 0_ be the angle the string makes with the horizontal when in state U2 (i.e. tan 02
q_/p_). Since is constant on each of C_(U1), C/(U3), (4.3) implies 1 =2=3=, say.
Now specifies a single point on ,/_(Ur) and a single point on +(U), while for fixed
,02 specifies a single point on C_(UI) and a single point on C+(U3). We need only
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guarantee that these two points are coincident, to satisfy (4.3). This is the case precisely
when C_(U1) and C/(U3) are tangent in the (u, o)-plane and not coincident. (Note that
they both have radius [T()]1/2 as circles in the (u,o)-plane.) The situation is il-
lustrated in Fig. 4.

’’C_(U1)

UI "-(U"",,,U,

FIG. 4. Solution of the Riemann problem. Arrows indicate increasing x/t.

Let =1 3’ corresponding to points U 3,_(U2), U +(UR). Since only those
solutions of (4.1), (4.2) for which T>_ 0 everywhere are being considered, we restrict
by > 1. Consider == 1. If U U in the (u, o)-plane, we may join Ux to U by a
degenerate linear wave (for which the tension is zero), which is stationary in the
(x, t)-plane. Now, for > 1, the curves C_(U1), C/(U3) are nested in the (u, v)-plane, so
they necessarily overlap for > 1, since they shrink to the point U U as -o 1 +. In
particular, there is no value of > 1 for which C_(U), C/(U3) have tangential intersec-
tion. Thus, the only solution of the Riemann problem in this context is the degenerate
one described above, with UL joined to a point U by a combination of longitudinal
waves moving to the left, with 1 1, U joined to U by a linear wave that is stationary
in the (x,t)-plane, and across which the tension is zero, and U joined to UR by a
combination of longitudinal waves moving to the right.

The only other possibility is that Ux 4= U in the (u,o)-plane when = 1. By
Proposition 1, there exists a unique value 2 of for which C_(U1) and C+(U3) are
tangent and not coincident. This completes the proof.

Remark. We have excluded the possibility T< 0 in some parts of the solution for
two reasons. Firstly it could be that U1= U for some < 1, which leads to nonunique-
ness of solutions, since necessarily in this case U ::/:: U in the (u, o)-plane when 6= 1.
Secondly, if the tension is negative anywhere in the string, the string will tend to bend,
since there is no resistance to bending. Thus any such solution may be regarded as
unphysical. Note that the equations (4.1) are no longer hyperbolic if T< 0, since the
characteristic values +_ [T()/]1/2 are then imaginary.
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Finally, we note that since 1----"2--3 "--, the solution of the Riemann problem
may be reduced to the solution of a single nonlinear equation for/j. This equation
simply expresses the fact that C_(U1) and C+(_U3)__are tangent in the (u,v)-plane
precisely when the distance between their centers U1, U3 is twice the radius"

1 3 )2
__

( 1 3 )2.._ 4fT(f).
If 0L and 0R are the angles the string initially makes with the horizontal on the left and
right respectively, we have

(4.5)
1 U1 --[T()]1/2

sin0L

v +[T()] 1/2

sinOR

where (ug, v) (k=1,3) are given explicitly by , and the construction of 3,_(U),
3,+(U) described in 3. Let g()--(fil-fi3)2+(1-3)2-4T(). Setting =1, we
have (from (1.4))

(4.6) g(1)>0

with equality only in the degenerate case, for which 1 solves the Riemann problem.
Proposition 1 implies that for large enough =,
(4.7) g() <0.

Consequently, to solve the Riemann problem computationally, one would first de-
termine satisfying (4.7) (the first guesses being,R), and then solve

(4.8) g()=O

using interval division, or a more efficient algorithm readily available in scientific
programming libraries. Having determined , the intermediate angle 02 is simply the
angle that the line joining (fix, x) to (fi3, 3) makes with the horizontal.

5. The plucked string. As an example of solutions of the Riemann problem,
solutions of the initial boundary value problem for the plucked string are described in
this section. The solution is valid until a longitudinal wave first hits an end of the
string, so the boundary conditions play no role, except to restrict the initial conditions.
It is not hard to analyze the reflection of longitudinal waves from the ends, but the
subsequent interactions with linear waves are complicated (especially with the rather
general form of T considered in this paper). Accordingly, we do not attempt to
continue the solution past the first time at which a wave hits an end.

The initial boundary value problem specifies the function r(x,t)=(r,r2)(x,t) as
follows (see Fig. 5):

rtt=(rxT(l)/l)x,  =lrxl, 0<x<l, t>0,

r(O,t)=r2(O,t)=O, rl(1, t)=L, r2(1, t)=0, t>0,

ax/xo if0<x<x0,
rx(x’0)= (a(l_x)+L(x_xo))/(l_xo) ifx0<x<l,
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bx/xo ifO<x<xo,
rv_(x,O)- b(1-x)/(1-Xo) if Xo<_X< 1,

rt(x,O)=O 0<x_<l;

where the constants xo, L, a and b are arbitrary apart from the constraints

(5.1)
0<xo<l, L>0, 0<a<L, b>_0,

a2+b2>x, (L-a)2+b2>(1-Xo)2.
Condition (5.1) simply guarantees that the tension is initially everywhere positive. Since
L may be less than one, no such assumption is made concerning the horizontal string in
equilibrium: r(x, 0) ( Lx, 0).

r(xo,O)

FIG. 5. Initial configuration of the plucked string.

In terms of system (1.7), the initial boundary value problem becomes (where
U=(p,q,u,v)):

(5.2) Ut=F(U)x, 0<x<l, t>0,

(s.3) t>0,

(5.4) (p,q)(x,O)= { (a’b)/x if 0<x <x0,

(L-a,-b)/(1-Xo) ifx0<x<l,

(5.5) ( u, v )( x, O) (O, O) 0<x<l.

Equation (5.2) with initial conditions (5.4), (5.5) constitute a Riemann problem centered
at x x0, =0.

To describe the solutions of the Riemann problem in terms of the analysis of
sections three and four, we assume T satisfies conditions (1.3)-(1.6). Note that (in the
terminology of {}4) UL and UR are both at the origin in the (u, v)-plane.

Set L a2 d- b2]l/2/Xo, R [(L- a) 2 q- b2]1/2/(1 Xo). The solution of
(5.2)-(5.5) for small > 0 will involve intermediate states U Y_(UL), U2 C_(U1)
C_(U3) and U3 9 +(UR). Without loss of generality, we consider the situation when

(5.6) L<R.
Now C_(UL), C+(UR) intersect at the origin in the (u, v)-plane. Therefore, if 1 3 R,

then C_(U1) and C+(U3) overlap. Thus, since 1"--2--3-’ for the solution, where
satisfies (4.8), we have g(R) < 0, so that g() 0 implies

(5.7)
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Unfortunately, there are no simple conditions on the parameters a,b, xo, L which
serve to further usefully determine and hence the qualitative structure of the solution
of the Riemann problem. In Table 1, we simply consider various relationships between
L, JR, L, and , indicating the form the solution takes. Note that whether >, <

or= depends upon whether g(t)>0, g(L)<0 or g()=0 respectively. Apart
from degenerate cases (e.g., b 0), there will always be a linear wave moving left and a
linear wave moving right; the indications Left, Right in Table I refer to the structure of
the longitudinal waves moving to the left or right respectively. A composite wave means
a composite of one or more elementary waves. The precise structure of the composite
waves may be determined by examining the sign of g() for =, i, , the points at
which the structure of _(U) and +(UR) changes. The sign of g() at these points has
no simple relationship with the parameters a, b etc. in the initial conditions (5.4).

Note that in every case, the solution necessarily involves longitudinal waves. In
particular, suppose the tension is initially small (i.e. less than T(II)) on both sides of
the initial discontinuity. The solution involves a shock in each direction if the initial
jump in tension is small enough, since for =n, we necessarily have < L. On the
other hand, if the initial jump in tension is sufficiently large, there is a shock moving
toward the side with larger tension, and a rarefaction in the other direction. The
cross-over between these two types of solutions occurs precisely when the initial condi-
tions are such that =, i.e. g()= O.

TABLE 1
Possible wave configurationsfor the plucked string, when L < R"

Left: rarefaction
Right: shock

Left: shock
Right: shock
Left: no wave
Right: shock

composite
composite

shock
composite
no Wave
composite

shock
rarefaction

composite
composite
no wave
rarefaction

6. Remarks. To solve the Riemann problem, we have depended heavily upon
assumption (1.6), which in particular establishes a fixed order for the characteristic
speeds. However, (1.6) is not satisfied by all materials, and in this section, we make
some remarks concerning the alternative. That is, suppose (1.3)-(1.5) hold, but (1.6) is
replaced by

(6.1) T’(,) < ----.
Now, the definition of the curves "t__,+/-, corresponding to combinations of

longitudinal waves does not depend on (1.6) being valid. However, the geometric
construction, given in 4, of solutions of the Riemann problem necessarily breaks down
under (6.1) for many choices of U, Un. This is because a linear wave may now travel
faster than a neighboring longitudinal wave in (x, t)-space. In particular, solutions of
the Riemann problem will often involve rarefaction waves with embedded linear waves.
Physically, the tension changes continuously through such a combination wave, but the
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slope undergoes a single jump, precisely when T’()= T()/. Broadly speaking (and
we leave the details to a further paper), the study of such combinations of waves may
proceed along the geometric lines described in 3 and 4. The simple criterion (4.4) for
solutions of the Riemann problem only holds provided each longitudinal wave in the
supposed solution so obtained travels faster than the linear wave moving in the same
direction. In all other situations, the solution must involve combinations of rarefaction
waves and linear waves as described above. Some progress with this problem has been
made by Keyfitz and Kranzer [4], where T is assumed to be convex or concave, and
there is just one point where T’()= T()/.

Throughout this paper, it has been mathematically convenient to consider T()
defined for all > 0. That is, the string may undergo local stretching of an arbitrarily
large magnitude without breaking. More realistically, suppose T satisfies (1.3)-(1.6),
but is defined only on an interval (0,max] where max <I corresponds to the tension
T(max)<O at which the string will break. The curves 3’_(UL), /+(UR) are now
terminated at =5max, and the Riemann problem can only be solved for UL, UR in a
restricted region in R 4. Specifically, let U be fixed, with <max, and U_3/_(UL)
have 5=max By Proposition 1, U may be joined to a point U=(p,q,u,v) by a
combination of longitudinal and linear waves moving to the left if and only if =(p2 + q2)1/2 <max and (u,v) lies within the projection of C_(U_) onto the (u, v)-plane.
Similarly, for each UR with R < mx, we have U/ /(UR), with=max" The Riemann
problem can be solved if and only if, in the (u, v)-plane

(6.2) C_(U_)C3C+(U+)#:

and the intersection is nontangential. The simplest interpretation of this criterion is that
if the initial jump in velocity is too large, then the string will break. One way to see this
is to extend T() for > max, maintaining (1.3)-(1.6). If (6.2) fails, then the solution of
the Riemann problem necessarily involves values of > max"
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THE NUMBER OF PEAKS OF POSITIVE SOLUTIONS
OF SEMILINEAR PARABOLIC EQUATIONS*

WEI-MING NIf AND PAUL SACKS

Abstract. We consider positive, radially symmetric solutions u(x,t) of a class of semilinear parabolic
initial-boundary value problems in a ball of R u. It is shown that there exists a time T< such that
rur(r,t)<=O for t>= T, r--Ixl.

Introduction. We consider positive solutions of semilinear parabolic problems with
radial symmetry,

(0.1)
ut-Au=f(t,r,U,Ur)
u(x,t) =O,

t>O,

where K--{xRN’IxI<R), r=lx l, ur=(x. XTu)/r and Uo(X)=Uo(r)>=O. The main
goal of this article is to show that under certain conditions on f there exists a time
T* > 0 depending on f and u0 such that ur(r, t) < 0 for >= T* and r (0, R]. That is to
say that the maximum of x u(x,t) eventually occurs at x =0 and there are no other
critical points.

Such a result may be obtained by fairly straightforward arguments provided that
the asymptotic behavior of the solution u is sufficiently well understood. To illustrate, if
f=f(u) and u(x,t) is uniformly bounded, then one sometimes knows the asymptotic
profile of u ([G-V], [H]). This means that there exists a function a(t) such that
lim t-. a(t) u(x, t) w(x), where w(x) > 0 is typically a solution of some elliptic equa-
tion and satisfies w<0 for r>0. For example, if f=0 we take ot(t)--e ’lt and w(x)=
I(X), 1 and lpl being the first eigenvalue and eigenfunction for -A in f with zero
boundary conditions. One then deduces that a(t)u(.,t) converges to w in C2(f) from
which it follows that u(r,t)<O for r>0 and t>= T*, if T* is sufficiently large. Using
this argument, however, one does not obtain any estimate on the time T*. The method
we use does yield a fairly explicit bound for T* in many cases. This quantitative aspect
is essential for the application which originally motivated this work ([N-S]).

For tlgmoe general class of equations 0.1, as well as for unbounded solutions
when f=f(u), detailed knowledge of the asymptotic shape is of course more difficult to
come by. Also our theorem may sometimes be applied in cases where the solution u
does not exist for all > 0. See Remark (iv) after the statement of Theorem 1.

Generally speaking, for the application of Theorem 1 below, we will require some
knowledge of the behavior of Ilu(’,t)llo<) only. This may be fairly easy to obtain
using comparison techniques; see Corollary 2.

We mention also that our result is related to some recent work of Matano [M] who
considers some one-dimensional problems of the type 0.1. He defines the "lap number",
l(t), which is roughly speaking a count of the number of local extrema of x u(x, t).
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Under various conditions on f and the boundary conditions he shows that l(t) is
nonincreasing in time. Under a somewhat different set of conditions we are showing
that actually l(t) 1 in finite time.

We now state the main results. Denote by ,(t; a) the solution of

(0.2) ’=f(t, 0, 3’, 0), 3(0) a

insofar as it exists.
We will use the following hypotheses on f.
(H)(i) f is C in all variables, and for each > 0 the relation

f(t,r,U,Ur)=F(t,x,u, Vu)

defines F as a real analytic function for x f, u > 0, and X7 u R N.
(ii) f( t, r, O, O) >_ O for t>__0, r [0,R].
(iii) fr( t, r, u, O)= O for t>__0, r[0,R], u>0.
THEOREM 1. Suppose f satisfies hypotheses (H) and u is a global classical solution of

0.1 with u0(x)= u0(Ixl)>= 0.
Suppose that for every a>0 there exists T= T(a) (0, c] such that

(0.3) lim Ilu(-,t)l[LOOn)< lim ,(t; a).
t--* T t--- T

Then there exists T* < such that

(0.4) Ur(r,t)<O
for >__ T* andr (0,R].

Remarks. (i). The qualitative assumption on the smoothness of f may be signifi-
cantly weakened by the use of approximation arguments; see the beginning of 4. For
example if f=f(u) then we may replace (H) by f(0)>=0 and f is locally Lipschitz on

[o,
The analyticity requirement on F is met, for example, if

f( t,r, U, Ur) g( t,r 2, u,rur)
and g is analytic in its last three arguments.

(ii) Condition (H) is most stringent in its restriction on the r dependence of f. This
is somewhat natural, since even for time-independent solutions of (0.1) one cannot
expect (0.4) to hold without significant hypotheses on the r dependence ([G-N-N]). A
typical case when (H)(iii) holds is for f in the form

f(t,r,u,ur)=fl(t,r,U)Ur+f2(t,u).

(iii) In 4 we will comment further on the way that T* depends onf and u0.

(iv) The condition that u be a global solution of 0.1 may sometimes be dispensed
with, namely if one can show that T* is less than the existence time for u. For example
if f(u)=u, p> 1, one can show that this is the case for initial values which are
sufficiently close to large multiples of 6l(X), the first eigenfunction of -A in f with
zero boundary conditions.

(v) The conclusion (0.4) may be deduced for nonclassical solutions of (0.1) pro-
vided that they may be suitably approximated by classical solutions; see [N-S] for
example.

As a corollary we mention some specific cases when (0.3) can be verified. The
interested reader can supply more such examples.
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COROLLARY 2. Letfsatisfy (H) and also any one of the following.
(i) 0<A <=f(t,O,u,O) andf(t,r,u, ur)<__B < c;
(ii) A <_f(t,O,u,O)/u andf(t,r,u, ur)/u<=B, B <A
(iii) f(t, 0, u, 0) >__ g(u) > 0 where f ds/g(s) < for every a > O.
If u is a global classical solution of (0.1) with Uo(X)-Uo(Ixl)>=o, then there exists

T * < c such that

Ur(r,t)<O
for >= T* andr (0,R].

The following technical result is the main ingredient in the proof of Theorem 1. It
says roughly that if for some t0>0 there is a local minimum of ru(r, to) at r0, then
there is a "sufficiently smooth" curve r/(t) defined on [0,t0] such that r u(r,t) has a
local minimum at r/(t). The fact that there is a level curve of u which has this
smoothness property is perhaps of some independent interest.

PROPOSITION 3. Let f satisfy (H) and let u(x,t) be a global classical solution of (0.1)
with Uo(X)=Uo(Ixl)>-O. Assume also that u0(lx])>0 for ]xl<R, u0(g)<0 and uo is
analytic in f.

Suppose Ur(r*,t*)>O for some r* [0,R), t* >0.
Then there exists a continuous function r/: [0, * [0, R ) such that
(i) Ur(rl(t),t)=O 0__<t__<t*;
(ii) u(l(t),t)>__O, 0__<t__<t*;
(iii) if ,l(to)=O for some t0>0 then ,l(t)=-O for t[to, t*];
(iv) /is differentiable from the left except possibly at finitely many points.

In [}1 we give the short proof of Theorem I using Proposition 3, and also the proof
of Corollary 2. The arguments in the proof of Corollary 2 are more or less standard,
but we include them for the convenience of the reader. Proposition 3 is proved in 2
and 3.

Finally in 4 we discuss several ways in which Theorem 1 may be generalized or
modified. The first, which has already been mentioned, is the weakening of the smooth-
ness assumptions on f. Secondly, in the case when fl we may dispense with the
symmetry assumption on both u0 and f. We obtain a result like Theorem 1, except that
0.4 is replaced by the conclusion that the solution has eventually no interior local
minimum. Lastly we show that Theorem 1 remains valid if the Dirichlet boundary
condition is replaced by a nonlinear Neumann type condition Ou/n + q(u)= 0, x

lo
LEMMA 1.1. Let f satisfy (H) and let u be a global classical solution of (0.1) with

Uo(X)=Uo(Ixl)>__O, uoO.
Then for each > 0 we have
(i) u(x, t) u(Ixl, t),
(ii) u(x,t)>O for xf,
(iii) u(R,t)<O,
(iv) ru(r,t) is analytic on [0,R).
Proof. Property (i) is an immediate consequence of the uniqueness of classical

solutions of 0.1 (see e.g. [L-S-U]) while (ii) and (iii) are the strong maximum principle
and Hopf boundary point lemma respectively, [P-W]. The analyticity result may be
found, for example in Friedman [F].

Proof of Theorem 1. If u0 0, the conclusion is obvious. Otherwise, using Lemma
1.1 and replacing u(x,t) by u(x,t+z) if necessary, z>0, we may assume that u0>0 in
f, UOr(R) < 0 and u0 is analytic in
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Let a > 0 be defined by

and pick T* so that

(1.1)

a= min( u0(r)" U0r(r) =0 )

If Ur(r* T*)>0 for some r* (0,R), we may find a function (t) as in Proposi-
tion 3. Set h (t) u(7(t), t). By h’(t) we will mean left-hand derivative; clearly h’(t)
exists wherever rt’(t), the left-hand derivative of /exists.

As long as /(t)> 0 and rl’ exists we have

N-1)+f(t u(l(t)t) u(l(t)t))h’(t)=U,r(y(t),t)+u(rl(t),t ) q’(t)+ l(t) ,r,

>=f(t,O,h(t),O)

using the hypotheses on f and Proposition 3. If r/(t0)=0 for some 0, then by Proposi-
tion 3(iii), h(t)=u(O,t) for t>= 0, so that

h’(t)=Au(O,t)+f(t,O,u(O,t), ur(O,t))>=f(t,O,h(t),O)

again.
Therefore

h’(t)>=f(t,O,h(t),O)

except possibly at finitely many points, h(t) is continuous on [0, T *] and h (0)_> a.
It follows that

h(T*)>=y(T*;a)

(note that piecewise left differentiability suffices here) and so

(1.2) Ilu(-, T * ) L=,) < h(T * )

in view of (1.1). But (1.2) is clearly impossible; hence we must have

ur(r,T*)<=O

for r [0, R ]. Applying the strong maximum principle to u gives the conclusion (0.4). []

Proof of Corollary 2. (i) For any a > 0 we have limt__, y(t; a)= . On the other
hand u is a positive subsolution of vt- Av= B, all of whose solutions are uniformly
bounded ([L-S-U]). Hence u itself is uniformly bounded which implies (0.3).

(ii) Let w(x, t)= e-Btu(x,t) so that wt- Aw <= O. By standard results it follows that
Ilw(.,t)llLoo)---O(e -xxt) as tc, and therefore Ilu(.,t)llLoo)--o(e -At) as t,
since B <A + 1. But y(t; a)>=ae -At, hence (0.3) holds.

(iii) In this case we have limt_ry(t; a)= for some T= T(a)< c. If u(x,t)
exists for all > 0 then (0.3) must hold.

2. For simplicity we will carry out the proof of Theorem 3 for the case f( t, r, u, ur)
=f(u) only. The modifications necessary to handle the general case are straightfor-
ward.
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This section contains two lemmas which will be used for the proof of Proposition
3. The first is a slight modification of the Hopf boundary point lemma. We use the
following notation.

’o) ’) +{’-’o < },
H(ro,to)={(r t)(r-ro +(t-to < ,t<t0},
Ir=(O,T)X(O,R).

Let L be the differential operator defined by

Zw--’Wrr’at a(r,t)wr+ b(r,t)w
where a and b are bounded smooth functions.

LEMMA 2.1. Assume wC2(H(ro, to))cqCl(H(ro,to) ) for some e>0 and w satis-

fies

wt Lw in H( ro o )
w(ro-e, to)=O,
w>0 in H(ro,to)\((ro-e, to) }

Then wr(ro- e, to)> O.
Similarly, if

wt=Lw
w(ro+e, to)=O,
w>0

then

in H(ro,to),

in H(ro,to)\{(ro+e, to) }

wr( ro + e, to) > O.

Remark. In comparison with the usual statement of the Hopf boundary point
lemma [P-W] we are just pointing out that no assumption on w need be made for > 0.

This is seen simply by examining the proof.
Now let o(r,t)=u(r,t). Note that o satisfies

N-1 N-1(2.1) Vt=Vrr-l-Ur z v+f’(u(r,t))v,
r r

(2.2) v(0, t) =0, v(R,t)<O, t>0.

LEMMA 2.2. Assume the hypotheses of Proposition 3, and suppose v(ro, to)=Ur(ro, to)
>0 (<0). Then there exists a function p C[0,to], 0<p(t)<R such that p(t0)=r0 and
v(p(t),t)>O (<0) on [0, to].

Proof. First suppose v(ro, to)>O. Choose a>0 so that v>0 on B(ro, to) and
denote by K the maximal connected component of { v>O}nlto which intersects
B(ro, to). Choose ,> IIf’(u)llL(i,o) and set w=e-Xtv. Then

N-1
(2.3) Wt<WrrOr’Wrr

for (r, t) K, w > 0 in K. Hence w achieves a positive maximum at some point (?, i) .
We cannot have ?= 0 or =R by (2.2), and (2.3) rules out [= o or a point of K. Hence
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KC (t=0} is not empty and there is a point (rl,0)K with v(rl,0)> 0. Since v(r,t)>O
also for (r,t) near (rl,0), it follows that there exists a smooth path F cKU {(r0,t0)} t3

{(rx,0)} connecting (ro, to) and (rl,0). We need to show that there is also a path with
the same properties which may be parameterized by t.

Let 6=minrv so i>0. There exists e>0 such that for any pF, v>=i/2 on
B(p)f3Ito. It is easy to check that we may choose a finite number of points Pk F so
that I’cUn=xB(Pk). With no loss of generality px=(ro, to), p,,=(rl,0) and B(pk)C
B( pk / 1) g: for each k.

Let F’ be the polygonal path obtained by connecting successive centers pk by line
segments. Clearly F’c Kt3 (p}W (p,}. By removing finitely many segments if neces-
sary we may assume that F’ is simple.

Now we may regard F’ as being parameterized by a normalized arc length F’=
((r(s),t(s))’O<s<l}= with (r(O),t(O))=p, (r(1),t(1))=p. We have F’=U=IFk
where each Fk is a line segment. Consider all segments Fk along which 8t/8s > 0 and let
(r2, t2) be the endpoint with largest coordinate; we may suppose that t2<to. The
horizontal line { t= t } must intersect F’ at exactly one point (r3, t) corresponding to a
smaller value of the parameter s. Applying the maximum principle we see that v > 0 on
the horizontal segment from (r3, t) to (r2,t). We replace the part of F’ connecting
these two points with this horizontal segment, so that F’ still has the required proper-
ties.

Repeating this procedure finitely many times we obtain a polygonal path F’" from
P to Pn along which the coordinate is nonincreasing. Since v will still be bounded
away from zero on F’, it is possible to make a small perturbation to get yet another
path F connecting p to pn along which the coordinate is strictly decreasing. This
path is the graph of a continuous function p(t) which has all the required properties.

For the case V(ro, to)< 0 the argument is similar, reversing the direction of inequal-
ities when necessary. In this case it is possible that the minimum of w of K(K maximal
connected component of { v < 0} containing a neighborhood of (ro, to)) could occur at a
point (?,) with ?=R. However by Lemma 1.1(iii) and the assumption that Uor(R)<O
it follows that v(r,t)<_- for t[0,t0] and r[R-e,R] for some e,>0. Thus
K { t=0} must still contain a point (r, 0) with rl < R and v(rx, 0)< 0; the rest of the
argument is carried out as before, t::l

3. In this section we prove Proposition 3. To begin with it is necessary to construct
n(t).

Fix some T> t* and set K= maximal connected component of IrA ( v > O) which
contains (r*, t*); recall v= ur. Define

inf( r

By Lemma 2.2 A(-) for z [0, t* ], hence r/: [0, * [0, R). From the construction
it is clear that properties (i) and (ii) of Proposition 3 hold. Furthermore, for any
t[0,t*] there exists i>0, depending on t, such that v(r,t)>O for r(,l(t),l(t)+8);
this is a consequence of the analyticity of v ur.

LF.MMA 3.1. r/ is continuous on [0, to].
Proof. Fix o > 0. We first show that

(3.1.) lim ,l(t)<=,l(to).
t---
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If (3.1) fails then there exists tnto such that r/(tn)rl>r/(t0). Pick r2A(to) such
that r2<rt. Since v(r,to)>O, we have v>0 on B(r2,to) for sufficiently small 8; in
particular Bn(r2,to)C K for small enough 8. But then for sufficiently large n we must
have /(tn) < r_, a contradiction.

Next we claim that

(3.2) lim /(t) >= /(to).
tSto

Suppose (3.2) fails; then there exists tn $ o such that /(t,) r < r/(t0). On the interval
[rl,rl(to)]V(.,to)mO by the analyticity of v, hence either v>0 or v<0 somewhere on
this segment. In either case;there exists r (rt, rt(to)) and 8 > 0 such that B(r,to) does
not intersect K. Next pick n so that tn<tO+6 and choose r3(t(t,),r_ ) so that
r3 -A(tn).

By Lemma 2.2 there is a continuous function 0(t), O(tn)=r3 with v(o(t),t)>O for
[0,t,]. In particular (O(t),t) K for [0, t,]. But then O(to)< /(to) since (O(t),t)q

Bn(r,to) for any t. This contradicts the definition of r/(to).
Finally we must show that

(3.3) lim r/(t) /(to).
tSto

If not, then there exists tn ’ o such that r/(t,) r < r/(t0). As in the previous case there
exists r2 (rl, r/(t0)) and i> 0 such that B(r2,to) does not intersect K. By Lemma 2.2
we can find a function p C[0, to], p(to)= r2 with (p(t),t) K for all t.

Next pick n>0, r3A(t,), r3<o(t,) and rheA(to). Since the points (r3,t,) and
(r4, to) both belong to K there must be a path in K which connects them. This path
cannot cross the graph of p(t), hence it must cross the segment o at some value of
r < ,/(to). But this contradicts the definition of l(to).

Straightforward modification of the above argument gives the continuity at o 0.

Next, we prove that property (iii) of Proposition 3 holds. By Lemma 3.1 it is
enough to check that if r/(t0)= 0 then r/(t0 + h)=0 for sufficiently small h > 0.

If r/(to)=0, then v(r, to)>O for t (0,ro], for some r0>0. Thus v(ro, t)>O for
t[to, tl] some > 0. Using the equation for e-Xtv as in the proof of Lemma 2.2, it
follows that we must have v(r,t)>O for r (0,r0], t[to, tl]. This rectangle must
belong to K, hence, r/(t)= 0 for t[to, t].

It remains to show the left differentiability of r/. Define

J= (o,,*l > o},
J= {toJ’l(t <rl(to) for t [to-8,to) some 8>0},
J2 {toJ r/(t)>r/(to) for t(to-8,to) some 8>0},
J3 J\( Jl J2

We will show

(3.4)
(3.5)
(3.6)

(i) rl(t) is C at each point of J,
(ii) rl(t) is Coo except for finitely many points of J2,
(iii) r/(t) is left differentiable at each point of J3.
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Taken together with property (iii) of Proposition 3, these facts establish that */is
left differentiable, except possibly at finitely many points.

LEMMA 3.2. The statement (3.4) holds.
Proof. Fix toJ1. By the implicit function theorem it is enough to show that

or(*/(to),to)4:0. This in turn follows from Lemma 2.1 provided we show that there
exists e > 0 such that

(3.7) ne(rl(to)+e, to)C ( V > O) L) ((*/(to), to))
Actually, it is enough to show that

(3.8) H(*/(to)+e, to)C (o>=0)

because then v > 0 in the interior of He; hence (3.7) holds with e replaced by e/2.
Suppose then that (3.8) fails for every e > 0; then there exists e,0 and points

(O,, %) H.(r/(to) + e,, to) such that v(0,, %) < 0 and 0, > (to) > (%) for all n.
Pick rlA(rl), rl <,/(to) such that v(.,l)>0 on (*/(ra),r), and pick rzA(to).

There is a path F K connecting (rl, rl) and (r2, to). Let 8 infrv so 8>0.
Define a function o(t) in the following way. Pick n o so that v(r,t)<=8/2 in

H.o(*/(to)+eno, tO). Let o(t)=*/(t) for t>= o. For t[%o, tO] o(t) is the function whose
graph is the segment from (*/(to), to) to (0,o,%o)" For O<=t<_ %o o(t) is the continuous
function given by Lemma 2.2 with 0(%0)=0,o. Then v(o(t),t)<=8/2 for all t, o(o(t),t)
=<0 for t>= o and v(o(t),t)<O for t_< ,o"

We claim that o(1) > r; if not then o()< */(r) since o (r, 1) > 0 for r (*/(1), r).
Since also O(%o)= 0,o > */(,o) we must have o()= */() for some (1, %o), hence
o(o(),)= 0, a contradiction.

Finally, let F have the parameterization (r(s),t(s)) 0__<s=<l with (r(0),t(0))=
(r, r) and (r(1), t(1)) (r, o). Since o(t(0)) > r(0) and o(t(1)) < r(1), it is simple to see,
using the continuity of o that we must have o(t(s))=r(s) for some s(0,1). But then
v(r(s),t(s))=o(o(r(s)),t(s))<=/2, contradicting the fact that v_>_ on F.

Before proceeding to the proof of (3.5) we make two observations.
(i) If */(to)>0 there exists 8>0 such that v(r, to)<O for r(*/(to)-8,*/(to)).

Otherwise, by analyticity we would have v >=0 for r(*/(to)-6,*/(to)+6 ), v(r,t)> 0 for
r r/(to) -+ 8, o, o + 8 ), some 8 > 0. Applying the maximum principle gives v > 0 in
the rectangle (*/(to)-8,*/(to)+8)(to, to+8 ) which contradicts the fact that
lim t__,o */( ) */( to ).

(ii) The set (v > 0)I has only finitely many maximal connected components. To
see this we note that by Lemma 2.2 each component must intersect (t =0), and then
use the analyticity of uo.

LEMMA 3.3. The statement (3.5) holds.
Proof. Using arguments as in Lemma 3.2, it is enough to show that there is a finite

set aJ2 such that for o J2\a there exists e > 0 such that

(3.9) o).

If this is not the case, then there must exist to,}’oJ2, o < ’o, a sequence e $ 0 and
points (On,n)H.(*/(to)-e,,to), (tS,,/,)H.(*/(/’o)-e,,’o), with (On,m), (tS,,/,) all
belonging to a component K14 K of { v > 0} qIr. By remark (i) above we may pick
r <(to) SO that v(.,to)<0 on [rl,(to) ). Let p(t) be the continuous function given
by Lemma 2.2 with O(to)=r, and pick n o such that rx < 0,o<*/(%o ). There must be a
path F c K connecting (O,o,r,o) to (b,o,/,o). If F has the parameterization (r(s),t(s))
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0 <_s_< 1 and t(So)=to, then r(so)q[rl,,l(to)]. But then F must meet either p(t)or
for > o, a contradiction either way. []

LEMMA 3.4. The statement (3.6) holds.
Proof. Suppose o J3 and r/is not differentiable from the left at 0. First we must

have Or(,/(to),to)= 0 by the implicit function theorem. Also there must exist a sequence
s ’ o and e 0 such that

(3.10) *l ( sn) -l (t)
e

s o

since otherwise r/has left derivative 0 at o.
Since oJ3 there is also a sequence o such that (t)-- r/(t0). Thus v(vl(to),tn)

/) ( ’0 ( ), ) 0 which implies

to)=O
t

for every integer k >= 0, by successive application of Rolle’s theorem. We claim that

[ttcO
(,r/(to) t0)=0

for all integers k _> 0. This will contradict the analyticity of and therefore complete the
proof.

We will actually prove the stronger statement that every partial derivative of
vanishes at (r/(to),to). The proof is by induction on the order of the derivative. We
have already established that

O%(,l(to),to)--O for Il-0,a

where D denotes a partial derivative of order/aI.
Consider first the case lal--2. From (2.1) we see that Vrr(l(to),to)=O while

vtt(,l(to),t)=O by (3.11). To obtain the vanishing of vrt, we write Taylor’s theorem with
remainder for v restricted to the segment from (v/(t0), t0) to (I(Sn),S,). This gives

V( rl(Sn),Sn) V( l( to),to) + Vt( l( to),to)(Sn-- to)-F Vr( l( to),to)( rl(Sn)--q( to))
Orr 2+"(p.)(’O(S.)--’O(tO) ) q-Ort(Pn)(](Sn)--(to))(Sn--tO)

+Vtt(Pn) )2

where p, denotes some point on this segment. Upon rearrangement we obtain

and letting n o gives Vrt(rt(to),to)=O.
For the general induction step, assume D%(rt(to),to)=O for [a[= k. We have
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by (3.11), and applying Dt to (2.1) for any multi-index fl of order k-1 yields k-1
equations expressing a partial derivative of order k + 1 in terms of derivatives of order
k and lower. In this way we obtain the vanishing of all derivatives of order k + 1 except
possibly

} } kV
}r -;- ((t)’t)"

This last one is handled by the use of Taylor’s theorem and (3.10) as in the case k- 1.
This completes the proof, rq

4. (I). It is of interest to remove the smoothness assumptions which have been
made on the nonlinearity f. While Proposition 3 uses this hypothesis in an essential
way, the conclusion of Theorem 1 can be shown to be valid for more general f’s
provided we can make suitable approximations. For simplicity we consider the case
f(t,r,u, ur)=f(u).

It is first of all necessary to determine more precisely how the time T* in Theorem
1 depends on the data of the problem. Given v C1(), v (Ixl), we define

a(v)=min( v(r)" vr( r) =O}
An examination of the proof of Theorem I shows the following. If f satisfies (H), then
for any t0>0, u satisfies ur(r,t)<=O for t>= Tif

(4.1) I[u(’, T+ t0)]l=m < v(T; a(u(’,to))).
THEOREM 2. In the statement of Theorem 1, the hypotheses (H) may be replaced by
f=f(u),
f(0)>= 0,
f locally Lipschitz on [0, o).
Proof. Replacing u(x,t) by u(x,t+) if necessary, z>0, we may assume Uo>0 in

Uo(R) < 0 and u0 C1().
Choose R’ < R such that Uo(r)< 0 for r[R’,R] and set

note ct > 0.
Pick T so that

a=min(uo(r)’r<=R’};

(4.2) Ilu(’, T+

for all sufficiently small o > 0. Let

M= max(llull<o, I1 11  <o, + 1

where e > 0 is so small that M is finite, and choose a sequence of functions (f. }
uniformly bounded on 0, oe), fn (0) >_ O, f,, analytic on (0, M) and f. funiformly on
[0,MI.

Define u (x, t) to be the solution of

vt-Av=L(v), xea, t>0,

(4.3) v(x,t)=O,
x a.
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By standard arguments [L-S-U] each u, exists for all >__ 0 and u,--+ u in C1( x[0, T]).
By [G-N-N, Thm. 5.2] Unr(r,t)<O for r[R’,R], all n and all t>0. Pick t0(0,e) such
that u(r, to)> 3a/4 for r[0,R’]. For sufficiently large n we must have u(r, to)> a/2
for r [0, R’]. In particular we may assume that

(4.4) a(u,(.,to))>

for all n.
If /(t; a) denotes the solution of

3,’ =f (,), ,(0) =a,

we have 3’ 3’ uniformly for [0, T+ s] and any fixed a > 0.
From all of the above remarks it follows that

I[u(’,T/to)[[oo(<T(T; a(u(’,t0)))
for n sufficiently large.

Thus

Unr(r,t)<=O

for >= T and large enough n from which (0.4) follows.

4. (II). In the case that f] c R we may dispense with the symmetry requirement on
u0, and consider f in the form f=f(t,x,u, ux), with f(t,x,u,O)>_O, fx(t,x,u,O)=O, f
infinitely differentiable in all variables, and analytic in (x, u, ux) for fixed t.

Instead of (0.4) we obtain the conclusion that there exists T* < o such that for
t>__T*

has no local minimum in (- R, R).
To prove this it is only necessary to define /(t) from Proposition 3 in a slightly

different way. Note that Lemma 2.2 is still valid in this situation.
If x --+u(x,t*) has a local minimum at x*, then there exists x and x2, -R

x* < x. < R, such that

(4.5) Ux(Xl,t*)<O, ux(x2,t*)>O.
We set K= maximal connected component of (Ux>0} which contains (x2,t*). If we
define

(r)=inf(r:rA()},

then by (4.5), Lemma 2.2, and the Hopf boundary point lemma, (-) is defined and
satisfies -R < (-)<R on [0, t*]. The remainder of the proof proceeds as in 3.

As an example we can handle Burgers’ equation

U "[- UU Uxx.

In this case (0.3) can be verified since lim/__,o,/(t; a)=a and Ilu(’,t)ll(--’0 as
o (see [S, Chap. 21]).
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If the domain f is an annulus in R" and u0(x)= u0(lx[), then (0.1) is a one-dimen-
sional problem of the type just discussed, so we obtain the same conclusion.

4. (III). Finally, we can replace the zero boundary condition by the second
boundary condition

Ou
x Oa

where /n is differentiation in the outward normal direction. Since u/n u/r the
rotational symmetry of the problem is preserved. We assume first of all that uq(u)>=O,
so that u(x,t)>_O if Uo(X)>O. Under these circumstances Theorem 1 still follows from
Proposition 3, and Proposition 3 is valid as long as we can be sure that the curve (t)
does not run into the boundary [x[--R. For example if we require uq(u)> 0 for u>0,
then this latter possibility is ruled out.

Note that we do not expect to obtain the conclusion of Theorem 1 for the
homogeneous Neumann condition q(u) 0. For example if fl (- r, or) andf= 0, then

u(x,t) 2 + e -4t cos2x

is a positive solution of (0.1) for which (0.4) does not hold for any > 0.

Acknowledgment. We would like to thank N. Alikakos for some helpful conversa-
tions.

REFERENCES

[F] A. FRIEDMAN, On the regularity of the solutions of nonlinear elliptic and parabolic systems ofpartial
differential equations, J. Math. Mech., 7 (1958), pp. 43-59.

[G-N-N] B. GIDAS, W. NI AND L. NIKENBERG, Symmetry and related properties via the maximum principle,
Comm. Math. Phys., 68 (1979), pp. 209-243.

[G-V] A. GMIRA AND L. VERON, Asymptotic behavior of the solution of a semilinear parabolic equation,
Monat. fi]r Math., 94 (1982), pp. 299-312.

[H] C. HOLLAND, Limiting behavior of a class of nonlinear reaction diffusion equations, Quart. Appl.
Math., Oct. 1982, pp. 293-296.

[L-S-U] O. A. LADYZHENSKAYA, V. A. SOLONNIKOV AND N. N. URAL’CEVA, Linear and Quasilinear
Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968.

[M] H. MATANO, Nonincrease of the lap number for a one-dimensional semilinear parabolic equation, J.
Fac. Sci. Univ., Tokyo IA, 29 (1982), pp. 401-441.

[N-S] W. NI AND P. SACKS, Singular behavior in nonlinear parabolic equations, Trans. Amer. Math. Soc.,
to appear.

[P-W] M. PROTTER AND H. WEINBERGER, Maximum Principles in Differential Equations, Prentice-Hall,
Englewood Cliffs, NJ, 1967.

[S] J. SMOLLER, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983.



SIAM J. MATH. ANAL.
Vol. 16, No. 3, May 1985

(C) 1985 Society for Industrial and Applied Mathematics
005

MODULATIONAL STABILITY OF GROUND STATES OF
NONLINEAR SCHRODINGER EQUATIONS*

MICHAEL I. WEINSTEIN"
Abstract. The modulational stability of ground state solitary wave solutions of nonlinear SchriSdinger

equations relative to perturbations in the equation and initial data is studied. In the "subcritical case" ground
states are shown by variational methods to be stable modulo time-dependent adjustments (modulations) of
free parameters. These parameters satisfy the modulation equations, a coupled system of nonlinear ODE’s
governing the amplitude, phase, position and speed of the dominant solitary wave part of the solution.

1. Introduction. The initial-value problem (IVP) for the nonlinear Schr/Sdinger
equation (NLS)

(1.1) 2idPt+ 1 12 0, 0<o

(1.2) (x,O) o(X), xlRu

arises in the mathematical description of a diverse set of physical phenomena. Some of
these are

(a) the propagation of a narrow electromagnetic beam through a medium with an
index of refraction dependent on the field intensity [1], [7], [18], [27],

(b) electromagnetic (Langmuir) waves in a plasma [31], [32], and
(c) the motion of a vortex filament for the Euler equations of fluid mechanics [15].
NLS has nonlinear bound states which are "localized" finite energy solutions.

These are believed to describe wave phenomena that are observed in the above physical
contexts. Such solutions of (1.1) can be found in the form

(1.3)2 g,O( x, t) u(x ) e it/2.

Substitution of (1.3) into (1.1) implies

2(1.4) Au-u/lul= u=O, 0 < o < N--_2

The existence of infinitely many n solutions of (1.4) follows from work of Strauss [24]
(see also [4]). Among them is a real, positive, and radial solution which we call the
ground state and denote by R(x). To describe a physical phenomenon, a nonlinear
bound state should be stable. In this paper we study the stability of the ground state
relative to small perturbations in the equation and initial data.

*Received by the editors April 14, 1983, and in final revised form November 14, 1983.
Department of Mathematics, Stanford University, Stanford, California 94305. Present address: Depart-

ment of Mathematics, Princeton University, Princeton, New Jersey 08544. This research was supported in
part by the National Science Foundation, the Office of Naval Research, the Air Force Office of Scientific
Research and the Army Research Office.

For N 1 or 2 we allow 0 < o < o.

2If we seek solutions of the form bO--uejEll2, E real, then the rescaling W(x)=E/2u(Ex) leads to
(1.4).

472
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We now discuss the sense in which we expect the ground state to be stable and
then state our results in this direction. Let a, r/o, =(1,"" ",s) and 00= (O0a,. .,Oo,s)
be real constants. By the scaling properties of (1.1) or by direct verification it can be
seen that the functions

(1.5) (x,t;a,Oo,,rlo)=a-1/R(a-l[O-Oo])exp[i(.(O-Oo)+(rl-rlo))]
form a (2N+ 2)-parameter family of solutions of (1.1) for 0<o <2/(N-2) provided
the following relations hold:

In the "critical" case o= 2/N, there is at least one more scale invariance of (1.1).
In particular, for b R the functions [20]

(1.7) +(x,t; a,b,Oo,,rlo)

(a+ bt)-S/2R((a + bt)-l[O-Oo])
exp .(O-Oo)+-(a+bt )

form a (2N+ 3)-parameter family of solutions of (1.1) provided (1.6a, b, d) are satisfied
together with the following extension of (1.6c):

(1.6c’) 0___
t 2

Note that (1.7) reduces to (1.5) when b=0. We will refer to the functions (1.5) when
o 4= 2/N and (1.7) when o= 2/N as the ground state traveling wave family or simply
ground state family of NLS.

To study the stability of the ground state family we consider the perturbed IVP

(1.8) 2iq+Aq,*+lq:12q:=eF(Iq:l)q:, q:(x,O)=R(x)+eS(x).

In general, the solution q: of (1.8) will not evolve in the simple form

(1.9) q:(x,t) [R(x)+ew +ew+ ]e it/2

with ew + eZw + genuinely small for large times (say of order l/e). The possibility
of the linearized perturbation, ewe, becoming nonnegligible for large time can be dis-
played as follows. Differentiation with respect to the free parameters of q in (1.5) or

(1.7) generates solutions of the linearized (about the ground state) equation with
polynomial growth in time. Since in general ew will contain these solutions of the
linearized problem or "secular modes", ew will not remain small for large times.

When o < 2/N there are 2N+ 2 secular modes associated with the 2N+ 2 parame-
ter family of solutions (1.5). When o= 2IN, 2 more secular modes arise giving 2N+ 4.
One of these new modes is associated with the new parameter b in (1.7). The other,
however, has not been associated with a classical symmetry of equation (1.1). This is
further discussed in [20].
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In 2 we show that these secular modes are the only source of linear instability of
the ground state. In particular, we show that by constraining the evolution of the
linearized perturbation w to the space H with the secular modes removed, w is
controllable in H (Theorem 2.12). We call this space M. All theorems of 2 are stated
and proofs carried out in an arbitrary spatial dimension N, although the technical point
about N(L +) in part b of Proposition 2.8 has been completely proved, only in dimen-
sion N 1 for all o and in dimension N 3 for 0 < o _< 1 (see appendix A). Since the
stability analysis of the ground state concerns the case o =< 2IN, our results are com-
pletely rigorous in dimensions N= 1 and 3, and are lacking only in the above men-
tioned technical point in other dimensions.

A natural remedy to the growth of w in (1.9) is the use of the ground state family
with slowly varying parameters: a(et), (et)etc. as the leading order Ansatz. The idea
is to choose the slow functions a, etc. to constrain the evolution of w to M, thereby
ensuring that ewl(t) is genuinely small for times of order 1/e. More precisely, in 3 we
prove our main result which we state now as (later as Theorem 1’)

THEOREM 1. Let o < 2IN. Expand the solution ch( x, t) of (1.8) as

(1.10)
with

dpe(x,t)=(,l/R(X(O-Oo))+ewl +e2w2 +... )ei[’(O-Oo)+n-no]

Wl Wl ( k ( O Oo ), fot k2 ds )
For a class ofperturbations F, if the 2N+ 2 parameters ,, , 0o and *1 o evolve as functions of
T--et, according to the coupled system of 2N+ 2 ordinary differential equations (3.5) (the
modulation equations), then

(i) w Mfor > O, and
(ii) for any To > 0

(1.11) sup [lwl(t)ll/, =,(),
O < < To/e

where a( e) $ 0 as e O.
The modulation equations have been derived previously for various one-dimen-

sional formal perturbation theories [16], [17], [19], [22]. An aim of this paper is to
present some justification for these perturbation techniques. Results on the nonlinear
stability of ground states were obtained by Cazenave [5] for a logarithmic NLS and by
Cazenave and Lions [6] for (1.1) with o <2/N. In these works, perturbations of the
initial data alone are considered. They prove H stability of the ground state modulo
"adjustments in the free phase and centering parameters." These adjustments are
incorporated in the norm and are not explicitly constructed. (This idea has been used
for other equations as well [2], [3], [10].) Thus, their work shows that initial data near a
solitary wave evolves nearly as a solitary wave with unspecified, possibly different
position and phase for times > 0. The modulation theory presented and analyzed here
provides an approximate and constructive answer to the questions (a) where the solitary
wave is located and (b) what its phase is for t>0 (see Example 3.1). When small
perturbations of the equation (e.g. dissipation) occur, the phase and centering parame-
ters are, in general, not sufficient to describe the dominant part of the solution for > 0.
Modulation theory gives the additional explicit information on the amplitude and speed
of the solitary wave needed to track the solution closely (see Example 3.2).

In the mathematical theory of NLS, the case o 2/N has been understood to play
a distinguished role. It is also of physical interest since the case o 1, N= 2 arises in
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modelling self-focusing optical beams [18]. The cases o < 2/N, o 2/N and o > 2/N are
called, respectively, subcritical, critical and supercritical cases. A consequence of work of
Ginibre and Velo [13] is that if o<2/N, (1.1)-(1.2) has global solutions in
C([0, o); HI(R s)) for all 0 Hi(R s). In the case o >__ 2/N Glassey [14] has displayed
a class of initial data for which the solution of the IVP "blows up" in finite time in H1,
i.e. there is a finite time T, such that f IVxq(x,t)12dx- o as t- T(see also [28]).

Numerical observations in certain critical cases (Zakharov-Synakh [33] for (o,N)
=(1,2) and later Sulem-Sulem-Patera [26] for (o,N)= (1, 2) and (2,1)) indicate that
when o 2IN, the ground state plays an important role in the structure of solutions
developing singularities. This phenomenon is discussed in detail in the articles [20], [26].

Related analytical results were obtained in [29] where it was proved using a
particular variational characterization of the ground state (exploited further in 2) that
when o 2IN, a sharp sufficient condition for global existence in (1.1)-(1.2) is

(1.12) f I*o(X)l= x<f
The linearized stability results of [}2 for the case o 2/N also give information on the
special role of the ground state. In this case the techniques of [6] do not apply.

Notation. All integrals are understood to be taken over N N, the N-dimensional
Euclidean space, unless otherwise indicated.

1) W=(uv)’=(u).. 2

2) Ilfllp-- f If(x)lpdx wll -Ilull /
t()--t-- {f: Ilflb< },

Ilzll  =f
Hs(N N) HS= {f: IlfllHs < },

4) N(A) null space of an operator A,
N

5) for functions f, gNN, (f,g)= E ffigidx.
i=l

2. The linearized NLS operator. We first consider the stability of the gound state
+(x,t)=R(x)eill2 of (1.1) by seeking a solution to the perturbed equation (1.8)of the
form (1.9). Small perturbations of initial data may be incorporated in the equation
through a redefinition of q (see Example 3.1, (3.7)). Substitution of (1.9) into (1.8) and
linearization yields the following IVP for the linearized perturbation w:

(2.1) 2iwt+Aw-w+(o+l)R2w+oR2=F(R)R, w(x,0) =0.

We will also study the homogeneous IVP, (2.1) with F=0 and w(x,O)=wo(X), which
we denote by (2.1H). IVP (2.1H) has a useful conserved quantity given in the following"

THEOREM 2.1 Let w(x, t) be an H -solution of (2.1H). Then

(2.2) f (lvwlz
+ Iwl

2
(tr + 1) R2lwl-- + ) dx

is independent of time.
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Proof. We multiply (2.1) by t, take the real part and then integrate by parts. This
gives (d/dt) (2.2)= 0. O

It is expedient to work with the real and imaginary parts of w. We set w u + iv
and make the following definitions:

(2.3) (a) L+ A + 1 (20 + 1) R2,

(b) L_= -A+I-R2,

Now (2.1) can be written as the real system:

(2.4) 2Wt=LW+G,

0

Wit=o--O,
where G is a 2-vector with components imF. R and -re F. R. We denote the homoge-
neous IVP (G=0 and Wit=0= W0) by (2.4H). Let ftt denote the propagator or solution
operator for (2.4H). Thus W(t) fttWo. Theorem 2.1 can now be expressed as"

COROLLARY 2.2. Let WH1XH be a solution of (2.4H). Then, for > O,

(2.5) Q(W)=Q(u,o)=(L+u,u)+(L_v,o)=Q(uo,Oo).

We would like to use Q1/: as a norm, measuring the size of the perturbation IV.
However, Q is not positive definite on n xH1. We now introduce a subspace on which
we will see that Q1/9_ is equivalent to the H xH norm.

DEFINITION 2.3. For o =< 2/N we set

(2.6) M-H H [Ng(L*)] .c,
where B +/- {a=(aa, a_)lf ab+ a:b:dx=O for all b=(bl, b:)B} and Ng(A)=
generalized null space of A Uj N(AJ).

In appendix B we derive and display explicitly the elements of Ng(L) and Ng(L*)
(Theorems B.2-3). This explicit information and Definition 2.3 imply the following
orthogonality relations which we require in the coming analysis"

PROPOSITION 2.4. Let O,g)t M. Then (i) For o <2/N, the following 2N+ 2 ortho-
gonality relations hoM:

(2.7) (a) (f,R)=0, (c) (g, Rx.)=0,
( I

R+x" VR)=0, I=<j<N(b) (f,xR)=O (d) g’o

(ii) For o 2/N, we haoe the 2N+ 4 orthogonality conditions: (2.7) and the two new
relations

(2.8) (a)

(b)

(, IxlR) --o,

( g, o ) O, where L+o

The following result shows that under suitable restrictions the linearized energy
controls a classical norm.

THEOREM 2.5. Let o <= 2/N and (f g)t M. There exist positive constants K and K’,
independent off and g, such that

(2.9) ., / IIg[I 1) Z O(f,g)< g’(llfl[ + Ilgll =
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Thus for o <_ 2/N, M is a closed linear subspace on which the functional Q1/2 defines a
norm equivalent to the H H norm.

The upper bound in (2.9) is simple and holds for any f and g in H1. The difficult
part is the lower estimate. We base the proof on several propositions. The first is a
particular characterization of the ground state R, introduced in [29, Thm. B]. For
u H we define the functional

oN 2+o(2-N)
2(2.10) jo,S(u) Ilvull= Ilull= 0 < o

ilull==:/=+= N-2"

PROPOSITIOY 2.6. For 0 < o < 2/(N- 2)

(2.11) a inf J’N(u)
uH()

is attained at a function R with the followingproperties"
(1) R > 0 and R R(lxl),
(2) R H(nN)gC(nN),
(3) R is a solution of (1.4).
In [29] the functional jo,N was minimized to obtain the optimal constant of a

classical interpolation estimate of Nirenberg [23] and Gagliardo [11], [12]. There, the
optimal constant, which is expressible in terms of a, is used in an a priori estimate
derived from the conserved quantities of (1.1) to obtain the condition (1.12) for global
existence when o 2/N.

We now use jo,s to prove the following result which is at the heart of Theorem
2.5"

PROPOSITION 2.7. Let o <_ 2/N. Then

(2.12) inf (L+f,f)=O.
(f, R)--0

Proof I.3 First, note that L+ VR 0 and (VR, R) 0. Therefore the infimum in
(2.12) is nonpositive. Since jo,U attains its minimum at R,

d 2

(2.13) J"’N(R + e,1) >= Ode2 o

for all / C(R s). Now (2.13) can be written as

(2.14) (r/, /)>__ 0, where

(2.15) (2-bo(2-N))-ITz=L+z+(2-N)aoN(R,g)R
-boN(R,z)AR +(oN-2)CoN(AR,z)AR.

Here, IoN boN and cos are constants, dependent on o and N, that are positive for
0 < o < 2/(N- 2). Thus, (2.14) and (2.15) imply

(2.a6) (L+f,f) >= (2 oN) CoN (AR,/)
2

for any f with (f,R)=0. Since the right-hand side of (2.16) is nonnegative for o <__2/N
the result follows, rq

3A second, more general, proof is given in Appendix E (see also [30]).
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In what follows we will need the next result, part (b) of which has been proved
completely only in dimension N 1 for all o > 0 and in dimension N 3 for 0 < o <_ 1
(see appendix A for the proofs). This suffices for our modulational stability analysis of
the ground state for o __< 2/N to be complete in dimensions N= 1 and 3.

PROPOSITION 2.8.
(a) L_ is a nonnegative self-adjoint operator in L2 with null space N(L_)= span( R ).
(b) L+ is a self-adjoint operator in L2 with null space N(L+) span( Rx,; 1 <= <= N ).
The next two results show that by imposing the additional constraints defining M,

Q/2 controls the H norm.
PROPOSITION 2.9. Let o <_ 2/N. There exists a positive constant Co+N such that for any

fsatisfying orthogonality conditions (2.7a, b) (and (2.8a) when o= 2IN)

(2.17) ( L+f,f) >__ Co+u (f,f).

PROPOSITION 2.10. Let o <= 2/N. There exists a positive constant Cd-N such that for
any g satisfying orthogonality relations (2.7c, d) (and (2.8b) when o 2/N)

(2.18) (L_g,g) >- C-v( g,g).

ProofofProposition 2.9. We first consider the case o < 2/N. Let z-= infllfll2 I(L +f,f),
where f is constrained by (2.7a, b). We will prove z > 0 by showing that the assumption
z 0 leads to a contradiction. This will suffice by Proposition 2.7. We first show that
z 0 implies the minimum is attained in the admissible class. We then can consider an
associated Lagrange multiplier problem to deduce z > 0.

Let { f } be a minimizing sequence i.e. 1[/=112--1, (L+L,L)$ 0 and f satisfies
(2.7a, b). Then for any r/> 0 we can choosef so that

(2.19) o<f ( w.) ax+f yga <= (2o+ 1)f ffdx +n.

Since IIfll2 is finite, (2.19) implies IILII are uniformly bounded. Thus a subsequencef
exists that converges weakly to some H function f,. By weak convergence f, satisfies
(2.7a, b). We also have fR2f2dx fR2"f2,dx by HOlder’s inequality, interpolation,
and the uniform decay of R. Thusf, 0, by (2.19) since /is arbitrary.

We now show that the minimum is attained at f, and IIf, II 2-1. By Fatou’s lemma
Iif,112=<1. Suppose 1,112<1. Then, define g,-f,/l,ll2 which is admissible. Let
Z2, 11112--1. By weak convergence of f to f,, (’,vf,)=liminf,+(’,vf,)_<
liminf, 11 x7f, l12. Maximizing over all such ’, we obtain

112 =< liminf VLII=.

Since (R2f,,,f)(R2"f,,f ,), we have

(L+f,,f,) =< liminf (L+f,f) 0.

Hence, (L+g,,g,)<=O. By Proposition 2.7, (L+g,,g,)=O. Thus we can take 1,112 1
and the minimum to be attained there.
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Since the minimum is attained at an admissible function f, 0, there exists
(f,,),, ,) among the critical points of the Lagrange multiplier problem

(2.20) (a) ( L+- t )f flR + ,/. xR, fl R,

(b) Ilfll== 1,

(c) f satisfies (2.7a, b).

By (2.20) ,=(L/f,f), so )t==0 is a critical value. Therefore, we need to conclude
that

(2.21) L+f,= flR + v.xR
has no nontrivial solutions (f,,fl, 3’) satisfying the side constraints. Taking the inner
product of (2.21) with VR, integrating by parts, and using that R,N(L+), we find
V=0. Therefore f,=-I/2fl((1/o)R+x. VR)+O. vR, 0. Here we use that
L+((1/o)R + x. VR)= -2R (by inspection) and part (b) of Proposition 2.8. Now 0=0
by (2.7b). Also, since (f,,R)=-1/2fl(1/o-N/2) IIRII 2 (2.7a) is violated when o<2

2/N. Thus f, 0, a contradiction. We now conclude that z > 0. This settles the case
o <2/N.

In the case o=2/N, we show that ’=inftlylt__(L+f,f) where f is constrained by
(2.7a, b) and (2.8a) is strictly positive. The proof of part (i) adapts and we conclude that
if z’ 0, then the minimum is attained at an admissible function f,. We are thus led to
the Lagrange multiplier problem

(2.22) (a) L+f, fiR + 3/" xR + 3lxl
2
R,

(b) IIf,l12= 1,

(c) f, satisfies (2.17) and (2.19).

We now argue as before: (2.22a) implies that f, 1/2fl((N/2)R + x. VR)-3p+
0. VR since L+((N/2)R + x. VR)=-2R, L+ VR=0 and L+p=-Ixl2R (see (B.15)).
Since ((N/2)R + x. VR,Ixl2R) flxl2R2dx 4: 0, (o,R)4= 0 (see (B.16)), and
(VR, xR) 4: O, the constraints (2.7a, b) and (2.8a) imply f, 0. Hence ’ > 0. This
completes the proof of Proposition 2.9.

Proof of Proposition 2.10. We first consider the case <2IN. Let /=

infllg,: l(L_g, g), where g is constrained by (2.7a, b). By a proof similar to that in part
(i) of Proposition 2.9, if/= 0, then the minimum is attained at an admissible function
g, 0. Since L_ is nonnegative (Proposition 2.8a), g, R/IIRII2. But g, does not
satisfy (2.7d) since (R,(1/o)R + x. VR)= (l/or-N/2)IIRII22, which does not vanish for
< 2IN. Thus g, 0, a contradiction. We conclude/ > 0 in the case < 2/N.

For 2IN, let =infllgll:__(L_g,g), where g is constrained by (2.7c, d) and
(2.8b). Although g,--R/IIRII2 now satisfies (2.7d), by (B.17) it violates (2.8b) since
(R,)= flxl2R2dx g:O. Hence, t’ > O.

Proof of Proposition 2.5. For o<_2/N, (f,g)tM implies by Proposition 2.4 and
Propositions 2.9-2.10

a(f g) (Z+f,f) + (L_g, g) >__ C+ (f,f) + C- ( g, g) gl(llfll + Ilgll).
The lower estimate of (2.9) now follows easily.

That the space M is "natural" for the linearized evolution (2.4H) is clear from
PROPOSITION 2.11. Let o <= 2IN. Then, ’t maps M into itself.
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The proof of this proposition is a simple but lengthy computation which we give in
appendix C. The idea is to compute the evolution of the 2N+ 2 modes defining M, for
o < 2/N (2N+ 4 modes, for o 2/N). These satisfy a simple linear system of ODE’s in
time ((C.3) or (C.7)). Thus if we assume that W0 has a vanishing component in M, then
so will W(t).

We conclude this section with the following result on the "H control" of ft on M.
It is the main analytical tool of 3.

THEOREM 2.12. Let o <=2/N, and consider (2.4) with Wo M and GM. Then,
W(t)Mfor t>0 and

gllw(t)ll
2

__g’nx <= Q(W(t)) <

In addition under the above hypothesis, for (2.4H) we have

(2.24) gllw(t)ll _g’n’<=Q(Wo) < IIWolIH"

Proof. Since ft: M-M (Proposition 2.11) estimate (2.9) holds with (f,g)t= W(t)
for all (Theorem 2.5). This is precisely (2.23). For (2.4H) Q(W(t)) is conserved
(Corollary 2.2). Thus (2.24) follows. D

3. Modulational stability. In this section we will prove Theorem 1. Our first aim is
to derive the modulation equations referred to in the statement of the theorem. Let

= f,2(es)ds, O =(0- 00). We now let the 2N+ 2 parameters vary slowly, i.e. a -1

,=X(T), i=i(T), 00,i=00,i(T), and /0=/0(T), l<i<N where T=et. We will de-
termine the slow time evolution of the functions A, , O0, and r/0 that will ensure (1.11).
Substitution of (1.10) into (1.8), use of (1.6), and the balance of terms of order e yields
the IVP

(3.1) W=LW+G, Wo--O W--(u,o) t.

We display the source term, G G(et)= (f *(et), g*( et ))t explicitly"

(a) f=A+imF(R)R,
(b) g=B-reF(R)R;

(3.3) (a)

(b)

A=- 2AI/-3X(1R+- (9. vR)+ 2A.1/- 0o VR-- x/-. +(. Oo + o) xl/-a.

Our aim is to control the large (or t) behavior of W in a suitable norm. In 2 the
natural norm with which to study (3.1) was found to be the "linearized energy" Q (see
2.5). By Theorem 2.12, if G*M for > 0, then

(3.4) KI[ w()[[%, <_ Q(w()).

By Proposition 2.4, G*M for ’>0 implies that f* and g* satisfy the 2N+2-
orthogonality conditions (2.7). These relations are called the modulation equations. After
some simplification we find that the conditions (2.7) reduce to the following system of
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2N+ 2 ordinary differential equations in time for the 2N+ 2 parameters )k,,00, and

(3.5) (a)

(b)

(d)

2(1 N) 2

IlRIl00,.- X-1/0+ l(f, OjR), 1 Zj Z N,- IIRIl(.00+0)=X-1/+ g,
Note that in the critical case o 2/N, (3.5) becomes singular. This is a manifesta-

tion of the need to incorporate the two additional generalized eigenmodes (recall there
are 2N+ 4 when o 2/N) with which one can constrain the evolution to M. Since we
have not found a (2N+ 4)-parameter family of solutions (we only have the (2N+ 3)-
parameter family (1.7)) we have not carried this out for o 2/N.

We now restate Theorem I more precisely and give the proof.
THEOREM 1’. Consider the IVP (1.8), where q the solution is expanded as in (1.10).

Suppose the 2N+ 2 "slow" functions X(T), (T), Oo(T ), and ,lo(T) soloe (3.5) and are
such that Lf(et)] and ]g(et)] of (3.2) are uniformly bounded (independently of e) on any
t-interval 0 <_ <_ To/e. Then, (1.11) holds.

Proof of Theorem 1’. By (3.1), we have

where ,= exp[ 1/2Lr] is a unitary group acting in the space M with norm Q1/2 (Theorem
2.5). The modulation equations (3.5) imply G(er)M for all r corresponding to the
t-interval [0, To/e]. Thus, by Theorem 2.12, W(r)M and

(3.6) KIIW( ) IIH, <= Q e

_
sG (es) ds

We now want to study the behavior of the right-hand side of (3.6) for fixed time
intervals of order 1/e as e 0. Heuristically, since G is "almost constant" the mean
ergodic theorem [9] should imply that ef f_sG(es)ds tends to the projection of G onto
the null space of L in the space M. But the nullspace of L in M is empty since the only
possible members, (O,R) and (0, XTR) t, do not lie in M. Thus we should have Q(ef
f_sG(es)ds) J, 0 for 0=< -=< 0(l/e) as e0. This argument is made rigorous by invoking
Lemma D.1. The assertion (1.11) now follows from this and (3.6). rn

We now study (1.8) for two specific perturbations. We apply Theorem 1’, the
hypotheses of which are easily verified.

Example 3.1. Initial data near the ground state.
Consider, for 0 < o < 2/N, (1.1) with

(x, 0) 0; x O,xo, SH.
Expand (x, t) as in (1.10) with w, the linearized perturbation, defined by

(3.7) w (u + reS)+ i( v + imS).
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Then, W= (u, v) satisfies (3.1) with

(3.8) (a) f=A*+L_imS,

(b) g=B-L+ reS

and A, B defined in (3.3). The modulation equations (3.5) reduce to

(3.9) (a))k=O(et)--,,
(b) ,=0,=0;

(3.10) (a) IIRII f200,,=- 2 imS(x)Ro,(,i"(X-Oo))dx, l <i<N,

(b) (a/o-N/2)llRIlo=f reS(x)R(,i"(x-Oo))dx.
Therefore, to leading order, perturbations of ground state initial values induce modula-
tions of the parameters 0o and ro alone. This is consistent with the nonlinear stability
results in [6].

Example 3.2. Simple dissipation.
Consider the IVP (1.8) with

(3.11) (a) F(z) -ix,

This has been considered in one spatial dimension in [17], [19]. Following the procedure
outlined earlier, we obtained the following modulation equations:

x, (0)=’,X= -x2_oN

(3.12) 0o,- 0, 0o,(0) Xo,, l<_i<_N,

,,= O, (0) =0, l<_i<_N,

o -.0o, o(0) =".
These equations are easily solved:

X ( et ) X" exp 2 oN et li ( et ) =- O,
(.1

00,( x0,, n0(l n.
The Ansatz (1.10) and (3.13) imply that the effect of small simple dissipation is a

slow exponential decrease in the amplitude of the ground state profile, accompanied by
a simultaneous broadening of the profile due to the changing spatial scale, X(et)(x- xo).

Appendix A. Partial proof of Proposition 2.8.
Proof of Proposition 2.8a. Since L_R =0 and R L2, we have 0 o(L_). Since

R >0, it is the ground state. Thus L_ is nonnegative. Finally, N(L_)= span(R } since
the ground state is nondegenerate.

Proof of Proposition 2.8b for N=I. Since R"-R+R2+I =0 (R(x)=
( o + 1)1/2secht/(ox) > 0), R’ N(L/). Define w R’/R"(O). Then w(0)= 0 and w’(0)

1. Let v be the solution of L/v=O with v(O)= 1 and v’(0)=0. We then have the
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Wronskian relation w(x)v’(x)-w’(x)v(x)= 1. Therefore, R’(x)v’(x)-R"(x)v(x)=
-R"(0)=o(o+ 1)x/2. We then have that (v/R’)’=(o+I)I/2/(R’) 2. To prove that
vqN(L+) and therefore that N(L+)=span{R’} it will suffice to show that I1 as
x. For e>0 andx>0,

’(
d,

v(x)= R’(e)
R x)+

[R,(s)12
o(o+ 1)I/2R’(x).

Since R’(x)=O(e-x) as x, i.e., [R’(x)l<=Ce -x, and R’ <0 for x>0,

o(x) <c(e) R’(x) fx ds

R’(e) +
C2e 2sR’(x) asx .

Proof of Proposition 2.8b for N 3, 0 < o <__ 1 and partial proof in all other (N> 1)
cases. Since the equation AR-R +R2+=0 is translation invariant in space, VR=
R’(lxDx/lx N(L+). Now L+ is an operator with a potential dependent only on r= Ix[.
Hence an Lz solution of L+v 0 can be expanded in a series with functions of the form
f(r)Y(O), wheref Lg-(0, ; rN-t dr) and YL(SN-1). These functions must satisfy

(A.1) A kf---- ( d 2

dr 2

(A.2) -As,,-,Y=XkY,

N-ld
r dr -l-(2o+l)RZ+ -- f=O,

where ,
k k(N- 2 + k).

The null functions vR correspond to k 1. Therefore to prove the theorem it will
suffice to show that there is no solution of (A.1) satisfying the correct boundary
conditions at r= 0 and r= for k (0, 2, 3, 4,.-- }.

We handle the case k >__ 2 as follows. The function R’ is an eigenfunction of A
corresponding to the eigenvalue zero. Since R’ has no interior zeros it is the ground
state of A. Hence A is a nonnegative operator. Setting k--1+3, 3>0, we find

Ak--A +(Nd-)r-2 which is a positive operator. HencefL2 and Akf=O for k_>_2
implies f-= 0.

The case k=0 has not yet been completely resolved. Coffman, in proving the
uniqueness of the positive decaying solution of R" + (2/r)R’-R + R --0 (o 1,N= 3),
first shows that I(bu/Or)(r, ao)l- as r- , where u(r,a) is the solution of the IVP

and a0 is the initial value generating the ground state u(r, ao)=R(r) [8, Lemma 4.2].
This lemma holds as well, with minor changes in the proof, for the range 0 < o =< 1,
N 3.4 This eliminates the k 0 mode in the case 0 < o __< 1, which includes the subcriti-
cal and critical cases in dimension three. (More general results on the uniqueness of the
ground state of (1.4) were obtained by McLeod and Serrin [21].) For general o and N,
since the problem is reduced to consideration of the ODE (A.1) with X k 0, we can say
that dimN(L+) is either N or N+ 1.

4 C. V. Coffman, personal communication.
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Appendix B. Generalized null spaces. In this appendix we display explicitly the
generalized null spaces of L and L*, denoted by Ng(L) and Ng(L*). The results of this
section depend on Proposition 2.8b which has been completely proved in dimension
one for all o, and in dimension three for 0 < __< 1.

We begin with the following useful observation which follows by direct verifi-
cation, using (1.4).

PROPOSITION B.1.

(B.1) (a) L_R=O, (c) L+X7R=0,

(1R+x.(b) L_xR=-2VR, (d) L+ o

We are interested in the null spaces of L, L2, L3, For example, the equation
LW=O, where W=(u,c) reduces to L_c=O and L+u=0. By Proposition 2.9, (O,R)
and (VR,0) span N(L). The equation LEw=0 implies L_L+u=O and L+L_c=O. By
Proposition B.1 we find that N(LE)-N(L) is spanned by ((1/o)R+x. VR,0) and
(O, xR) t.

Continuing, we consider L3W 0 which implies

(B.2) (a) L_L+L_v=O,
(b) L+L_L+u=O.

We seek to construct functions in N(L3) N(L2). Equation (B.2a) implies L+L_v cR,
c constant. By Proposition B.1,

(B.3)
C (1R+x. VRL_v=-g o

Now (B.3) will have an H solution if the following solvability condition holds:

Thus for o = 2/N, (B.3) has no solutions giving rise to an dement of N(L3)-N(L2).
Consider now (B.2b). This implies

(B.5) L_L+u=c. VR, C-N.

By (B.lb)

c
(B.6) L/u -. xR.
Since (VR,xR)4: 0, (B.6) has no solution generating an dement of N(L3)-N(L2).

It follows that for o4: 2/N, N(L3)=N(L2). Similarly, for o=/= 2/N N(Lk)=N(L2),
k>= 3. The same procedure can be followed to deduce Ng(L*). We summarize these
observations.
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THEOREM B.2. Let 04= 2IN. Ng(L)=U=IN(Lg) and Ng(L*)=U=I[N(L*)g] are
spanned by the following two 2N+ 2-dimensional biorthogonal sets"

(a)

(b)

()

(d)

(B.8) (a)

(b)

(=)

(d)

where

(a.9)

al=tX11=(0,--/I) t,

a2,j (12 1( Rxj, O) I<=j<_N,

a3.j=otl(O,xjR) 1 <_j<N,=

a4 a11 1R + x VR O where

1-- T-o =’ ,,= IIRII=,

bl= O,R+x. VR
b2,j= ( xjR, O) t, 1 SJ < N,

b3,= O, R 1Nj < N,

(a,,bk)=8,k and (ai,m,bk,l)=immk(k,.
In the critical case, (= 2/N, (B.4) implies that (B.3) has a solution generating an

element of N(L3)-N(L2). In fact (B.3) can be solved explicitly since

(B.I0) L_ Ixl=R 4 -R + x. vR

Consider now the equation L4W 0, when tr 2/N. This implies

(B .11) (a) L_L+L_L+u 0,

(b) L+L_L+L_v=O.

We seek a solution generating an element of N(L4)-N(L3). (B.11a) and (B.la) imply

L+L_L+u cR, c constant.(B.12)
(B.ld) implies

(B.13)

(B.10) implies

)L_L+u - -R + x VR

c Ixl2 R.(B.14) L+u=-
(B.14) has a solution since the inhomogeneous term Ixl2R satisfies the solvability
condition (Ixl2R, VR)---0. We define a particular solution of (B.12) u=-(c/8)p,
where p is the unique radial and even solution of

(B.15) L+p= -Ixl=R.
Thus (p, 0) N(L4)-N(L3).
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It is easily seen that (B.11b) has no solution giving rise to an dement of N(L4)
N(L3). Similarly it can be checked that N(Lg)=N(L4) k>_ 5, when o= 2/N. Ng(L*) is
similarly deducible.

We summarize the structure of the generalized null spaces when o 2/N in
THEOREM B.3. Let o=2/N. Ng(L)=U_tN(Lj) and Ng(L*)=U=tN[(L*)J] are

spanned by the following 2N+ 4-dimensional biorthogonal sets:

(B.16)

(B.17)

(B.18) (a) ml= (0,p)’,

(b) rn z,j (xjR, O)’,
(C) m3,j= 0, -Rxj

(a) -7

(e) ms= 0,-R+x. VR

(f) m6=(-R,O) t.

I <=j<=N,

I <_j<=N,

+’y2(-R,0) t,

Appendix C. The secular evolution. We set S=-Ng(L) for o <=2/N. Recalling
Definition 2.3 of M, we have by the biorthonormality of Ng(L*) and Ng(L) the
following:

PROPOSITION C.1. For o <_ 2/N, H H M S.
Proposition 2.11 stated that M is mapped to itself by fit. The following result

describes the evolution in the complementing space S.
THEOREM C.2. Consider (2.4) with Wo=(Uo, Vo)t S and G=(f,g)t S. Then, W(t)

=(u(t),v(t))t S and has the followingform.
(a) For o < 2/N

4

(C.1) W(t)= E gj(t).aj, where
j--’-I

(C.2) g(t) (bj., W(t)), l<=j<_4.
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The functions Ij satisfy the system ofODE’s

(C.3)

(C.4)

(a) 2#l(t)=-2ta(t)+c1,

(b) 22,k(t)=21a,k(t)+c2,k, 1 <=k<=N,
(c) 2h3,k(t)=c3,k, 1 <_k<=N,

(d) 2 4 ( ) c4, where

(b) For o 2/N

6

(C.5) W(t)= E vj(t)nj,
j---1

(C.6) vj(t)= (mj, W(t)),
The functions vj( t) satisfy the system of ODE’s

(a)
(b)
(c)
(d)
()
(f)

2/, (t)= 2Va(t ) + f1171v6 (t) +d1,

2i’2(t)=2va(t)+d2,
2/’3(t) d

2/’4(t) -4vs(t)+d4,

2i’5(t)=v6(t)+ds,
2i6 ( d6, where

(C.7)

(C.8) dj=(mj,G).

where

1 =<j_<6.

J(es)N-(L) forO<_s<=T/e, e>O.

Then,

(D.1)
--,o T e es) ds

We prove (D.1) in the form

(D.2) lim e s)ds =0
e--*0 H

iff(s)N+/-(L) for O__<s_< T.

Appendix D. A mean ergodic theorem for slowly varying functions. To prove
Theorem 1’ we use the following lemma:

LEMMA D.1. Let L be a skew-adjoint operator on a separable Hilbert space H, and
exp(Ls) be a corresponding unitary group of transformations. Let J*=J(es) be a continu-
ous H-valued function with H-norm bounded, independently of e, for 0 <__ s <= T/e, where
T> 0 is fixed. Furthermore, assume

Proof. We substitute the expansion (C.1) ((C.5) when o=2/N) into (2.4) and
equate coefficients of like modes. This yields system (C.3) ((C.7) when
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Let (g,. } be a countable orthonormal basis of H. Let 8 > 0 be arbitrary. Choose
n n (i, T) so that

(D.3) sup
O<t<T

where fn(t)=Y’,y=lcj(t)qj and cj(t)=(qj,f(t)). For every j, 1 <=j<=n, we select k(t), a
piecewise constant approximation to cj(t) such that

(D.4) sup Ic(t)-k(t)l<.
O<t<T 2n

We then have

(D.5) foT Ls/ef( foT Ls/e fe s)ds= e [f(s) (s)lds

fo+ e E[cj
j=l

T Ls/e+ e kj(s)jds.
j--1

Estimating in H,

(D.6) e s)ds <=--+ Tn-n+ e kj(s)dpjds
H j=l H

Z " E E Xj kj m%dS
j=l m=l H

<= T8 +
T
e L / X s. kj dpj ds

j=l m=l H"
Here, kj(t)=,=lXj,mkj, is a piecewise constant approximation of cj(t) on [0, T],
where (Xj,,, } are characteristic functions of subintervals { Ij, ) that can be chosen to
be uniformly distributed in [0, T]. We note that the double-sum is finite and indepen-
dent of e. Sincef(s)eN+/-(L) for O<=s<_ T, jeN’(L). By the mean ergodic theorem [9],
each term in this double-sum tends to zero as e--+ 0. Thus,

(D.7) e s ) ds -8 ase-O.
H

Since 8 was arbitrary, the proof is complete.

Appendix E. A second proof of Proposition 2.7. This proof is based on the follow-
ing general lemma.

LEMMA E.1. Let A be a self-adjoint having exactly one negative eigenvalue, o with
corresponding ground state eigenfunction fo >= O. Define

(E.1) c < a min (Af,f), where Ilfll=-- 1 and (f, R) O.
f
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We assume ( R,fo) 4:0 and R N1 (A): Then a >= 0 if

(E.2) (A-1R,R)<__O.

Proof of Lemma E.1. If a is attained for the function f,, then by the theory of
Lagrange multipliers there is a triple (f,, ,, fl ,) satisfying

(E.3) Af,=,f,+fl,R, Iif,112=1, (f,,R)=0.

Taking the inner product of (E.3) withf, we get

(E.4) X,=(Af,,f,).
Therefore, to prove that a >__ 0 it suffices to preclude ,, __< 0. First, if X, 0, then

taking the inner product of (E.3) with f0 we conclude that either fl, =0 or (R,f0)--0.
Neither is possible since (R,fo)4:0. If X (X0,0], we get from (E.3)

(E.5) f,=fl,(A-,,)-lR.
Now X, is a critical point if

g(X,) =0,(E.6)
where

(E.7)

Note that

g(X)=((A-,)-IR,R).

(E.8) g’(X)= I[(A X)-1RII
2

2

since A is self-adjoint. Therefore, g is increasing on (X o, 0]. Moreover,

(E.9) g(O)=(A-IR,R).

It follows that if (E.2) holds, then g(,,)4:0 in (X0, 0). This proves the 1emma.
Proof II of Proposition 2.7. We identify A with L+. That L+ has exactly one

negative eigenvalue can be seen as follows (see also [30]):
Case (i) N= 1: R’ N(L+) has exactly one node at x=0 implying, by ODE

oscillation theorems, that 0 is the second eigenvalue.
Case (ii) N>__ 2, o < 2/(N-2): Since the coefficient of the second term in (2.15) is

nonpositive, we have that

(E.IO) ]’=L++ [(oN-2)Co2v(AR, ")-b,,N(R, .)] AR
is a nonnegative operator. Therefore, L+ is a rank one perturbation of a nonnegative
operator. By the min-max principle, L+ has at most one negative eigenvalue. Since
X7R N(L+) is not positive it is not the ground state, implying that L+ has exactly one
negative eigenvalue.

As was remarked at the beginning of Proof I, we have that the infimum in (2.12) is
nonpositive. By techniques used to prove Proposition 2.9, the infimum in (2.12) is
actually a minimum. Therefore, L+ and R satisfy the hypotheses of Lemma E.1 and it
suffices to calculate (L

_
R, R). By (B.1),

(E.11)
N 1 IIRII-.(L+R,R)= -- o
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This is nonpositive if o =< 2/N, Proposition 2.7 now follows from Lemma E.1 r
We note that in the supercritical case a> 2/N, the infimum in (2.12) will be

negative since (L 1R, R) > 0. This suggests modulational instability of the ground state
for o > 2IN.
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Note added in proof. The author has proved, using the results presented here on

the linearized NLS operator, nonlinear Lyapunov stability of ground states relative to

small perturbations in initial data: Lyapunoo stability of ground states of nonlinear

dispersive evolution equations, to appear.
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CONVERGENCE OF ESSENTIAL SPECTRA FOR
INTERMEDIATE HAMILTONIANS*

CHRISTOPHER BEATTIE

Abstract. A variant of an intermediate Hamiltonian construction of Fox is shown to give convergent
estimates from below to the lowest point of the essential spectrum for a large class of multielectron atomic
Hamiltonians. An HVZ-type theorem is presented for such intermediate Hamiltonians and convergent lower
bounds to all lower eigenvalues are shown to be attainable with this construction.

1. Introduction. An important theoretical and .practical problem in quantum
mechanics is the accurate estimation of SchriSdinger operator eigenvalues. The task of
assessing the accuracy of an estimate to any given eigenvalue of an atomic Hamilto-
nian, H, is tantamount to finding rigorous upper and lower bounds to that eigenvalue.
Generally speaking, lower bound estimation requires more computational effort and
the related analysis is commonly more subtle than that encountered in complimentary
upper bound estimation. Due to varying needs in a priori information there are, in fact,
relatively few lower bound procedures that are widely applicable, so selection of an
appropriate method is quite sensitive to problem setting. We will focus our attention on
intermediate operator methods.

Intermediate operator methods generally require a decomposition of the operator
H as H= H+/7/, where spectral information on the lower spectrum (i.e., spectrum
below tless) of the self-adjoint operator H is explicitly known and/7/is some positive-
definite symmetric operator. Then H<H in the usual sense of ordering for symmetric
operators (cf. [15]) and the (known) lower eigenvalues of H provide a priori lower
bounds to the corresponding eigenvalues of H with a similar relationship holding for
the lowest points of their respective essential spectra.

The lower bounds provided by H generally tend to be quite crude and in order to
improve them in such a way that they remain lower bounds, one must carefully
approximate from below. Aronszajn ([1]) developed a systematic procedure for doing
this with an increasing chain of positive-semidefinite finite-rank operators and detailed
the related theory necessary to resolve the spectral problem for what may then be
viewed as a finite-rank perturbation of a spectrally resolvable operator. The long
collaboration of Bazley and Fox (see e.g. [3], [4] and [5]) developed some of the tools
introduced by Aronszajn into practical computational strategies that found application
in many areas of fluid dynamics, mechanics and quantum theory.

Although these classical intermediate operator methods have had some success in
application to Schrrdinger operators (see [2] and [4]) one finds severe limitations
imposed for complex atoms due to the stability of essential spectra under finite-rank
perturbations. For atoms or ions larger then helium, part of the essential spectrum of
the resolvable base operator H generally lies below the lowest eigenvalue for the full
operator H, rendering the usual finite-rank Aronszajn method useless in obtaining
lower bounds to the level of accuracy required. Fox [10] discovered a modification of
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Aronszajn’s original method utilizing infinite-rank perturbations of the base operator
yet retaining the critical property of producing computationally resolvable intermediate
operators. The effectiveness of this technique was demonstrated by Fox and Sigillito
([11], [12]) in computing rigorous lower bounds to the lowest point of the essential
spectrum and the first three eigenvalues of a simplified Hamiltonian related to lithium.
Later computations by Reid ([13] and [14]) on a realistic Hamiltonian for lithium were
unable to raise the intermediate essential spectrum sufficiently to make the eigenvalues
of interest accessible to tight lower bounds and attested to the dangers of simplifying
the computational procedure by ignoring difficult-to-use a priori spectral information.
Building on Reid’s experience, Freund ([9]) was able to carry out a computation
demonstrating sufficient displacement of essential spectrum by incorporating more
spectral information, however numerical instabilities have delayed the final acquisition
of tight lower bounds to lithium bound state energies. The whole history of these efforts
has underscored the computational sophistication required to successfully carry out
Fox’s method and has raised questions about the kind of convergence possible.

Various convergence results have been obtained recently for Fox’s construction of
intermediate Hamiltonians that are contingent upon the intermediate essential spectra
moving up sufficiently to expose eigenvalues to convergent estimates ([6], [8]). What we
are able to show here is that in the case of multiparticle Hamiltonians with Kato
potentials, these convergence results in fact guarantee the convergence of the lowest
point of the essential spectra of the intermediate Hamiltonians to the lowest point of
the essential spectrum of the original Hamiltonian. A result like this appears in [6] for
the special case of Coulombic potentials. Such a result is somewhat novel, since
previously known convergence results for intermediate operators have been solely
devoted to the convergence of isolated eigenvalues of finite multiplicity. The principal
application of our result is to show that Fox’s construction can be done in such a way
as to guarantee convergent estimates to all the lower eigenvalues of a wide class of
Schri3dinger operators.

2. The Hamiltonian. We consider a model of an atomic system with m identical
particles interacting with each other and with a fixed nucleus. With an appropriate
choice of units the Hamiltonian is

H- Z A+ W(r)
k--1

m

+ Y’. V(r,-r)
l<j

operating on a domain dense in L2(R 3m). In this notation, (A k } are Laplacians acting
in copies of L2(R 3), (rk } are position vectors in R a, and both W and V are potential
functions representing particle-nucleus and particle-particle forces, respectively.

The following three assumptions are fundamental to the construction of con-
vergent eigenvalue estimates from below:

a) V,Wt2(l3)-k-[Z(l3)le.
b) V>0 a.e. in 3.
c) The self-adjoint operator corresponding to the single-particle energy observable

1/2A + W in L2(I 3) has the lower part of its spectrum consisting of eigenval-
ues of finite multiplicity, which may be computed to arbitrarily high precision
together with the corresponding eigenfunctions.
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Some observations may be made immediately as a consequence of these assump-
tions. We first note that the self-adjoint operator associated with the m-electron ob-
servable

m

A+ W(r)

has discrete lower spectra that are computationally resolvable in terms of the spectra of
-1/2A + W by separation of variables. Furthermore, the symmetric operator
E<j V(ri- rj) is essentially self-adjoint on C(R 3m) which is also a core for H and H.
Since H> 0, we see that H <H and hence intermediate operator methods for ap-
proximating the eigenvalues of H from below are applicable.

The m-particle space L2(R 3,) can evidently be written as an m-fold tensor product
L2(II3)(R)L2(I3)(R) (R)L2(13). With this decomposition the original Hamiltonian
may be represented as

H=Ao(R)I:(R) (R)I,,+I(R)Ao(R) (R)I

m(+ +(R) (R)Ao+ jU- Aj(R)

Here A0 denotes the single-particle operator -1/2A + W on Z2(l 3) and Aij denotes
multiplication by V(ri- rj) on the two-particle space L2(R 3)(R) L2(R 3). The operator Uj
is a unitary transformation on L2(R 3m) corresponding to the change of variables rio r
and rjo r2 and is introduced as a notational convenience to express coupling between
particles that do not have adjacent labeling (i.e., #:j- 1).

An s-electron ion has a Hamiltonian given by

H= A+ W(r) + V(ri-rj)
k=l i<j

on a domain dense in L2(N 3,). With the decomposition of L2(R 3,) into an s-fold tensor
product of copies of L2(R 3), there is an obvious parallel in structure with H as above.

3. The approximation. Fox’s construction of intermediate Hamiltonians involves
an approximation of Ao= -1/2A + W and Aj= V(r-rj) in such a way as to retain the
"ionic" structure of the original Hamiltonian. The key notion in Fox’s construction is
the approximation of A0 by a suitable bounded operator on the one-particle space
L2( 3) and the interelectron coupling Aij by a suitable finite-rank operator on the
two-particle space L2(I 3)(R) L2(N 3). We consider a particular variant detailed in [6] and
[7] for which convergence can be shown.

Since the lower spectral information for A0 is known, the spectral truncation of A0

may be explicitly constructed

A) f_P" )kdE(,)T,n+l[I-E(,n)
where the eigenvalues of A0 have been denoted by (h} and E(X) is the associated
spectral projection. If A0 has only N eigenvalues below Oess(A0) (as might occur with W
representing an effective screening potential) then n N is the largest allowable trun-
cation index and by convention we assign X/ infOess(A0). The spectral information
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lost in approximating A0 by the bounded operator Ag is contained in the truncation
remainder

+1-

g is a nonnegative symmetric operator with null space qln--E(,n)L2(R3). A
finite-rank operator approximating g on LE(R 3) may be constructed by choosing
vectors ( q } c Dom(A0) and defining an idempotent operator for each integer a as

Q’= E (" cijqj,
i,j---I

’nwhere cij are elements of the generalized matrix inverse to [(qi,Aoqj)]. The final
approximation to A0 then takes the form Ag+gQ. It is straightforward to verify that
this is a bounded self-adjoint operator and that any subspace of L2( 3) containing

span ( Aoq,, }

is a reducing space for the operator.
Since Aij similarly is a nonnegative operator on L2(3)(R)L2(I3), we may ap-

proximate Aij in a way analogous to the way , was approximated. We choose
( p ) c Dom(A j) and define

pa= <.,AijPk>(R)bktP,.
k,l=l

2Here (-,.). denotes the inner product on L ()(R)L2( 3) and bkl are elements of the
generalized matrix inverse to [{ p,Aijp)8]- In order to construct suitable reducing
spaces for AjPa it is in general necessary to assume that

AjpIIa(R)IIa for v=l,. .,fl.fl,

where Ha is a finite-dimensional subspace of L2([ 3) for which an explicit basis

(r)=x is available. With this constraint there will be no more than fl.fl linearly
independent Pn available for a given choice of Ha. Any subspace of LE(IIa)(R)L2([] 3)
containing Ha (R) Ha reduces AjPa and [Ha(R) IIa] +/- ker(AjPa).

With these one- and two-particle approximations we may build up the m-particle
intermediate Hamiltonian as

H,,,=a=(Ag+..gQ’=)(R)I2 (R) (R)Im+Ix(R)(Ag+d’)Q’=)(R) (R)Im+

+ I (R) 19_ (R) (R) (A) +

Written in this way, the similarity in algebraic structure to the original Hamiltonian is

evident.
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We can build up an approximation to the s-electron ionic Hamiltonian H in an
analogous way. Explicitly,

H’q= (A) +2gQ’) (R) I: (R) (R) Is
+I(R)(Ao+AoQ )(R) (R)I+I(R)I(R) (R)(Ao+.,)Q )

vi,j

In order to analyze the spectrum of H" and H""t it is convenient to characterize
the complete set of reducing subspaces. We introduce a subspace of L2(R 3) defined by

M,,a q/, span { ""Aoq } Ha

All the reducing spaces of H"t may then be characterized in terms of M,, as

with each Nk M.., or 1Nk M +/-

/’/0

The reducing spaces for H"t have the same structure over s-fold products of Nk. Since
H"’q Hmnt, in what follows we only need consider reducing spaces and the spectral
problem for H"’a.

There are evidently 2 reducing spaces for H"a having the structure given. Since
interchange of variables defines an isomorphism of subspaces, there are only s+ 1
distinct classes of such reducing spaces and these may be indexed according to the
number of factors M,,t appearing in the product N (R) N2 (R) (R) Ns. Following the
terminology of Fox [10], a subspace of type r is built up from r copies of M,t and s- r
copies of M,a. There are () subspaces of type r generated for each value of r=
0,1,. .,s.

The spectral problem for H"/ will be resolved by considering the spectal problem
for restrictions of H" to subspaces of type r, denoted Hn’qlr. This is well-defined
since the symmetry of H"t implies the equivalence of any two restrictions of H"t to
subspaces of the same type. On the single subspace of type 0 H’’[0 reduces to 0,+ 11
The single subspace of type s is finite-dimensional so that H’t[ is isomorphic to a
matrix operator of dimension no greater than (n+a+fl) and hence is devoid of
essential spectrum.

With this background we are now in a position to elaborate on the "ionic"
structure of the intermediate Hamiltonians that was mentioned earlier. This comes out
as what we view as an analogue to the HVZ theorem. If we let ,,(A)=infOess(A) and
t (A) inf o(A) then the HVZ theorem asserts

X,(ns)=Xl(ns_l), s=1,2,. .,m.

We find a similar correspondence for intermediate Hamiltonians.
THEOREM 1. h,( ,-tHj )=.i(U’_aOl)+Xn+lfors=l,2,...,m.
Proof. We need only locate X,(H’"OI,) for each r=O,...,s-1, in order to find

h ,(Hfl"t). Since the composite span of these s reducing spaces has finite codimension

h,(H’"t) min X,(HIr)
r=O,...,s--1
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For r=0 separation of variables yields t,(nsnafllO)=StOn+ 1. For 1 <r<s-1, we like-
wise obtain

t,( asnafl ) =tl( n;a[r) -[-(S--l")hOn+ 1"

Thus with the convention tl(ngotfl[0)-" 0 we find

,,(H’a) min
r=0,- .,s--1

[x(nal,)+(s-r)X+l]

XI(Hr’/I,)+ [(s-1)-r] On+l]-[-0n+ l(n;_.alfl) "-[-tn+ 1.

Recall that under the assumptions given on W, infOess(-1/2A + W)=0. If (h} is
an infinite set then limh 0, otherwise we adhere to the convention X/l =0 if there
are only N negative eigenvalues. In either case the deviation of the above theorem from
a proper HVZ theorem is ,/ and may be made arbitrarily small by making n
sufficiently big.

4. Convergence. Due to the "ionic" structure persisting in Fox’s intermediate
Hamiltonians, the potential exists for displacement of intermediate essential spectra.
Indeed one may see from Theorem 1 that improvement of lower bounds to the lowest
eigenvalue for H_ relates directly to the movement of intermediate essential spectra
approximating infos(H). Along the same lines one might reasonably expect conclu-
sions on the convergence of lower discrete eigenvalues of HYl to imply conclusions on
the convergence of infaess(Ht)

The techniques rest on monotonicity principles derived from variational char-
acterizations of the lower eigenvalues (see [15]). These principles may be used to
identify an eigenvalue k(H"t) of the intermediate operator H as a lower bound to
hk(H) only if Xk(H"a) < X ,(H"a). Hence convergent lower bounds to kk(H) will be
attainable only if X,(H) < sup,aX ,(H"#). Such eigenvalues of H are termed accessi-
ble. The goal of this work is to show that all lower eigenvalues of H are accessible to
convergent lower bound estimates.

The construction of Fox’s intermediate Hamiltonians requires the selection of two
projecting families of vectors: (q }, with which to construct Q’, and (r }, with which
to construct ( p } and Pfl. These families may be chosen in such a way as to guarantee
convergence of intermediate estimates to the corresponding accessible eigenvalues of H.
Density criteria on these families sufficient to guarantee such convergence was devel-
oped in [6] and [8], and may be succinctly stated as:

(1) span{ r } is dense in L2(R ), and
(2) span(q } is dense in W(R 3) \ span{u },

where W22 denotes the second Sobolev space imbedded in L2(R 3).
There may be an additional condition on the large-argument asymptotics of (rr }

in order to guarantee that prk,=Ai-l(’a’k(R)’n’l) is an element of L2(3)(R)L2( 3) (e.g.,
exponential decrease at oo).

As we mentioned, the one remaining issue and the final goal of this work is to
characterize the eigenvalues of H that are accessible. The two-particle case is an
appropriate starting place. For s= 2, we find h,(H2)=X due to the relative A-com-
pactness of V and the HVZ theorem. A simple argument shows ,I(Ag)=XI(A+
gQ)=hl Then compactness of A12Pa and separation of variables show that
h,(H’a)=h+X+ 1. Thus h,(H2)-X,(Ha)=-hn+l may be made arbitrarily
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small by choosing n sufficiently big, imply that every lower eigenvalue of H2 is
accessible to convergent estimates.

We make an induction hypothesis at this point: for some s <m all the lower
eigenvalues of Hg are accessible for k 1,...,s- 1, i.e.,

lim),(H’a)=),(Hk) for k=l,-..,s-1.
nail

The density conditions provided then assert that limn,B,l(Haf)=l(H) for each
k 1,. .,s- 1. Theorem 1 implies that

limX ,(H"t ) X1 (H ) X ,(H).
nail

Thus each lower eigenvalue of H is accessible to convergent estimates--completing the
induction step.

We have proved the final theorem of this work:
THEOREM 2. Under the density hypotheses (1) and (2), Fox’s intermediate Hamil-

tonian construction provides convergent lower bound estimates to the lowest point of the
essential spectrum of H:

limh,( H’"a) X,( H).

As a consequence every lower eigenvalue ofH is accessible and Fox’s construction provides
convergent lower bounds to every lower eigenvalue ofH.

In dosing, we recall that physicists are primarily interested not in the full Hamilto-
nian H but in a restriction of H to a domain possessing certain symmetry properties
that reflect the Pauli exclusion principle. In order to cover this interesting case it would
suffice to develop an extension of Theorem 1 to the case where we restrict to a suitable
symmetry subspace--an extension which does in fact hold for the original HVZ
theorem.

Acknowledgments. It is a pleasure to thank Professor David Fox for the many
stimulating discussions that laid the intuitive groundwork for this work.
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DIFFUSION IN FISSUREDMEDIA*

MICHAEL BOHM" AND R. E. SHOWALTER

Abstract. The nonlinear initial-boundary value problem

0u 1
0--" +-- (a(.)-- v) --fl,

u(x,O)=uo(x inG,

-div(kgradv)+l (v-a(u))=f2 in G(O,T),

v(s,t)=O on[GX(O,r)

is a well-posed model of diffusion in a fissured porous medium. Special features of the solution include the
perseverance of local spatial continuity or singularities in the concentration u, the instantaneous propagation
of the partially-saturated region throughout G, the delayed and limited advance of the fully-saturated region
into G, and the concentration discontinuity on the boundary of the fully-saturated region. Weak maximum
and order-comparison principles are obtained as L and L estimates on a solution and a difference of
solutions, respectively.

1. Introduction. Our objectives here are to derive a system of partial differential
equations as a model for nonstationary flow of a fluid through a fissured porous
medium, to demonstrate that the appropriate initial-boundary-value problem is
mathematically well-posed, and to describe special features of such a flow model which
distinguish it from the classical porous medium equation. The system obtained is
actually equivalent to a single evolution equation, the fissured medium equation, which
can be regarded as a regularization of the porous medium equation. Also, the porous
medium equation is known to be the homogeneous limit of the fissured medium
equation with increasing degree of fissuring [7].

Section 2 contains the derivation of the system of differential equations for flow in
fissured media. Initially we follow [1], where only a special linear case was considered,
but we include in our model the nonlinearities arising from fluid type (liquid or gas),
concentration (porosity, absorption or saturation), and the exchange rate [6], [11]. The
essential requirement is that the fluid be compressible. The considerably more difficult
case wherein permeability is concentration-dependent will be discussed in [2]. We
briefly describe an analogous heat conduction model. In 3 we show the Cauchy
problem for the fissured medium equation has a unique generalized solution and we
give weak maximum and order-comparison principles in the form of L and L
estimates. In contrast to the case of (possibly degenerate) parabolic equations, we find
that for the fissured medium equation the local spatial regularity or a singularity in the
solution is stationary and may persevere for all time. We consider in 4 the evolution of
a system originating with a uniform positive pressure in a portion G’ of G and with null
concentration in the complement of G’ in G. It is shown that the partially-saturated
region expands instantly to all of G, the positive-pressure set is nondecreasing, propa-
gates only after a delay, and an upper bound is given for its measure.
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Our notation is standard. G is a bounded domain in Euclidean space RN, Q G
(0, T) is the indicated space-time cylinder, and OG denotes the boundary of G. LP(G)
and wm’p(G) are the usual Lebesgue and Sobolev spaces, and cm’x(G) is the Schauder
space of functions whose derivatives of order m are HiSlder-continuous with exponent
X, 0 < ?t < 1. For a Banach space B, we let zq(0, T; B) and C(0, T; B) denote the spaces
of q-summable or uniformly-continuous B-valued functions on [0, T], respectively, and
W1’ q(0, T; B) denotes those strongly absolutely continuous functions whose derivatives
belong to zq(0, T; B). The positive and negative parts of uR are given by u/=

max(u, 0) and u- min(u, 0), respectively, so u u / + u- The Heaviside function is
Ho(u)=l for u>0 and H0(u)=0 for u_<0; its maximal monotone extension [3] is
denoted by H(u)= (H0(u)} for u 4:0 and H(0)= [0,1]. Likewise the sign function is
sgno(u)=u/lu for u4:0, sgn0(0)=0, and sgn denotes the maximal monotone exten-
sion. The gradient in R N will be denoted by and similarly - denotes the corre-
sponding divergence operator.

2. Fissured medium equation. We consider the flow of a liquid or gas through a
fissured porous medium, a structure consisting of porous permeable blocks separated
by a system of fissures. The distribution of fissures prevents direct diffusion between
adjacent blocks, and the system of fissures occupies a region of negligible relative
volume. Thus the blocks provide for the local storage of fluid mass, and the fissures are
the essential flow-paths for all the diffusion. The essential point in the construction of
the fissured medium model is to introduce at each point in space two fluid pressures,
the pressure/71 in the blocks and the pressure P2 in the fissures, where each is an
average over a neighborhood which contains a substantial number of blocks.

The fluid under consideration may be any compressible liquid or gas whose
density p and pressure p are related by an equation-of-state t)=s(p) for which the
compressibility satisfies s ’(p) > 0 for p >= 0 and s(0) >= 0. The total concentration of fluid
is given by u P(s( PX)-- S(0) d-(L+ s(0))) where P > 0 is porosity of the blocks, L _>_ 0
is that density of fluid which is immobilized due to absorption or chemical reaction
with the medium, and the saturation level 0 =< =< 1 is that fraction of L + s(0) already
immobilized or absorbed. Note pl(1-)=0 so H(pl), the Heaviside graph. Thus u
is a monotone graph of P whose inverse p et(u) is a monotone function Lipschitz-
continuous with constant K. The medium is completely saturated when u _>_ P(L + s(0)),
hence, 1, and partially saturated (strictly partially saturated) when u > 0 (respectively,
0 < u < P(L + s(0)).)

The exchange of fluid between blocks and fissures occurs with a volume rate per
volume of medium given by (p2-p)/le where/ is the viscosity of the fluid and 1/e is
a characteristic of the medium related to the degree of fissuring or the surface area
common to the blocks and fissures. Thus the mass of fluid which flows from blocks to
fissures per unit time is given by p(p-p2)/te where p is the average density on the
pressure-interval [Pl,P2]- Denoting by S(p) fs(r)dr the antiderivative of s(p), or
"flow potential" [6, p. 60], we have p=(pz-p)-lf2s(p)dp=(p2-Pl)-l(S(p.)
S(pl)). The fluid mass exchanged per unit time is (S(pl)-S(p2))/te. Thus the
continuity equation for conservation of fluid mass in .the blocks gives

3u 1
(2.1) --- + (S( Px)- S(P2)) =fl(x, t),

where fl is the volume-distributed source rate in the blocks.
We shall assume the velocity of the fluid in the fissures is given by Darcy’s law.

Thus, V= -(k/lx)XTp2 where k is the permeability of the system of fissures. The flux in
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the fissures is computed by the chain rule as o2V-- -(k/#)VS(p2). Since the relative
volume of the fissure system is null, the enclosed concentration is negligible and the
conservation of fluid mass in the fissure system gives

(2.2)
1-. 1--x7.k7S(p2)+ (S(P2) S( ))=fE(x,t)_-7 Pl

Heref2 denotes a volume-distributed source rate in the system of fissures.
The porosity and permeability may depend on the pressures. Given the small

volume of the fissures the pressure P2 will not appreciably affect the block porosity, so
we may expect a mild dependence P=P(pl)>O of block porosity on block pressure.
This does not alter the assumptions above on the relationp a(u). Due to the relative
volumes of blocks and fissures, any variation of the fissure permeability is essentially
due to the block pressure P l- This is equivalent to the assumption that the fluid in
fissures does not participate in the support of the structure. In contrast to the slight
variations of k(pl) for P > 0, any swelling of the blocks due to saturation or absorp-
tion of fluid can result in a dramatic decrease of fissure permeability owing to their
relative volumes. This sensitivity of permeability to saturation due to swelling is typical
of consolidated sandstones containing clay or silt [6, p. 13]. We shall account for such
phenomena by setting k=k(u) in (2.2). The function k(.) is continuous, positive and
nonincreasing on 0 _< u; furthermore, the model suggests k(u) is essentially constant for
u >= P(L + s(0)), the saturated zone.

In summary, the process of diffusion in a fissured medium is prescribed by the
system of partial differential equations (2.1), (2.2) with pl=a(u) and k=k(u). The
initial concentration u(x,O)=uo(x) is given over the region G of interest; this is
equivalent to specifying initial block-pressure pl(x) and initial saturation 0(x) with
o(X) H(p(x)). The description is completed by setting fissure-pressure P2 0 on the
boundary of the region G. Note that no boundary conditions are given for Pl, since all
fluid flow in the blocks is accounted for in (2.1), even in a neighborhood of the
boundary. Similarly, the initial pressure distribution in the fissures is determined by
(2.2).

We shall write the above system as a single nonlinear evolution equation. Thus, for
a function u on G of a type made precise below, let Au(v)= -(1//)X7 .k(u)X7v be the
indicated linear elliptic partial differential operator in divergence form subject to null
Dirichlet boundary conditions. By adding (2.1) and (2.2), then substituting (2.2) we
obtain

(2.3) ( I+ qzA ,,( ) "7 +A u(t) ( S( ol( u))) ( I+ el3,au(t) ) fl(t) q-k(t ).

Alternatively, we may resolve (2.2) for S(P2) and substitute in (2.1) to obtain

3u 1 -]-ff- + -g I ( I+ etxA ) S ( ot ( u ) ) f ( ) + ( I+ elZA ) tf2(t )

The equation (2.4) we shall call the fissured medium equation. It is actually equivalent to
the above system. When S(a(u)) is smooth and satisfies the Dirichlet boundary condi-
tion, i.e., belongs to the domain of A,(t), then (2.4) implies the stronger form (2.3). Note
that formally taking e- 0 + in either one leads to the classical porous medium equation

(2.5)
Ou 1-.

V. k(u) S(a(u)) =f +f2
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when L=0 and to the Stefan free-boundary problem in weak form when L > 0. This
corresponds to increasing the degree of fissuring, l/e, and thereby approximating the
homogeneous limiting ease (2.5) [3], [7].

We shall briefly describe an analogous model for heat conduction in a heteroge-
neous medium consisting of two components. This thermal conduction model is form-
ally equivalent to the fissured medium equation. Thus, assume the first component
occurs in small blocks isolated by the second component which is distributed throughout
the medium with negligible measure. We permit the first component material to un-
dergo a phase change as in a Stefan free-boundary problem. A model for the situation
is water (the first component) contained in a metal (second component) structure of
thin walls forming a structure much like an ice-cube tray. Letting T and T2 denote
temperatures (averaged) in the water and metal, respectively, we obtain the system

0--U-u + 1 (T1 T2) =flt e

(2.6) _kATz+I (T2_ T)=f2,
u C(T) +LH( T1).

Here the heat content u is given by the specific heat C(T) in water and the latent heat
L in the melted region (Tx > 0), k is the conductivity of the second component material,
and the heat exchange between water chambers and metal dividers is assumed propor-
tional to the difference of their temperatures. The local description and derivation of
the equations follows exactly as in [13]. This system is formally equivalent to a special
case of (2.1) and (2.2). Unlike the diffusion model, we are interested in temperatures
which are not necessarily nonnegative; these are permitted in our discussion below. A
completely-saturated region in the diffusion model corresponds to a completely melted
or water region (u>__L) in the conduction model, and a strictly-partially-saturated
region corresponds to a region of mush, a mixture of ice and water in equilibrium at the
freezing temperature. As we shall see below, the solution to such a conduction model is
dramatically different from the classical Stefan problem solution. Specifically, (2.6) is
not the Stefan problem for the pseudo-parabolic equation of heat conduction [5] as
given in [8].

3. The Lipschitz case. We begin our discussion of (2.4) by considering the special
case in which k(u) is independent of u but is a function of (x, t) Q. In the diffusion
problem this corresponds to the case of a rigid structure in which the permeability is
not affected by the total concentration (density and saturation). We shall denote by

the indicated elliptic differential operator whose coefficient kL(Q) is assumed to
satisfy O<ko<=k(x,t), a.e. (x,t) Q. In the Banach space LI(G) the domain of A(t) is
dom(A(t))= (v W0’(G): A(t)v LI(G)), where A(t)v is understood in the sense of
distributions. This L-realization of A(t) can be obtained as the Ll-closure of its
restriction to L P(G), 1 <p < + . Each such restriction, including A(t) itself, is a linear
m-accretive operator on the corresponding Banach sapce, LP(G). See [4], [10] for these
and additional properties of these elliptic operators in LP. Here we shall consider the
realization of the fissured medium equation (2.4) in L(G) in the form

(3.1) u’(t)+l--(I-(I+eA(t))-’)a(u(t))=f(t), O<t<T.
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Without loss of generality we have set/=1, S=I, and f(t)=fl(t)+(I+eA(t))-lfz(t)
in LL(G). We assume hereafter that a is a nondecreasing Lipschitz continuous function
on R with a(0)= 0. Thus the substitution operator v a(v) is Lipschitz on each LP(G)
and we easily obtain the following L P-existence-uniqueness result.

LEMMA 1. If uoLP(G) and fLq(O,T; LP(G)), l<=p, q<= +, then there is a
unique u W’ q(0, T; L P(G)) which satisfies (3.1) and u(0)= u 0.

Proof. Since each (l+eA(t))- is a contraction and a(.) is Lipschitz on each
L P(G), it follows that the u-dependence in (3.1) is Lipschitz, uniformly in t. From [12]
it follows that the operator-valued map (I+eA(t))- is strongly-measurable into
oSP(H-(G), H(G)) and an elementary closure argument shows it is strongly-measura-
ble into(L P(G)). The classical successive-approximations finishes the proof.

In order to obtain "pointwise estimates" on solutions of (3.1) we write it in the
form

(3.2) u’(t)+-a(u(t))=-(I+eA(t)) (u(t))+f(t), O<__t<=T.

This splitting of (3.1) displays explicitly its structure as an ordinary differential equa-
tion (in t) and an elliptic partial differential equation (in x). Moreover, it suggests we
consider the ordinary initial-value problem

(3.3) w’(t)+
1-a(w(t))=g(t), O<t<_T, w(0)=w0.

For each g L(0, T) and w0 R there is a unique solution w W’(0, T). If wj(j= 1, 2)
are solutions corresponding to data gs, wd, we subtract the equations, multiply by
Ho(wL(t)-Wz(t)) and integrate to obtain (since (a(%)-a(Wz))Ho(% w2)>0

+= + for[g1 )--g2[w(t)-w2(t)] < [w w] + (s (s)]+ds

Moreover, if each g.jLt(Q) and wLI(G), the above holds for a.e. xG and a
further integration over G yields

[I[W1 (t)-- w2(t )l + [[/)(G) II[Wo WO2]+llLI(G)q-fotll[ gl(S)--g2(s)l+llLl(o)ds, O<t<T.

Thus, the operator W: LI(G)XLX(Q)C(O,T; L(G)) defined by (3.3) with w=

W(wo,g is an order-preserving contraction. The elliptic operator A(t) satisfies a
similar estimate [4, Lemma 3*]

geL!(G),

and trivially so also does a: L(G) LX(G).
The relevance of the preceding remarks is that a solution of (3.1) is characterized

by

(3.4) u W(uo,(1/e)(I+eA)-la(u)+f).
The right side of (3.4) is Lipschitz with an integral bound implying it has a unique fixed
point. This provides an alternate proof of Lemma 1 withp q 1 but, more important,
it yields the following comparison principle.

LEMMA 2. Let u and u z be the respective solutions of the initial-value problem for
(3.1) with data ul),u)L(G) and fl,fzeL(Q). If ulo>=U2o a.e. in G and iffl>=f2 a.e. in

Q, then u u in Q.
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Proof. Forj=l,2, we have uj=lim,_o Uj.(")(u6) in C(0, T; LI(G)) where
=W(uo,(1/e)(I+eA)-la(v)+). The preceding remarks show
whenever v v2 anduu, so he desired follows.

In a similar manner, we can deduce an L estimate on the solution. However, this
procedure is inefficient and does not yield the optimal estimates in either case; these
will be obtained below. Although (3.2) has so far served only to motivate the compari-
son and maximum principles and to provide elementary proofs, it will be used below to
directly obtain very distinctive and surprising results on local regularity of solutions.
All of these we state as follows.
EOM 1. Let { A(t)’O T } be the uniformly elliptic family of elliptic opera-

tors on LI(G) as given above. Suppose e > 0 and a is monotone with a(O)= 0 and Lipschitz
constant K.

(a) For each uoLP(G) and fLq(O,T; LP(G)), lp, q +, there is a unique
solution u wl’q(0, T; Le(G)) of (3.1) with u(0)= uo.

(b) This solution satisfies

and similar estimates for Ilu(t)-II L(G), Ilu(t)ll L(G)"
(C) For j= 1,2 &t uy be the solution with corresponding data u L(G), L(Q).

Then

II[ui(t)-u(t)l+[llzll[u-ugl+lll+’ll[fl(S)-f(s)l+llds, OZtZT,

and similarly for II[u(t)-uz(t)]-[l andll[Ul(t)-u(t)]ll.
(d) Assume p > N/2 and G’ is a subdomain whose closure is contained in G. There

are constants C > O, X > 0 such that

[U(Xl,t)-u(x,t)] +S [Uo(Xl)-uo(xa)] +

+ f(Xl, -f(x, )1 +e + cl xl
Xl,XG’, ONtNT,

and similarly for [u(x,t)-u(x,t)]- andlu(x,t)-u(xa, t)l.
(e) Assume p > N/2, and let x G, v N be a unit vector, and denote the saltus or

jump 4 a Nnction w at x by o(w(x))limhoW(x+hv)-w(x)). Assume there is a
g L(O, T) for which

If(x+hv,t)lSg(t), O<h<ho, ONtNT
and each 4O(Uo(X)), o(f(x,t)) exists. Then o(u(x,t)) exists for each t[O, T] and

o(u(x,tl)+zO(Uo(X))++ o(y(x,sl) ,
o(u(x,t))+ze ’/ O(Uo(X))++ e (f(x s))-ds

with similar estimates for o( u(x, )) and o( u(s, )).
Proof. Part (a) is just Lemma 1. To prove (b) note first that the Yoshida approxi-

mation

(tlL(_(/+(tI-1)
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satisfies the resolvent identity

(1+ XA,(t)) -1= (e/(e + ?t))I + (X/(e + ))(I+ (X + e)A(t)) -1, X>O,

which implies that A(t) satisfies the conditions in [4, Theorem 1]. From (3.1) in L(G)
subtract IIf(t)+ll. and multiply by Ho(u(x,t)-k-JlJf+(s)J}Loods) where k>__0 will
be chosen below. Integrating the product gives

The second term is nonnegative by the fundamental [4, Lemma 2] and the first term is
equal to ,f[u(x,t)-k- f IIf(s)+llds] + dx. Thus we obtain

dx<_ [Uo(X)-kl+dx,

and choosing k--Ilu3l]= proves (b). Part (c) is proved similarly: subtracting (3.1) for
j= 1, 2 and multiplying by H0(u -u2) yields- u:(x,t)-u:(x,t)] +dx+ (t)(a(u:)-a(u:))Ho(u:-u2)dx

The second term is nonnegative as before and this leads to the end of proof of (c).
Consider the situation of part (d). Since the solution u is bounded in LI(G), so

also is a(u) and it follows that v(t)--(l+eA(t))-aa(u(t)) is bounded in a Schauder
space c’x(G ’) [10, p. 192]. Thus, there is a constant C for which

IO(Xl,t)-o(x,t)l <= CllXl-Xlx, xa,x:G’ O<=t<=T.
The splitting (3.2) and the estimates following (3.3) with wj(t)= u(xj, t) lead directly to
the proof of (d).

For (e) we difference (3.2) at x x + hv and x: x and use the preceding estimates
and the Lebesgue theorem to obtain

d 1
-o(u(x,t))+ -o(a(u(x,t)))=o(f(x,t)).e

Since o(a(u))=a(o(u)), the desired estimates follow as above or by Gronwall’s in-
equality. This finishes the proof.

Estimates of the forms in (b) and (c) are known as weak maximum principles and
as comparison principles, respectively. Those given are optimal as can be seen by taking
a-= 0. They imply that nonnegative data yield nonnegative solutions.

If the coefficients k(.,t) and the boundary of G are smooth, then in the situation
of (d) we get v(t) bounded in W2’p(G), hence, in CI’X/2(G). This leads to pointwise
estimates on smoothness of first-order spatial derivatives of the solution. Such estimates
on higher (than first) order derivatives appear to require assumptions on the global
regularity of the data.



DIFFUSION IN FISSURED MEDIA 507

From (d) it follows the solution is exactly as smooth in x as u0(. ) and ff(.,s)ds,
up to Hiblder continuity with constant , in each neighborhood in G. Likewise, (e) shows
any jump discontinuity in data persists at the same point for a positive time interval,
and for all time if o(f-)o(u0)+=0 at that point. This striking persistence of local
regularity is a consequence of the form (3.2) of the fissured medium equation.

We consider the meaning of a jump discontinuity in the solution of (3.1) when the
equation is used as a model for diffusion. First, recall that the variables introduced in
the diffusion model were defined pointwise as averages over a neighborhood of an
idealized variable, e.g., pressure. It follows for an integrable ideal variable that such
averaged variables are necessarily absolutely continuous in their spatial dependence.
Thus within the medium the data and hence the solution are continuous. Second, we
note that a discontinuity in data can be induced by fitting together two regions with
independently prescribed concentration distributions. This discontinuity along the com-
mon interface will then persist on that stationary interface. This is consistent with the
fissured medium diffusion model, because the two regions are coupled only by way of
the fissure system, a relatively weak coupling.

4. Propagation and saturation. We conider now the fissured medium equation
(3.1) and assume for definiteness that a(u)=0 for O<_u<=L and that a(u)> 0 for u> L.
The medium is called partially saturated (or strictly partially saturated) at (x, t) Q if
u(x, t)> 0 (respectively, 0 < u(x, t)< L). From Theorem 1 it follows that each strictly-
partially-saturated point remains so over some time interval. In order to follow the
advance of the fluid through the medium we consider for each t[0, T] the set
P(t) (x G’u(x,t)> L}= (x G’a(u(x,t))>O} wherein the block-pressure is
strictly positive and, hence, the medium is completely saturated.

TrI.OREM 2. In the situation of Theorem 1 assume further that a-l(0)=[0,L],
p > N/2 and both uo andfare nonnegative. Thus u >= 0 and we also have the following:

(a) The set P(t) is nondecreasing in t[0, T]. If P(to) is nonempty then the medium
is partially saturated at every (x, t) Q with >= o.

(b) Assume f-= O, let G be a measurable subset of G, P0 and L be strictly positive,
and set Uo(x) Po + L for x G1, and Uo(X) 0 for x G G1. Denoting Lebesgue
measure by m(.) we have

m(G)<=m(P(t))<=(1 +t)o/L)m(G), O<=t<=T.
(c) Assumefurther that k= k(x) is autonomous, there is a > 0 with a(s)>= 8(s- L) +,

and m(G1)> 0. Then for each x G there is a C(e,x)>O such that p0/L> C(e,x) implies
that x P(t) for all sufficiently large.

Proof. (a) Since K is the Lipschitz constant for a and a(L)= 0 we have

eut+ K(u- L) >= eut+ Or(u)-ot(L) (I+ eA)-lot( U) +ef( t) >= O,
SO there follows

u(x,t)-L>=e-(g/)(t-t)(u(x,to)-L), t>_to, xP(to).
This shows P(t)D P(t0). Similarly, we have

eut + Ku >= (I+ eA)-la( u) + ef
If for some (Xo, to) we have a(U(Xo, to))>O, then by the strong maximum principle
[10, pp. 188-189] ((l+eA)-la(u))(X, to)>O for all xG and there follows u(x,t)>O
for all >= o.
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(b) The first inequality follows from (a) since P(0)= G1. The second is obtained
from the Ll-estimate

Lm(P(t))<= f, u(x,t)dx<=[lu(t)[l<=[lUol[l=(Oo+L)m(Gx).
(t)

(c) For x G--- G1, u0(x)=O so by continuity the number T(x)-- sup{ " >=
O’u(x,t)<=L for all O=<t=<} is strictly positive. We shall show T(x)< . From the
proof of (a) follows

( u(x,t)) _> ( u(xl,t)-L ) >= 8poe-Icily, xG, t>=O.

Define Xl as the characteristic function of G and q)a=(I+eA)-lX1. By the strong
maximum principle p(x)>0 for every xG. Since a(u(x,t))Poe-gt/exl(x ) we
obtain from the comparison principle

(I+ eA)-la(u(x,t)) >= 8Ooe- m/*COl ( X ), xG, t>=O.

Thus, for x G-- G and O<=t<_ T(x) we have a( u(x, ))= O and from (3.1)

ut x, ) > ( 6Oo/e) e- ( x )

and therefore

U( X, t) >= ( Spo/g )(1 e-Kt/)q) x), xG-"G1, O<=t<=T(x).

Thus, if Po/L>=g/q)l(X), then there is a t*= T(x) for which u(x,t*)=O and ut(x,t* )
> 0. This finishes the proof of the theorem.

The property expressed in (a), that every point in the medium is partially saturated
as soon as any point has positive pressure, is a consequence of the instantaneous
diffusion through the system of fissures. Although such infinite propagation speeds are
standard for linear parabolic equations, the porous medium equation (2.5) is known to
have finite propagation speeds for certain nonlinearities.

In the diffusion model leading to the situation described in (b), L is the amount of
fluid required per volume to fill the voids or to overcome an absorption characteristic
of the medium, and P0 is the density of excess fluid available in the region G1. The
estimate in (b) is an explicit upper bound on the advance of the pressure set P(t) in
terms of the ratio PolL.

Similarly, (c) shows that for each point x G there is a value of the ratio PolL
which drives P(t) to enclose x. The qualitative dependence of C(e,x) is clear from the
proof and interesting. Specifically, for xG---GI we note C(e,x) increases as x ap-
proaches OG or as e decreases to 0, C(e,x) decreases as x approaches Gx, and C(e,x)
approaches 2k/8 for x near G and e near 0.

Our knowledge of the regularity of the solution permits a description of its
behavior along the "free-boundary" or interface F bounding the pressure set. Thus, let
Q+= ((x,t)Q’u(x,t)>L) and Qo ((x,t)Q’O<_u<=L) in the situation of Theo-
rem 2, and set F )Q/. At each point of F denote the unit normal by (nl, n2,...,nN, nt)
and let n be the unit vector in R N with direction of (nl,..-,n N)- Let or denote the jump
or saltus along F. The standard computation of (2.1) over Q/, Q0 and the divergence
theorem lead to the interface condition

Or(u)n,=O onF.
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Thus, at each point of F, either the concentration is continuous or the interface is
stationary. A similar computation on (2.2) shows

or k-n(S(p2) ) =0 on F.

Thus flux is continuous across F. Note that in the classical Stefan problem it is only the
sum of the preceding values which vanishes, thereby giving a constraint on the velocity
n//ll(nl,-. ",nv)ll of F. The regularity of a generalized solution of (3.1) will not permit a
nonstationary singularity.

Finally, we note that the above remarks have physically meaningful consequences
for the thermal conduction model (2.6). In contrast to the completely contrary property
of the classical Stefan problem, the solution of (2.6) will permit the appearance of a
mush zone even if one were not present initially and no outside sources are present.
Moreover, Theorem 3.2(a) implies that such mush regions always form over large
regions from initial conditions containing both pure ice (u=0) and water at positive
temperature.
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A NONLINEAR PROBLEM IN
AGE-DEPENDENT POPULATION DIFFUSION*

MICHEL LANGLAISf

Abstract. A nonlinear partial differential equation arising in a model of age-dependent population
diffusion with random dispersal is analysed. Using the nonlinear parabolic equation satisfied by the spatial
structure and a delay to handle nonlinearities we derive existence results; in simple situations we outline the
asymptotic behaviour.

1. Introduction. We are interested in a mathematical model of an age dependent
population moving in a limited environment f in R N. The age-space structure of the
population is described through the age distribution u(t, a,x) where > 0 is time, a is
age" 0 < a <A (A is the maximum life expectancy of the species) and x in f is the
spatial position. An integration over all ages yields the spatial density:

(1.1) e(t,x)= u(t,a,x)da.

Studying the rate of change of individuals of age a in the framework developed in
Gurtin [8] leads to the balance law

Ut" Ua"" divq- I ( a,P ) u,

where q is the flux of population due to dispersal and s(t,a,x)= -l(a,P)u represents
the supply of individuals due here only to deaths (/ is the mortality modulus).

We consider random dispersal and assume that q(t,a,x)= -k(P) grad u, k(P)> 0
is the dispersal modulus, so that the local flow of population lies in the direction of
decreasing density (to contrast with the directed dispersal q(t,a,x)= -uk(P) gradP of
[9], see also [10]). Hence u obeys the partial differential equation

(1.2) u, + u,- div( k( P)grad u) +(a,P)u=0.
The birth process takes the form:

(1.3) u( t, 0,x )= f0"4/3 (a,P)u( t, a,x) da

where/3 is the maternity function. We also assume that there is no migration through
the boundary 8f of f

(1.4) k(P)gradu.=O on (,/=normalvector).

The problem is now to determine the evolution of u starting at time 0 with the initial
distribution

(1.5) u(O,a,x)=uo(a,x ).
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When the dispersal modulus k is a constant existence and uniqueness of solutions
are analyzed in Di Blasio [4] for .4 + o and in Garroni and Langlais [6] for finite .4,
linear fl and and u are subject to a constraint. See also Gopalsamy [7] and Marcati
[17] (and Webb [20] and its bibliography for the spatially homogeneous case" k=0).
Here we treat the case where k(P)> 0 for P>__ 0 (but see also Remark 3.2 in 3) and k
continuous. Our main tool is the auxiliary equation satisfied by P: assuming either
.4 / o or .4 < / o and u(t,.4,x)=O and integrating (1.2) over all ages yields

(1.6) Pt- div(k( P)gradP) =f0a [fl(P,a)-tz( P,a)] uda,

or alternatively, introducing K(P) the antiderivative of k vanishing at the origin"

(1.7) Pt- AK(P)=foA[fl( P,a)-(P,a)l uda.

Furthermore

(1.8)
P(O,x) fo uo(a,x)da=po(x),

k(P)grad . O.

If fl and # are independent of a the right-hand side of (1.7) reads [fl(P)-Iz(P)]P;
hence (1.7) becomes a nonlinear parabolic equation with a solution P. If that P is
substituted into (1.2) one has a linear equation with a variational solution u. To
conclude we must check (1.1).

The general case is more involved. From (1.7) the H61der continuity of P is easy to
derive; this allows one to get existence results under rather weak assumptions concern-
ing the dependence of fl and # on P (namely continuity and some control on the
growth).

2. Basic notation. We take A + .
f is a bounded open domain in R N with smooth boundary Of; rt is the unit normal

pointing outward, X7 the gradient vector in R N so that X7-,/=0/0r/ is the normal
derivative.

We set 0=(0, T)(0, ), Q=gO 2 with generic element (t,a,x). Given r and Ao
with 0 < r =< T, 0 <Ao < o, 0o will stand fror (0,z)(0,Ao). Here T is a positive real
number.

1F is the characteristic function of the set F (used with F= (0, ) or goo).
2.1. Main assumptions. The dispersal modulus k is continuous, K(p)= fok(o)do

and we assume

(2.1) O<ko<_k(p), pR.

fl is a measurable function Q - R, continuous with respect to p and

(2.2)
O<=fl(t,a,x,p)<= inQ[O,
O <= fl ( t, a, x,p ) <= fl ( t, a, x ) fl2 ( p ), fl_ bounded for boundedp.
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The initial distribution u0 verifies

(2.3)
uo(a,x)>=O, u0 L2((0, o) f),
o=<eo(Xl-

the boundedness of P0 implies that uo lies in LI((0, )f). As to we assume it takes
the form (see [10])

I(t,a,x,p)=l,(t,a,x,p)+le(t,x,p) on QR,

where/ and/ are real measurable functions, continuous with respect to p and

(2.4)
O<=l,(t,a,x,p)<__l,l(t,a,x)l,2(p), 1,2 bounded for boundedp,
0 =</e ( t, x,p) __< (p), bounded for bounded p.

More precise assumptions concerning the behavior of/31 and/nl with respect to
the variable a are made in 3. The boundedness of/3 will ensure global existence.

2.2. Weak solutions. We must define a suitable notion of solution. By a weak
solution of problem (1.1)-(1.5) we mean any nonnegative and integrable function u
defined on Q satisfying

fQ(u2+[Vu[2)dtdadx< +o, P continuous in (0, T),

O<_P(t,x)= u(t,a,x)da<__Moe’ in (o,ra,

and such that for any in C1() vanishing at t= T and for large a

(2.5) fQ[-(q,+q,,)u+t(a,P)u.q+k(P)vu. Vq] dtdadx

=f(0 u(a’x)(O’a’x)dadx
,A)xa

+ fl(a,P).uda.,(t,O,x)dtdx.
T)

This is derived from (1.1)-(1.5) upon integrating by parts. Throughout this work we
write/(a,P) (resp. fl(a,P)) for l(t,a,x,P(t,x)) (resp. fl(t,a,x,P(t,x))).

3. Main results. In the simple case where fl and are age independent and for
smooth data, we have

THEORE 3.1. Assume (k, fl, Uo,) satis (2.1)-(2.4). Furthermore let k lie in C2(),
let Po be in C2+() with p0n=0 on , assume ,=0, fl independent of the variable a
and

t, Ip, fit, tip exist and are continuous on [0, Tla R,

lz and fl are HOlder continuous in x with exponent .
Then problem (1.1)-(1.5) has a unique weak solution and P belongs to
C + 8/2’ 2+8([0, T] ).
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The proof is found in 5.3; it can be shown that the solution is smoother than
requested, namely u + u and Au are square integrable over Q.

We now pass to the general case which is the main result of this paper.
THEOREM 3.2. Assume ( k, fl, u o, l) satisfy (2.1)-(2.4) and

O<_tXl(t,a,x)<=< + in Q,
(3.1) fo[f121+txg-nx](t,a,x)da<_Cx < +otz in (O,Z).

Then problem (1.1)-(1.5) has a weak solution.
The proof is found in 6. We also prove that P satisfies the initial boundary value

problem (1.7), (1.8) and Pt, VP, AK(P) lie in L((0, T)xf); further for any w in the
Sobolev space of order 1 Hi((0, T))
(3.2)

f0. r)x[Ptw+k(P)VP’vw] dtdx= f(o, r)xafo[fl(a’P)-t(a’P)]uda’wdtdx"
To this quasilinear parabolic equation the results of [12] apply; due to the properties
assigned to k, fl, / and those obtained for P we conclude to the existence of a 8,
0<8 < 1, such that P lies in the HOlder space C/2’((O,T)x) and C/a’([O,T])
provided P0 belong to C().

Remark 3.1. Let be a constant with

fl(t,a,x,p)-l(t,a,x,p)+X>=O in Qx [0,M0eBr],
then P satisfies Pt-div(k(e)vP)+XP=F in (0, T)xfl, F(t,x)= f(fl(a,P)-l(a,P)
+X)uda >= 0; using the minimum principle for parabolic equations we conclude that
under the assumptions of Theorems 3.1, 3.2, whenever O<mo<=po(x) there exists a
constant m such that

(3.3) O<ml<=P(t,x ) in (0, T)2.
Remark 3.2. When condition (2.1) is replaced by k(P)= pro-l, m > 1, the situation

is quite different" (1.6) is no more parabolic but more commonly referred to.as a porous
medium type equation degenerating when P=0; see Oleinik [19], Aronson [2]. Obvi-
ously any additional assumptions ensuring that P stays away from 0 will lead to
conclusions similar to the one drawn above: using Remark 3.1 and a device of [2] we
can conclude that for k(P)=Pm-l, m> 1, the conclusions of Theorems 3.1, 3.2 are still
valid if 0 < m 0 =<p0(x).

Lastly we briefly discuss the asymptotic behavior of P and u when

c( t,a,x,p ) I( t,a,x,p )- fl( t,a,x,p )
takes simple forms (-c is the growth rate).

THEOREM 3.3. Under the assumptions of either Theorem 3.1 or 3.2, then c( t, a, x,p ) <=
c0<0 implies u(t,., ")t + in LI((0,A)f); c(t,a,x,p)>=co>O implies u(t,., .)
t-0 in Lx((0,A) ) and P(t, .) t-. 0 in L(f); c(t,a,x,p)=O implies

P(t,.) - (x)dx in
t--, o mesf 0

The proof is found in 8. This is not surprising, the interesting situation occurring
when c is not of one sign.
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4. Abstract formulation of the problem. We need a more abstract notion of solu-
tion.

Let HI(f) be the usual Sobolev space of order 1 over [2; we denote by (,) the
duality pairing between HI(j2) and its dual space H1([2)]’.

U being either (0, T) or dg, and H either HI(f) or its dual space, L2(U; H) is the
Hilbert space of those measurable and square integrable functions v" U--, H. Set ’=
L2((9; Hl(f)), " dual space of /’= L2((9; [HI(f)]’), /’= L2(0, T; Hl(2)) and
dual space of //’= L2(0, T; [Hl(f)]’).

In the following O (resp. Ot, Oa) indicates partial differentiation in ’(0, T; [HI()]’)
(resp. ’((9; [Hl([2)]’)): see Lions and Magenes [16], and D stands for Ot +

If we choose for test function in (2.5) an element q0 in ((9; Cl())--this is
compactly supported in #bthe integrals on =0 and a =0 disappear. It follows that
the linear function

P - --+ -a u + lxuq dt da dx

is continuous on (dg; Hl(f)) equipped with the topology of ’and by density it can be

extended to /’. This merely means that Du + #u belongs to e". Hence a weak solution

in the sense of 2 verifies

u(t,a,x)>=O inQ, uLI(Q)K",

(4.1) O<_P(t,x)<__MoeaT, PC((O,T)Xf),
Du+#(a,P)u ’,

and satisfies for any v in

(4.2) f(Du+tx(a,P)u,v) dtda+fQk(P)Vu, vvdtdadx=O.

Now we are in the situation described in [6, Lemma 0]: setting (90 (0,Ao) (0, T),
0<Ao < oo for any weak solution Du lies in L2(d)o; [Hl(f)]’) so that the trace of a

weak solution on t=to (or a=ao) makes sense in L2((0,Ao)fl) (or L2((0, T)f)).
Furthermore the trace applications are continuous for the weak topologies and for any
u, v in L2((9o; Hl(f)) such that Du, Do belong to L2((9o; [Hl(f)]’) we have

(4.3)

dtda= f(O, Ao)a[uv(T’a’x)-uv(O’a’x)] dadx

[uv(t,Ao,x)-uv(t,O,x)] dtdx.

An alternative definition for a weak solution is now available: a function u is a

weak solution in the sense of 2.2 if and only if it satisfies (4.1), (4.2)

(4.4)
u(O,a,x)=uo(a,x),
u(t,O,x)= fl(t,a,x,P(t,x))u(t,a,x)da,
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as well as

(4.5) u( t,a,x) da= P( t,x).

One can pass back and forth between the two notions of weak solution upon using (4.3)
and the density in 3’of the used in 2.

5. Preliminary results and proof of Theorem 3.1. We derive various estimates for
problems (1.1)-(1.5) and (1.6)-(1.8) (when not coupled), from which the proof of
Theorem 3.1 follows at once.

5.1. The linear case. Let m m(t, a, x), b b (t, a, x) and U U(t, x), namely U is
independent of the variable a, be given measurable functions with:

O<_m(t,a,x)<=< +o, O<__b(t,a,x)<_fl< +oe inQ,
(5.1)

O<ml<=U(t,x)<__Ml< +oe in(O,T)a.

We look for a function u satisfying

u, Du’, for anyvin

f <ou,o> atax+fotvvu. Vv+muvldtdadx=O
and taking the initial values

(5.3)
u(O,a,x)=uo(a,x ) in(O, oe)Xa,

u(t,O,x)= b(t,a,x).u(t,a,x)da in (0, T) xa.

In some sense (5.2), (5.3) are a linearization of our problem (1.1), (1.5).
THEOREM 5.1. Assume (m,b, U) verify (5.1) and

(5.4) fob2(t,a,x)da<_C2< + in (O,r)xa.

For any nonnegative uo satisfying conditions (2.3) there exists a unique nonnegative and
integrable solution of (5.2), (5.3).

The proof is found in the Appendix.
We need qualitative properties of the integral with respect to the variable a of u.

Set

z(t,x)= u(t,a,x)da

that is a nonnegative element of LI((0, T) f]).
COROLLARY 5.1. Under the assumptions of Theorem 5.1 z belongs to Ylr, 8tz to ’and z(O,x)=po(x)= fo uo(a,x)da. Furthermore for any w in g,r

T(tZ,W) dt-- UVz" vwdtdx= (b-m)uda.wdtdx.
T)f ,T)

Formally the parabolic equation for z is obtained upon integrating (5.2) with
respect to the variable a.
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Proof. Let % be a sequence of smooth function [0, ) - R with

O=<.(a) =<, .() , Oa__<,

d%
%(a) O, n + 1 =< a, (a) =< C independent of a and n.

The dominated convergence theorem ensures that strongly in LI((0, T)X)

On the other hand . lies in Y’because % is compactly supported. For any in
N(0, T; H(a)) one has

Z dt dx Du,% ) dt da + u da dt dx
T)x T)x

this is actually derived upon using (4.3) to integrate by parts the integral over (.0. We
conclude that the linear mapping

0q
---* T)xaZn’---dtdx

is continuous over N(0, T; Ht()) equipped with the topology of .Kand therefore OtZ
belongs to ".

Next, again using relation (4.3), we obtain for any w in Ht((0, T)x)

Du, %w) dtda= zn -- dtdx
T)f

+ f(o [u(T,a,x)w(T,x)-u(O,a,x)w(O,x)]%(a)dadx
,oo)x

u(t,O,x)w(t,x)dtdx- -j--aWUdtdadx
T)

T.)tZn,W" dt- b+ uda.wdtdx.
,T)X

Selecting v=%w, w in ’, as test function in (5.2) the foregoing relation and the
density of Hi((0, T)X) in ’imply

foT(OtZn’W) dt-}- f(o, T)XUTZn’Twdtdx’- f(o, T)xfn’wdtdx’
where

f(t,x) b + uda- mp,uda.

Obviously z,(O, x) f %(a)uo(a,x)da _<po(x).
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Taking w=zn. 1(0,), 0 < z < T, as test function in (,), integrating by parts, using
the nonnegativity of m, Pn, U, Z and the properties required on b and Pn yields

-,1 7 S(0 SoeX( dl)n)Z zn(O,x) dx+ b+ uda’zndtdx
,)

,’r)f

With Gronwall’s inequality we conclude that z is bounded in OF’and therefore z lies
in

Clearly

--d-a uda --, 0
n-oo

strongly in L((0, T) f).

From (5.1) and the estimate for zn

0<_ mpnuda<=z is bounded in L2 ((0, T) a);

but for any continuous function 0 on [0, T], the dominated convergence theorem
provides

fQmuOdtdadx
(because u lies in LI(Q)) and we conclude that f mqgnuda converges to f muda in
L-((0, T) f), weakly. Hencef, is weakly converging to f(b- m)uda in L:((0, T) f).

By letting n go to + o we obtain the properties listed in Corollary 5.1.
COROLLARY 5.2. Under the assumptions of Theorem 5.1"

O<_z(t,x)<=Mo.et in (O,T)xn.

This implies that the uniform norm of z does not depend on U and m, and any b
verifying (5.1).

Proof. From the nonnegativity of m, b and u we conclude that

fo(b m ) u da <=z in (0, T)

and the conclusion follows from the weak maximum principle. Actually for any e > 0 let

r(t,x)=z(t,x).e -(#+‘)t in (0, T)Xf.

This new function r satisfies r(O,x)=po(x) and for any w nonnegative function in

foT(Otr,w)dt+ f(o [UVr’Vw+er’wldtdx<=O.
,T)
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Defining s(t,x)=r(t,x)-Mo (Mo is defined in (2.3)) and choosing w=s+=Max(s,O)
in the inequality for r, an integration by parts leads to

e f( Is+l=dtdx<= 0
,T)

say s+= 0 or r(t,x)<=Mo and the desired result is obtained by letting e go to 0.
A similar form of the foregoing results is also needed.
THEOREM 5.2. Let (m,B, U) be independent of the variable a and satisfy (5.1).
For any uo as in (2.3) there exists a unique nonnegative and integrable solution of

(5.2) verifying

u(O,a,x)=uo(a,x ) in (0, oo)f,
u(t,O,x)=B(t,x) in (0, T) xa.

Furthermore the conclusions of Corollary 5.1 still hold, the right-hand side of (5.5) being
replaced by

f(o, T) X f[B(t,x)-m(t,x).z] wdtdx.

Existence and uniqueness are derived in the Appendix. For qualitative properties
we reproduce the proof of Corollary 5.1 with minor changes.

Remark 5.1. When m(t,a,x)=mx(t,a,x)+m2(t,x) the right-hand side of (5.5)
becomes

f(o [mz +
,T)Xa foC ( b m ) U da w dt dx

5.2. Remarks on a quasilinear parabolic equation. We will use special properties of
the solution to the problem

Pt-div(k(P)vP)+XP=F in (0, T)f,
(5.6) P(O,x)=Po(X) ina,

P,=O on (o,r)x0a,

where 3, is a positive real number, F and P0 being nonnegafive and bounded functions.
For classical solutions we have the next theorem.

THEOREM 5.3 ([12]). Let F be in CI([0, T]X) and nonnegative, Po be in C2+*(),
pon=0 on Of, and nonnegative, k be in C2([0, oe)) and k(p)>=ko>O. Then there exists
a unique nonnegative P in C1+*/2’2+([0, T])solution of(5.6).

Equation (5.6) can be solved under much weaker assumptions. Recalling that K is
the antiderivative of k vanishing at the origin we can rewrite our problem as

P,-AK(P)+,P=F in (0, T)12,

(5.7) e(O,x)=Po(X ) ona,

an (P)=O on (O,T)xaa.

Nonlinear semigroup theory is available to handle (5.7); see Evans [5] for example, to
which we refer for uniqueness.
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THEOREM 5.4. Assume k satisfies (2.1), Po verifies (2.3) and F is nonnegative and
bounded. Then there exists a unique nonnegative and bounded P, continuous in (0, T)
with

Pt, vP, AK(p) in LZ((O,T))

solution of (5.7) (for , > 0).
Proof. To get existence we approximate (k,p0,F) by smooth functions (k,,p0., Fn)

satisfying the conditions of Theorem 5.3, ko<_k,(p) in p>=O, O<_po,(X)<__po(x ) in f,
O<=F,(t,x)<=F(t,x) in (0, T) and

k --+ k

FnF
Pon Po

uniformly on compact subsets of [0, ),

strongly in L2((0, T)),

strongly in HX(f).

Let P, be the unique classical solution of (5.6) with (k,F,po) replaced by (kn,Fn,po,).
Keeping in mind that , is a positive constant, we deduce from the maximum principle

0 <=P,(t,x) <= Max(
K, being the antiderivative of k, vanishing at the origin, Pn is easily seen to satisfy

(5.8) Pnt-AKn(Pn)=rn-XPn

If we multiply this relation with k,(P,)Ak,(Pn) and integrate over (0,r)fl, 0<r< T,
we obtain

(5.9) - IVK.(P)12(r,x)dx+ k,(Pn)[AK,(P,)I
2

,r)x- IVK.(po.)lZdx (Fn-XPn)kn(Pn)AKn(Pn)dtdx.
,r)X2

P, is bounded in L((0, T)); it follows that VK,(Pn) and AK,(Pn) are bounded in
L2((0, T)) and from relation (5.8) and the properties of k,

Pnt, VP,,AK,(P,) are boundedinL2((0, T)).

Finally [12, Thm. 1.1, p. 419] applies to (5.8) providing an ct, 0 < c < 1, such that Pn
is bounded in C/’((O, T)f).

The existence is obtained by letting n go to + oo, using the compactness of
C/’((O, T)f) in C((0, T) fa) to pass to the limit in the nonlinear term.

COROLLARY 5.3. Under the assumptions of Theorem 5.4 (for > 0), P verifies the
estimate O<P(t,x)<=Max(Mo,,-XllFllo,r)m) and satisfies the equation, for w
in

(5.10) f{0, T)X[Ptw+k(P)VP.XTw+XP.w]dtdx= f{ F.wdtdx.
T)f

It suffices to pass to the limit in the corresponding relations for P,.
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COROLLARY 5.4. Under the assumptions of Theorem 5.4 the following estimate holds,
forO<<T,

veil + IIP/II

where II" II is the L2((0, r)X) norm and C(. )a nondecreasingfunction of its argument.
It is derived from (5.8) and estimate (5.9).

5.3. Proof of Theorem 3.2. When/ and fl do not depend on the variable a P can be
calculated directly from (1.6)-(1.8).

Under the conditions listed in Theorem 3.2 there exists a unique nonnegative P in
C +8/2,2 +8([0, T]) solution of the quasilinear equation (see [12])

(5.11)
Pt-div(k(P)VP)+ [(P)-(P)]P=O
P(O,x) =po(X)

in (0, T) Xa,
in f,
on (0, T) xaf.

The boundedness of P implies that U(t, x) k(P(t, x)), m(t, x)=/(t, x, P(t, x)) and
B(t,x)=fl(t,x,P(t,x)). P(t,x) satisfy the assumptions of Theorem 5.2 supplying a
unique u such that for any v in Y/

(5.12)
{Du,o) d,du+ fo[ (e)vu, vo+,(e)uol dtdadx=O,

u(O,a,x)=uo(a,x),
u( t, O,x) B( t,x,P( t,x)) e( t,x).

Using (5.11) for P and Theorem 5.2 it is easily checked that P and fo u(t,a,x)da
are solutions of the same parabolic equation, namely, for any w in V’,

for( ,z, w) at + f o, r)a[k(P)Vz. VW+l(P)zw] dtdx= f(0,rlxafl(P)’Pwdtdx"
Taking the same initial datum they coincide and we have proved existence.

To get uniqueness let u be a solution. From Theorem 5.2 fo u(t,a,x)da satisfies
(5.11) and is uniquely determined. Now (5.12) becomes a linear equation with a unique
solution.

Remark 5.2. Along the lines of 5.2, (5.11) can be solved under weaker assump-
tions.

6. Proof of Theorem 3.2. We use a method involving a delay h >= 0; replacing
P(t,x) by ph(t--h,x) transforms (1.2), (1.5) into a linear equation as in [}5. When
h 0, php and by a continuity argument (ph) and fl(ph) converge to/(P) and
fl(P ).

The proof given below requires Po to be HOlder continuous on f to pass to the
limit in terms containing a delay (namely Rh). Once the existence is granted for HOlder
continuous Po the general case of P0 satisfying (2.3) is obtained upon approximating u0

by smooth functions; the proof of this last part is omitted due to its similarity with
those detailed now and in the next section.
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Let M=Moear where Mo and/3 are defined in 2 and let h be a real number larger
than I chosen so that

forany(t,a,x)Q, O<=p<=Max(Mo,(l+)M),
O <_ fl( t,a,x,p )-I( t,a,x,p ) + X.

Let h be a positive real number, the delay that will go to zero.
We claim that there exists a unique (u h, P h) having the following properties"

(6.1)
(6.2)
(6.3)
(6.4)

(6.5)

where

flh( t,a,x)= fl( t,a,x,Rh( t,x))
Rh(t,x)=ph(t-h,x)

while u h satisfies for any v in

in Q,

in (0, T) f;

(6.6) f(Du",v) dtda+ ft2[k(Rh)xzuh" VV+thuhv] dtdadx=O;

where Ih(t,a,x)=l(t,a,x, Rh(t,x)) and ph is the solution of

(6.7)

+ f0 oo + X]

ph(t,x)=Po(X ) in[-h,O]fl,

---K(Ph)=O on (0

This is proved upon using repeatedly the results given in 5. First in (0,h)f,
Rh(t,x)=Po(X) and we can integrate the linear equations (6.5), (6.6) to get u h in
(0,h) (0, oo)f satisfying (6.2), (6.3), (6.4); see Theorem 5.1 and its two corollaries.
Next the right-hand side of (6.7) is nonnegative and bounded so that we can integrate it
on (0,h)2 and obtain ph with (6.1); see Theorem 5.4 and its corollaries. Actually the
only thing to be checked is the L-norm but due to (6.4) and the nonnegativity of
/h, and u h"

0z x)

and the conclusion follows from Corollary 5.3 and h>__ 1. We can now iterate and
integrate over Q (6.6) and (6.7).

In the course of proving the existence we have obtained that u is nonnegative, z
satisfies (6.4) and P the uniform extimate in (6.1). We need more a priori estimates.



522 MICHEL LANGLAIS

Set (_90= (0,Ao) (0, r), 0 <Ao < + de, 0 < r < T. With relation (4.3)
(6.8)

1 f(o [(uh)2(o’,a,x)--(uh)2(O a,x)] dadx( Duh, u h) dt da
,o)

+
,r)XQ

h)2(t,Ao,X)--(Uh)2(t,O,x)] dtdx.

We take v u h. 1do as test function in (6.6). Using (6.8), the initial conditions in (6.3)
and (6.5) and the nonnegativity of/h yields

1-- f(o (uh)2(r’a’x)dadx+ fOo k(Rh)l71"lh12dtdadx
2 ,Ao)U xa

u(a, x ) dadx + --<
,o)Xa ,,,-)xa

The last term on the fight-hand side is less than

Gfoo xa(Ua)2dtdadx"
This comes out from the boundedness of ph and (2.2), (3.1). By letting A0 go to we
end up with, for any r in (0, T),

(6.9) f(0 f(0r a x)dadx+2ko [Vu12dtdadx
oo)x r)x (0, oo)xa

,oo)x ,r)X(0, oo)x

The Gronwall inequality implies that u h is bounded in L2(Q) and it follows that u h is
also bounded in Y/’.

On the other hand the right-hand side of (6.7) has already been seen to be
bounded in L((0, T)X) so that from Corollaries 5.3 and 5.4

Pth, vph, AK(Ph) are bounded in L2((0, T)Xf]).
Furthermore ph is a solution of the parabolic equation, for any w in

f(o, r)xu[Pthw+k(eh)vphvw+’Phw]dtdx=f(o r)xaFhwdtdx
with Fh-- fo(h__h -Jr" )uhda bounded in L((0, T)Xf). Hence from [12, Thm. 1.1,
p. 419] ph is uniformly bounded in the HOlder space C/2’([0, T)xf]) for some a in
(0,1) if P0 is H61der continuous.

By construction Rh is also bounded in C/2’ ([0, T) x f).
Now we have enough estimates to pass to the limit. There exist a sequence h going

to 0, we simply denote it h, and a bounded, continuous on (0, T)x f, function P such
that

p h ._, p uniformly on every compact subset of (0, T) x f,
h---, 0



AGE-DEPENDENT POPULATION DIFFUSION 523

strongly in L2((0, T)) and weakly in Hi((0, T)). We may also assume that

uniformly on every compact subset of (0, T) ft.

The inequality

Rh(t,x)--ph(t,x)= ft t-h OP
h

and the boundedness of Pth show that Rh--P h converges to 0 in La((0, T)) and
therefore R P. Hence

k(ph)h--ok(P), t-te(t,x,Rh(t,X)) h-Ot-te(t,x,P(t,x))
uniformly on compact subset of [0, T) , strongly in Lz((0, T) ) and

lhn(t,a,x) -- In(t,a,x,P(t,x)),
hO

flh(t,a,x) -- fl(t,a,x,P(t,x)),
h-O

uniformly on compact subsets of Q and strongly in L2(Q) (for the latter the integrabil-
ity condition (3.1) is used).

We may also suppose that uh--, h_O u weakly in ’. But from (6.6) we derive that
Duh is bounded in ’ and the continuity of the differential operator D in ’((9;
[HI()]’) implies that Duh -, h__,oDu weakly in

Lastly the continuity of the trace applications on 0 and a 0 gives

u(O,a,x)= lim uh(O,a,x)=uo(a,x),
h-,O

lim u (t, 0 x) lim [3 h U da

(t,a,x,P(t,x))u(t,a,x)da.

We can also assume that z h
h_,O z weakly in L2((0, T) ).

Passing to the limit in (6.6), (6.7) provides (u, P,z) solution of:
For any v in /’,

fc{Du,v) dtda+ fQ[k(P)Vu. Vv+tx(a,P)uvl dtdadx=O.

Pt-AK(P)+XP= fo[(a,P)-t,(a,P)]uda+
The extraneous function z will help us to conclude that

foU( t,a,x) da= z( t,x) P(t,x).

From Corollary 5.1 we derive that z h is a solution of the parabolic equation for
any w in zcF"

v
Otzh,w dt+ k(Rh)vzhvwdtdx= (flh--lxh)uhda.wdtdx.

,T)X ,T)
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Again f(flh_ l.th)glhda is bounded in L2((0, T)fl). Using generic properties of weak
solutions of parabolic equations we conclude that Z h is weakly converging to z in ,
0,z #", a solution of:

For any w in ,
T(otZ,W) tit+ o,r)x[k(P)vz" VW+e(P)zwl dtdx

and taking the initial value z(O,x)=po(X ).
Using Corollary 5.1 and Remark 5.1 we check that f u(t,a,x)da is also a

solution; by uniqueness f u(t,a,x)da z(t,x).
Now z is a solution of

T( OtZ, W dt+ vw+Xzw]  tdx

T)fo
m
[fl(a,P)-p,(a,P)+] udaw dt dx

and so is P by Corollary 5.3; by uniqueness z(t,x)=P(t,x).

7. ProoI ot Theorem 3.3. Denote P(t,x, c), the solution of (1.7), (1.8).
When co is nonnegative, setting X ( P ) fo. K(o ) do, then

is a Lyapunov function for Pt-AK(P)+coP=O in (0, T)f, P, verifying (1.8). As in
Alikakos and Rostamian [1, Lemma 2.1] it follows that in the sense of L()

.) (x)dx
t mes o

co>OP(t," ) O.

The comparison principle for parabolic equations ensures that for c(t,a,x,p)co,

P(t,x,c)P(t,X, Co). We conclude that when c is bounded from below by a positive
constant, P(t, .) goes to 0 in L() and u(t,., .) goes to 0 in LI((0,A) x fl).

When co is a negative constant, y(t)= nP(t,X, co)dx is a solution of the differen-
tial equation y’+coy=O, y(0)=y0>0 and therefore y(t)o +. From the com-
parison principle we derive that when c is bounded from above by a negative constant,
u(t, .,. ) goes to + in LI((0, )x).

8. Appendix. In this last section we supply the proofs of Theorems 5.1 and 5.2.
It is convenient to perform a change of an unknown function" if u is a solution of

(5.2), (5.3) then v(t,a,x)=e-Xtu(t,a,x) is also a solution with m replaced by m+h.
This is implicitly done with C2, C2 defined in (5.4) and v is still denoted u.

We first use some semigroup theory to solve (5.2) with prescribed initial data
u(t,O,x)= B(t,x) following the procedure used in Bardos [3] and Langlais [13]. Next
along the lines of [6], [14], we obtain the results stated in Theorem 5.1 through a fixed

point method and comparison theorem.
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LEMMA 8.1. Given f in Y/" there exists a unique u in Y’, Du in 7U’, such that for any v
in Y#:

fc(Du,v) dtda+ fQ[UVu. Vv+(m+)u.v] dtdadx= fc(f,v) dtda

and verifying the initial data u(0, a, x) u( t, 0, x) 0.

Proof. Let e the bilinear form on H1(2) be defined by

e(u,v) fn[UVu" Vv+ (m+?)u.v] dx.

U and m being bounded, e is continuous on nl(). For any u in H1(2)

Min(m,,)llull
2
Hi(2) Z e ( u, u) =< Max(M ? +) Ilull

2
Hx()

so that e is also coercive on HI(). We denote E the linear bounded and coercive
operator from ’to Y’ such that

for any u, v in , f#(u,o) tda.
Now we consider A the unbounded operator in LZ(Q) with domain

D(A) (u L2(Q), Ut-[- Ua L2(Q), u(O,a,x)=u(t,O,x)=O)
defined by uD(A), Au=ut--Ua Then -A is the infinitesimal generator of a
contraction semigroup (S(r), >= 0) in L2(Q) (see [3]). Actually

u( t-’r,a-’r,x)(S()u)(t,a,x)=
0

if (t-r,a-r,x)Q,
otherwise,

and S() is a bounded and continuous semigroup in Y/" and Y/". Let A be the
infinitesimal generator of S(z) in /". Its domain D(A1, Y/") is

D(A1, /") {uV",DuY/’’, u(O,a,x)=u(t,O,x)=O}

the traces of u on t=0 and a=0 make sense because u is continuous along the
characteristics of the vector field O/Ot+O/Oa with value in [nl()r. Hence the
unbounded operator A from to " with domain

D( A)= YnD(A1, "’) { u, DuG 7V", u(O,a,x)=u(t,O,x)=O)

defined by Au Du for u in D(A) is a maximal monotone operator in the sense that
together with its adjoint A*: U’ they are nonnegative, closed with dense domain in
Y/’; see [16, Chapter 3] and J. L. Lions [15, Chap. 3].

E being bounded and coercive and A being maximal monotone we conclude that
for any f in /" there exists a unique u in D(A) solution of Eu + Au=f (see loc. cit.).
This equation turns out to be an abstract formulation of our problem because for u in
D(A) and v in

< < Au,v> > <Du,v> dtda.
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LEMMA 8.2. Given uo in L2((0, x)X) and B in L2((0, T)X) there exists a unique
solution to (5.2) satisfying the initial conditions

u(O,a,x)=uo(a,x), u(t,O,x)=B(t,x).

Proof. Uniqueness follows from uniqueness in the preceding lemma.
To prove the existence we introduce a sequence of smooth functions q" in C(Q)

such that

q"(O,a,x) Uo(a,x ) in L2((0, x:))<),

"(t,O,x)B(t,x) in L2((0, T) xn).
From Lemma 8.1 we conclude that there exists a unique u in the D(A) solution to
Eu+ Au= -En-D; therefore u+=v is a solution to (5.2) and v(O,a,x)
(O,a,x), v(t,O,x)=n(t,O,x). For any Ao, 0<Ao, set o= (0, T)X(0,Ao). We get

foDon’On) dtda+ foe(On’on)dtda=O’ naO.

The first term can be integrated by parts (see 4) to provide

L [(v)2(T’a’x)-(v)2(O’a’x)]dadx2 ,Ao)X

+ 1 o,)[(v")(t,Ao,x)-(v")2(t,O,x)] dtdx,

which is certainly larger than

1 (")(O,a,x)dadx- (")(t,O,x)dtdx.
2 ,Ao)Xa ,r)xa

Substituting this inequality in the above relation for vn, letting A0 go to + m and using
the coercivity of the bilinear form e yields

1 2 1 2

By the choice of " this implies that v" is a bounded sequence in .
We can extract a sequence vk of the sequence v" such that

v v weakly in,
k

Dv f weaklyin’.
k

But the differential operator D is continuous in N’(O; [HI()]’), thus f=Dv. On the
other hand E is continuous and Ev goes to Ev. We first conclude that v is a solution to
(5.2). The continuity of the trace applications on t=0 and a=0 implies that v(t, 0,x)=
B(t,x) and v(O,a,x)=uo(a,x ). Lastly the lower semicontinuity of the norm with
respect to the weak convergence ensures that the solution satisfies

1 1

so that the solution depends continuously on the data.
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LEMMA 8.3. There exists a unique solution to (5.2), (5.3).
Proof. Let u be given in e’and denote Su= v the solution of (5.2) satisfying the

initial conditions

(o,,)=o(,),
v(t,O,x)= b(t,a,x)u(t,a,x)da=B(t,x).

S maps e’into itself, is continuous and the solutions we are looking for are the fixed
points of S. The inequality

b(t,a,x)u(t,a,x)da dx <= C2 u
,T)X

2(t,a,x)dtdadx

(C2 is defined in Theorem 5.1) and the estimate established for v by the end of the
proof of Lemma 8.2 give

1 2 C2 2

so that S is bounded from L2(Q) to ’. The conclusion will follow from the fact that S
is a strict contraction in LE(Q).

Actually if u and u 2 are chosen in LE(Q), letting v1= Su, v2= Su E, the difference
v v v2 vanishes on 0, is a solution to (5.2) and satisfies

v(t,O,x)= fl(t,a,x)u(t,a,x)da, u---ul--u 2.

With the notation of the proof of Lemma 9.2 we still have

fo(Dv’v) dtda+ foe(v,v)dtda=O,
and in a quite similar way we arrive after some calculations at

1 2x .dtdadZ-Cllull,e).

Keeping in mind that >__ C2 this means that S is strictly contracting in L2(Q) because
the latter inequality means

ilsu Su=ll2 1 -z<a)- -IIul- u=ll =0)"

LEMMA 8.4. The solution of (5.2), (5.3) is nonnegative and integrable over Q.
Proof. For any real function w we denote by w + its positive and by w- its negative

parts. Under the a.e. ordering (v<=w if v(x)<=w(x) a.e. in f) Hl(f) is a lattice and for
any w in H(f)w+,w belong to Hl(f) and e(w+,w-)<=O; see Necas [18], D. Kinder-
lehrer and G. Stampacchia [11]. It follows that for any u in /’u + and u- are in Y/and
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Let us prove now that provided uo and B be nonnegative then the solution of (5.2)
obtained in Lemma 8.2 verifies

fc;( Du, u- ) dt da <= O.

Actually if u is smoother, say u lies in Hi(Q), we have u+(O,a,x)=uo(a,x), u+(t,O,x)
=B(t,x) and u-(O,a,x)=u-(t,O,x)=O so that, for (.0o= (0, T) x(0,Ao),

S.o< s.0Du, u- ) dt da ---+ --a u- dt da

1 f(o (u-)(T’a’x)dadx2 ,Ao)X

21 f(o,T)(u-)2(t’A x)dtdx <0.

By letting Ao go to + o--A we end up with f(Du, u-) dt da <= 0 for smooth u. For the
general case u in "//’, Du in ’, in general Du- is not in z’; nevertheless approximating
u by smooth functions leads to the desired inequality which is preserved by passing to
the limit.

For nonnegative u0 and B substituting v u- in (5.2) yields

f(Du,u-) dtda+ ff(u,u-)dtda=O.
From the relation e(u, u-) e(u +, u-)- e(u- u-) we get:

and the coercivity of e provides

Min( k,m1)llu- II_< 0
namely u-=0 and u is nonnegative. Then letting u =0 and U n+l-- Su n, n >= 0, where S
is defined in the proof of Lemma 8.3, each u" is nonnegative and the sequence u"
converges to the solution of (5.2), (5.3) which is therefore nonnegative.

To prove that the solution u of (5.2), (5.3) is integrable over Q we substitute in
(5.2) the characteristic function of (0,)(0,A0), 0<r< T, 0<A0< o. Integrating
by parts we obtain after some calculations:

0<_ u(z,a,x)dadx<= uo(a,x)dadx+ b.udadtdx.
,Ao) x2 ,o) xft (o, -) x ()

The right-hand side is less or equal to"

o) x f t)x(0,

1/2

where K depends on b (through the constant C2 defined in Theorem 5.1). It follows at
once that u belongs to LI(Q) because u is nonnegative.
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FORMATION OF SINGULARITIES
FOR A CONSERVATION LAW WITH MEMORY*

REZA MALEK-MADANI" AND OHN A. NOHEL:

Abstract. The formation of singularities in smooth solutions of the model Cauchy problem

u,+,(U)x+’ +(u)=o,
,(.,o) =,o(.),

xR, t[0, o),

is studied. The constitutive functions q, + R R are smooth, a R + R is a given memory kernel, sub-
scripts denote partial derivatives, ’= d/dt and denotes the convolution on [0, t]. Under physically reasona-
ble assumptions concerning the functions if, + and a it is shown that the smooth solution u develops a

singularity in finite time, whenever the smooth datum u0 becomes "sufficiently large" in a precise sense.
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Key words, conservation laws, Burgers’ equation, nonlinear viscoelastic motion, materials with memory,
stress-strain relaxation functions, nonlinear Volterra equations, hyperbolic equations, Riemann invariants,
regularity, breakdown of smooth solutions

1. Introduction. In this paper we study the model initial value problem

ut+(u)x+a’*(U)x=O, xs , ts[0,

where q, " R R are given smooth constitutive functions, a" g + R is a given kernel,
subscripts denote partial derivative, ’= d/dt, and where denotes the usual convolu-
tion operator

The goal is to investigate the formation of singularities in finite time of classical
solutions of (1.1) when the datum u0 is smooth. The motivation for studying equation
(1.1) is provided by the more complex problem of the motion of a one-dimensional
homogeneous viscoelastic body governed by the equation

(1.2) Utt--Ox=O
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together with appropriate initial and homogeneous boundary conditions; in (1.2) the
stress o is related to the strain ux by the constitutive relation

(1.3) o(Ux) =(Ux) +roSa’( t- ) ( Ux( X, )) d’.

Under appropriate physical assumptions concerning , q and a, the "memory" term in
(1.3) induces a weak dissipation mechanism into the structure of solutions of (1.2). It
has been shown (cf. Dafermos and Nobel [1]) that under physically proper assumptions
on a, , q and on the initial data u0 and u, the initial-boundary value problem (1.2)
has a unique global C2 solution, if the initial data are sufficiently smooth and "small"
in an appropriate sense; moreover, this solution decays in a precise sense as oe. A
similar behavior is exhibited by the solution u of (1.1) with u satisfying periodic
boundary conditions (cf. Nobel [8]). Recently, Hrusa and Nohel [11] established a
similar result for the Cauchy problem associated with (1.2), (1.3), and an analogous
method leads to the same result for the Cauchy problem (1.1), if Ilu011() is suffi-
ciently small. These two results are of special interest since when a’(t)=- 0, (1.1) reduces
to the Burgers equations, while (1.2), (1.3) reduce to the quasilinear wave equation
u,=q(Ux)x. For the wave equation it is well known (cf. Lax [5]) that under appropriate
convexity assumptions on there are smooth solutions which develop a singularity in
the highest derivatives in finite time, no matter how smooth and small one chooses the
initial datum. Thus a’(t) 0 induces a weak dissipation mechanism which prohibits the
breaking of waves when the initial amplitude of these waves is small.

This paper considers the natural question of how "large" one must choose the
smooth initial datum in order that the shock forming structure of (1.1) overcomes this
dissipation. Indeed, in Theorem 2.3 we show, under natural assumptions concerning the
constitutive functions , q, the kernel a, and datum u0, that the classical solution u of
(1.1) develops a singularity in finite time for smooth and sufficiently "large" datum u0,

in the sense that first derivatives of u become unbounded in finite time while u itself
remains bounded. Our ultimate objective is to prove such a result for the complicated
problem (1.2), (1.3), and with q @.

Equation (1.1) has a simpler structure than (1.2) due to the fact that (1.1) has only
one family of "genuinely nonlinear" characteristics and one "linearly degenerate"
characteristic due to the convolution term. Our approach examines the variation of the
solution of (1.1) along characteristics with the aid of Riemann invariants. A similar
approach (under active study) appears promising for the more complicated higher order
problem (1.2), (1.3); this latter equation has three families of characteristics (only two
are genuinely nonlinear), and thus, in general (1.2), (1.3) does not have Riemann
invariants. Introducing the generalized Riemann invariants (cf. John [4]) there is reason
to expect that much of our analysis can be adapted for (1.2), (1.3).

Some experimental evidence for the breakdown of smooth solutions of model
equations governing viscoelastic fluids can be found in the work of Tordella [10]. In
addition some results on the loss of regularity in solutions of the equations governing
viscoelastic fluids, for smooth and sufficiently large data, have been obtained by
Slemrod [9], Gripenberg [2], and for dissipative hyperbolic Volterra problems by Hat-
tori [3], all for the special cases of (1.2), (1.3) when q . By methods similar to ours in
spirit they also analyze the behavior of solutions along characteristics; however, they do
not study the generalization to the more natural and more difficult situation in which

In {}2 we state and discuss our assumptions and the main result; its proof is
presented in {}3. In {}4 we prove two auxiliary results in the proof. We thank our
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colleagues, particularly C. M. Dafermos, R. Glassey, W. Hrusa, J. U. Kim, and M.
Slemrod for helpful discussions.

2. Assumptions and statements of result. The basic constitutive assumption con-
cerning q is

(2.1) qC2(R) and q?(.)>0, q’(.)>0, q(0)=0.

The constitutive assumption concerning q is

(2.2) q,C(N) and q/(-)>0, q(0)=0.

In addition, we assume thatq and k are related as follows. There exists a constant/3 > 0
such that

(2.3) 0 u n.
Obviously, (2.3) is more restrictive than the assumption q(0)> a(0)p’(0) (i.e. (2.3) at
u 0 with/3= a(0)-1) which was sufficient for the analysis of global solutions of (1.2),
(1.3) in [1] for smooth and sufficiently small data. Assumption (2.3), automatically
satisfies if q=q, simplifies our relatively technical analysis of the development of
singularities for solutions of (1.1); in Remark 2.5 below we point out how (2.3) can be
removed. Concerning the memory kernel a we assume that it is positive, decreasing and
convex in the sense

(2.4) aC2[O, ), (-1)iai)(t)>=O (i= 0,1,2),
where the strict inequalities hold at 0. Finally, we assume that the datum u0 satisfies

(2.5) U0 H2(I)
observe that u0 H2() implies u0 C1().

Under assumptions which include (2.1), (2.2), (2.4), (2.5) as special cases the
Cauchy problem (1.1) has a unique classical local solution. For this argument (2.3) is
not used. More precisely, the following local result, proved by an energy method
coupled with a contraction mapping argument, holds (cf. Nohel [8]).

PROPOSITION 2.1. Let a’,a"Lloc(O,), q,qC3(), q(0)=q(0)=0, q/(-)>0,
and let there exist a constant such that q()>= > 0 (). If uo H2(R), there exists
T>0 and a unique solution uCl( X[0, T]) of (1.1) with u and u bounded on

[0, T], and utt, Utx, U,,x C([0, T]; L-()).
Remark 2.2. It is also shown in [8] that the unique solution u exists on a maximal

interval [0, T0) R; moreover, if supnt0, ro [lux(X,t)l/lu,(x,t)l]< , then To= + m.
The last claim is established by combining the energy estimates obtained in the proof of
Proposition 2.1 with a Gronwall inequality argument.

Our main result is the following theorem.
THEOREM 2.3. Let the assumptions (2.1)-(2.5) be satisfied, and let T > 0 be gioen.

There exists a smooth initial datum uo such that no Cl-smooth solution u of (1.1) with u
and u bounded can exist for x and >= T1. More precisely, if SUPx n ]u0(x)l is

sufficiently small, and u)(x)<0 with -infxnU’o(X) is sufficiently large, then the life
span of a C1-solution u with u and u bounded is finite and cannot exceed T1. In fact,
there exists 0 < <= T such that

sup
[ 0, tl)

[lUx(X,t)l/ lu,(x,t)l] .
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A slight modification of the proof of Lemma 3.1 shows that the solution u
constructed in the proof of Theorem 2.3 satisfies supR[o, tl)[u(x,t)[< o and that

r0, where [0, T0) is the maximal interval of existence in Remark 2.2.
Remark 2.4. While Theorem 2.3 establishes breakdown of smooth solutions of (1.1)

for sufficiently large data, it does not prove the development of a shock front. Numeri-
cal evidence for this more complex phenomenon has been found by Markowich and
Renardy [7] for the Cauchy problem associated with (1.2), (1.3) in the special case -=
when the smooth data are taken sufficiently large. The corresponding analytical prob-
lem is under active study.

Remark 2.5. Theorem 2.3 holds without assumption (2.3). Indeed, assumptions
(2.1), (2.2) imply that q/(.)/q/(.) is bounded away from zero, and (2.3) holds for some
/3 > 0 on every bounded interval. Then the analysis of [}3 can be modified accordingly.

Remark 2.6. It is also clear from the proof (cf. proof of Lemma 3.2) that if the
assumption u(xo)<0 and -U’o(Xo) sufficiently large holds at a single point xo, then
the conclusion of Theorem 2.3 holds.

3. Proof of Theorem 2.3. The proof is by contradiction. Let T >0 be given.
Assume that for every datum u0 satisfying (2.5) the unique smooth solution u of (1.1)
exists for (x,t)g [0, T1] and that Ux(X,t ) and ut(x,t ) are bounded on R [0, T1].
We begin by transforming (1.1) to an equivalent system. Let u be a smooth solution of
(1.1) on R [0, T] and introduce the dependent variable z by

(3.1) z(x,t)= a’(t-z)+(u(x,z))dz, (x,t)N [O, T1].

Equation (1.1) is then equivalent to the system

u,+ U) + zx=O,
(3.2) (x,t)u [o,r],

together with the initial data u(x,O)=uo(x ), z(x,0)=0. We next introduce U=[u,z] r

and the matrices

A[U]= [q/(u) 1
0 0

0 ].
then (3.2) can be written as the equivalent quasilinear system

Ut+A(U)Ux + B(U, t) 0, U(x,O)=[Uo(X),O]
The 2 2 matrix A(U) has distinct eigenvalues q/(u)> 0 and 0. A well-known theorem
of Lax [6] guarantees the existence of two linearly independent Riemann invariants
r(u, z) and s(u, z). By definition r and s satisfy

(3.3) r vr=O, r2. vs=O,

where r and r2 are the right eigenvectors of A(U). A simple calculation shows that
r [1, q/(u)] r and r2= [1,0] r. It is then easy to show that

(3.4) r(u,z)=z +q(u), s(u,z)=z,

satisfy (3.3), and moreover, by assumption (2.1), )(r,s)/3(u,z)=q/(u)4:O.
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We shall study the development of a singularity in the classical Cl-solution u of
(1.1) along the characteristic x=x(t,) through any point , defined to be the
unique solution of the initial value problem

(3.5) -=q’(u(x(t,l),t)), x(O,) =.
Assumption (2.1) and the classical theory of ODE guarantee that x(t,) exists for as
long as the Cl-solution u of (1.1) exists and has ux(x,t ) and ut(x,t ) bounded. Under
the present hypotheses x(t,l) exists for 0 _< =< T for any

Let x(t, li) denote the characteristic curve through associated with (1.1) which
satisfies (3.5). The derivative of r along this characteristic is

at r,+,’( u)r = ,’(u)u,+ ,’(u)[

zt= st, 0__<t=<T1.

Thus, we may replace (3.2) by the system

(3.6) -=st (0=<t=< T1)
st=a’(O)/(u)+a" , /(u)

together with the initial data r(u,z)(x, 0)= (u0(x)), s(u,z)(x, 0)=0, and then by (3.4),
u=-l(r-s). It is clear that the above calculations are valid for as long as u is a
classical solution of (1.1), i.e., for (x,t)R [0, T1]. To keep the notation simple it
should be understood that when calculating derivatives along a characteristic x x(t, ),
r= r(x(t, li),t)= r(u(x(t, li),t), z(x(t, ti),t)) and similarly for s.

To proceed with the proof of Theorem 2.3, let v(t, li)=x(t, li), O<t<=T. The
function o measures the variation of two nearby characteristics at time with respect to
their initial positions and plays a key role in our analysis. When v is different from zero
(1.1) and (3.6) are equivalent. Note that o(0,)= 1 for any. We will show that if
lUo()l is sufficiently small and -u() is sufficiently large, then v(t, li) approaches
zero at a finite time tl =< Tx, while u(x(t,l),t) remains finite and bounded away from
zero. Observing that

(3.7) Ux(X(t,l),t)=

we then obtain a contradiction of the assumption that ux remains bounded for all
[0, T], and the proof will be complete.
Differentiation of (3.5) with respect to yields

(3.8)
do

-qd’(-d-i- u(x(t

Since q(u)= r- s, we have

(3.9) q,’( u)u=r-=r-SxX
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thus

1 1

From (3.2) and (3.4) the derivative of u along the characteristic x= x(t,) is

d-f= z= s,

so that

1 1 du

u-q,,(u) rq q/(u) dt

and (3.8) takes the form

do ,"(.)
dt- o’(u) r+ o’(u) dtV’ v(0,)=l, t[0, Tl].

The above equation is an ODE for v along characteristic having [q/(u)] -1 as an
integrating factor. Thus

or equivalently

(3.10)

for [0, T1].

qd( u( x( t,l),t ))

[ fo ]l+q/(u(f))[-:iiii;i)]r(x(’’f)’)d’

We will now use the following result which provides a bound for u, independent of
u(). Its proof is given in 4.

LEMMA 3.1. Let the assumptions of Theorem 2.3 be satisfied and let u be a Cl-smooth
solution of (1.1) with u, ux, u bounded on R [0, T1]. Then for any > 0 there exists a
number *l *1 ( 3, T1) > 0 such that

(3.11) sup lu(x,t)[<=, whenever sup[u0(x)[<,/.
n x[o, T] n

For a given 3 > 0 we choose uo and /in accordance with Lemma 3.1. Since q/(.)
and q/(. ) are continuous and sup xlo, rl[u(x, t)[ __< 3, assumptions (2.1), (2.2), and (2.3)
imply that there exists positive constants eta, 1,. ., 4 such that

al <=q{(u(x(t,l),t))<_a2, "(u(x(t,l),t))>=a3,

(3.12) q/(u(x(t,f),_)) <
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for 0 __< " __< __< T1, where fl is the a priori constant in (2.3). We note that the constants a

depend on but not on u().
To proceed with the proof we shall also need to estimate r in (3.10), as well as

r-st in (3.9). For this purpose note from (3.4), (3.9) that

(0, u;
Let C()and C* be defined by

(3.13) C*= sup IC( )I.

We note that C() is positive whenever u6() is negative. We will now use the following
auxiliary result; its proof is given in 4.

LEMMA 3.2. Let the assumptions of Lemma 3.1 be satisfied. Select the datum uo such
that u(j)< 0, and there is a point o such that C(j0) C*. Then there exists 0 < T2< TI,
independent of C* (hence of u)(o)), such that

(3.14)
7C* C* 3C* C*
4 <=r(x(t’)’t)-s(x(t’)’t)<-- 4 2 <=r(x(t’)’t)<= 4

forO<t<=T2.
To complete the proof use equation (3.10) and the inequalities (3.12), as well as the

inequality for r(x(t,o),t in (3.14), to obtain the estimate

(3.15) v(t,) <0’((x(t’)))[=-7(ff:(2ii 1 C’4 a3at]a2
for O<=t<T2. By (3.12), O’(u(x(t,o))) is finite and bounded away from zero for
0 < t__< T2. Thus the right-hand side of (3.15) becomes zero at time t?=4aZz/ala3C*.
Since T2 is independent of u;(o), we now choose C* (i.e. -u;(o)>0 so large (cf.
(3.13)) that t’ __< T2, while keeping u0(0) fixed and [Uo(o) < /. Finally, by (3.9), (3.12)
and the first inequality in (3.14) u(x(t,o),t)<O, remains finite and bounded away
from zero on 0 __< __< T2. Used in (3.7) this contradicts the assumption that ux(x, t) and
ut(x, t) remain bounded on N [0, Tt]. The final conclusion of Theorem 2.3 follows by
Remark 2.2.

4. Proofs of Lemmas 3.1 and 3.2.
a. Proof of Lemma 3.1. It follows from (2.3), (2.4), (3.4) and (3.6) that

(4.1)

-(x(t,),t) <=la’(O)l[lr(x(t,),t)]+ [s(x(t,),t)]]

+Bfota"(t-)[lr(x(t,),-)l+ [s(x(t,),-)[] d’,

st(x,t) <=flla’(O)l[lr(x,t)[+ Is(x,t)l]
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for 0 =< __< T1. Let R(t) and S(t) be defined by

(4.2) R(t)= sup Ir(x,t)l, S(t)= sup Is(x,t)[.
xR xR

Integrating the inequalities (4.1), taking the supremum on the right-hand side and using
the definitions (4.2), we obtain

lr(x(t,li),t)l<= sup Iro(li)l+ flla’(O)l ff[R(’)+S(’)] d"
"0

a r/-’r)[R(’r)+S(’r)] d’rd

Is(x,t)l<=Bla’(o)l fo’[R(,)+s(,)l

for O<=t<=T1, where ro(li)=r(x(O, li),O)=q,(uo(li)),s(x(O, li),O)=O. We note that the
right-hand side of (4.3) is independent of x and . Moreover, from the smoothness of u,
u,, and ux, assumption (2.1), and the continuous dependence of solutions of equation
(3.5) on the initial data, it follows readily that for each fixed t, < T
and x(t, li) such r(x(t, li),t)=R(t) and s(x(t, li),t)=S(t) hold. Therefore, we can
replace the left-hand sides of (4.3) by R(t) and S(t) respectively. Interchanging the
order of integration in the double integrals in (4.3) yields

(t)
"0

(4.4} +B a t-’r)[R(’r)+S(’r)] d’r

s(t) <= 2/la’(0)I fo’[ R(’) + S( ,)1 d’r + flfota’(t-z)[ R(’) + S( ’)1 d’,

for 0 =< __< T1. We add the two inequalities in (4.4) to obtain

(4.5)

for O<_t<=T1. Let H(t)=maxo<_,<_,{4Bla’(O)l+2fla’(t-’)}, which is a nonnegative
function by (2.4). Thus

and the Gronwall inequality yields the estimate

(4.7) g(t)+S(t)<=sup[ro()]f(t),

where the positive function f(. is defined by

(4.8) f(t)= 1 + H(t)fo’(exp fstH(’r) d

O<=t<=T1,

ds, O <= < T1.
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Since ro() q(Uo()), inequality (4.7), equations (3.4), and the monotonicity off imply
that

(4.9) [q( u(x, t))l=< sup [q,( u0())If(T1)

for (x, t) R [0, T1]. We observe that (4.10) is equivalent to

(4.10) lu(x, t)I__< m/ax Irk-1( )l,
where

I-- suPlq,(Uo())lf(T), supl(uo())lf(Zx)l for (x,t)R [0, Zl].

The proof of the lemma now follows from the continuity of q and q-1 and the fact that
,(o)=o.

b. Proof ofLemma 3.2. We write the system (3.6) in the equivalent from

-d- a (O) b ( u ( x ( li ) ) ) + ta ( z ) g/ ( u ( x ( li ) r ) ) dr
(4.11)

s(x,t)=ta’(t-$)(u(x,$))d$, t [0, Tll.

Integrating (4.11) with respect to t, differentiating the outcome with respect to and
using (3.9), we obtain

r(x(t,),t)= -C()+a’(O)t’(u(x(z))),(u((,),))

[r(x(z,),)-s(x(,),r)] dz

,(u((,) ))(4.12) +

[r(x(r,),,)-s(x(r,),,)] d, dr,

(,t)= a’(t-),,(u))
Define p and o by

(4.43) o(t)=sup Ir(,t)l, o(t)=sup I(,t)l.
x x

Next, we take absolute values of both sides in (4.12), use the definitions (4.13) and
inequalities (3.12) to obtain the inequalities

[r (x (, ), )I C* + [a’(0)I ’[()+o()1
(4.44) +[

0u0
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where C* is defined in (3.13). Let Y,(t)= O(t)+o(t). As in the proof of Lemma 3.1, we
can replace the left-hand sides of (4.15) by 0(t) and o(t). After simplifying the first
inequality in (4.14) by interchanging the order in the double integral and adding the
two inequalities (4.14), we obtain

(4.15) E(t)<=C*+2fot[]a’(O)l+la’(t-z)l]E(z)dz, O<=t<=T.

Noting that max0_</[la’(0)l + la’(t-’)l] 2la’(0)l (cf. (2.4)), (4.15) becomes

(4.16) E(t)<=C*+4flla’(O)l fotE(r)d, O<__t<__T

which, by the Gronwall inequality, implies that

(4.17) Y.(t)<=C*exp(4flla’(O)[t ), O<=t<=T1.

We now choose T2* <_ T small enough so that

3c, [o,r*l.(4.18) (t)__< 2
t

Note that T2* depends only on u0() and a(-), and T2* is independent C*. Inequalities
(4.14) and (4.18) combine to yield

3C* f0(4.19) Is(x,t)[<_---fl la’(n)ldn, O<=t<_T*.

We further restrict T2* so that

C*
(4.20) e(/’t)l< 4’ O<t<_T2*, xl.

We observe that up to this point the sign of u() plays no role and the estimates

(4.18), (4.20) hold for any/j R.
We next turn to estimating r(x(t, li),t); the estimate [r(x(t, li),t)[<_-C* for

0 _< =< T2*, which follows trivially from (4.18), is too crude to establish Lemma 3.2. We
now select the datum u0 and a point 0 as specified in the statement of Lemma 3.2. The
goal is to obtain a negative upper bound for r(x(t,o),t); this is obtained from the first

equation in (4.12) as follows. Using (3.12) and estimating the two integrals on the
right-hand side of (4.12) as in (4.14), (4.15), and then using (4.18), we obtain the
estimate

I,,’(o)1 fo’*’(u(x(’:)’’)) Ir,(x(’,) "r)--S(X(’r,),’,’)la’r
,’(u(x(,,),))

(4.21) (U (X (’r, )_,’11))ire(x(,),)_e(x(.,,))ldd+ a"(-- r/)
,’(u(x(-, ), r/))

Z3C*la’(O)lt,
for 0 =< < T2*. Putting ! f0 in (4.12) and then using (4.21) gives

(4.22) re ( x( t, o ), t) Z C* + 3C*la’(O)lt, 0_< t_< T2*,
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where T2* is independent of C*. Then choosing 0 < T2 =< T2* small enough and indepen-
dently of C* we obtain

C*(4.23) r(x(t’)’t)<= 4 O<=t<=T2"

This, together with the crude lower bound (--C*) already mentioned proves the
second set of desired inequalities in (3.14). These combined with (4.20) (which of course
holds O<=t<=T2<=T2* ) yield the first set of inequalities in (3.14), and the proof of
Lemma 3.2 is complete.
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AN EIGENVALUE PROBLEM FOR A VOLTERRA
INTEGRAL OPERATOR WITH INFINITE DELAY*

GUSTAF GRIPENBERG"
Abstract. Conditions are given under which it is possible to construct a unique, up to a constant multiple,

nontrivial function x that satisfies an integrability criterion and the equation

x(t)=f k(t,s)x(s)ds, a.e. t(-,0].

1. Introduction. The purpose of this note is to show how one can, in a constructive
way, find a nontrivial solution of the Volterra integral equation

(1.1) a.e. t ( ,0]
def

under certain assumptions on the kernel k. Moreover, the uniqueness of this solution,
in a certain class of functions satisfying an integrability criterion, will also be consid-
ered. The difficulties are, of course, due to the infinite delay in the equation since the
function x is not given on some initial interval of the form (-c, T] and thus one has
to solve an eigenvalue problem. Once one has found a solution of (1.1) on (- , 0], (or
some other interval of the form (-, T]), one can extend the solution to the right by
solving the equation

X(t) fotk(t,s)x(s) ds +f(t), t>_o, f(t)=f k(t,s)x(s)ds,

(see e.g. [2] and [3]). In the case of a convolution kernel k(t,s)=K(t-s), the solutions
of equation (1.1) are linear combinations of functions of the form et where o satisfies

f e-tK(t)dt 1, so this case is not very interesting. One approach to the problem of
solving (1.1) that is not taken here, would be to consider (1.1) as a limiting form of
equations of the type

x(t) fk(t,s)x(s) ds +fT(t), t [T,O],

wherefr(t) 0 as T o. For other results on equations with infinitive delay, see [1]
and the references mentioned there. In the last section an example is given.

2. Statement of results. We will prove the following theorem.
THEOREM. Assume that

(2.!)
(2.2)
(2.3)

k (t, s) is measurable and nonnegative on the set ( (t, s)l c < s < < 0},
k( t, t) is locally integrable on R-,
there exists a measurable function a R- (0, o) such that for a.e. -, every
s(- o,t] andre(- ,s],

k( t,v)/a( v) < k( t,s )/a(s) < k( t,t)/a( t),
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(2.4) there exist a number To R- and a nonnegative, nontrivial function z such that
a(t)z(t) is integrable on ( o, To and

Then there exists a unique solution x of equation (1.1) such that a(t)x(t) is locally
integrable on and limT_, _ fra(t)x(t)dt 1. Moreover, this solution x is nonnega-
tire and can befound with the aid of an iteration procedure.

In the case when the solution x is nonnegative there are no problems with defining
the integral fook(t,s)x(s)ds, but in general we take this integral to be
limr_._ofrk(t,s)x(s)ds, provided that the limit exists. To see when the assumption
(2.4) is satisfied one can try to take z(t)= et/a(t) and then one sees that a sufficient
condition for (2.4) to hold is that

lim lim
o--O+ T--* oo

ess-infa(t) f k(t,s)e-’-)/a(s)ds> 1.
t<T -The crucial assumption, however, is (2.3), but note that if a(t) az as t---> -, e.g. if

a(t)= e -t, a > 0, then we may strongly restrict the class possible solutions by demand-
ing that limr -o fTOa(s)x(s) ds= 1.

An instructive prototype for the kernel in (1.1) consists of kernels of the form
ko(t,s)=a(t)fl(t-s)/(s ), where a, /3 and 3’ are nonnegative functions defined on
R-, R / and R- respectively and where moreover fl is nonincreasing and , positive.
Then (2.1) and (2.3) hold, (a(t)=7(t)), and it is straightforward to give conditions that
imply that (2.2) and (2.4) hold true (with e.g. z(t)= et/a(t) in (2.4)).

3. Proof of the theorem. The outline of the proof is as follows: There exists an
operator Q (defined in (3.10) below), such that a fixed-point of Q gives rise to a
solution of (1.1), (cf. (3.15)). In order for our iteration procedure involving Q to work,
we need some monotonicity results (cf. (3.3)), and a lower bound for the fixed point
and this lower bound involves the function z given in (2.4). The uniqueness of the
solution is established through a contradiction argument.

Now we proceed to the technical details of the proof and we let E be the set of
exceptional points for which the inequalities in (2.3) or (2.4) do not hold.

Define

(3.1) b(t)= ( k(t’t)l
(3.2)

a(t)k(t,s)/(a(s)b(t))
h(t,s)= 0

1

if tR-\E,
if tE,

if - <s<t<O, tE and b(t) >0,
if - <s<t<O, tqE and b(t) =0,
if t<s<O or tE.

The function h is measurable and by (2.3) and (3.2) we have

(3.3) foreveryt[-,s[-andv(-,s],h(t,v)<h(t,s)<l.

We extend the function z as 0 on (T0, 0] and we observe that we may then just as well
assume that TO 0 in (2.4). Next we define the function w by

(3.4) w(t)=(a(t)z(t)/b(t) if t-\E,b(t)>O,
0 ift-,b(t)=O, ortE.
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From (2.3) and (2.4) we see that we cannot have w(t) 0 on - because then we would
also have z(t)= 0 a.e. on R-. By (2.4), (3.2) and (3.4) we deduce that

(3.5) w(t) <_ h(t,s)b(s)w(s)ds, tl-

Since (3.3) holds and b(t)w(t) is integrable, we see that w is bounded and also that

(3.6) lim w(t) =0.
t--+

If f o b(s) ds < oo, then we conclude from (3.3) and (3.5) that

supw(t)_< b ( s ) ds sup w( )
t<_T -o t<_T

so that w(t)=-O on (-,T) if T<0 with IT[ sufficiently large and hence it follows
from (3.5) that w(t)--0 on Ii-. Thus we must have

(3.7) fo b(s)ds= +

Define the function Wby

ftb(s (slds, tR-.(3.8) w(t)=w(t)+ )w

Since we may without loss of generality assume that

it follows from (3.3), (3.5), (3.6) and (3.8) that

(3.9) sup W(t)= lim W(t)=l.
t_<0 t---

def
For every measurable, bounded function Y such that Y( ) lim t-+ Y(t) exists,
we define the function Q(Y) by

(3.10)

)d, h(t,

+ b(u)exp,- b(v)dv (h(t,s)-h(t,u))dub(s)(Y(s)-Y(-))ds,

Since it follows from (3.2), (3.5) and (3.8) that

f0W(t)< h(t,s)b(s)w(s)ds on-

and since it follows from (3.8) that

w(t)= W(t)-ftb(s)exp ftb(u)du) W(s)ds,
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it is possible to deduce from (3.3), (3.7) and (3.10) that

(3.11) W(t)<Q(W(t)), tg-.

Let

(3.12) Yo(t) =1, Yn+l(t)=Q(Yn)(t), tR-, n>_O.

Since (3.2) and (3.3) hold we conclude that Y,,(- )= 1 for all n and from (3.3) we also
deduce that

b(s) exp,

This inequality combined with (3.3), (3.9), (3.11) and (3.12) shows that

(3.13) W(t)< Yn+(t)< Yn(t) < 1, tR-.

But as W(- )= 1 we conclude that there exists a function Y on N- such that

lim Y,,(t)= Y(t), t-

and therefore it follows from (3.10), (3.12) and (3.13) that

(3.14) Y(t)=Q(Y)(t), W(t)< Y(t)<l, t n-,

We define the function y by

y ( ) r( ) fb (s) exp’ fb(u)du)Y(s)ds,
A straightforward calculation shows that as a consequence of (3.14) we have

lim h(t,s)b(s)y(s)ds tN-.(3 16) y(t)
r o

Next we will show that y is nonnegative. Since limt__ Y(t)= 1 exists it follows from
(3.15) that limt_ _y(t)=0 and

(3.17) r--,lim- frb(s)y(s)ds=y(t)+l- r(t), teN-.

If we use (3.17) and an integration by parts in (3.16) then we conclude that

(l -h(t,- z))y(t)=h(t, )(1- r(t))

f, f’b u u ) ,L h t, )+ )y s
3 ,t]

dcf
where h(t, ) lim r h(t, T). Since Y(t)< 1 it follows from (3.15) that

(3.19) y(,)>_ Y(,)-I + exp(- ftb(s)ds
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On the other hand, since Y(-o)= 1 and (3.7) holds, one can rewrite the equation
Y= Q(Y) as

so; So )Y(t)=h(t, )+ b(o)expi b(v)do

( h( t,s)-h( t,u)) dub(s) Y(s) ds, tR -,
and hence by (3.3) and the facts that b and Y are nonnegative we have

(3.20) Y(t)>h(t, -), tR-.

Let

D= (t-ly(t)<O),
and assume that D is nonempty. If t D, then it follows from (3.19) and (3.20) that
h(t, )< 1 and since also Y(t)< 1 we are able to conclude from (3.18) that

(3.21) inf ftb(u)y(u)du<y(t)<O if teD.
s<_t

If for some D

klim b(u)y(u)du=inf b(u)y(u)du
T-+ o <

then it follows from (3.17) and (3.21) that Y(t)> 1 and this is a contradiction by (3.19)
since y(t) < 0. This means that for each D there exists a number (t) such that

’ b(u)y(u)du=inf ’b(u)y(u)du
(t) s<t

and

(3.23) fs(t)b(u)y(u)du>O for eachs<(t).

Fix o D. From (3.22) and (3.23) we see that

r(t) =r(to)foreachtDCq((to),to).

Therefore we obtain from (3.21) and (3.22) the inequality

Xo(t)ly(t)l<- b(u)xo(u)ly(u)ldu, t(’r(to),to),
(to)

and by Gronwall’s Lemma we have Xz(t)y(t)=-O on ((t0),t0) which is a contradic-
tion in view of (3.21) and (3.22). Thus we have shown thaty(t)> 0, t-.

If we now define the function x by

x(t)=b(t)y(t), t-

then x is nonnegative. By (3.2) and (3.16) we see that (1.1) holds and by (3.15) and
(3.17) we have

fo a(t)x(t)dt= 1.
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It remains for us to establish the uniqueness of this solution. For purposes of
contradiction, assume that there exists a nontrivial function q such that a(t)q(t) is
locally integrable with

(3.24) r--,lim- fa(t)q(t)dt=O
and such that

lim frk(t’s)q(s)ds’ a.e. tR-(3.25) q(t)
r__,_

It follows from (2.3) and (3.25) that for a.e. for which k(t,t)=O we have q(t)=0.
Hence we can find a set E c R with measure 0 such that if b and h are defined by (3.1)
and (3.2) and the function p is defined by (3.4) with z and w replaced by q and p
respectively, then we see by invoking (3.24) and (3.25) that (3.3) holds and that

lim .ft_h(t s)b(s)p(s)ds t-P-t-=r._,_o)
",(3.26)

lim frb(s)p(s)ds=O.T

Observe that since q is not identically 0 it follows thatp is nontrivial. If we define

ftb(s)p )ds,

then we have by (3.26) and the fact that p 0

(3.27) sup [P(t)[
dee
=c>0, lim P(t)=0.

t<0 T

From (3.26) we also deduce that

(3.28)

f , u3exp_fu.  o)a ) h ,. 3_h ,.u33au6 ,3e  3a 
Choose T to be so small that

suplP(t)lN and 2exp b(u)du 1.

Then it follows from (3.3), (3.27) and (3.28) that

Ie( l c  f b(u)exp b(v)dv (h(t,s)-h(t,u))dub(s)ds

+ - -b(u)exp b(o)do (h(t,s)-h(t,u))dub(s)ds

Nc b(u}exp,- b(v)dv h(t,u)du

-7 b(u)exp b(v)bv h(t,u)du
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and thus we have obtained a contradiction in view of (3.27). This completes the proof
of the theorem.

4. An example. The equation

can be used to describe a very large class of epidemics of so called SIS or SIR type.
Here we consider a constant population of fixed size P, and let y denote the rate at
which individuals susceptible to the disease in question become infected. Now fl(t-s)
denotes the infectivity (i.e. ability to infect others) at time of an individual that
became infected at time s < t, and a(t s) denotes the fraction of those individuals that
became infected at time s that have not lost their immunity by the time > s. Finally it
is assumed that the rate at which susceptible individuals become infected is propor-
tional to the number of susceptibles and the "total infectivity", with a (perhaps
time-varying) proportionality constant k(t).

Equation (4.1) has a trivial solution yo(t)=O and if we linearize equation (4.1)
around this solution, then we get the equation

x(t)=k(t)Pf, B(t-s)x(s)ds.

This equation is of the form (1.1). An interesting case is the one where k is nonnegative,
continuous and periodic. If we moreover assume that/3 is nonnegative and bounded on
[0, oe) and there exists a number 8 > 0 such that e-*8(t) is nonincreasing then it is easy
to show that the assumptions of the theorem hold if we also have

1
min k ( s ) fl ( s ) e-ds > -fitR
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ON THE SHARPNESS OF WEYL’S ESTIMATE FOR
EIGENVALUES OF SMOOTH KERNELS*

J. B. READE

Abstract. It is shown that Weyl’s estimate of o(1/n3/2) for the eigenvalues of any symmetric continu-
ously differentiable kernel on a bounded region cannot be improved to o(1/n3/2an) for any increasing
% . The counter-example is constructed from Rudin-Shapiro polynomials.

1. Introduction. Let K(x,t)= K(t,x) L2[a,b] 2 be a symmetric square integrable
kernel giving rise to a compact symmetric operator

Tf(x)= fbK(x,t)f(t)dt
on LZ[a,b]. The eigenvalues of T form a real sequence (?in) which converges to zero. It
is therefore possible to arrange this sequence in descending order of modulus

and we shall always assume this has been done.
It is a classical result of H. Weyl (see [4]) that, if K(x,t) Cl[a,b] 2 has continuous

partial derivatives, then ?tn=o(1/n3/2). Recently, the present author has shown (see
[2]) that, if in addition K(x,t) is positive definite, then )in= o(1/n2).

We shall show that these results are best possible in the following sense. Suppose
that (an) is any increasing positive real sequence which diverges to infinity. Then there
exist symmetric kernels in C[a,b] 2 whose eigenvalues are not o(1/n3/2an), and posi-
tive definite kernels in C[a,b] 2 whose eigenvalues are not o(1/nZan).

2. Fourier series. Any k(t) L[0,1] has a Fourier series Y’_ne2rint where

2rint dtn"-" k(t)e

are the Fourier coefficients. If k(-t)=k(t), then the difference kernel k(x-t) gives
rise to a compact symmetric operator

Tf(x)= fol k(x-t)f(t)dt
on L-[0,1] whose eigenvalues are (Cn) since

fo k(x-t)e2intdt= fol k(t)e2in(x-t)dt=cne 2rinx

and (e 2rint) form an orthonormal basis of L2[0,1].

Received by the editors June 17, 1983.
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3. Rudin-Shapiro polynomials. The Rudin-Shapiro polynomials Pn(z), Qn(z) are
defined inductively for n >__ 0 as follows.

Qo(z)-l,

Qn+l(Z)----Pn(z)-z2"Qn(z)

for all n>__0. The Rudin-Shapiro signs are %= _+ 1 where Pn(Z)=F"-%Z ". They have
the remarkable property that

N

SN( t) _ene2Eint= O(N1/)
o

uniformly in t. (See [3].)

4. Construction of the eontereample. Let n increase and diverge to infinity. Let
Bn be defined as follows. Choose n such that n> k a. Then let

/ for all 1 __< n __< n 1,

fin= 1/nl/2a,k foralln,_l<n<n,,k>__2.

Observe that (Bn) is a decreasing sequence which is O(1/nl/an) but not o(1/nl/an).
Also 2(B,- Bn+ 1)nl/ < m since

1/2E (n--n+l) "1/2-- E (nk--nk+l)’k
n=l k=l

1/2< E flnrtk
k=l

It follows that the series }2e, fl,e :’’, where (%) are the Rudin-Shapiro signs, is
uniformly convergent in t, since

Eenflne -"int= Efl,(sn(t)--Sn_l(t))
M M

where A is an absolute constant,

N-1

--flMSM-I(t) +

_
(fln--fln+l)Sn(t)+flNSN(t)

M

<=A MM1/2+ E (n--n+l)nl/2+NN1/2
M

-0

as M, N---) o uniformly in t. Hence k(t)=Zc,e 2rint, where Cn=e,fln/n, is in C1[0,1],
and the kernel k(x- t) C1[0,1] 2 has eigenvalues (Cn) which are not o(1/n3/Zan).
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5. Positive definite kernels. If an increases and diverges to infinity, then the series

E sinrnt/na is uniformly convergent in t, since 1/a decreases and converges to zero
andE sinrnt/n has uniformly bounded partial sums. (See e.g. [1, p. 6].) It follows that
k(t)=Ecosrnt/n2an C1[ -1,1], and therefore the kernel K(x,t)=
Y’. cosrnx cosrnt/n2an C1[ 1,1] 2 is positive definite having eigenvalues (1/n2an).
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LIMITS OF DILATED CONVOLUTION TRANSFORMS*

W. R. MADYCH

Abstract. If k is a kernel so that the convolution transform f---, k f maps Lp(Rn) into Lp (R") we study
the behavior in Lp of k f, t>0, as goes to 0 or o; here k is the dilated kernel defined by kt(x)=
t-"k(t-lx). In particular, we give conditions on k which imply that limk f(x)="k(O)f(x) in Lp norm as
goes. to 0 and conditions which imply limk/ f(x)-- 0 in Lp as goes to o; these conditions are practically
necessary. Generalizations to other notions of dilation are also indicated.

1. Introduction. Suppose k is a convolution kernel such that the transformation
f---) k. f maps Lv(Rn) continuously into LP(Rn) for some p, 1 =<p =< , and integer
n>= 1, where k. f(x)=fRnk(x-y)f(y)dy is the convolution of k with f. It is the
purpose of this paper to record several results concerning the behavior for positive of
k f as goes to 0 or c where kt(x)= t-nk(t-lx). The point of view taken here is
that, roughly speaking, certain aspects of this behavior can be determined from the
behavior of the Fourier transform of k at the origin or infinity respectively. These
results are motivated by the paper of Logan [2] where part of the case n =p 1 and

c was studied and questions concerning p > 1 were raised. (Note that a t- in the
notation used there.)

In the general case considered here it is possible that such kernels k are tempered
distributions which are not locally integrable. A classical example when n 1 is the
Hilbert transform. Thus it is convenient to think of the transforms studied here as
general translation invariant operators on L’(R). The kernels k arise as follows: If the
transformation f---) Kf is a continuous translation invariant linear operator from LP(R)
into LP(Rn) then there is a tempered distribution k on R so that K=k ,1’ for all ,
in 6a(R); 6:(Rn) denotes the space of infinitely differentiable and rapidly decreasing
functions and denotes convolution in the distribution sense. Conversely, if k is a
tempered distribution such that

(1) Ilk

holds for all q, in 5a(R"), where II’llp denotes the LP(Rn) norm and C is a constant
independent of q, then the transformation q, k. q can be extended continuously to
all of LP(R’).

Thus we think of the kernels in question as tempered distributions, k, which satisfy
(1) for some p, 1 __<p =< o, and all q, in 5a(R"). This is roughly the point of view in [1]
where the basic facts together with other very interesting material concerning such
operators can be found. We also adopt the notation found in [1] which is quite
standard.

Recall that f denotes the Fourier transform of f. The space Lff is the space of all
those tempered distributions k for which (1) holds for all q in 5aand the norm of an
element k in Lpp, denoted by I[k][, is the smallest constant C in that inequality which is
valid for all such q,. The space Mpp is the Fourier transform of Lff, namely, f is in Mff if
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and only if f is in Lpp and the Mpp norm of f is the Lpp norm of f. Also recall that Mpp is
contained in L

The following subclasses of Mff will play an important role in what follows"
(i) m is the closure of 5in Mpp.
(ii) MpP,,. is the class of those elementsf in Mpp for which there is a sequence (fn) of

elements in M, each with compact support, such that (fn } converges to f in Mpp.
(iii) MpP,0 is the class of those elements f in Mpp for which the measure of (

[/()]> e ) is finite for each positive e.

(iv) MpP, is the set of those elements f in Mpp for which f(t) converges to 0 locally
in measure as
[f(t)]> e} {" Il<r), t>0, converges toO as goes to o.

Observe that mPpCMpP,,.cMf,oCM,. In the case p=2 it is clear that all the
containments are proper. In the case 1 <p < 2 elementary examples show that mff c Mp,,.
and MpP,o c M,z. For p 1 m MI,,. the Fourier transform of L and MI,., c M,0

where the containment is known to be proper, see [1, p. 111].
We say that a distributionf is in mpp in a neighborhood of some point 0, if there is

a positive e such that q(e-l(-0))f() is in mpp. Here + is a nonnegative infinitely
differentiable function such that q() 0 for 1] > 1 and p() 1 for [1 __< 1/2. A
distribution f is said to be locally in mpp if it is in mpp in the neighborhood of every point
in R ".

Since the kernels k are, in general, tempered distributions which may not be locally
integrable thepointwise definition of kt, 0, given in the first paragraph of this
chapter need not necessarily make sense. However kt, > 0, can be defined by duality
as the tempered distribution for which

(2)

for all q in 5(R") where q,’(x)=(tx) and (k,) denotes the distribution k evaluated
at . Also, since the Fourier transform of q(tx) is t-"(t-lx) and Mc L(R"), for k
in Lpp one can define k, by the formula

(3)

which holds for almost all in Rn. Note that the Lpp norm of k, > 0, is the same as that
of k, namely, the transformation k --. k does not change Lpp norm, 1 __<p __< oe.

2. The ease t---, 0. The fact that functions whose Fourier transform have compact
support are dense in L P, 1 __<p < oe, is a key ingredient in proving the following.

THEOREM 1. Suppose k is in L andf is in LP for somep, 1 <=p< oe. If c is in mPp in
a neighborhood of the origin then

(4) lim k f(x ) 7 (0)f( x )
t--*0

in L p norm.
Recall that L] =o/g, the space of bounded Borel measures on R n. Since it is easy to

see that ’ is locally in mX, application of Theorem 1 makes the following fact
transparent.

COROLLARY. If k is in / and f is in Lp for some p, 1 <__p < o, then (4) holds in L p

norm.
Various conditions in : imply that 7 is in mpp in a neighborhood of the origin. For

example,
(i) is infinitely differentiable in a neighborhood of zero
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or the more complicated,
(ii) all derivatives of order less than n/2 + 1 + e, e > 0, of k exist and are continu-

ous in a neighborhood of zero
both imply that k is in mxl in a neighborhood of the origin.

Observe that if k converges in the distribution sense as goes to 0 then the limit
must be a distribution homogeneous, of degree -n. In particular, if 7(t) converges
pointwise to h (), then h is homogeneous of degree 0, namely h (t) h () for 4:0 and
> 0, and if k is in Mp, then so is h. If 7-h is also in mpp in a neighborhood of the

origin, then Theorem 1 implies that

(5) limk f(x)=h f(x)
t--*0

in t p norm. However the following may be more interesting. (Recall that k(t)
converges locally in measure to h() as goes to 0 means that for each e, 0 < e < , and
r, 0<r< , the measure of (;17(t)-h()l>e,ll<r) goes toO as goes to zero).

THEOREM 2. Suppose is in MPp for somep, 1 <=p < , and c(t) converges locally in
measure to h (l) as goes to O. Then h is homogeneous of degree 0, is in MPp and (5) holds
weakly in L p wheneverf is in L P. Furthermore

(i) ifp 2 then (5) holds in L2 norm wheneverf is in L2;
(ii) if 1 <p < 2, then (5) holds in Lq norm wheneoerf is in Zq andp < q <=p/( p 1);
(iii) if2 <p< , then (5) holds in Lq norm wheneoerf is in Lq andp/(p- 1)< q_<p.
If k is continuous at 0 then h is a constant or, Fourier transforming, .h is a constant

multiple of the Dirac measure at the origin. More precisely we have the following.
COROLLARY. Suppose c is in M for some p, 1 <=p <= oz, and k is continuous at O.

Then statements (i), (ii), and (iii) of Theorem 2 hold with (5) replaced by (4).
The following indicates that Theorem 2 is best possible in some sense.
THEOREM 3. Suppose k is in LeP and k * f converges weakly in L p as goes to 0 for

allf in L P. Call this limit Kf. Then
(i) the transformation f Kf is a continuous translation inoariant linear operator on

L’(R’);
(ii) Kf= h * f/or all f in 5awhere h is a tempered distribution homogeneous of degree

n, that is h h for all > 0;
(iii) 7(t) converges to () locally in measure;
(iv) statements (i), (ii), and (iii) of Theorem 2 hold.
Before closing this section we wish to mention that variants of the theorems and

corollaries in this section and the next hold in the case p-- if an appropriate
substitute for L is used. We do not explicitly state these simple extensions in order not
to complicate the statement of the theorems. For example, Theorem 1 and its corollary
hold in the case p if L is replaced by Co, the space of continuous functions which
have limit zero at infinity with the supremum norm. Using this same substitution when
q= statements (ii)and (iii)of Theorem 2 hold when p= 1 or respectively; the
same is true of Theorems 4, 5 and 6 in the next section.

3. The case t-- oo. The first theorem below is a consequence of the fact that
functions whose Fourier transforms vanish in a neighborhood of the origin are dense in
LP, I<p<.

THEOREM 4. Suppose c is in M,,. andf is in Lp for some p, 1 <p < . Then

(6) lim k f(x) =0

in L p norm.
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Since L1c M, for all p, Theorem 4 implies the n-dimensional analogue of [2,
formula (9)].

COROLLARY. Suppose k is in L andf is in L p for some p, 1 <p < , then (6) holds
in L p norm.

As in the case 0, if (t) converges in some sense as goes to o then that limit
must be homogeneous of degree 0. The same argument used to prove Theorem 2 can be
used to prove the followin.g.

THEOREM 5. Suppose k is in MpPfor somep, 1 <_p <= oo, and c(t) converges locally in
measure to h ( ) as goes to oo. Then h is homogeneous of degree O, is in M, and

(7) lim k * f(x)=h f(x)

weakly in L’ whenever f is in L P. Furthermore, statements (i), (ii), and (iii) of Theorem 2
hold with (5) replaced by (7).

COROLLARY. Suppose c is in M, and f is in L’ for some p, 1 <p < oo, then
statements (i), (ii), and (iii) of Theorem 2 hold with (5) replaced by (6).

THEOREM 6. Theorem 3 is true if the statement "t goes to 0" is replaced by the
statement "t goes to oo" throughout.

The case p= 1 is essentially settled by the theorem in [2, formulas (10) and (11)].
The proof given there also works in the n-dimensional case. However, we do record the
following corollary.

THEOREM 7. If k and f are both in L then k * f(x) converges to 0 in measure as
goes to oo andlimt_.,oollk fllx [(0)lllkll.

4. Details and further remarks. In what follows we will always use the symbol to
denote a function which is infinitely differentiable on R and satisfies ()= 1 for
I1=< 1/2 and (._0 for I1 > 1; ,/, denotes its Fourier transform. Recall that fit(x)
t-ndp(t-XX) and (t)()=(b(t), t>0.

As mentioned earlier, the following lemma is a key ingredient in the proof of both
Theorems 1 and 4.

LEMMA 1. deis dense in L ’, 1 <=p < , and Co. Furthermore,
(i) the subspace ofdeconsisting offunctions whose Fourier transforms have compact

support is dense in L P, 1 <_p < oo, and in Co, and
(ii) the subspace of de consisting of functions whose Fourier transform vanishes in a

neighborhood of the origin is dense in L’, 1 <p < , and in Co.
Proof. Both the initial statement and (i) are well known and well documented.

Statement (ii) seems to be less well known but is probably folklore; we outline its proof.
If f is any function in 5a, write g=f-qt * f. Then vanishes in a neighborhood of

the origin and

where p’ is the H61der conjugate of p, i.e. p’ =p/(p- 1). It follows that Ilg-fllp can be
made arbitrarily small if is sufficiently large and 1 <p _< oo. Since deis dense in L P,
1 <p < oo, and CO the desired result follows.

Proof of Theorem 1. If k is in dethe result is well known. In the general case if f has
compact support write

k f- c(0)/= * f+ k qt/ * f- gt * f+ gt * f- (0)f+ (0)f- k (0)f
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where kt-- k * fl)t/e and g is in 5a. Thus

][kt * f- k(O)fl[e <- lilt * flip / Ilk ,1/,- gll Ilfll
+ IIg, * f- g(o)fllp + I(0) c (0) Ilfll.

Now, since k 1/, is in mp whenever e is sufficiently small, we can choose g so that
both Ilk * 1/,- gll and I(0)-c(0)l are arbitrarily small. Since f has compact support
and k(j)-c()(e-ij) vanishes for 161<e/2 it follows that f=0 if is sufficiently
small. Furthermore since g is in 6a Ilgt * f-(0)fllp can be made arbitrarily small for
small enough.

Altogether we see that whenever f has compact support, Ilk f-c(0)fllp can be
made arbitrarily small if k is in Lff, c is in mpp in a neighborhood of the origin, and is
sufficiently small. Since suchf’s are dense in L P, this is true for all f in LP(Rn).

Most of Theorem 2 can be restated in the following more general lemma. Notice
that in the statement below the parameter a is simply an index for the family of
distributions k; it does not necessarily relate to any notion of dilation as the parameter
does.

LEMMA 2. Suppose k, 0 < a < 1, is a family of distributions in Lpp, 1 <=p < o, such
that IIkll is uniformly boundedfor all a.

(A) If k converges locally in measure to a distribution c as a goes to 0 then c is in

Mpp and

(8) lim k, f(x)=k f(x)
---* 0

weakly in L p for allf in L P. Furthermore
(i) ifp 2 then (8) holds strongly in LP norm;
(ii) if 1 <p < 2 and f is in Lq then (8) holds strongly in Lq norm whenever p < q <=

p/(p-1);
(iii) if 2 <p< c and f is in Zq, then (8) holds strongly in Lq norm wheneve

p/(p 1)< q_<p.
(B) Conversely, if k, f converges weakly in L P for all f in Lp as a goes to O, then

there is a k in M such that converges locally in measure to c as a goes to O.
Furthermore statements (i)-(iii) above also hold.

Statements (ii) and (iii) also hold in the cases p 1 and c if L is replaced by C0.

Proof. Suppose : converges locally in measure to : as a goes to 0. Then the fact
that

(9) lim (k,* f(x)-k f(x))g(x)dx=O
Ot’-’O

holds for all f in Lp and all g in LpAp-l) follows from (a) the fact that Plancherel’s
theorem and the Lebesgue dominated convergence theorem imply that (9) holds
whenever f and g are both in 6a and have compactly supported Fourier transforms
together with (b) the fact that such functions are dense in Lp and LPAP-1). By writing

we see that statement (i) also follows by essentially the same argument.
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Iffis in 5and has compact support and 2 _<p < c then using the Hausdorff-Young
inequality we may write

and applying the Lebesgue dominated convergence theorem gives us lim_.0llk,,, f-
k f[[p--- 0. If 1 <p <2 then HOlder’s inequality and PlanchereFs formula imply that if
p < q < 2 then

I[k, f- k f[lqq _< hOB -o,
where O=(2-q)/(2-p),A=llk. f-k ]lip, and

92=

Thus, since A is uniformly bounded, the dominated convergence theorem applied to B
implies that lim,,_0llk,, f-k * f]]q--0 for such q. The density of such f’s in L p,
1 =<p < m, and duality imply both statements (ii) and (iii).

Suppose k, f converges weakly to Kf in Lp as a goes to 0. Then the transforma-
tionfKf is a continuous, translation invariant operator on Lp and thus, [1, Thm. 1.2],
there is a k in Lff such that Kf= k f for all f in 5a. Now

m <r) fl . l(k=( 5)-k( 5))llG( 5/2r)12d 5,

where rn denotes the Lebesgue measure of the set. Since

Ia(e,r)=e-l fR. (ks* dPl/:zr(x)-k * *l/2r(X))l/2r(X) MX

it follows that for fixed e and r, lim,_,oI,(e,r)=O which implies the initial statement in
(B). The rest of (B) now follows immediately from (A). This completes the proof.

Proof of Theorems 2 and 3. The statement concerning the homogeneity of h follows
from the fact that limt_,oTC(st)= limt_0c(t) for all s > 0. The rest of Theorem 2 is an
immediate consequence of Lemma 2(A).

Concerning Theorem 3 the fact that h is homogeneous of degree -n follows from
the fact that limt__,0kst f= limt_0k f for all s > 0. The rest is an immediate conse-
quence of Lemma 2(B).

Proof of Theorem 4. Write kt f=k f-gt * f+gt * fso that

,
Ilk, flip < Ilk- gl[p [If lip +[[g, * flip,

where g is in Lpp and has compact support. By hypothesis such a g can be chosen so
that Ilk-g[l is as small as desired. If f vanishes in a neighborhood of the origin, then
for sufficiently large g, f= 0 for such g. Thus if f vanishes in a neighborhood of the
origin it follows that IIk */lip can be made arbitrarily small by choosing large enough.
Since such f’s are dense in L P, 1 <p < c, the desired result follows.

Proofs of Theorems 5 and 6. These theorems are the same as Theorems 2 and 3
respectively with replaced by lit appropriately.
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Proof of Theorem 7. Write

or

k f(x) --/x * kt(x)+f(O)kt(x )

Since IIt* ktlll=lltxx/t* kill and /z satisfies the hypothesis on k in the corollary to
Theorem 1 with 12(0)=0, it follows that limtll/, k,lll--lim,__,0ll/,, kill--0. Now
IIk/llx Ilkllx so we can conclude that lim,__, llk, * jql b?(0)lllkll.

To see the statement concerning convergence in measure pick any e, 0 < e < c, and
write

m{x" Ik,* <=m{x" [t,kt(x)l>e/2}+m{x" If(O)k,(x)l>e/2}
2

-< -I1* k II1 / m { x" If(0)k (x)[ > e/2 }.
E

Since lim__,ll/, ktlll--0 and limt__,kt(x)=O in measure, the desired conclusion
follows.

5. Generalizations. It should not be difficult to see that appropriate analogues of
the results in this paper are valid when more general notions of dilation are used.

For example, if A is a linear transformation of R" into R" we may consider a
family of linear transformation x Ax, > 0, where A exp(A log t). Note that in the
case that A I, the identity, then AX tx, the case considered above. Since the determi-
nant of A is , where a is the trace of A, we see that the approoriate analogue of kt,
when the pointwise definition makes sense, is

(10) t-k(t-Ax).
Such nonisotropic dilates arise in many different contexts including the study of certain
nonelliptic partial differential equations; for example, see [3] for an application to the
study of the heat equation.

Observing that the Fourier transform of (10) is k(tA) and that sAtAx=(st)Ax, it
is clear how to generalize the notion of homogeneity to this setting. In order that tax
behave reasonably as goes to 0 or , i.e. consider the case A -0, a restriction on A is
needed. Such a restriction is the condition that

(11)

for some positive e, where .,. ) denotes the scalar product in R’. If (11) holds, then
tlxl <= ItAxl <= tlxl for all x, where is the norm of A. Thus it is clear that all the results
mentioned above hold in this setting.

As another example consider the multi-parameter situation where k is replaced by

(12) (tl... tn)-lk(xl/tl, ",xn/tn)

where ti>0, i= 1,...,n, and (tl,...,t,) goes to 0 or . Such multi-parameter dilates
also arise in many different contexts; for example, see [4, Chaps. 2, 3] for an applica-
tion to the study of boundary behavior of multiply harmonic functions and Hardy
space theory in tubes. It is not difficult to see that all the results mentioned above hold
in this setting also.
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ORDER STARS, APPROXIMATIONS AND FINITE DIFFERENCES
I. THE GENERAL THEORY OF ORDER STARS*

A. ISERLES"
Abstract. Order stars are certain level sets in the complex plane, whose geometry helps to examine

various approximation-theoretic features. The present paper develops the general theory which pertains to
this complex-analytic concept, unifying the different forms of order stars that were so far used in numerical
analysis and approximation theory. Subsequent papers (SIAM J. Math. Anal., 16 (1985), to appear) in the
present sequence will use this general framework to prove various results that are of interest in numerical
mathematics.

1. Introduction. The present paper is devoted to the development of a general
theory for the investigation of analytic approximations to analytic functions. Given a
functionfwhich is analytic and single valued in the dosed complex plane dC C u (o }
with the possible exception of at most countable set of poles and a finite set of essential
singularities and an approximation R of similar form, we show that many important
features of the approximation are reflected in various properties of the level set of the
function o(z):= R(z)/f(z). More precisely, approximation-theoretic features--loci
and multiplicities of interpolation points, contractivity etc.mare connected to analytic
properties, like the positions of zeros, poles and essential singularities.

It is elementary that one cannot separate local and global behaviour of an analytic
function. In this sense the present work is a natural extension of both the content and
the spirit of the theory of analytic functions to the domain of approximation theory.

Wanner, Hairer and Norsett [21] were the first to introduce order stars, for the
special case of f(z)= exp(z) and R being a rational function. This led to the proof of
many outstanding conjectures and open problems in the analysis of numerical methods
for first-order ordinary differential equations. Their results were generalized to a large
extent by Norsett and Wanner [19], Isedes and Powell [12], Iserles [7] and Hairer [5].
Extension of order stars to new applications were fast to come: Hairer [4] generalized
some results to second-order ordinary differential equations, Iserles [8] used order starts
to study numerical methods for first-order hyperbolic differential equations (this was
extended by Iserles and Strang [13], [20], Isefles and Williamson [14] and Jeltsch and
Strack [18]) and, finally, Iserles and Norsett [11] recently applied order starts to give a
new proof to the first Dahlquist barrier. This list justifies an attempt to develop a
general and cohesive theory of order stars, which embraces all the present applications
and offers a framework for further extension. Parts of that theory have been already
presented elsewhere, sometimes under a different disguise, and we include them here
for the sake of completeness.

This paper is Part I of a three part series. Parts II [9] and III [10] will use the
theory of order stars to analyse general approximation-theoretic properties like contrac-
tive approximations and upper bounds on the block-size in Pad6 tableaux [9], and to
investigate order and stability of optimal full discretizations for linear parabolic dif-
ferential equations [10].

In 2 we formally define the order star and prove some of its properties that
pertain to its behaviour near interpolation points, relation among the loci of zeros,
poles and interpolation points and the connection between the geometry of the order

*Received the the editors April 5, 1983, and in revised form October 24, 1983.
King’s College, University of Cambridge, Cambridge CB2 1ST, England.
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star and contractivity. Section 3 is devoted to the behaviour of the order star in the
neighbourhood of essential singularities. Not surprisingly, this is the most theoretically
demanding part of our analysis. In {}4 we obtain a different kind of order star and
explore its properties. Finally, in {}5 we explore some changes of variable that cater for
functions with branch cuts.

An important generalization of order stars is left out of the present theory:
Wanner, Hairer and Norsett [21] used order stars on a Riemann surface to investigate
multistep methods for ordinary differential equations. Their work was generalized by
Jeltsch and Nevanlinna [15], [16], [17]. Since all these results have to do with an
approximation of a single function, exp(z), by algebraic functions, it is the feeling of
the present author that the time is not yet ripe to develop a general theory of order stars
on Riemann surfaces.

2. Main properties of order stars. We say that a complex function is essentially
analytic if it is analytic and single-valued in cl C with the possible exception of either a
finite or countable set of poles and of a finite set of essential singularities. Of course,
each of these sets may be empty.

Given a functionf and an approximation R, both essentially analytic, we set

(1) o(z) "=R(z)f(z)

Note that also o is essentially analytic. We divide the closed complex plane into three
sets:

A {zclC" Io(z)[>l},
D’= {zclC" Io()1<1},
8"= {zclC"

This decomposition of cl C is called the order star of o. Note that, unless ]o[-- 1, O is
a union of (at most) countable number of closed simple Jordan curves.

Several features of the approximation are reflected in the geometry of the order
star. We commence with the analysis of the pattern of interpolation.

A point z0 cl C is said to be an interpolation point of degree p __> 1 if f is analytic
at z0 and

R(z)=f(z)+c(z-zo) p + O([z--Zo[p+I) (Z0 finite),

R(z)=f(z)+cz-P+O( 1 )i 1,/
( Z0-- OO),

where c 0. Let zo cl C belong to . We define

P(Zo)" ( k" for every e > 0 there exists 0 < 8 __< e such that

there are exactly k arcs of D on {z C’lz- Zol 8 } }
for zo C and

P(oe)’= { k: for every r > 0 there exists r _> r such that

there are exactly k arcs of D on ( z e e" I 1-- q } }



STARS, APPROXIMATIONS AND FINITE DIFFERENCES 561

if Zo o. Then the number

ind(zo)’= min ( k" k (zo) )
is called the index ofzo. Intuitively speaking, ind(z0) equals the number of sectors of D
(or, for that matter, sectors of A) that approach z0 . The definition caters also for the
case when the number of such vectors is not well defined--for example when z0 is an
essential singularity that is an accumulation point of poles of o (cf. Fig. 3 below). By
ind(zo)=0 we mean that it is impossible to approach z0 by curves in both A and D. If
the set P(z) includes just one element and if all the sectors of A and of D approach z
with an equal asymptotic angle, we say that z is regular.

PROPOSITION I (interpolation property). Let

f(z)--d(z-zo)+O(Iz-zol+1) (z0C)

or

f(z)=dz-+O([zl --1) (Zo oo

where k is an integer and d 4: O. If Zo is an interpolation point of degree p > max(l, k / l),
then zo ind( zo) P k and zo is regular.

Proof. Without loss of generality we may assume that z0C--if Zo= oo, we
conformally map z - 1/z. It follows from (1) that

c k (ip-k+l)o(z)=l /-d(Z--Zo) p- /0 [Z0

Therefore indeed z0 . Furthermore, o is analytic in a neighbourhood of z0.

Letting z zo + re i, r > 0, we obtain

(2) Io(z)l=l+rPlRe(cleip,}+O(rpl+’)’=(r,O),
where p =p-k>__ 1, cl=c/dO. Thus, for any given e>0 and sufficiently small r>0,
zA ifRe( ceipl } > e and zD if Re( ceipx } < -e. Re( cpl } changes sign 2pl times
for equally spaced values of 0 =< 0 < 2r. Hence the proposition is true, except for the
possibility that A and D contain some additional sectors which are so thin that they fit
between the sectors that have been shown to exist.

Such sectors may occur only if, as r 0, some values of 0 that satisfy the equation
4(r, 0)= 1 tend to coalesce. In this case a zero of d(r, O)/dO becomes arbitrarily close
to a root of (r,O). This is impossible, since the analyticity of o in the neighbourhood
of zo and (2) imply

d
d--- (r, O) -p,rp’ Im( cle

ip’ } + O( rp’ +1)

and Re{ ceip, }, Im{ceip’}=O(r)cannot both hold as r0. Therefore no extra
sectors exist, ind(zo) =pl =p- k and zo is regular. El

The last proof is a straightforward generalization of [21, Prop. 3] and [12]. Figure 1
gives examples of Pad6 approximations to the rational function

1--z+z
(3) f(z)=

Note the nontrivial block-structure of the Pad6 tableau (cf. [3]).
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(a) R2/o(Z)= 1 + z + z 2, order 2.

(b) R 2/2 (Z) (1 z 2)/(1 z z 9-), order 4.
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(C) Ro/3(z)=1order 5.

FIG. 1. Order stars of Padb approximations to (3), for IRe zl, IIm z =< 5. The dark-shaded regions denote Ao.
"P ", "Z" and "O" denote poles, zeros and interpolation points respectively. Note that ind(0)= order + 1. Both
here and later the figures are elongated along the imaginary axis--this is done to emphasize various thin regions,
which wouM have disappeared altogether otherwise.

It is a consequence of the last lemma that the geometry of the order star reflects
the pattern of interpolation (this was, indeed, the reason for the name "order star").
There is, however, yet another expression of interpolation in the order star, via its
connection with the loci of zeros and poles of o.

It is obvious that poles of f and zeros of R belong to D, whereas zeros of f and
poles of R belong to A--all this unless a pole and a zero of o coalesce, leading to a
removable singularity. In what follows we establish a relationship between the number
of poles of o, say, in portions of A and the interpolation pattern.

We call the connected components of A and D A-regions and D-regions respec-
tively. Such a region is analytic if o is analytic along its boundary (in other words, no
essential singularities occur along the boundary). We say that an A-region or a D-region
is of multiplicity L if its directed boundary passes through exactly L points z where
o(z)= 1, which need not be distinct. Note that each such z is an interpolation point.

PROPOSITION 2 (multiplicity property). Let Iol l. The multiplicity L of an analytic
A-region (D-region) equals the number ofpoles (zeros) of o, counted with their multiplic-
ity, inside the region. Furthermore, it is always true that 1 <= L < o.

Proof. We prove the proposition for A-regions, since the proof for D-regions is
similar.
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Let f be an analytic A-region of multiplicity L. We parametrize OF with positive
orientation as 3,(t)= 3’1(t)+ i3’2 (t), 0 =< =< 1, where both 3’1 and 3’2 are real. The analytic-
ity of o implies that 3’ is differential almost everywhere in [0,1].

We denote by v’=(3’(t),3’2(t)) and n’=(3’(t),-3"(t)) the tangent and the
outward-pointing normal at 3’(t), respectively. Since, by the definition of A, [o(z)l
decreases locally along n in the vicinity of the boundary, also lnlo(z)] decreases there.
Hence, given the polar representation

(4) o(z)=r(x,y)ei’(x,y), z=x + iy,

it is true for every x + iy OF that

lnr(x,y) <0.

The function o is analytic along 3’. Therefore it satisfies there the Cauchy-
Riemann equations. In polar coordinates we have

Therefore

This, together with (4) and (5) implies that argo decreases strictly monotonically along
3’. Since o is analytic and 3’ is a union of closed curves in c12, the variation of argo
along 3’ is a negative integer multiple of 2rr, -2rK say. Since o()= 1, 3’, means
that argo() is an integer multiple of 2r, necessarily K=L, the multiplicity of the
region. L > 1 follows at once by Oq,/Oo < 0, whereas unless L < oo we would have an

accumulation point of zeros of o- 1. This is impossible, since o is not identically 1.
Finally, we use the argument principle,

  no( )dz
the number of rotations of argo along 3’ L

where ZF and PF denote the number of zeros and of poles of o in F respectively. By the
definition of an A-region ZF’- O, and so PF-- L and the proposition is true. rq

The last proposition is a straightforward extension of [12, Prop. 5] and [21, Prop.
4] and its proof follows that in [21].

Another property of the approximation which is of interest in many applications is
the contractivity. Let V be an open sub-set of cl C such that f is analytic in V and 1
along aV, with the possible exception of a finite number of points, 2,." ",2m, say. These
points must necessarily be essential singularities of f. We further assume that there
exists e > 0 such that

sup(l/(z)l" Wn (z C.
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for every 1 =< k =< m and 0 < e < E1. Then it follows at once from the maximal modulus
principle that =< 1 in cl V. Given an approximation R, it is sometimes important
whether it satifies a similar boundedness condition. We say that R is a V-contraction off
if RI =< 1 in cl V The V-contractivity can be expressed easily by the geometry of the
order star. It is of great interest in many applications to the numerical analysis of
differential equations, since it is equivalent to stability of some numerical methods.

PROPOSITION 3 (stability property). R is a V-contraction of f if and only if it is
analytic in V and A

Proof. Follows at once by the definition of the order star, If] 1 along 3V (with the
possible exception of a finite set) and the maximal modulus principle. []

It is a consequence of that last proposition that OV separates between A-regions in
the event of a V-contractive approximation. This is crucial in many proofs that are
based on the order star theorymcf. [5], [7], [8], [9], [10], [12], [19], [21]. For example, the
familiar case of A-acceptable rational approximations to the exponential leads to
V=C-’= {zC" Rez<O),m=l, 21=.

3. Behaviour near essential singularities. Essential singularities of both f and R,
unless they cancel each other, are also essential singularities of o. It is obvious by virtue
of the Weierstrass theorem that every essential singularity of o belongs to . However,
different types of singularities give rise to different patterns of behaviour of the order
star in their neighbourhoods. We give a partial classification of this behaviour. It turns
out, as in 2, that the geometry of the order star is in strong relationship to the global
behaviour of the function o.

Let 5x,. -,,, be all the essential singularities of o. It follows from the standard
theory of analytic functions that o can be represented as

where each o.i(z ) has a single essential singularity at j. Since the conformal mapping
z 1/(2j.-z) takes i to infinity, we may assume, without loss of generality, that the
underlying function o is entire and has an essential singularity at infinity. This can be
done because only oj. determines the behaviour of the order star in the neighbourhood
of .j.

We recall the concept of a perfect order of growth p(o) of an entire function
given

set

M(r)’= max {]a(z)[), r>0,

lnlnM(r)
p (o)" lim sup

ro lnr

PROPOSITION 4./fp(o)< oo, then ind(oo)< 2p(o).
Proof. We recall from the theory of analytic functions the theorem of Ahlfors [2, p.

352]" an entire, nonconstant function of order p has at most 2p finite asymptotic values.
Therefore at most 2p(o) sectors of D may approach infinity and the proposition
follows. []

The upper bound of Proposition 4 is often too generous and, indeed, in the
remainder of this section we give further results which lower it for certain types of
functions. However, it is attainable for every choice of p(o)" if 1 <=K=p(o)< oz, then



566 ,. ISERLES

it is attained by o(z)=(sinzC)/z c. It is easy to verify that 2K sectors of A approach
infinity with an asymptotic angle of r/K, bisected by 2K cusps of D along the
asymptotics {rexp(irk/K): r>>0}, O<=k<=2K-1. Figure 2 displays order stars that
correspond to Pad6 approximations to (sin z)/z and demonstrate this type of be-
haviour.

A more complicated example is required for K= 0. We set

(6) f(z)= 1 -- R(z)=l-z+-z z

Then, by [6, p. 183] o(z)=R(z)/f(z) is of perfect order of growth 0. It has poles at 2n,
n >= 1, which belong, for increasing n, to progressively smaller A-regions. We have
P(o)= (0,1) and ind(o)= 0.

A natural question arises regarding the geometry of the order star when p(o)= o.
In this case it may well happen that an infinite number of sectors of A and D tend to
infinity and ind(o)= o. A simple example is o(z)=exp(eZ). In that case the order star
consists of alternating parallel strips of A and D.

(a) R4/o(Z)= 1 -z NZ4, order 5.
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(b) R2/2(z)=(1- 6z:)/(1 + z2), order 5.

1Z 24), order 5.(C) R 0/4 z 1/(1 + g + 3-i-6

FIG. 2. Order stars of Padb approximations to (sinz)/z, with IRe z[, [Imz[_< 10. "Z" and "P" denote zeros

and poles of o, respectively. Note that two cusps of A tend to infinity through g and that the A-regions that
surround some of the poles in (c) are too small to be discerned.
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Let us now assume that d, a, fl C, d, fl 4:0 and a natural number M exist so that
the entire function o has the asymptotic behaviour

(7) o(z)=dzeaZM(1 +o(1)) (z oe)

We say that o is of exponential type M.
PROPOSITION 5. If o is of exponential type M>= 1,then ind()=M and o is a

regular point of .
Proof. Let z re i, r > 0. Equation (7) gives

lnlo ( z)l lnld[- 0 Ima + (Re a)ln r

+ rtRe{ fieit ) +o(1)" (r,O) (r--, z).

Therefore, for sufficiently large r and for every e > 0 z A if Re{ fie } > e and z D if
Re(fieit } < -e. Hence M sectors of A and M sectors of D approach infinity, each
with an asymptotic arc-length r/M.

As in the proof of Proposition 1, there is still a possibility of additional sectors
approaching infinity as cusps. It is ruled out, as before, by showing that the zeros of
/(r,O) and 3q(r,O)/)O are separated for r>>0. 1

An important instance of a function of exponential type occurs when 1 =< 0(o)< oe
and o possesses only a finite number of zeros" by the Hadamard factorization theorem
[6, p. 199] every entire function o of bounded perfect order of growth has a representa-
tion of the form

o(z) eg(Z)z r 1-I E z

n= Zn
’p

where zl, z2,.., are all the zeros of o away from the origin, g is a polynomial,
degg __< 0(o), p and K are nonnegative integers, p _< 0(0) and

E(z,O)’=l-z, E(z,p)’=(1-z)exp z p>__l.
k=l

Given that o has K+ L zeros, we have

where

L L

,p e’(Z)zt( 1
Z

g(z)+E 
k=l n=l Zn

g(z),

Therefore (7) is satisfied with M= deg,= p(f), o if of exponential type M and we can
use Proposition 5 to determine the geometry of the order star from [z[ >> 0.

A refinement of Proposition 4 can be also obtained for certain entire functions
which have an infinite number of real zeros. Let o be entire and have only real
zerspl >-P2 >=P3 >-- Further, we stipulate that C> 0 and 0 < a < 1 exist such that the
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number of zeros in every interval of the form [- r, o), is CRY(1 + o(1)) for every r>>0. It
follows from the Hadamard factorization that

(8) o(z)=egC,*)J-Ii= 1+

where g is a polynomial, degg M, say.
PROPOSITION 6. Given an entire function (8), it is true that ind(c)_<M+ 1. More-

over, if 0 < x < 1/2, then ind(oo)=M and is a regular point of
Proof. By the Polya-Szeg6 theorem [6, p. 206]

l-I z(1 +o(1))in 1 +
sin

uniformly for every largzl __< r e, e > 0. Hence, given z rei, r > 0, 0 =< 10l < r, (8) gives

Cr
lnlo(z)l=Reg(z)+ r(1 +o(1)).

sin

Thrfor ind(o)M/ 1, by an argument similar to th proof of Proposition
Furthermore, ithr ind(o)M and o is rgular or ind(o)--M4-1 and thr is a cusp
along the ngativ half-axis.

Let 0 < a < 1/2. Then [6, p. 207] there exists a sequence of values { x }Om__l, tending
to o through the negative half-axis, such that

Xmlim I-I 1 +
m-- o n----1

Therefore P(o)= { M,M+ 1}, implying that ind(o)=M and o is a regular point.

An example of a function that satisfies the conditions of the last proposition is

F(z :)
where K>= 2 is a natural number. In fact, the order star of o(z)= 1/F(z) also has
similar geometry. Although this can be readily ascertained from its plot (cf. Fig. 3), it is
instructive to work out the structure of the order star analytically.

We have o(z)=e-Z(l+o(1)) uniformly for every zC such that [argzl=<r-e,
e > 0. Therefore zA for z C -, zl>> 0, away from the real axis, and z D for
zC + "= {zC" Rez>0}, Izl >> 0. It follows that 1 P(oo) and ind(o)= 1.

The recurrence relation F(z + 1) zF( z ), together with F(1/2) r1/2, gives

Io(-m-1/2)l

for every integer m >= 0. Hence

Io(-(m+l)-1/2)]
Io(-m-1/2)

(2m+ 1)!
z2rn+ lm !,rl.1/2

2m
>1, o-

imply that -m- 1/2 A for every m _>_ 2. Since o has no poles, it follows by Proposition
2 that there exists just one A-region, that it must be unbounded and that for m _> 3 the
zeros of -m of o belong to analytic D-regions of multiplicity 1. On the other hand
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FIG. 3. The order star of o(z)= l/F(z), with -5=<Rez<_4, Ilmzl=<4.

Io(x)l < a for every -2=<x < 1, Io(x)l> a for every 1 <x <2 [1, p. 255], and so the zeros
0, 1, 2 belong to a single analytic D-region of multiplicity 3. Finally, the Weierstrass
formula for F(z) gives

Io(it)l
2 fi ( t2 ) tsin(rt)
=t 2 1+

n=l qT"

Hence Io(it)l<l for small t>0, Io(it)l>l for t>>0 and Io(it)l=l has exactly one
solution for > 0- the intersection of the boundary of the D-region of mulitplicity
three with R. All this analysis determines in a unique way the shape and the geometry
of the order star in Fig. 3. It also implies, in conjunction with Proposition 3, that the
equation F(z)= 1 has at most two complex conjugate solutions in C away from the
negative half-axis.

In order to complete this section we reiterate that the results of Propositions 4-6
can be translated in a natural way from infinity to any z C and can also cater for
functions o that possess several essential singularities.

4. Order stars of the second kind. Let R be an approximation to f, both functions
bring the same type as in 2. We set

(Z):= ef(z), (z):= eR()

and consider the order star of # =//f. Since

(9) I#(z)[><l*Reo(z)><0, zclC,

where o R-f, this leads to the order star of the second kind with

A:= (zclC:Reo(z)>O},
(10) b’= (zclC" Reo(z)<0),

:= (zclC:Reo(z)=0).



STARS, APPROXIMATIONS AND FINITE DIFFERENCES "]l

This order star, which was introduced in [8] and used in [11], [13], and [14], has several
similar properties to the order star from 2. However, there are major differences that
make it a more appropriate tool for the stability analysis of certain finite differences.

The following results are a trivial extension of Propositions 1-3.
PROPOSITION 7. If zo cl C is an interpolation point of degree p,

R(z)--f(z)+c(z-zo)

then Zo O, ind(z0) P and Zo is regular.
Note that the behaviour of order stars of the second kind near an interpolation

point is not sensitive to this point being a zero or a pole.
Both interpolation points and singularities (poles and essential singularities alike)

belong to . The following relationship holds:
PROPOSITION 8. Between any two singularities that are connected by an arc of 0 there

is an interpolation point. Between any two interpolation points that are connected by an arc

of 0 there is a singularity.
Proof. It follows from the method of proof of Proposition 2 that Imo is a strictly

monotone function along the oriented boundary of 0 (decreasing along the positively
oriented boundary of and increasing along the positively oriented boundary of D).
The present proposition follows, since Im
is unbounded at a singularity.

The last proposition highlights yet another difference between the two kinds of
order stars: while the relationship between singularities and interpolation points is
somewhat stronger than in Proposition 2, the zeros of f and R have no similar role. In
some cases it is possible to show that various conditions impose restrictions on the
pattern of zeros [14]. Elsewhere [11] the role of the zeros and the poles is reversed by
taking o 1/R 1/f.

It is seen at once, by virtue of (9), that a Kth order pole of o leads to a local
pattern of an order star of the second kind that is equivalent to an essential singularity
of exponential type K in the standard order star.

It now follows from Proposition 5 that
PROPOSITION 9. If Zo is a pole of o of order K>= 1,

o(z)=a(Z-Zo)-(l +o(z-zo)),
then zo O, ind(zo) K and zo is regular.

By the same token an essential singularity of a bounded perfect order of growth in
o is equivalent to an essential singularity of an unbounded perfect order of growth in
This leads to infinite indices. Fortunately, if o is entire, then it is often possible to

restrict its investigation to a strip of the form 0 __<lImzl__< a, where only a finite number
of "strips" of A and D tend to infinity--cf. [10], [11], [13], [14] and {}5 of the present
paper. In that case ind(c)= K, say, and c being regular imply that the asymptotic
width of each "strip" of A and D is r/K.

The geometry of an order star of the second kind is not very helpful as far as

contractivity is concerned. However, it displays a conceptually similar feature, which is

very useful in the analysis of semi-discretizations of partial differential equations of
evolution. Let fl be a set of complex points such that Ref(z)=0 for every z
(obviously, unless f is a real constant, does not contain an open neighbourhood).
Given such a functionfwe say that R has property R if ReR(z)__< 0 in

PROPOSITION 10. R has property R if and only if
Proof. Follows at once from the definition (10). []
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5. Multivalued functions. The most natural extension of the present theory to
multivalued functions is by considering order stars on Riemann surfaces. This ap-
proach obscures, however, the geometric intuition that is necessary to transform a
complex-analytic problem to a combinatorial one. Nonetheless, order stars on Riemann
surfaces led to important new results [14], [15], [16], [17] and [21]. However, the subject
of the present paper being an exposition of a theory of order stars in the complex
plane, we restrict our attention to an approach which avoids Riemann surfaces alto-
gether.

Letf and R be of the form

(11) f(z)=f*(zx,z2, ,z*’),
R(z)=R*(zn’,zn2, ,zn),

where f* and R* are rational functions of their arguments and/Xl,. .,/XM, ’/]1," ",IN

(3/(0}. We set

(12) f(z)’=f(eZ), /71 (z)" R(e).

(a) R2/l(z)=(1 + 6z+z2)/(4(1 +z)), order 3.
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(b) R2/x(z)=(1 +6z + z2)/(4(z + 1)), order 3.

FIG. 4. Order stars for Padb approximations to zx/2 about z 1. The standard order stars are given first, to

the scale IRe z], ]Irnzl=< 5, order stars of the second kind being displayed subsequently to the scale IRe z]__< 6,
]Im z =< 7. "Z" and "P" denote zeros and poles, respectively.

Both f and/ are single-valued functions and so we can consider order stars of
both kinds, with respect to o(z)=k(z)/f(z) and o(z)=k(z)-f(z) respectively. The
replacement of z by a periodic function leads to an inflation in the number of zeros,
poles and essential singularities, as well as to a change in the nature of essential
singularities. In many cases this added complexity can be easily handled. For example,
if 1," ",/t, rtl," ",rlt are real rational numbers,

Pk
ix,=, l <=k <=M,

qk

Sk l<=k<=N,lk-- tk

say, then the order star is periodic with period 2rriK, where K is the lowest common
multiple of [PxI,"" ",IPI, Iqx[,"" ",lql, Isl,"" ",lsNI, Itxl,"" ",ltNI.
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Figure 4 displays order stars of both kinds for Pad6 approximations to f(z)= z1/2

which were obtained by the transformation (12). Only the strip 0 =<llmzl=<2r is given,
since the order stars have period 4ri.

A similar change of variable is suitable for

(13) f(z)=f*(z,lnz), R(z)=R*(z,lnz).

Functions and approximations of the forms (11) and (13) appear in the analysis of

fully-discretized and semi-’discretized finite difference (cf. [8], [10], [11], [13], [14], [18]
and [20]).

Another change of variable can successfully cope with functions and approxima-
tions of the form (11) if 1," ",/t, rl," -,rlv are rational numbers. We set

(14) f(z):=f(zI), /(z): R(zl),

where K was given before, and consider order stars with respect to o(z)= R(z)/f(z) or

o(z)= R(z)-f(z). Figure 5 gives the counterparts of order stars from Fig. 4 which are
obtained by the present transformation.

(a) Rz/l(z)=(1 +6z + z2)/(4(1 + z)), order 3.



STARS, APPROXIMATIONS AND FINITE DIFFERENCES 575

(b) R2/l(z)=(1 +6z + z2)/(4(1 + z)), order 3.

FIG. 5. Order stars of the Pad approximations to z1/2 from Fig. 4 by using the transformations (14). See
Fig. 4 for notation and scale.
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RADAR AMBIGUITY FUNCTIONS AND GROUP THEORY*

L. AUSLANDER" AND R. TOLIMIERI

Abstract. P. M. Woodward in the early 1950’s introduced a mapping from a radar signal f to a function
of two variables W(f), called the ambiguity function, that plays a central role in the radar design problem.
We may think of W as a nonlinear operator from L (R) into L (R 2). The description of the range of 14" has
been an open problem. This paper provides, in terms of special functions in L2() and L2( 2) a fairly
complete description of W(L2()). We show also that W(L2()) is a closed subset of L2(R 2) and if
W(f)+ W(g)= W(h),f,g,hL2() thenf=A,g, a constant.

1. Introduction. Because radar computations are not familiar to the general
mathematical community, we have begun this introduction with a brief simplified
version of how ambiguity functions are used in radar computations. We will follow this
with the familiar listing of what we consider our important new results.

Let X1,--.,XN be N objects or targets and assume the radar is at the origin. Let
.(t), j= 1,-..,N, denote the range (distance from the,origin) of X. and vj(t) denotes
the velocity of X at time t. The problem is to transmit an electromagnetic wave or pulse
for T< < T and from the echo determine the quantities .(0) and vj(0), j= 1,. .,N.
Let s(t) denote the pulse, where s(t) is real valued, and let e(t) denote the echo.

We will now briefly outline how information is extracted from e(t). The computa-
tional process depends on a "representation" of s(t) and some simplifying assump-
tions. The first step is to pass from the pulse to a complex valued function (represen-
tation) called the waveform of the pulse. If g(t) L2(R) we will use (f) to denote the
Fourier transform of g and call the variable f, frequency. Because s(t) is real valued we
have

(-f) =*(f)

where we will (following electrical engineering notation) use * to denote the complex
conjugate. Hence s(t) is completely determined by its positive spectrum. Define

xI,s(t) (f)e:Ziftdf.

Then

s(t)=s(t)+it(t)

where a is the Hilbert transform of s. Explicitly, using principal part integrals,

r
_

t-"
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Using IIql,f L2(R), to denote the norm off, we have

Ilq’ (t) =-- 2lls(t)II =.
It is customary to call [Eli] 2 the "energy" of the signal f. For the rest of the motivational
discussion we will assume II,t,(t)ll --- 1, to--f_ tlW(t)l-dt < o and

fo fl(t)ldf< o.

It is usual to call o the epoch and f0 the carrier frequency.
DEFINITION. The waveform u(t)of the pulse s(t) is defined by

Us(t) xIZs ( -1- to ) e 2rif(t+ t).

It follows that s(t)= Re{ q(t)} Re{ u(t- to)erift}, where Re{. } denotes the
real part of the function in the bracket, and Ilu(t)llZ- 1. The function Us(t ) is "slowly
varying" in the sense that its spectrum is centered about the 0-frequency.

We would like the echo e(t) to be "as much like" s(t) as possible. If we have one
target and the physical assumptions listed later are satisfied then

e( ) Re( e-2rifXus( t- o- xo)e 2ri(f-y)t } Re(XlZe(t))
where Xo=(2/c)rl(O), yo=(2fo/c)vl(O) and c is the velocity of light. Hence for one
target

Xo time delay of the echo,

Yo doppler or frequency shift of echo

completely determine rl(0) and /)1(0). One estimates x0, Y0 by the following method
originally suggested by P. M. Woodward [W] and motivated by probabilistic considera-
tions. Consider

xy ( ) e- 2riyXus ( O- x e- :Zriyte 2rift

and form

I(x,y)= 12[
because [[u(t)l[---I,I(xo,Yo) 1 and I(x,y)<= 1 for all x,y. Thus if we plot l(x,y) by
light intensity on a screen the brightest point should be (xo,Yo) and so we can
determine rl(0) and o1(0) or the range and velocity of the target. It is crucial for us to
observe that

I(x,y)= IAu(xo-x,yo-y)[
where

Au(x,y)= u t-- u* t+ e dt.

We will now list our physical assumptions and then state the results for several
targets.
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Physical assumptions.
1. Radar cross sections of targets are independent of frequency.
2. All targets are in the far field of the radar.
3. Multiple reflecting waves among the targets are negligible.
4. The functions )(t),j 1,-..,N are approximately linear for T< < T.
5. The velocity of the targets is small compared to the speed of electromagnetic

propagation.
Then from several targets we have approximately I(x,y)=MlAu(x x,yl-y)l 2

+ + M2ulAu(xN x,yN-y)l 2 where the M depend on the range and the radar cross
sections of the targets.

Actually I(x,y) does not determine the number of targets, their range or velocity
uniquely and, of course, I(x,y) depends on the form of Au(x,y ). Because of this
Au(x,y) is called the ambiguity function of radar.

Woodward concludes his fundamental book [W] published in 1953 with the follow-
ing paragraph. (We have changed notation, but nothing else, to fit with our conven-
tions.)

The reader may feel some disappointment, not unshared by the writer, that the basic question of
what to transmit (choice of s) remains unanswered. One might have hoped that practical
requirements of range and velocity resolution in any particular problem could be sketched in an
x-y diagram and the waveform u(t) then calculated to satisfy the requirements. It seems that this is
not possible because the form of IAu(x,y)l cannot be arbitrarily chosen. The precise nature of the
restrictions which must be placed in IA,(x,y)l has not been fully investigated.

Calvin H. Wilcox [W1] in 1960 took up the detailed study of ambiguity functions
and called the problem posed above by Woodward the "synthesis problem of radar
design." Wilcox used only Abelian harmonic analysis in his work. However, it turns out
that there is a great deal to be gained by using the representation theory of the
Heisenberg group and considering ambiguity functions as special functions on the
Heisenberg group. This is not surprising because of the radar uncertainty principle and
the deep relation between the Heisenberg group and the Heisenberg uncertainty princi-
ple (see [Wg] and [Wyl]). The desire to use the non-Abelian results forces us to operate
in a slightly more general setting then Wilcox and so we will have to give slightly
different treatments of many of his results.

We will now introduce notation that we will follow for the rest of this paper. It is
intentionally slightly different from that used up to now.

If (f,g) denotes the usual inner product of functionsf,g L2(R), defined by

(f,g)=ff(t)g*(t)dt,
then we can write

(1) (f)(u,v)= f t- f* t+ e

as

(2) (f)(u,v)= f t-- e e
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For F(u, v) and G(u, v) we define

and IIFII= (F,F):. We will use L(R) to denote the above Hilbert space of square
summable functions on -.

We can now state two results from the paper.
TrIEOmM A. The set of ambiguity functions (, fL2(R), is a closed subset of

L2(R 2).
TrIEOREM B. For f, gL-() let ’( and ’(g) be the corresponding ambiguity

functions. ThenQ)+.’(g) is an ambiguity function if and only iff= ,g, a constant.
The last part of this paper is devoted to ways of describing all ambiguity functions.

In order to state some of these results we will need the following definition.
DEFINITION. LetfL2() and define

fab e g-"btf( + a ) a b Z

and let " denote the set (fabla, b7/}. We will say that f generates an L2-basis of
L2() if L2() is the closure of linear combinations of elements of o-, but no proper
subset of" has this property.

Theorem 6 of 4, due to R. Sacksteder, gives necessary and sufficient conditions
for f L2(R) to generate an L2-basis.

THEOaM C. LetfL2() generate an L2-basis. The set of ambiguity functions is the
closure in L ( 2) of the set offunctions

Y’. a(a,b)a*(c,d)K(a,b,c,d)A(f)(u+c-a,o+d-b),
a,b,c,d.

where

K( a, b, c, d ) ( 1)(a+ c)(b+ d) e_ri[<b+ d)u-(a+ c)v]

and a(a, b) is a function on 7I 71 taking a finite number of nonzero values.
The importance of Theorem C can perhaps best be illuminated by the following

special case.
Let

1

r(t)= 2’
1

0,

and let rab=e2ribtr(t+a), a,b71, then the set {rabla, b71 } is an orthonormal basis
of L2() and

sin(fro(1- [ul) )
a(r)= rv

0,

{ul<l,
otherwise.

THEOREM D. Let 1 be the set of complex valuedfunctions a on 71 71 such that
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Then the set of all ambiguity functions is given by

F(t)(u,v)= E a(a,b)a*(c,d)K(a,b,c,d)A(r)(u+c-a,v+d-b)
a,b,c,d.

where K(a,b,c,d) is defined in Theorem C and a. Further, iff=Ea,bZa(a,b)rab,
then oq’(f)( u, v) F(a)( u, v ).

Thus we can describe the set of all ambiguity functions in terms of well-known
functions.

Several theorems will be given different proofs. The techniques used in 2 will
probably be accessible to most readers, as they require only the most basic results from
Abelian harmonic analysis. Orthonormal bases play an important role, especially in the
proofs of Theorems A and B, and essentially, translate the problem under considera-
tion, into a problem of infinite matrices satisfying certain conditions (see the discussion
following Theorem 2.4). The inversion formula, given in Lemma 2.2, is the main tool in
earlier parts of the section and could be applied to prove these results, as well, Theorem
C is about a special kind of orthonormal bases.

In [}3, ideas arising from unitary representation theory of the Heisenberg group are
applied to the study of ambiguity functions. The definitions and results stated at this
point can be discussed within the framework of locally compact groups, but we wifl not
do so.

Equally powerful and related ideas can be introduced from the theory of
Hilbert-Schmidt operators. Certain of these ideas have been previously considered in
[W1] and [S] and applied to the problem of synthesizing ambiguity functions which best
approximate, in the L2-norm, a given function in L2(2). This theory will play no
direct part in this work.

An interesting aspect of ambiguity theory is that it finds itself within the scope of
several mathematical disciplines. However, it should be emphasized, that radar theory
and more generally image processing create special classes of problems not usually
encountered in these general mathematical theories.

2. Ambiguity functions. The elementary properties of ambiguity functions will be
established in this section using methods of Abelian harmonic analysis. Our main
reference will be [K].

Consider f, g LI(R) and define

i’(f,g)(u,o)= f t-- g* t+- e- dt.

We call ’(f, g) the cross-ambiguity function of f with g. The ambiguity function e’(f)
off is given by

A closely related expression ,g) is sometimes also called the cross-ambiguity
function off with g and for some puwoses is easier to work with. Set

(f,g)eio (f,g).

A simple change of variables argument shows that we can write

t(f,g)(u,v)= f f(t)g*(t+u)e-2tdt.
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In this paper we will study (f,g), but to avoid confusion we will only call
’(f, g) the cross-ambiguity function of f with g.

There are two obvious ways to consider (f,g). The first begins by setting

h(u,t)=f(t)g*(t+u)

and viewing h(u, t) as a family of functions in t, parameterized by u. In general, if
F(x,y) is any function of two variables x and y, for any fixed x R, we set

F(y)=F(x,y)

and consider F as a function of y. Using this notation, we can write

(f,g)u(V)=h,(v).

The behavior of h(u, t) determines to a large extent the behavior of ’ (f, g). The
following elementary result provides the necessary information upon which a great deal
of ambiguity function theory rests.

LMM 2.1. Forf, g L9_(), the function h ( u, ) f( )g*( + u) is in L ( ) and

2

Proof. By Fubini’s theorem and the positivity of Ih(u,t)l

ff Ih(u,t)[:zdudt= f If Ih(u,t)12du] dt

But

f Ig*(t + u)l
2
du Ilgll Vt.

Hence

Ilhll== Ilgll=f If( t)l = dr= Ilgll=llfll.
LEMMA 2.1’. Let fl, f2, gl, g_ L() and let

hl(U,t)=fl(t)g(t+ u),
h.( u,t) =f2(t)g(t + u).

Then (h,h2)2= (f,f2)(g2,gx).
Proof. Formally

g hl(U,t)h’(u,t)dtldt-- f If hx(u,t)h’(u,t)du] dt

f fl(t)f’(t)[f g(t-l-U)g2(’-]-U)du] dt.

But fg(t + u)gg_(t + u)du= (gg.,g2) all t. And so Lemma 2.1’ follows.
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To make this rigorous, note that if

ff Ihx(u,t)h(u,t)l dudt<

then we may replace the double integral with the iterated integral in any order. But, if
hi; h2L2(R2), so are Ihl, Ih21, and we know that the dot product (Ihl, lh21)2
Thus our formal manipulations are legitimate.

It follows, also by Fubini’s theorem, that for almost every u R, the function
huL2(l). Since h is the product of two L2() functions, it is in L2() by the
Schwarz inequality. The formula

implies that (f,g)u is the Fourier transform of huLI(R)NL2(R). By standard
Abelian harmonic analysis (see [K]) we have the following corollary.

COROLLARY. Let C(R) denote the continuous functions on . For almost every u ,
(f,g)u(O)

and

lim (f,g)u(o)=O.

THEOREM 2.1. g (f,g) L2( 2), wheneverf, g L2(I). Moreover,

I1 (f, g)I1-= Ilfll:llgll =.
Proof. By Fubini’s theorem,

II(f,g)ll"= f [f [h,,(v)l:zdv

which by the Plancherel theorem becomes

: [: ".

THEOREM 2.1’. Let fl, f2, gl, g. L2() Then

( (fl, gl), (rE, g2)) 2 (fl,f2) g2,gl).

Proof. Since (f,,g), a=l,2 are in L-(N 2) so are I(f=,g) and so we may
apply Fubini’s theorem and write

ff ’ (fl,gl)...*(f2,g2) dudo f f hlu(o)hlu(v)dv du

The following "inversion" formulas provide important tools for the further study
of (f,g).
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LEMMA 2.2. For any f, g L2(R).

f(t)g*(t+u)= f (f,g)(u,o)e2itdv,

f(t)(x)*e-2it= (f,g)(x,t),

for almost every ( u, t) 2 and almost every (x, t) 2, where denotes the inverse
Fourier transform in L2( 2 ).

Proof. Since for almost every u, (f,g)u L2(R) we can apply the inverse Fourier
transform to (f, g)u, in the sense given by the Plancherel theorem. Thus, for almost
every u, the first formula holds, for almost every t. By Fubini’s theorem, applied to the
characteristic function of the set of (u, t) 2 for which the first formula does not hold,
we get that it holds except on a set in R 2 of measure zero.

To prove the second formula, take the inverse Fourier transform of the first
formula with respect to the u variable.

Let ’ (f)= (f,f). Then

.(f)(-u,-v)= f f(t)f*(t-u)eg-"tdt.

Let s t- u. Then

q)(-u, -o)= f f(s+ u)f*(s)e2"’s+Uds=e2’ri (f)*(u,v).

Now consider the change of variables

z=t+u, t=t.

and let H(t, -) =f(t)f*(). Then

H(t,’)= f (f)(z-t,o)e2""dv and H*(t,-)= f (f)*(r-t,v)e-Z"tdv.

Using formula (**) we have

f  (f)(t-$,-o)e-2CritVe-2 ri(’-t)Vdo=n(q-,t).

Consider the mapping U: ’ (f)(u, v) H(t, ). This has the property that it is 1 to
1 and norm preserving. Further the H(t,) are easily seen to satisfy the functional
equations

1. H*(t,z)=H(z,t),
2. H(t,t)>=O,
3. H(IL I)H(t, z)= H(t,I)H(IL z).
THEOREM 2.2. Let F(t,z)L2(R 2) and satisfy equations 1,2 and 3 above. Then

there exists a (f) such that U(. (f))= F( t, ).
Proof. Equations 1 and 3 combine to yield

F(t,t)F(l,l)= IF(t,6)l.
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By hypothesis, F(t,)L2(R 2) and so

ff F(t,t)F(ld,ld) dtdld= ff IF(t,Cs)lEdtdld
2

IIF(t, )[1. <

Since F(t, t) >__ 0, we may apply Fubini’s theorem to conclude that

F(t,t)dt IIF(t,)l122>__0.

The only interesting case is when IIF(t,)ll2>0 and so there exists o such that
F(o,o)> 0 and F(t, lio)L2([).

Definef(t)= F(t, lio)/(F(o,g:o))/2. Then

f(t)f*()=F(t,).

It is clear that U( (f))= F(t,) and so we have proven our theorem.
Consider the mapping

It is clearly bilinear.
THEOIM 2.3. is continuous and the image of spans a dense subspace ofL2( 2).
Proof. If f,f and g,g in L2(R) then, by the continuity of the Fourier trans-

form . in L2(R) and

f(Y)(x)*e-2"ixy f(y)(x)*e-2’y

in L2(R 2). Lena 2 implies

(f,,g,)o(f,g)

in L() and hence, is continuous where denotes the inverse Fourier transform in
L2( 2).

Suppose FL(2) is orthogonal to the span of the image of . Then,
(x,y)ey is orthogonal to the span of the space of all products f(y)*(x) wch is
known to be dense in L2( 2). It follows F 0 and the theorem is proved.

COROLLARY. The collection offunctions (,fL(), spans a dense subspace of

Proof. SupposeFL() is orthogonal to eve (,fL(). Then, since

(f+g)=)+(f,g)+ (g,f)+ (g),

we have F orthogonal to ,g)+ (g,D. Also, since

(f+ ig)= (f)+i (g,f)-i(f,g)+ (g)

we have F orthogonal to (g,-,g). Thus, Fis orthogonal to ,g),f,gL(),
and by the theorem is zero almost evehere.

The function ,g) can also be viewed as a cross-correlation. For fixed v , set

Go(t)=g(t)e2"t.
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Form the cross-correlationf G defined by

fo Go(u)= f f(t)G*o (u+ t)dt.

and upon writing out the integral, observe that. (f,g)( u, o) e2=iuf Go(u ).

LEMMA 2.3. (f, g)(u, V) e 2riuo (f, )( V, U).
Proof. Since

gd (f,g)( u, v) e2i"v(f( t), Go(u+

it follows that

But

(f,g)(u,o)=e"’uo(f, Go(u+

f g(u+ t)e2 riVte-2 ritXdt=e-2"iUe2 riux (x-v)

which proves the lemma.
COROLLARY. i(X)(X-- 0)* f , (f,g)(u, v)e2iu(x-) du.
We will now show (f, g) is continuous. The first step is the next lemma.
LEMMA 2.4. lff, fand g, g in L2(R) then

(f.,g.)-o(f,g)

uniformly over g 2.
Proof. (R. Sacksteder independently suggested this proof to one of the authors.)

Set ,(u,o)=g(f,g)(u,v)-g(f,,g,)(u,o). Then

f ((f(t)-f(t))g*(t+u)+f.(t)(g*(t+u)-g*(t+u)))e-"iOtdt

and by the Schwarz inequality,

( u, <,)1=< IIf-LII Ilgll+ IILII IIg gnll"

The lemma follows.
THEOREM 2.4. ,g) is a continuous boundedfunction which achieves its maximum

(f g) at the origin.
Proof. The Schwarz inequality proves everything except for the continuity. By the

preceding theorem it is sufficient to prove continuity for f and g taken from a dense
subspace of L2(R). The set of functions

( e -r(t+r)z" F)

spans a dense subspace of L2(). Takingf and g from this span it is easy to see that we
are done once we show

q ( e-rt2, e-r(t+r)2 )
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is continuous, for all r. But,

/ -r/2(u+ r)2e-Cr/2 ri(r+ u)v-rt2, e -r(t+ r)2 ) "e 2e

which is clearly continuous.
Let de; be an orthonormal basis of L2(R). Then the set of functions qik (dei,dek),

i,k. is orthonormal by Lemma 1’ and complete by Theorem 3. Now f(t)L2(R)
can be written as

f(t)= E aidei,

Similarly, F(u, v) L2(R 2) can be written as

F(u,v)= E Cmnlmn
m,n.

Now consider (f) Lg-(R 2). Then if

m, n 71

ffCmn-- (f) mndudo,

; (f) ZCmnlmn

By Lemma 2.1’

Cmn f ’m)f den)* ama*
Conversely, if Cm, ama*n then f= _,amdem L2() and H( t, r)=f( )f()* satisfies

the hypothesis of Theorem 2.2. Hence F(u,v) L2(R 2) is an ambiguity function if and
only if Cm, amn.

COROLLARY. Let F(u,o)L2(R 2) and F=.m,nzCmnmn. Then F(u,v) is an am-
* and >Oallm, n k7]biguity function if and only if CkkCm, CmkCkn, C,,, Cmm Ckk

TrlEOREa A. The set of ambiguity functions is a closed subset ofL2( 2).
Proof. Let F(u,v) be the limit of sequence of ambiguity functions (f), i=

1,- .,n- ... Let

Cmn(i)-’((fi),mn)2,
cmn=(F,mn)2

Hence for each i, Cmn(i) satisfy the conditions in the above corollary. Since limi_
(f)= F, we have for all m, nlim+ Cmn(i)--Cmn. Hence the Cm, satisfy the equations of
the above corollary and F is an ambiguity function.

THEOREM B. For f, gL2(R) let (f) and l (g) be the corresponding ambiguity
functions. Then (f)+(g) is an ambiguity function if and only iff= Xg, X a constant.

Now consider (f) and (cf) where c is a constant. Then by direct computation

Now let f, gL2(R) and consider (f)+ (g). If

(/)= ] al(a,b,c,d)Vabcd, . (g) Y a_(a,b,c,d)Fabcd.
a,b,c,d, a,b,c,dZ
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Then

(f)+(g)= E [al(a,b,c,d)+a2(a,b,c,d)]F,bd.
a,b,c,d.

Now assume that (f)+ (g) is an ambiguity function. Then the corollary to
Theorem 2.4 implies that

(2.1)
al(r’s’r’s)a2(a’b’c’d)+a(a’b’c’d)a2(r’s’r’s)

=a(r,s,c,d)a(a,b,r,s)+a(a,b,r,s)a2(r,s,c,d).

Because ’ (f) and (g) are ambiguity functions, we know that

ax(a,b,c,d)=aa(a,b)a(c,d),

Hence we can rewrite (2.1) as

X ( r,S )OI.( r,S )cx2(a,b)a ( c, d ) +Ol(a,b)a(c,d)o[2(r,s)ol ( r,s )
(2.2)

Assumefis not the zero function, then al(ro, So)qO for some r0 and s0. It is easy to see
that there is no loss in generality in assuming that al(0, 0)=# 0. Then setting v s 0 in
(2.2) we obtain

[oq(O,O)a2(a,b)-a2(O,O)al(a,b)] [ot’(O,O)a’(c,d)-a’(O,O)a’(c,d)] =0;

this implies that

01(0 0).2(a.b) a: (0.0).l(a.b)
or

a:(a,b)=ll(-0) al(a,b), foralla, bZ.

Thus if c a2(0, 0)/%(0, 0) we have

g=cf

This proves our assertion.
THEOREM 2.5. Let f, g L2(R) and assume

(f)=(g).

Then f= c g almost everywhere, where c is a constant and Icl- 1.
Proof. By Lemma 2.2.

f(y)f(x)* =g(y)#,(x)*
for almost all (x,y) . If f does not vanish on a set of positive measure, then for
some Y0 we havef(Y0): 0 and

f( Yo)f(x)* g(yo) ’(x)*
holds for almost every x. Thus, there is a constant c= g(Yo)*/f(Yo)* such that

f(y)=cog(y),
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for almost every y. The constant must have modulus one since M(f)= (g).
If f vanishes almost everywhere that (f)=0 and g(y)=,(x)*=O almost every-

where in (x,y) I 3. It is easy to see that g(y)= 0 almost everywhere.
The same argument proves the following.
COROLLARY. For f, g L2(I), if (f,g)=0 then f=0 almost everywhere or g=0

almost everywhere.
We will return now to the ambiguity functions (f) and denote by the

collection of all ambiguity functions.
Let SL(2,) denote the group of all 2 2 real matrices of determinant one, acting

on by the rule

where

T( u, v) ( au + bv,cu + dv)

As a group SL(2, R) is generated by the following matrices:

j=[ 0 1
-1 0 t(a)=

To see this for c > 0, write

a 1’
aR, m(b)= 0 1/b

a b =t J-lm(c)t
c d c c

b>O.

We will now state how SL(2,) acts on.
THEOREM 2.6. is invariant under the action of SL(2, ), and
1. at(f) J =a/(f),
2. a(f) t(a)=a/(g) where g(t)=e"ia?f(t),
3.’( m(b)=.’(h) where h(t)=f(bt).
Proof. Statement 1 follows from Lemma 2.3. The last two statements can easily be

proved by direct substitution.

3. Ambiguity lunctions and the Heisenberg group. In this section, we will work
with the ambiguity functions (f). A unitary operator on L2() is a linear mapping U
of L() satisfying

( Uf Ug)=(f,g),

for all f, g L:(). The collection of all unitary operators U on La() forms a group
under composition which will be denoted by . An implication of the Plancherel
theorem is that the Fourier transform, denoted byo, is a unitary operator on L:().

The following two unitary operators on L:(R) play an important role in Abelian
harmonic analysis and hence, the development of the theory of the ambiguity function
given in the preceding section.

Forf La() and a, set

(S(a)f )(t)=f(t+a), t,

(M(a)f)(t)=e"tf(t), t,

and observe that the mappings S(a) and M(a) are unitary operators of L().
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Consider, now, S: R q/and M: R q/as mappings from R into q/. We set

=S(), /=(),
and call the shift operators and ’ the multiplication operators. Both and ’ are
subgroups of @ and in fact, we have the following lemma.

LEMM 3.1. S andM are group isomorphisms of into .
Proof. Immediate from the definition.
The reason that non-Abelian group theory enters into the study of ambiguity

functions is contained in the next result.
LEMMA 3.2. M(o)S(u)=e-giuS(u)M(o).
Proof. Forf L:(R),

( M( o)S(u)f)(t) e2i’( S( u)f )(t) e:itf(t + u),
( S( u ) M( o )f )( ) ( M( o )f )( + u) e:io(t+u)f( + u ),

which verifies the truth of the lemma.
Thus, the operators M(o) and S(u) do not commute. Ts observation is the

mathematical basis for the introduction of the Heisenberg group in quantum mechanics
and is an expression of the uncertainty principal. We will now define the Heisenberg
group and study its implications in ambiguity function theory.

Let I denote the identity operator on L:() and set

c(x)=xz, x c,
Then, C(X) is a unitary operator and the mapping

C" C(a)(()) ,
where C(1) denotes the multiplicative group of complex numbers of modulus 1, is a
group monomosm. We set equal to the range of C.

Clearly, is a subgroup of and is, in fact, the center of @.
Let

denote the set of operators of the form

C(X)M(b)S(a), IXI=I, a, b.

TaEOgEM 3.1. is a subgroup of.
Proof. By Lemma 3.2, we can write

C(X)M(b)S(a)C(X2)M(b2)S(a:)
C( X )C( X 2 )C( e 2iaxb ) M( b ) M( b2 ) S(a) S( a: ),

wch by Lemma 3.1, becomes

C(XxX2 e2iaxb:)M(bl+b2)S(a +a2).

Thus, the product of two operators in is again in.
It follows that

I C(Xx) M(bx)S(al)C(xg)M(- b)S(- al)
if and only if X X{e:ial bl and hence, the inverse of an operator in is again in.
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An alternate definition of can be taken to be the group generated by/’ and
is sometimes called the Heisenberg group, however, we will reserve this term for

the abstractly defined group N given as follows.
As a set N consists of all points x (xl, x2,x) g 3. The multiplication rule on N is

given by the formula

xy=(xl+yl,x2+y2,x+y+1/2(x2yl-xly2)).

It is easy to verify that N is a group having centext X consisting of all points (0, 0,x),
xR.

For future use, we will single out two especially important automorphisms of N.
Let og denote the mapping of N given by

J(X)-’(X2,--X1,X ).

Clearly, og is an automorphism on N which acts by the identity mapping when restricted
to the center.

Define D: N q/by setting

D(x) C(e 2’ix(x) ) M(x1)S(x2)

where )t(x)= x + 1/2x1x 2. Equivalently,

(D(x)f)(t) C( e 2"ix(x)) e 2pixxtf( + x2).

Using Lemma 3.2, the next result is easily proved.
THEOREM 3.2. D: N--* q/is a group homomorphism satisfying
1. kerD= {(0,0,x): x7/},
2. imD =9’.
The group homomorphism D has, by necessity, been built in a non-Abelian

fashion from the group homomorphisms S and M. In a sense, examined more closely in
the next section, the Fourier transform " is closely related to these group homomor-
phisms and hence, to the Heisenberg group N. For a more complete discussion see
[A-T]. At this time, the formulas of the next theorem will suffice.

THEOREM 3.3.

,’S(x).-= M(x), ’M(x)’-= S(-x), o’D(x)’-X=D(ogx).

Proof. The first two formulas are easily proved by Abelian harmonic analysis
methods. The last formula comes from the definition of D and Lemma 3.2.

The ambiguity function s (f) can be expressed in terms of the group homomor-
phism D. This is accomplished in the next theorem.

THEOREM 3.4. For x N, andf L2(N),

’(f) ( X2, X1) e2rix(f Dxf)

Proof. Since

Dxf( ) e2O"X(X)e:"xltf( + x: ),
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we can write,

(f, Dxf) f f(t)f*(t + x2)e-2"X’tdt,

e- 2,,X(x) (f)(x,xl),

e-2,,xc,(f)(x2 XI),

which proves the theorem.
The significance of ts result is that we can view ambiguity functions as well-known

objects in the theory of unitary representations of the Heisenberg group. For the most
part, the theory we develop can be generalized to the theory of unitary representations
of locally compact groups on Hilbert spaces but we will restrict our analysis to what we
need to study ambiguity functions.

A unitary representation of N is a homomowsm U of N into . Let U be a
unitary representation of N andf L2(R). Consider the function on N defined by

p(x)=(Uxf,f), xN.

THeOReM 3.5. The function p is positive define on N, in the sense that, for any finite
number of elements gl," ,g, in N and complex numbers 1,""" ,, we have,

k= j=

Proof. Let g=E= kUgf. A direct calculation shows,
n

k=l j=l

which proves the theorem.
We note that, by Theorem 3.4, we have

*

is positive definite. This enables us to translate general results about positive definite
functions into assertions about ambiguity functions.

The following results are well-known about positive definite functions. Observe the
relationship of these results to the corresponding results about ( cong from
Theorem 2.4. We list them without proof.

1.p(0)0,
2.p(g-i)=p(g)*,gN,
3. lp(g)lp(O),geN.
The unitary representation U of N is called continuous if, for eachf L:(R), the

mapping,

XUxf,

is continuous from N into the Hilbert space L2(R). We give N the topology of the
underlying Euclidean space. If U is a continuous unitary representation of N and
f L:(R), then p(x)= < Ux,f,f> is continuous. Since D .can be shown to be continuous,
we can prove, by this approach, that is continuous.
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A deeper result is that D is irreducible, in the sense of the following definition. The
unitary representation U is irreducible if, for any closed subspace V of L2(R) such that

Uxf V,

whereverf V, we have V= L2(R).
A proof that D is irreducible can be found in [Wyl]. The first implication of D

being irreducible is that, for anyfL2() which does not vanish on a set of positive
measure, the span of the set of functions,

(Dxf:xU},

is dense in L(R). As we see, in the proof of the following result, the uniqueness
Theorem 2.5 of {}2, the density of this span in L(), can be viewed as the key in the
uniqueness theorem.

THEOREM 3.6 Iff gL2() and(=(g) then

f=Ag,

for some constant IX I-- 1.
Proof. From (Dxf,f) (Dxg,g), x N it easily follows that (Dxf, Dyf)

(Dxg,Dyg) for all x,yN.
Note II12=llgll implies f=O almost everywhere if and only if g=O almost every-

where. We will assume, therefore, that both f and g are nonzero on set of positive
measure. From the irreducibility of D it follows that each of the set

A=(Dxf:xN }

and

B=(Dxg:xN }

spans a dense subspace of LE(R).
Define the mapping U: A - B by setting U(Dxf)= D g, x N. We have to show U

is well defined. Suppose Duf= Dvf. Then

(Duf Dxf)=(Dug,Dxg),

for all x, by the remarks above. This implies by the assumption Duf= Dvf that

(Dug,Dxg)=(Dvg,Dxg),R

for all x N. Since B spans a dense subspace of L:(R), Dug= D,,g. Thus, U is well
defined. The condition (Dx,D,,f) (Dxg,D,,g) immediately implies, along with the
previous described property of B, that U extends to a unitary operator of L2([).

It is trivial to see that

UDxU- D x N

and so U= ,I, Il 1 which proves the theorem.
Another consequence of the condition of irreducibility will now be discussed.

Consider two positive definite functions, Pl and P2, on N. We say that P2 dominates Pl
if P2-Pl is positive definite. A positive definite function p on N is called indecomposa-
ble if every positive definite function on N which is dominated byp is a scalar multiple
ofp.
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The following theorem can be found in [A], in a slightly different setting, and will
be asserted without proof.

THEOREM 3.7. If U is an irreducible unitary representation ofN andf L2(R) which
does not t)anish on a set of positive measure, then the corresponding positive definite
function, p,

is indecomposable.
An immediate implication is that Dxf,f) is indecomposable for everyfL(R)

which does not vanish on a set of positive measure.
We will now reprove Theorem B using these ideas from unitary representation

theory. ForfL2(R), we write,

?:(x) ( x N.

Supposef, g, h L2(R) and

’( h ) a’(f) +og’ ( g )

Then,

Ph =P+Pg.

Since Ph is indecomposable and Ph dominates both p/and pg, neglecting the trivial case,
we can write,

where c : 0 is constant. From pf(O)>__ 0 and pg(O) 0, we can infer c > 0. Let g’= v-g.
Then,

and

from which it follows, by Theorem 3.6, that,

f )g’ )v/-g,

which is the conclusion of Theorem B.

4. Another unitary representation of N. A "piece" of another unitary representa-
tion of N will be defined which is unitarily equivalent to the representation D defined
in the proceeding section. We will avoid as many technical details as possible. For
further details see [A-T].

Let F be the subgroup of N generated by (1, 0, 0) and (0,1, 0) and denote by H the
space of all functions F on N which satisfies the following conditions:

1. F(Vx)= F(x), ), F, x N,
2. IIFII2= folfolfoXlF(x)l 2 dx < ,
3. F(xz)= e 2riZF(x) x . N, z Z.
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One can prove that H is a Hilbert space and that for x N and F H, the function

( (x)F)(y) F(yx),

is again in H. In fact, we can prove the following
THEOREM 4.1. is a unitary representation ofN on H.
We will tie together D and by the Weil-Brezin mapping

defined by setting

W: Lv-(R) ---) H

W(f)(x) =e2’i(x+xlx2/2) E f(x2 + m) e2imx.

THEOREM 4.2. W is an isometry from L2(R) onto H satisfying

W-1 .@ (x) W=D(x), x N.

Proof. Complete details of the proof can be found in [A-T]. We will prove the
formula. Since

((x) W(f))(y) W(/)(yx)= W(f)( Yl q- Zl,Y2 + x2,Y + x + 1/2( y2x

it follows that

( (x)W(f))(Y) =e2i(y+x+y2xa/2-yx2)e2i(y +xl)(Yz+Xz) E f(Y2 + xg_ + m)e2i"(yx

m_

Upon expanding the right-hand side we get

( (x) W(f)) (y) W(D(x)F) (y).

We say that W is an intertwining operator between D(a) D aCand .
Consider aF. Then, al, a. and a=1/2ala2modT]. Let FH. Recall F(ay)=

F(y). It is easy to see that

y.a=a.y[y,a]

where [y, a]= y- la- lya (0, O,y2al -ya2).
THEOREM 4.3. For a F and F H,

(a)F(y)= (WD(a) W-F)(y)= eayl-aYF(y).

Proof. By definition,

( (a)F) (y) F(y. a) F(a .y. [y, a]) e -i<a-y -alyF(y).

COROLLARY. eiayl -aY2W(f)(y)= W(g)(y) where

g(y)=D(a)f(y).

Consider Ho= L(R/Z). For F,GH,

F(x) G*(x) Fo(xx,x:z)G(xx,x)
where Fo(x,x2)= F(xl,x2,0). Thus, Fo, GoH0 and

(r, G) tt {Vo Go) ,-io
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For a, a ’ and x1, x , define

Xaa2( X1, X2 ) e2ri(ax + ax).

Clearly X al,a no. We also have, for F, G H,

FGo)Xa’a2F’G)H (Xal’a2’ "o"

TrIEOREM 4.4. The set offunctions

( Xal,a2F’ al, a2 ’ )
is an orthonormal basis ofH if and only if

IF(x)l--1, almosteoerywhere.

Proof. Clearly, if IF(x)l--1, almost everywhere, then the set of functions is ortho-
normal since

(nal,a2f nbl,b2f)H’(nal,a2,nbl,b2)Ho --0"

Moreover, if G H satisfies

Xal,a2F, G) (Xal,a F’G) =0
H Ho

for all a1, a 2 ’ then by the completeness of Xa,a:, a, a
_

in Ho, F*G=-O, almost
everywhere. Since IFI 1, almost everywhere, G--0, almost everywhere which implies
the set ( Xa,aF: a1, a: 71 } is an orthonormal basis in H.

Conversely, if ( Xa,a:F: a, a2 _) is an orthonormal basis in H, then

IXal,a2F, Fl’(Xala2,, IF[
2) ,0

whenever both a and a are not both 0. Thus, IFI is constant almost everywhere. But

<F,F>,=a
implies IFI 1, almost everywhere.

Theorem 4.2, the corollary to Theorem 4.3, and Theorem 4.4 immediately imply
the next result.

THEOREM 4.5. Forf L2(), satisfying

IW(f)(Y)[ E f(Y2 + l) e2rrilyl 1,

almost eoerywhere, the collection offunctions

fa,a:(Y)=e2iayf(y+a),

as a, a 2 run ooer 7/, forms an orthonormal basis ofL2().
If F(x) does not satisfy the condition IF(x)l 1, almost everywhere, then the

collection of functions

W= (Xa,b’F(x)" a,b7/)
will not be an orthonormal basis but could be an L2-basis of H, in the sense that, the
linear span of W is dense in H and no proper subset of W has this property. It will be
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convenient to discuss the problem of when W determines an LZ-basis of H by consider-
ing the analogous problem on r 2= R 2,/7/2.

Consider F(u,v) LZ(r 2) and set

Let

W0= (Xa,b(U,v).F(u,v)" a,b7/).

g(t)=m{(u,o)qr 2" IF(u,v)l<=t),
where rn denotes Lebesgue measure on r 2.

Observe that g(t) is the distribution function of]F(u,v)], and hence determines a
probability measure on R.

THEOREM 4.6. Wo is a minimal basis of LZ(’rt"2) if and only if
1. g(O)= O,
2. f+(1/tZ)dg(t)< . (This includes 1.)
Proof. Take G LZ(’n"2) satisfying

(o, w0) =0.

Then

(X,,,bF, G)=(X,b,F*G)=O, a,b7/,

which by the completeness of the set (X,b: a,b 7/) in LZ(qr 2) implies F’G= 0 almost
everywhere. Thus, g(0)=0 implies G=0 almost everywhere. We have proved that
g(0)=0 implies W0 spans a dense subspace of LZ(’/r2). The converse is trivial, for if
g(0)4:0, let G be the function which is identically one where F vanishes and zero
otherwise. Then G is orthogonal to W0 but is not the zero function in LZ(’n’2).

We will now show the equivalence of minimality to Theorem 4.6, statement 2. The
argument includes the above discussion.

Suppose aobo7/ and that the closure V in LZ(’n"2) of the set F.(C.Xao,bo )-t- is
proper in LZ(rZ). As is standard (C .X,o,bo )+/- denotes the orthogonal complement of

C’Xao,bo in LZ(rZ). Choose G orthogonal to V. Then, for every function G2 orthogo-
nal to X ao,6o’ we have

(Ga,F’Gz)=(F*G1, G2)=O.
Thus, F*Gx=,.Xoo,bo for some constant ,4:0. This implies F*-l=,-1X-obo. Gl
LZ(r2) and hence F-I L(rrz). The converse is obvious. Thus, we have proved that
Wo is a minimum LZ-basis of L2( 2) if and only if F- L2( 2).

We will now show that F-L() and only if Theorem 4.6, statement 2 holds.
We simply observe that

IF(u,o)[-ldudo,

and hence F-1 L2(2) if and only if

. Examples fabfefis. In this section, we will build ambiguity func-
tions which include the standard ambiguity functions dealt with in radar theory along
with an example cong from Heisenberg group theory. We begin with a few general
remarks.
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An orthonormal basis of L2() is a set of functions f,, n 7/, in L2() such that

(f, fro) { 1, n=m,
O, n4:m,

and the closure of the linear span of these functions in L(). More generally, a
countable subset M of L() will be called an L-basis of L() if the closure of its
linear span equals L() and no proper subset of M has this property.

The LZ-basis of L() we construct will be of the following form. A fixed function
fL2() will be taken and we define

fa,b(t)=(M(b)S(a)f)(t)=eZ’ibtf(t+a), a,b7/.

We will consider examples where the set of functions

{fa,b:a,b 7/}
is an Le-basis and use Theorem 4 of 5 to show we have an orthonormal basis.

In the original manuscript, the authors believed that the Gaussian g(t)=e-t

leads to a minimal basis. As pointed out by the referee, this is not the case. A proof can
be seen by showing that G=IW(g)[ does not satisfy condition 2 of Theorem 4.6.

The two LZ-bases we consider will be orthonormal. Consider the rectangular
function

1, [tl < 1/2,
,(t)=

0, Itl> .
It is easy to see that r(t) satisfies the hypothesis of Theorem 4.5. Thus, the collection of
functions

= ( r,b: a,b7/}

is an orthonormal basis of L2(), called the rectangular basis of L2().
The rectangle function r is a standard signal processing function. The next basis

we consider is more exotic and comes from Heisenberg group theory, especially Theo-
rem 4.5 and [A-T, pp. 81-82]. Applying the Weil-Brezin mapping W to the Gaussian
g gives the Heisenberg group theory analogue of the classical theta function. Explicitly,

W( g)(x) e2"rix+x’/2) E

where g(t) e-,.2. Consider

w(g)(x)F(x)=
IW(g)(x)l

and observe F(x) satisfies the conditions needed for Theorem 4.5 to assert that the set
of functions

Xax,a F: al, a 2 7/)
is an orthonormal basis of H. By Theorem 4.5, if

t(y)=W-l(F)(y)
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then the set of functions

T= ( ta,b: a,b71)

is an orthonormal basis. The only facts we will need are given in the following lemma.
LEMMA 5.1. Let O(z)=Etze-:-e 2"tz, z=x + iy, be the classical theta function and

set

t(y)= l O(z)
dx, yR.

--0

Then the set offunctions
T= ( ta, b" a,b7/}

is an orthonormal basis of L2(R).
We call T the theta basis of L2(R).
We will now state, without proof, how the Fourier transform acts on the three

bases considered. First,

=t P(v)- sinrV
qT,[/r

Since, by Theorem 2.6

L,b= (f3 +b,-a
we have that T is invariant under the action of the Fourier transform and maps onto
sinusoidals.

We will now relate the cross-ambiguity function (fa,b,fc,d) to a:(f).
THEOREM 5.1. LetfL2() andfa,b=M(b)S(a).f Then

’(f,b,fc,d)( U, O) K.(f)( u + c a, o + d- b)

where K=(- 1)(a+c)(b+c)e-r[(b+d)u-(a+c)v].
Proof. Consider

(fa,bafc,d)( U, U )= (fa,baM( U )(U)fc,d)
which we can write

( M( b)S( a)f,M( v)S( u) M(d )S( c)f) (f,S(- a) M(- b ) M( v)S( u) M(d )S( c)f)
Using Lemma 3.2, this becomes

e- 2riUCe 2ria(v +c-b) (f)( u + c a, v + d- b ).

The theorem follows once we observe (f,g)= eriuvd:(f, g).
The ambiguity function of r is easy to compute and for convenience we give the

answer in the next lemma. The ambiguity function of does not have a simple form.
LEMMA 5.2.

sin(( u 1) fro)/ro,(r)(u,o)=
sin((u--1)ro)/rv,

0<U<l,
-l<u<0,

and vanishes elsewhere.
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The corresponding cross-ambiguity functions can be determined by Theorem 5.1.
Supposef L2(R) and

F= {f,b" a,b7/}

is an L2-basis of Lz(R). Then, any h L2() can be written as

h= E a(a,b)fa,b
a b 2i’

where

(h,h) Ea(a,b)a*(c,d)(f,a,f,d) < .
Of course, if F is an orthonormal basis the above condition reduces to

E Io(a b)l
2

a,bZ

By Theorem 5.1 and Lemma 5.2, we immediately have the following result.
THEOREM C. LetfL2() generate an L- basis. Let fdenote the set offunctions a"

7/ 7] C such that

_,(a,b)a*(c,)(L,,L,) < .
The set offunctions

F(a)= E
a,b,c,d

a(a,b)a*(c,d)K(a,b,c,d)A(f)(u+ c- a,o+ d- b)

where

K( a, b, c, d) (- 1)(a +c)(b+ d) e -i[(b+ d)u-(a+c)]

f, is the set of ambiguity functions.
Theorem D follows easily from Theorem C and the discussion in this section.
We close with an interesting example.
Example. Let p(t) be a periodic function of period 1 and consider

f(t)=p(t)e -t2.
Write p(t)= _.aZOl(a)eit.

Then, if

(p)(u,l) erilufol ( u) ( U)e2ilp t-- p* t+- dt

we have

(f)(u,v)=(e-t2)(u,) E (P)(u,l)e-’/2ei’(u+i)/9-

Thus we can interpret the ambiguity function of f as having a continuous part
(e -t2) and a "discrete" part which is a theta-like function with coefficients given by

the periodic version of the ambiguity function of p(t).
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MATRIX ELEMENTS OF IRREDUCIBLE REPRESENTATIONS OF
SU(2)SU(2) AND VECTOR-VALUED ORTHOGONAL

POLYNOMIALS*

TOM H. KOORNWINDER

Abstract. The matrix elements of irreducible representations of SU(2)SU(2) in a diag(SU(2) SU(2))-
basis are expressed in terms of vector-valued orthogonal polynomials, which generalize the Jacobi poly-
nomials.

0. Introduction. It is well known (cf. Vilenkin [11, Chap. 3]) that the matrix
elements of the irreducible representations of SU(2) in S(U(1) U(1))-basis can be
expressed in terms of Jacobi polynomials, such that the orthogonality relations for
these polynomials are equivalent to Schur’s orthogonality relations for the matrix
elements. More generally, let G be a compact Lie group with closed subgroup K such
that each irreducible representation of G, restricted to K, is multiplicity free. Consider
the matrix elements of the irreducible representations of G in a K-basis. Is it possible to
express them in terms of some kind of orthogonal polynomials? For the case G SU(2)

SU(2), K= diagonal in G, this paper will give a positive answer. (Note that this case
is a covering of the pair (G, K) (SO(4), SO(3)).) The resulting polynomials are
vector-valued and orthogonal on [-1,1] with respect to a positive definite matrix-
valued weight function. It would be of interest to generalize these results to the cases
(G,K)=(SO(n),SO(n- 1)) or (U(n), U(n- 1)).

The topic of this paper originated from work on the global approach to the
representation theory of a noncompact semisimple Lie group G (cf. [7]) for SL(2,),
Kosters [8] for SL(2,C)). In this approach one needs some knowledge of the matrix
elements of the principal series representations of G in a K-basis (K maximal compact
subgroup of G). These matrix elements have integral representations in terms of the
matrix elements of irreducible representations of K (cf. (4.1) in the case G= SL(2, )).
Manipulation of these integral representations will be simplified if one can express the
matrix elements for K in terms of orthogonal polynomials. Thus the results of the
present paper will be useful for the analysis on SO0(4,1).

It is the author’s feeling that the highly nontrivial example of vector-valued
orthogonal polynomials presented here is interesting for its own sake. Hopefully this
paper will also be useful for physicists, who have already studied the matrix elements
for SO(4) for a long time (of. for instance Freedman and Wang [3], Smorodinskfi and
Shepelev [10], Basu and Srinvasan [1]). Many authors start with the matrix elements of
the principal series representations of SO0(3,1) (cf. [1], [10]) and then obtain the matrix
elements for the compact case by analytic continuation. In the present paper, with its
emphasis on orthogonal polynomials, it seemed more natural to start with the compact
case, but in the final 4 the noncompact analogue is briefly discussed.

Sections 1 and 2 are of a preliminary nature. In 1 matrix elements for SU(2) are
reviewed, both as a tool needed later and as a motivating example. In 2 Schur’s
orthogonality relations for matrix elements for SU(2)SU(2) are expressed as an

*Received by the editors June 7, 1983.
Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands.
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orthogonality for vector-valued functions on [0, rr] and good candidates are selected for
the expected vector-valued orthogonal polynomials. In 3 these polynomials are really
obtained together with an integral representation and a power series expansion. There
are two further matters of particular interest in 3: First, a trick to deform the integral
of an analytic function over SU(2) into the complexification SL(2, C) by multiplication
on the right of the integration variable with a particular dement of SL(2,C) (cf. the
transition (3.3) (3.6)) and, second, an unexpected symmetry (3.11) for the vector-val-
ued polynomials.

1. The matrix elements for SU(2). Let l 1/27/+ "= (0, 1/2,1,-,..- }. Let H be the
space of homogeneous polynomials of degree 21 in two complex variables, made into a
Hilbert space by the choice of orthonormal basis ( ktl n l, + 1,.-., }

( 21n)t/2xl-nyl+n(1.1) kt"(x’Y) :=
1-

Define a representation T of GL(2, C) on H by

(1.2) ( Tt( ag fl )f )(x,y)’= f(ax+’y,flx+Sy).
The Tt’s form a complete system of representatives for (SU(2)) (cf. Vilenkin [11,
Chap. 3]).

Write Tt(g)(g GL(2,C)) as a matrix (tt,(g)) with respect to the basis functions

(1.3) Tt(g)+t, E (2,C)tm,(g)bm, gGL
m= -l

If g is a diagonal matrix then so is (ttm(g)). It follows from (1.1), (1.2), (1.3) that

(1.4) (121n) (ax+yy)t-.(flx+Sy)t+. ttm
21

m=l "/ l-m

1/2
xl-myl+m.

Expansion of the left-hand side of (1.4) yields

fl ) ((1- m)!(l+ m)!(l- n)!(l+ n)!)1/2

l-- n) A t-- m) ollfl l_ r.yl_ r rn+ +

r=OV(--.--m) r!(l-m-r)!(l-n-r)!(m+n+r)!"

This implies the symmetries

(1:6)

(1.7) tmn .y
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From (1.4) and (1.7) we obtain the integral representation

tmn
T (l-m)!(l+m)!

1 f2=( aeiq + fie-i )l-m (7ei + Be-tq,)l+ e 2in ddp.
2r "o

The following symmetry is apparent from (1.8).

tmn
7

--m,--n fl
Now specialize to SU(2). We will use the notation

(1.10) k(a,/3)’= _/

(1.11)

where I 1=+ 1,

( o
bo’= k cos , sin -(1.12) m,’= k(ei*/2,0).

Note that

(1.13) tlmn(m)=e-inemn.
By the Cartan decomposition each element of SU(2) can be written as m,bom and the
corresponding integration formula reads

1 rr4r4
(1.14) f(g)dg=-Jo Jo Jo f(m*bm+)sinOdO dk db fC(SU(2)).

u(2) 4,r 4,r

By Schur’s orthogonality relations, (1.13) and (1.14) we obtain

ttm,(bo)tm,n(bo) sinOdO=O, 14=l ’.

Suppose that m + n >_ 0, m n >= 0. Then the "lowest" element of the orthogonal system
(tmn]l=m,m+ 1,... ) is tm,. From (1.5) we obtain

(1.15) tmn(bo)m ( 1) ( m-n2m )x/2(sin -0 ) (cos -0) =+"
Hence, if 14= ’, then

foqr Iron (b{9)/rnn(b8)l’ ()2m--2n+l(0 0 )2m+ 2n+tmmn ( bo ) t,, ( bo )
sin g cos - dO O.

By (1.5) tm.(be)/tmm.(bo) is a polynomial in cos8 of degree <_l-re. It follows that

tmn ( bo )/t,o ( bo) const. Pl(_mn n’ m+n)(cosO ),

where the Jacobi polynomial Pl(_mn n’m+n) is an orthogonal polynomial of degree l-m
with respect to the weight function (1-x)m-n(1 +x)m+n on the interval (-1,1). Of
course, this result has been derived in many other ways (cf. Vilenkin [11, Chap. 3]).
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2. The matrix elements for SU(2)SU(2). Let K’= SU(2), G’= KK, K* "=

diag(K K), A "= {ao’= (me, re_o) ) (mo is defined by (1.12)). Then G=K*AK* is a
Caftan decomposition. The corresponding integral formula is

(2.1) (g) dg=- (klaok2)sin20dOdkidk2, fC(G),

which is a special case of Helgason [5, Prop. X.1.19].
A complete system of representatives for t is given by the representations

T11,12(11,12 1/271 +):

(2.2) Tt’"-(k,k2): T’(kl)(R)Tt(k2), kl,k2K.

The representation space Htx(R) Ht of T11’12 can be identified with the space of poly-
nomials in four complex variables x, y, u, , homogeneous of degree 2ll in x, y and
homogeneous of degree 2l2 in u, v. An orthonormal basis of nll{ HI2 is given by the
polynomials

(x,y, u, v),--> j/.11 (x,y) +2 ( u, v).

PROPOSITION 2.1 (cf. [6, Thms. 3.1, 3.2]). The functions ’,, j (Ill 121 =< =< + 2,

IJl <-_ 1) defined by

(2.3) ) 1/2,.K/1,12
vt, j (x,y,u v)’= (-1) ’’+‘=-‘ (21+ 1)(211) (212)

(ll + 12--1)t(ll -Jr-12+
X"(xv--YU)"+12-’ t2-ll’J U

form an orthonormal basis ofHt (R) Ht= such that

(2.4) Tll"2( k k) *’’’ ’==’e‘,y- , tj,j; ( k ) +51 (2,, kK.
j=-I

eta’ (: } byDefine the matrix elements of Tt t: with respect to ts K*-basis ( ,, j
11 + 12

(2.5) T"":(g) *t’’t=vt’,j’ t,,2,t j,(g)SaJ:,, gG.
t=lt-l:l j= -1

Since the elements of A commute with the elements (me, me) in K* and since

-ijO 1Tla’12(mo,mo)9,)l=e ,j

by (2.4) and (1.12), we conclude that

(2.6) t] ’t: j,(a )=0 ifj*j’j;l’, 0

By (2.4), (2.6) and the decomposition G=K*AK* the matrix elements ,tx, Z: will bel,j; l’ j’
known if we know the functions ,t,

"l,j;l’ jA"
PROPOSITION 2.2 (Cf. [3]). There are the orthogonality relations

(2.7)

1 ’a (2/+ 1)(2m + 1)
2 E (t""= (ao) "l,j;m (ao) sin2OdO

j=-(lm) & ,,j;m j ,j (2/1 + 1)(2/+ 1) "(’";"
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Proof. It follows from Schur’s orthogonality relations, (2.1), (2.4) and (2.6) that

(211 + 1)(21 + 1)

_1___ i’r t" t" th,’2 (klaok2)t!,J}m, (kxaok )sin2OdOdkldk--2’7r JO &*K* l,p;m,p p 2 2

lain lain

j---(t^ml j,_--(t^m)

t’ j(kx)tj;m ( } t,m (.ao.,,p.k )2r P ,j 2

"tp,j,(kl)t)t,m,j,(ao)tj,,,(k2) sin2OdOdkldk2

1 lain

E(21+ 1)(2m + 1) j=-{lAm)

1 rrtll,12 (ae)t!);m (a)sin2OdO2"- JO l,j;m,j j 0

It follows from (2.5) and (2.3) that .l,j;m,j(ao) is real.

12

FIG. 1.

From now on fix and m (l,m 1/271+,1-m71) such that l<__m. (Because of
unitariness of Th’t’- this last condition is not an essential restriction). Then the indices

in ,6,t2,t,j.;m,j.(aa) can assume all values in 1/2’ + such that (el. Fig. 1)

(2.8) + 12 => m, Ill-- 121_< 1, 11+ 2-1 ’
andj {- 1, -!+ 1,.-. ,! }. Thus, (2.7) can be viewed as the orthogonality relations for
the vector-valued functions

(2.9) O -+ tl,_l;m,_ (ao) t,,_,+ m,_t+l(ao).., t[} ’h (a

where (11,12) run through all values satisfying (2.8). Like at the end of {}1 we pick the
"lowest" elements of this orthogonal family. Candidates for these elements are all
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functions of the form (2.9) with + [2- m. Suppose that we can prove that for all 0 in
(0, or) the matrix

is nonsingular. Then, for n 0,1, 2, and k l, + 1,. -, we can define the real
vector-valued functions

(2.11) .X...pI,(X. ) (pl,n, n,k,_l(X.) ,,m pl, (x,))Pn,k,-,*X(X) "’’, n,k,,

on (- 1,1) by

(2.12) ttx,’= (ae)= E l(m+p)/2C’m-p)/2(ao) Pl’m (COS0)l,j; ,j l,j; ,j 1 + 12 m,l ,p
p=--I

Also define

(2.13) /:’(cosO)’= sine E ’(m+p)/2(m-p)/2( a ),(m+q)/2(m-q)/2(l,j;m,j O l,j;m,j ao)
j=-I

Then

(2.14) wI’m<cosO)’= (Wpl:(cOSo)) p,q=-l,...,l

is a positive definite real symmetric matrix for all in (0, r) and it follows from (2.7),
(2.12), (2.13) that the vector-valued functions Pj ’ satisfy the orthogonality relations

f (21+ 1)(2m + 1)1 j1pI’m (X) ,,mPn’,k" q(x)Wpl:q (x)dx=
)2 n n’k k’"(2.15) 2r ,,k,p

p,q=-I -1 (n+m+l -k2

In this paper we will show that the matrix (2.10) is indeed nonsingular for O in
(0,r) and that pl, is a polynomial of degree n-lp+kl. Hence the orthogonalityn,k,p
relations (2.15) will characterize the vector-valued functions pZ,n,’ up to constant fac-
tors.

3. The vector-valued orthogonal polynomials. First we derive an integral represen-
tation for the canonical matrix elements. Consider (2.5) with g= a0 and evaluate both
sides for (x,y,u,v)=(a, fl,-,gt), where 112/1/312-1. In view of (2.3) and (2.6) we
obtain

( l) lx +l=_m ( (2m + l)(21t)!(212)! )1/2(lt+12-m)!(lt+/2 +re+l)!

e-iO/2fl) 12 2)/l+/2-meiO/2g (el +e-ilfl

11 + 12 (__l)lt+12_l( (2l+1)(2ll)!(212)! )1/2+ +

t).z;,j(ao)t_z,,j (k(a, )).
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Hence, by Schur’s orthogonality relations:

(3.1) t[l"J/;’ J(a)=(-1)t-’( (2l+1)(2m+1)(11+12-l)!(11+12+l+1)!(/1 + 12-m)!(ll + 12 + m+ 1)! )1/2

( ei/2t
12 11, J e- e-’/B) (k( ))dk(a,3)

eiO/2 t tl, J

Next, by some manipulations we will modify this integral representation into a
form which is more suitable for our purpose. Substitution of (1.7) into (3.1) yields

t ’’2 (a)=cl,)m,J2rj;m,j 0 e iOloll
2 2) 11+12-m

where

(3.2)

c’, ’1 (--1)/-m ( (21+1)(2m+l)(11+lE_l)!(ll+12+l+l)!(m_j)!(m+j)! )1/2j;m, j (11 + 12-- m)!(l + 2 + m + 1)!( m + 11 12)!( m 11 -- l.In this last integral representation consider the K-integral as the inner integral and
make the transformation of integration variable k(a,B)k(,B)m_2,. Then the
integrand no longer depends on and we obtain

(3.3)

11’‘ (a)=cIa,’};,sfc(e’ll2 2 /1+/2
1, j;m, j O -Jr" e-*lBI

( aei/2 e-,o/2) m--’1 + l( KeiO/2 + e-io/2 ) + ’1- ’
t[-tl,j( k( ot, )) dk( a, ).

LEMMA 3.1. Let K be a connected compact Lie group which has a complexification
Ke. Let f be a complex analytic function on an open connected left-K-invariant subset V of
K,. containing K. Then

(3.4) f/(k)dk=f/(kk’)dk, k’ V.

Proof. The right-hand side is a complex analytic function of k’ on V which is
constant on K. cq
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Now observe that the integrand in (3.3) is the restriction to SU(2) of the complex
analytic function

(eOa_ e-OflT) ’ +’- (oteO/2_ fle-O/2)

o s (a, el.( e-/+e/)+-t_,,
For 0 < 0 < apply Lemma 3.1 to tNs function with K" chosen as

(3.5) go’=e/4(2sinO)-l/( e-iO/ ei/a )0/a -0/

We obtain

(.

t: ’t2 (a )=c:).je3im/a(2sinO)j;m,j 0

(go)fK(2l12cosO+-) ’l+’-m
tpj

p=-I

flm-tx +/2( )m+l-12t[2_l,p ( k(, fl )) dk(, fl ).

PROPOSITION 3.2. We have

(3.7) ,,+,/2,m-,/2 ((2/+ 1)(m-j)(m+j)(m-p)(m+p) )/
( -1) ’+ei/(2 sin O )

For 0 < 0 < the matrix t(+/’(-/( is nonsingular.t ,;, a0)), ,...,
Proof. Formula (3.6), together with (1.13) and the invafiance of the integral in (3.6)

under right multiplication by m, yields

t(+e/-e/(a ) (+/-/e/(2sinl,j;m,j

(gol"tj -,

The integral can be evaluated by using (1.5), (1.14), the beta integral and the
Chu- Vandermonde sum

(3.8) Ft( n,b, c, 1) (c-
n0,1,..-; c-b,cO,-1,...,-n+l.

Finally use (3.2).
ToN 3.3. Formula (2.12) holds with

(.

n,k,p n,k,p X+-- m+k(_) tk,p(k(,))dk(,),
K"
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where

(3.10)

l,m .= (__l)Xl( (2m+l)!(n+m--l)!(n+m+l+l)!(m--l)!(m+l+l)!An’k’P n!( n + 2m + 1)!(m-- k)!(m + k)!(m-p)!(m +p)!

There are the symmetries

(3.11)

(3.12)

pl, l,m l,m l,mP,-p k,n,k,p P,p,k Pn,-k,-p ,-

pl, (__X) (__ 1)"+k+PPln:m (x)n,k,p k,p

Proof. Formula (3.9) follows from (3.7), (3.6) and (3.2). The symmetries are
derived from (3.9) by the use of (1.6) and (1.9) in the case of (3.11) and by (1.13) in the
case of (3.12). rq

Of course, by the use of (2.12) and (3.7), the symmetries (3.11) imply certain
symmetries for the matrix elements t)t;,jlA. It would be interesting to get a deeper
understanding of the first of these symmetries.

Now expand the integrand in (3.9) with respect to x and use the invariance of the
integral under right multiplication with m, and (1.13). We obtain

(3 13) eln:k,p(x)=Al, f ,,m ,qxn-qn,k,p dn,k,p
q=lp+kl

q+ k + k even

where

(3.14) t,dn, k,p,q
(- 1) m-k+(q-k-p)/22n-qn!

(( q- k-p )/2)!(( q + k +p )/2)!(n q)!

f Ix(q+k+p)/2l(q-k-p)/2[m+n+(k-p-q)/2
"K

m+n+(-k+p-q)/2tlkp (k(Ix, fl)) dk(tx, fl).

By using (1.5), (1.14) and the beta integral we obtain, for k +p _>_ 0

(3.15)

,,m =dl, (-1)’+m+(q+k+P)/22n-qn!(l+m+n-(q+k+p)/2)
d,,,k,p,q ,,,_k,_p,q= ((q-k-p)/2)!(n-q)!(k+p)!(l+m+n+l)!

(l+kl!(l+p) { -l+k,-l+p,(q+k+p)/2+l
(l-k !(l-p) 3F2 k+p+l,-l-m-n+(q+k+p)/2

For q =p + k use (3.8). Then, for k +p >= 0
(3.16)

l, d l,dn, k,p, k+p n,-k,-p, k+p
(- 1)l+m+p+k2n-p-kt!(m + n k )!(m + n -p )!
(m- l+ n)!(m+ l+ n+ l)!(p+ k)!(n-p-k)!

((’+k)’(l+P)’)
1/2

,o.
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Hence pl, m is a polynomial of degree n-lp+ k I.n,k,p
THEOREM 3.4. The oector-oaluedpolynomial p t,,, ’ satisfies the conditions

(- 1)l-m2n(m-- k + 1).(m + k +
(3.17)

(n !(2m + 2), (m-l+ 1),(m + l+ 2),)1/2

+polynomial of degree less than n,

n’(3.18) E pln:k,p(X) x Wp’q (x)dx=O
p= -1 -1

for all q in ( 1,..., ) and all n’ in (0,..., n 1 }.
Proof. Use (3.13), (3.16) and (3.10) for (3.17), and (2.15) together with (3.17) for

(3.18).
Note that (3.17) and (3.18) completely determine P/’. They also imply (2.15) for

n n’. However, from the point of view of Theorem 3.4, the orthogonality relations
(2.15) for n n’, k : k’ are rather unexpected.

Remark 3.5. Lemma 3.1 can also be applied in order to extract the factor t,,(bo)
cos(0/2), /3"from the integral representation (1.8) for tm,(bo). Substitute a

sin(0/2) in (1.8) and make the successive transformations of integration variable
z g/X, wheree2i*=z=eicot(O/2), X=2:

(1-m)!(l+m)! )1/2
2,ri (zcos(O/2)+sin(O/2))t-m(_zsin(O/2))+cos(O/2),+, n-,-Iz dz

(o)

(sin(0/2)) m--n (COS(0/2)) m+n

2r
ei* COS2

=(--2i) l+m sin COS

ei(n- l) (1 el,) +mdb

--rl (cosx+isinxcosO)’-me2nix(sinx) l+mdX
Now assume m >= n and use [2, 1.5(29)]. Then

(3.19) (COSxtmn(bo)/tmmn(bo) const. +isinxcosO)l-me2nix(sinx)t+mdX

with nonzero constant. Again by [2, 1.5 (29)], the right-hand side of (3.19) is a
polynomial of degree l-m in cos O which takes a nonzero value if cos0 1. In Greiner
and Koomwinder [4, {}1.3] the integral representation for Jacobi polynomials resulting
from (3.19) is obtained in a quite different context.

4. The noncompact analogue. Let now G’= SL(2, C) with Iwasawa decomposi-
tion G KAN such that

K= SU(2), A ( at ( et/20 e -t/20 ) } 1 z)lzc}tN N’=(( 0 1
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Let k(a, fl) in K be defined by (1.10) and m, by (1.12). M’= {m,10=<<4r } is the
centralizer of A in K.

Let ,rX’k(hC,k 1/27/) be the representation of G which is induced by the repre-
sentation mcatn ,-+e-itCCe xt of MAN: a principal series representation. Then rx’lK is
unitary and decomposes as

t=,+
Tt. Choose a K-basis for which ,r x’ has matrix

elements ,r x’t,p;,,,,q(l,m=k,k+ 1,..., p= -l,...,l; q= -m,...,m) such that

qrl, p;m, q q kK.

Then

(4.1) ’rl’h’kl,j;m,j (a t) (21 + 1) x/-f/( e- rials- + e till2) -A-

et/2fl )e-t/zt tlkj(k(t,))dk(t,)

cf. Rihl [9, 3-5], Kosters [8, 3.1].
Similarly to (3.3) we derive from (4.1) that

(4.2) ,a.A,k (at)=Ck, fK(e tlal
2 --h--m--1

,/20 t/2 m+k
,,j;m,j l,m +e/lBI (e- -e )

( e t/2gt + et/2) m-ktkj(k(a,))dk(a,8),

where

(4.3) ( (2/+l)(2m+l)(m-j)!(m+j)!)1/2Ck’l’m’J (m-k)!(m+k)!

For s > 0 let

(4.4) h" (2shs)-l/2( es/2 e-Se s/2 e s/2

Then we can apply Lemma 3.1 to (4.2) with k’" h for 0 < < s. We obtain

(ash 1/2(s-t)-flsh 1/2(s+ t)) "+’

(fish 1/2(s-t) +/sh 1/2(s+ t)) m-k

0<t<s.
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If Re, __< m 1 then the limit passage s $ is certainly allowed in (4.5).

(4.6)

rx, k (- 1)2m(2sht)ml,j;m,j(at)=Ck,l,m,j

E tj(ht)fr(21fl[2cht + a/-/)-)-m-1
p=-I

[ +k( )m-ktkp(k(ol,[))dk(o,[)"

Closer examination of the integral, using (1.14), shows that (4.6) holds with convergent
integral if Re < 0. Thus it is meaningful to study the vector-valued function x
(pt,,, k,,(X))=_t,...,t, defined by (3.9), for complex n, Ren > 0, and for x> 1. In particu-
lar, this function has a nice asymptotics as x .
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ON THE CONVEXITY
OF THE ZEROS OF BESSEL FUNCTIONS*

ARP/kD ELBERT" AND ANDREA LAFORGIA*

Abstract. Let c, be the kth positive zero of the cylinder function C,,(x)=cosaJ,,(x)-sinaY,,(x). We
prove among other things that the function G1 is convex on =<v< o if r-5 +e0 <a< r, where e0
0.163302 is specified in Lemma 2.1.

1. Introduction and background. For v => 0 and k= 1,2,. ., we use Jk and ck to
denote the k th positive zeros of the Bessel function J(x) of the first kind and of the
,general cylinder function

C(x) cosaJ(x ) sinaY(x )

respectively, where a is fixed, 0 <_ a < r and Y(x) is the Bessel function of the second
kind.

The definitions may be extended to negative values of v in such a way that ck
varies continuously with , and c 0, when v a/r-k and on the interval

--k<v< --k+l.

c,g is the first positive zero of C(x) [5, pp. 508-509].
Since the notation ck does not reflect the dependence on the values a, it is useful

to define the functionj, where is a real positive parameter, as in [2].
The sequence Jl, J;2, has been already defined. For any x with k-1 < x < k,

where k is some natural number, let j=ck with a=(k-)r. It is clear that this
correspondence betweenj and ck is one to one. Moreover by this notation the above
mentioned limit relation for c reads as

(1.1) lim j 0.
v-* -+0

The function c satisfies the differential equation [5, p. 508]

d---c 2c, K0(2csinh t) e- dr,

where Ko(x) is the modified Bessel function of order zero. Thus the functionj. is the
solution of the differential equation

--d 2j K0 (2j sinh t) e- 2tdt

for all x > 0 with the boundary condition (1.1).
Since the fight-hand side of (1.2) is Lipschitzian with respect to j for j > 0, the

solution of any initial value problem is unique. Concerning the boundary condition
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(1.1) the uniqueness is ensured by the fact that for every r > 0 we have lim_ +oj O.
So the relation lim_._+oj’,=O implies ’ =r. By the uniqueness we have that, if
0 < r’ < r", then

(1.3) j,,,<j,,,,,, for v> -r’.

An interesting special case is when v= 1/2. Since J1/E(X) V/2/rx sinx, Y/E(X)
X/2/rx cosx, the general cylinder function Ci/2(x ) is

C/2(x)= i --rx2 sin(x + a) 0 < a <or.__

Consequently c/2,k kr- a, hence with our notation

(1.4) Jl/2,, rr for x > 0.

In the case v 1/2 there is another similar relation, namely

(1.5) j_l/2, r- - r for r> .
An alternative proof of the monotonicity property offi given in (1.3) is as follows.

Let us consider the initial value problem for the differential equation (1.2) with the
initial condition jo rcr at v0= 1/2. Then by (1.4) and by uniqueness the solution ob-
tained isj. Making use again of uniqueness we have for any two solutions j,, j,, of
(1.2) with 0 < x’ < x"" J/2,’ x’r < r"r =Jl/2," and consequently (1.3) holds.

The relations (1.1), (1.4), (1.5) show that the notationfi is reasonable.
We observe that the property (1.3) implies that the function ck with fixed ,,k

decreases when a increases and 0 _< a < r. This result has been proved by L. Lorch and
L. J. Newman in [4, p. 362] using more sophisticated arguments.

In [1] the first author proved that the functionsjl,j2,.., are concave on the whole
domain of existence. This result was extended by M. E. Muldoon and by the second
author [3] to show thatj is concave for x >= 1/2 on , >= 0. The question arises naturally
whether the concavity ofj holds for every x > 0. The answer is in the negative and our
aim here is to show that for sufficiently small x the functionj is convex at least on v >= 1/2.

Now we recall some known results which will be useful in the next section. We
start with the integral formula [5, p. 388]

(1.6) Ko(x)e-Xdx= l.

The second derivativej" dj/dv2 has already been computed in [1, p. 87]

(1.7) j"=2Jfo Ko(2jsinht)e-2tI(t)dt

where
j’ j’(1.8) I( ) 2,-- tanh + tanh 2t.
J J

Despite the fact that the formula (1.7), (1.8) was derived for j’, J,2,’", it is not
difficult to check that all steps used in [1] to derive (1.7) are valid also for all x > 0.

Finally we recall the integral formula for Ko(x) [5, p. 446]

Ko(x ) e-XCoshtdt.
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From this formula we obtain that Ko(x ) decreases as x increases, and also the stronger
property that eXKo(x) decreases on 0<x < oo. This property will be exploited in the
proof of Lemma 2.3. For the sake of the later reference we express this property in the
form

(1.9) eXKo(x)<eYKo(y) if O<y<x.

2. The main result. Our main result will be proved as a simple consequence of the
next four lemmas.

LEMMA 2.1. There is a value eo > 0 such that the inequality

e 2e(sinh t) + 2 sinh > cosh

holds for e > eo and > O. The value of eo lies between 0.16330286 and 0.16330298.
Proof. Let us consider the function f(t, e) defined by

f(t, e) 4e sinh t- 2et log cosh t.

Then we must find the value e0 so that f(t,e)>O, for all t>0 and e> e0. Since
2 sinh > 0 for > 0, we obtain for > 0 that

1 logcosh
e> - 2sinht-t

=g(t).

The function g(t) satisfies the relations limt_,+og(t)=0; limt_,+g(t)=0; and
g(t) > 0 for > 0. Therefore g(t) is bounded from above and

Co= maxg(t)=g(to)>O with some to (0,
t>0

Hence f( o, Co) 0 and, owing to the restriction f( t, e0) _>_ 0, we find (lot)f(to, eo)
--0. To determine the values eo, o we make the following observation. The function

f( t, e) 4e cosh 2e tanh

is convex on 0_<t< , (O/Ot)f(O,e)=2e>O, limt(O/t)f(t,e)=o for every e>0.
We claim that the function (O/Ot)f(t, eo) has exactly two single zeros. Suppose the
contrary. Then by the convexity (O/Ot)f(t, eo) would have double zero at t= 0. Conse-
quently (O/Ot)f(t, eo) would be nonnegative and f(t, eo) would be nondecreasing. But
f(O, eo)=f(to, e0)=0; hence f(t, eo)=-O for 0 =< t__< o which contradicts (/t)f(O, eo)=
2Co>0.

Suppose that e is in the vicinity of eo. Let tl(e) and t2(e) be the zeros of the
function (O/Ot)f(t,e) with tl(e)<t2(e). Then f(t,e) has a local maximum at t=tl(e)
and a local minimum at t=t2(e). At t=t2(e the second derivative ()2/OtE)f(t,e)
should be positive.

Thus we have the following algorithm for computing the values o, eo. We choose a
value t2>0 as t(e). Then e=e(tE)=g(t2). We should check whether

-t f( t, e) >0.
t=t2;e=e(t2)

By a trivial calculation we find that the latter inequality certainly holds if t >__ 1. Let
F(t2) f(t ., e(t)). Then we must solve the equation F(t) 0.
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For (1)= 1.165513 and (2)= 1.165514 we find F(t(1))= 1.5 10 -7, F(t(2)) -2.8
x 10 .7 and hence the value of o in question lies between (1) and t(2); consequently
e(t(2)) 0.16330286 < eo < e(t(1)) 0.16330298 as we stated.

The next three lemmas are of local type characterising the local behaviour of the
functionj,.

LEMNA 2.2. If, for any real number x > 0 andfixed vo > O,

vo dJo d 2

Jo dv >1’ then dv2Jur
Proof. Here and in the sequel, we shall use the notation

d
Jo=J.o , J;=

d 2

and j’’= -j’
P-PO

From (1.8) we get

2j’ tanh
I(0) O, I’(t) 2vJ 1 - 2.

A cosh2t A cosh9‘t

Hence limt_,I’(t)=-2 and by our assumption, I’(O)=2(voj/jo-1)>O. On the
other hand (jo/2j[)cosh4t.I"(t)=-2vosinhtcosht+l-2sinh2t. Since v0>0 the
function on the right-hand side decreases from 1 to -oo as increases from 0 to c.
Thus the function I(t) is convex for small t’s and then ultimately concave.

These properties of I(t) show that there is a value o such that I(t)> 0 for 0 < < o
and I(t)< 0 for > 0.

Now we use the fact that Ko(x decreases for x > 0. From (1.7) we obtain

Ko(2josinht)I(t)e-2otdt

> Ko(2josinhto)I(t)e-2tdt=Ko(2josinhto)(11+I2),

where

J; -2rot11 tanh2 t. e dt
J0

and

An integration by parts of 12 gives

12=--[( 2vjtanht-2t)Jo e-2vt]2Vo
1 fo(2VoJ’ 1+ VVo Jo cosh2

2) e- 2Vot dt.
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For vo > 0 the first term on the fight-hand side is zero; hence

J’’ > Ko(2josinhto) fo
0 (J -1)e-2otdt>O,2jo Jo Vo

i.e. j’’ > 0 and Lemma 2.2. is proved.
LEMMA 2.3. For Vo> eo, x>0 suppose 0<J,o <Vo-eo, where eo is specified in

Lemma 2.1. Then

Proof. By using the inequality (1.9) with x= 2vosinht and y= 2josinht in (1.2), we
obtain

J foJo K(2Jo sinh ) e- 2’t dt

> 2 Ko(2Vosinht)e2(sinht-t)+2(v-J)sinht-2sinhtdt.

Since Lemma 2.1 obviously implies

e 2e(sinht-t)+ 2co sinh > cosh t,

then by the substitution x= 2vosinht and by (1.6) we have

J__o > 2 Ko (2vo sinh ) e icosh dt Ko ( x ) e xdx
Jo Vo

1
1o

which completes the proof of Lemma 2.3.
LV.MM 2.4. If, for any real > 0 and vo > 0, 0 <J,o <= Vo then

vvJ <1

Proof. By making use of (1.2) and (1.6) we have

j’ 2jo Ko(2josinht)e-2otdt<2jo Ko(2jot)e-2jotdt=l,

which is the desired result. Thus the proof of Lemma 2.4 is complete.
Now we can enunciate the main result.
THEOREM 2.1.1ffor some vo > eo and any given real > 0, 0 <J,o <= Vo- eo’ where eo

is defined in Lemma 2.1, thenj,<__v-eo and (d2/dv2)j>Ofor v>= vo.
Proof. The first part of Theorem 2.1 is a consequence of Lemma 2.4. In fact this

means that the functionj,- v decreases, i.e.

j, v <J,o Vo--< e0 for v >__ vo.

To show the second part we use Lemma 2.2 and Lemma 2.3. An application of Lemma
2.3 gives vj’/j > 1 for v >__ v0 and by Lemma 2.2 we obtainj" > 0 for v _>_ v0.

The proof of Theorem 2.1 is then complete.
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Combining (1.4) with Theorem 2.1 we obtain the following.
COROLLARY 2.1. If O<x<__(1/2--eo)/r (=0.107173..’), then the function j, is

convex for v >= 1/2.
Let us remark that c1 =j where a=(1-x)r hence c1 is convex on the interval

1/2=<v< if ,r- 1/2 +e0=<a <,r.
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SPECIAL FUNCTIONS FOR THE
SYMMETRIC SPACE OF POSITIVE MATRICES*

AUDREY TERRAS"
Abstract. Section 1 of the paper gives three applications of a basic principle that eigenfunctions of

invariant differential operators are eigenfunctions of invariant integral operators. The first application is a

derivation of a noneuclidean analogue of the Poisson summation formula, the second is the evaluation of an
integral of Muirhead which has been of interest in multivariate statistics, the third is the evaluation of gamma
type integrals arising in the theory of Eisenstein series for the general linear group. Section 2 of the paper
concerns K-Bessel functions for the general linear group. It relates such functions with gamma functions for
the symplectic group and applies the theory to the estimation of Fourier coefficients of automorphic forms
for GL(3, ’).

Key words, general linear group, positive matrices, harmonic analysis on symmetric spaces, fundamental
domains for discrete groups, Poisson summation formula, K-Bessel functions of matrix argument, gamma
functions, theta functions, Eisenstein series, automorphic forms, spherical functions

Introduction. Here we consider some aspects of analysis on the symmetric space
9 of positive n n matrices. The main motivations for this work are statistical sorts of
problems in physics and number theory (see N. Hurt [41] and D. Wallace [42] for some
examples).

Section 1 concerns applications of the basic principle that eigenfunctions of in-
variant differential operators are eigenfunctions of invariant integral operators. First,
the principle is applied to obtain a noneuclidean analogue of Poisson’s summation
formula which is simpler than Selberg’s trace formula. This result can also be viewed as
Mercer’s theorem and is thus a prerequisite for the Selberg trace formula (cf. Selberg
[22], Terras [27], [28], [32]). The simplicity of this noneuclidean Poisson summation
formula suggests that the result may well be a very useful tool in the higher rank
situations. There is already much evidence for this (cf. Bartels [2], Hejhal [8], Kudla and
Millson [14], Mennicke [18], Patterson [21], Selberg). A second application of the basic
principle of 1 is the evaluation of a multiple integral that has been of use in multi-
variate statistics (cf. Muirhead [19, Thm. 7.2.5]). A third application appears in the
study of Eisenstein series for GL(n,/), the group of integral n n matrices of determi-
nant + 1. Here we generalize a method of Maass [16] and Selberg for obtaining the
analytic continuation of Eisenstein series. The method rests on the evaluation of an
integral which is an analogue of the gamma functions. The basic principle of this
section greatly simplifies the computation.

Section 2 concerns applications of properties of K-Bessel functions for 9n studied
by Bengtson [3]. First, we note that K-Bessel functions are involved in the transforma-
tion formula for the noneuclidean analogue of the theta function associated to the
Siegel modular group. This occurs because the K-Bessel function for 9,, is the analogue
of the gamma function for the symplectic group. One motivation for this study is the
hope to obtain higher rank analogues of asymptotic results on the number of lattice
points in a circle of radius R as R oo (i.e., noneuclidean circle problems). Bartels [2]
has obtained the main term in such asymptotic exlansions for any cocompact discrete
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subgroup F of a connected semisimple real Lie group G with finite center. We are
interested in the case that the fundamental domain G/F is not compact; e.g., G=
GL(n, R) and F GL(n, 7/). For this case the spectral decomposition of the G-invariant
differential operators on L2(IG/F) has not been completely described (cf. Arthur [1],
Jacquet [12], LanGLands [15], Osborne and Warner [20], Venkov [33]). Thus the
noneuclidean analogue of Poisson summation associated with F cannot be completely
described. The second application of K-Bessel functions considered here is a discussion
of the growth of Fourier coefficients of automorphic forms for GL(n,7/). Recently
Takhtadzhyan and Vinogradov [26] Imai and Terras [11], and Terras [31] have obtained
such expansions. And Takhtadzhyan and Vinogradov [26] have considered applications
of such expansions to the extension of work of Kuznetsov.on divisor functions. Here we
are motivated by the hope to obtain a theory of automorphic forms for GL(n, 7/) which
closely parallels the classical theory of modular forms and Maass wave forms when
n 2. At the end of 2, we include a brief discussion of the relation between K-Bessel
functions for n and Whittaker functions of the type studied by Bump [35], Jacquet [13]
and others.

General
x/r

fundamental
domain polygon
with sides
identified

f=C<(X)
draw an example
with support in

the fundamental
domain

F-periodization

off

Euclidean

x x+ (0,1)

(0,1) , (1,1)

graph off

graph of g

-Noneuclidean

zz+l

p3

1 1/2 0 1/2 1

graph off

graph of g

FIG. 1. F-periodizations of compactly supportedfunctions on X.
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FIG. 2. Tessellation of the quaternionic upper halfplanefrom SL(2, 7/[i]) in stereo. Drawn by the

UCSD VAX computer and Mark Eggert.

I. Applications of the basic principle on eigenfunctions of invariant integral and
differential operators. An introduction with many other references for the problems
under consideration appears in Terras [27], [28], [32]. A brief account of the non-
euclidean Poisson summation formula for F SL(2,7/) follows. Table 1 summarizes a
comparison of euclidean and noneuclidean harmonic analysis for some two-dimen-
sional, rank one symmetric spaces X= G/K. Figure 1 pictures the F-periodizations of
compactly supported functions on X. We are actually interested in higher rank ana-
logues. The simplest example is 3 C 6 or the determinant one surface in 3- To our
knowledge, no one has attempted to picture the tessellation of 3 obtained by letting
GL(3,7/) act on a fundamental domain. To give some idea of the higher dimensional
tessellations, we include a stereo picture of a tessellation of hyperbolic 3-space (alias the
quaternionic upper half plane) in Fig. 2. Table 2 gives a comparison of spectral
expansions of functions in L2(X/F) with F as in Table 1. For a discussion of these
results, see Terras [27].

The relation between Fourier series and Fourier integrals can be expressed in
terms of Poisson’s summation formula forf C(R 2); i.e. f infinitely differentiable with
compact support:

(1.1) the 7/2-periodization off= g(x )

E f(x+n) E /(n)en(X),
nZ nZ
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TABLE 1

Comparison of euclidean and noneuclidean harmonic analysis in two dimensions.

General

symmetric space
xX---G/K

arc length ds

Laplacian A

G-invariant area dt

G isometry group

K= subgroup of G of elements
fixing the origin

Action of g G on x X

Euclidean

F discrete subgroup of G

elementary eigenfunctions of A

eigenvalues

Helgason-Fourier transform

Fourier inversion
or spectral
decomposition of A

(e.g. forf L2 X))

convolution (defined by
convolution on G)

differentiation

heat equation

u(x,O)=f(x)
u(x,t)=f*gt
gt fundamental solution

R2 2/x= x: ---R (0}
euclidean plane

d=dx +d
2 02

+ _._-SS_A
OX? }X

dlx dxl dx

R

K-f0}

xx+g
vector addition

1"=7/2

ey X)= exp(2ritxy

Aer= -4r211yll

f y )--fgf X)ey X dx

f(x)=](-x)

"-/. ,
(e.g. forf g Ll (N9- ))

Af(y)= -4r:llyll:f(y

gt(X)

(4 rrt) lexp(-Ilxll/4t)

Noneuclidean

z=x + iyH, xg,y>O
Poincar6 upper half plane

ds2 y- dx2 + dy2

A y2( 02 )2)i)x )y2

dp. y- dx dy

g G= SL(2, n)

( a bd) a,b,c,dgg=
c ad-bc=l

k K= SO(2), i=v/- 1 =origin
k orthogonal

tk .k=l

az+ b
z gz=

cz+d
fractional linear mapping

, I’ SL(2, ’)

( a bd) a,b,c,d7/
/=

c ad-bc=l

r--r/_+/

ps(z)=(Imz)s, sC
Aps=s(s-1)ps

.f ,. ff z )p. z

sC,kK
f(z)

eft ’f(s,k)p(kz)

tanh r dt

forf, g L (H) withf or

g K-invariant

W(Af)(s,k)=g(g- 1)g’f(s,k)

gt ke-ri-(4rt)- 3/: --,/4e

fo be- b2/at db

v/-cosh b- cosh r
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TABLE 2
Harmonic analysis on the fundamental domain.

General Euclidean

e. A complete
orthonormal
set of eigenfunctions of
A on X/F

Aea kae

e x exp(2 ritax
aTl

purely discrete
spectrum

Ae.= 4r2llall2e.

g(x)=

E or f (g,e)e(x)o(a)da
aA

where the integral or sum can be

thought of as a Stieltjes integral
and the spectral measure o (a)
comes from the asymptotics and
functional equations of the e,

g(x) E (g, ea)ea(X)
aEZ

ordinary Fourier
series

fX/ g(x)h(x)dx(g,h)=
F

Poisson summation
formula

fCc(KX)
g(x)= E f(yx)

.o(a)da
(this is also Mercer’s

theorem)

application to

the circle problem

E f(n)e.(x)
n.

Here e (0)

N()
=#{ n-.2ld(n,O)<=x)

X, X O0

d(n,O)--Ilnll

Ozz(a)= exp(-atnn)
n.

---oo/a)
a

----,aO+
a

theta function

Noneuclidean

Continuous Spectrum of Eisenstein
series"

E(z)= Im(yz),Res>l,

with analytic continuation to other
values of s
Discrete Spectrum of cusp forms and
constants:

Vo=(3/)/

v. ,,z l, complete orthonormal

set of cusp forms (which vanish

at o by definition)

AE=s(s-1)E
Avo 0(0 1) vo

g(z)= E
n>=O

+ -i l/2
g’ Es Es z ds

Roelcke-Selberg spectral
decomposition of A on

(s(, )\)_
f(yz)

E f(sn)Vn(i)v.(z)
n>O

1 f. f(s)E,(i)E,(z)ds+
es=l/2

](x)=ff(z)p(z) a.

Or(a)= exp(-Tr(tyy))
f z exp( a cosh d (i,z))

K K-Bessel function

Nr(x)=
# { vVlcovi, i) <= }

6x, x o
d z, w distance z to w

: os ri, i) T(trr)
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with

en(X)=exp{2’i(nx + n2x2) } and f(a)=fn2f(Y)ea(y)dy.
It is possible to weaken the hypotheses on f, but there are examples of functions f for
which f,f LI(R) but f(n)= 0 for all n 7/, while f(0)= 1, f(n)= 0 if n Z, n =/= 0.
Applications of the Poisson summation formula include:

i) a study of the asymptotics of the eigenvalues of the Laplace operator on
L2([ 2/7/2),

ii) proofs of transformation formulas of theta functions and the analytic continua-
tion of zeta functions obtained from theta functions by Mellin transform.

Expositions of these basic facts can be found in many books (cf., for example Terras
[27, {}{}1.3, 1.4]).

Next we will see that it is possible to use a simple lemma about eigenfunctions of
integral and differential operators to obtain a noneuclidean analogue of the Poisson
summation formula, using the same argument that is usually given to prove (1.1).
Suppose that fC(KH); i.e. f’H-+C is infinitely differentiable with compact
support on the Poincar6 upper half plane H and f(kz)=f(z) for all kK= SO(2) and
z H. The noneuclidean Poisson sum formula says"

(1.3) the F-periodization off= g(z)

E f(,tz)
3, SL(2, Z)/+ I

-,-,,,1 /f(s)E’(i)Es(z)dsE f(Sn)On(i)on(Z)+
n_>_0 es=

using the notation of Tables I and 2. Here

the noneuclidean Fourier transform off C(/H).

This transform is also the Selberg transform (see T. Kubota [43, p. 56]).
The inversion formula for the noneuclidean Fourier transform (4) goes back to

Mehler in 1881 and Fock in 1943. Harish-Chandra and Helgason have generalized this
to arbitrary symmetric spaces of real semi-simple Lie groups. More information on this
subject can be found in references [9], [27], for example. The noneuclidean Poisson
summation formula for H/F compact goes back to Delsarte (1942). Applications and
generalizations have been found by Bartels [2], Elstrodt, Grunewald and Mennicke [4],
Hejhal [7], Kudla and Millson [14], Mennicke [18], Patterson [21], and Selberg.

One of the main results needed for a discussion of the noneuclidean Poisson
summation formula is Proposition 1 below. First, a few preliminaries are necessary.
More details on these preliminaries can be found in the references, particularly Helga-
son [9], Maass [16], Selberg [22], and Terras [27], [32].

Let

,,= { YR""ItY Y, Y positive definite}.
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Here Y positive definite means Y[x]= tx Yx > 0 for all x , x = 0. One can turn the
space into a Riemannian manifold by providing it with an arc length"

(1.5) dsV-=Tr((y-ldy)9) for Y=(Yij)lzi,jz,,, dY’-(dYij)l_i,j_n"
The general linear group GL(n, R) { g R "x.i detg 0} acts on. via

(1.6) yy[g]=tgyg,.

Set G GL(n,) and K= O(n). One can easily show that can be identified with the
quotient spaceG via

rg - I g tgg.

The action of G on leaves the arc length (1.5) invafiant. The G-invariant measure d
on is

(.7) d(Y)=d=lYl -+’" H dy,, IYl=detY.
lin

The Laplacian on is

(1.8) =Tr Y if
si,

with=0 for Cj and 1 for =j. There are analogous G-invariant differential opera-
tors

=r g =1,,.-.,,

forng an algebraically independent basis for the algebra D() of all G-invariant
differential operators on. Here a "G-invafiant differential operator" is a differential
operator that commutes with the action of G on.

The fundamental special functions for D() are the power functions defined for
se, Y, by

(1.9) p(Y) I1 where Y=

=deternant of .. It is easily proved that the power functions are eigenfunctions
of all the differential operators in D(,).

The G-invariant integrN operators of interest here are the convolution operators
defined by convolution on the group G itself (Selberg [22] calls the kernel of such a
convolution operator a point-pair invariant). In fact, we can define for g C(/K),
i.e. G continuous and K-invariant with compact support,

(1.10) qf(X) (f, g)(X)=f(Y)g(XY-)d.
For we can set f(x) =f(’xx), when x a. Then

/( (

_
=/( g(,(-1-)=(, g(,-1(, -).
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When g is K-invariant, we can move the tb-1 around in the argument of g and obtain

f( b ) , ( ab -1) f(tbb ) g( b- Xtb- Itaa ).
Properties of convolution operators.
1) The convolution operator Cg defined in (1.10) commutes with the action of G on

n; i.e., Cg is an invariant integral operator.
2) If g(y)=g(y-X), then Cg is a self-adjoint integral operator on L2(n, d/).
3) Cg, hf CgChf
4) The convolution operators Cg, for g Cc(,/K ), form a commutative algebra

of operators.
The Fourier transform of a functionf Cc(,/K) as considered by Harish-Chandra

and Helgason is"

fv Y)p(Y)d for(1.11) /(s)= :(
The inversion formula for K-invariant functions f is due to Harish-Chandra and was
extended tof Cc(,) by Helgason (cf. Helgason [9] and Terras [27, 32]).

PROPOSITION 1 (eigenfunctions of invariant differential and integral operators).
a) Let f C(n) be an eigenfunction of all the G-invariant differential operators

LD(); i.e., Lf ,Lf for X L C. Define s C by Lps XLp, where p denotes the
power function (1.9). If gC(/K), then f is an eigenfunction of the convolution
operator Cg in (1.10) with

where , is defined by (1.11) and s* =(s,_,. .,s, -(s + + s,)). Here p(Y-[w])=
ps,(Y), where

W--"

0 1

0
1

b) Conversely, supposef C(n) is an eigenfunction of all the convolution operators

Cg with g Cc(n/K). Then f is also an eigenfunction of all the invariant differential
operators.

For a proof of this proposition see Terras [27]. The result goes back to Selberg [22]
and in this context the Fourier transform is called the Selberg transform.

Now we can discuss the noneuclidean Poisson summation formula (1.3) by giving a
noneuclidean analogue of the usual proof of (1.1). We consider only the case G SL(2, R)
here because the generalization of the Roelcke-Selberg spectral decomposition to
F SL(n, ’) has not been so explicitly worked out, although one expects an analogous
result (cf. Arthur [1], Jacquet [12], Venkov [33], and some unpublished notes of Kaori
Imai).

The proof of (1.3) proceeds as follows. The idea is simply that the Roelcke-Selberg
spectral decomposition of the F-periodization of f in (1.3) can be computed using
Proposition 1. Thus we must set

g(z)= Z f(yz), zH,
3’ SL(2, Z)/4- I
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and compute, for example, the "Fourier coefficient" for g corresponding to the discrete
spectrum element v (cf. Table 2)"

with v# (gi) v( g- xi) for g SL(2, ). Using Lemma 1, we see that

(g,v,)=/(s,)(i).
The calculation proceeds in exactly the same way when v, is replaced by an Eisenstein
series. Since fhas compact support, the convolution integral converges absolutely.

One can extend the noneuclidean Poisson summation formula beyond smooth
functions with compact support, and that is necessary for most applications.

As an application of the noneuclidean Poisson sum formula let us briefly consider
a noneuclidean analogue of the circle problem which has been studied by many authors
and generalized considerably (cf. Bartels [2], Elstrodt, Grunewald and Mennicke [4],
Mennicke [18], Patterson [21], Selberg).

As usual, let F SL(2, 7/) and F F/+_ I. Consider for x > 0"

(1.12) Nr(x)=# 3,r coshd(i,i)=-Tr( /) <__x

Then Patterson [21] shows that

(1.13) Nr(x ) 6x, x oe,

along with an estimate for the error in this asymptotic formula. Mennicke [18] discusses
a proof of analogous results involving a noneuclidean analogue of the theta function,
defined for a > 0 by:

(1.14) 0r(a)= Y’_ exp{ Tr(-a 3"/)}.
Formula (1.14) makes sense for F GL(n, 7/) or Sp(n,/), of course, with F F/center.

In order to apply the noneuclidean Poisson sum formula (1.3) to the noneuclidean
theta function (1.14), we need to compute the noneuclidean Fourier transform (1.4) of

f(Y)=exp{--Tr(Y)), r so:,_:{r :=llrl:l },
since we can identify the Poincar6 upper half plane H and S/’2 via

H S/’a2

z x + y Yz= ( y- YO ) [ Io -X].l
It turns out that iff denotes the Fourier transform (4), then

(1.15> f(s)=f nexp(-aTr(Yz)}y’-2 (2rr-- dx dy 2 K,_ l/2 ( a ).
a

Here K denotes the usual K-Bessel function.
As a 0, the main term on the right-hand side of the noneuclidean Poisson sum

formula for f, comes from o0= (3/’rr)1/2. A Tauberian theorem completes the proof of
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(1.13) (cf. [27, {}3.7]) or the references mentioned above for details and alternate
discussions).

A second application of Proposition 1 arises in the evaluation of a special integral
that occurs in multivariate statistics. First we need some definitions. A spherical func-
tion on , is a K-invariant eigenfunction f(Y) of the invariant differential operators on, such that f(I)= 1, I= the identity matrix. Harish-Chandra proved (cf. Helgason [9]
or Terras [27]) that if dk denotes Haar measure on K= O(n), with

fKdk-- 1
then a spherical function on, has the form

(1.16) h, (Y) fKP(Y[kl)dk"
Spherical functions which are polynomials in the entries of Y (e.g. for s (/ +)) are of
interest in multivariate statistics. Such spherical functions have been studied by many
authors (cf. Muirhead [19]). Here we wish to indicate a simple way of evaluating the
following integral defined for B,, rC, sC (with the variables suitably re-
stricted for convergence) by:

(1.17) f exp{-Tr(By-1)}lBY-ilrh(Y)dt,.

This integral appears for xample in th book of Muirhead [19 Thm. 7.2.5]. Sinc the
integral is a convolution Proposition I says that

M(B,r,s)=f(g*)h(B), wheref(Y)= IyIrexp{-Tr(Y)}.
It is quite easy to evaluate the Fourier transform (1.11) of f in terms of the gamma
function for, defined by s C by:

(1.18) F.(s) =fr,y,() exp{-Tr(Y) } d/,.

Then, by a result of Ingham [36] and Siegel [37, Vol. I, pp. 326-405] in the 1920’s and
30’s, we have the factorization:

(1.19) F.(x)=vr "("-1)/4 fi F(s+ +s, -j-,1 )j=l 2

where F denotes the ordinary gamma function (F F1). A proof of (1.19) can be found
in [27]. The preceding discussion proves:

TI-IOM 1 (Muirhead’s integral formula).

M( B,r,s) F,(S,_l,.-. ,s,- (Sl,-.. ,Sn + r))h,( B).
Convergence of(1.17) occurs for Re(s:+ + s,+ r)<0,j= 1,. .,n.

Our final application of Proposition 1 is to the computation of analogues of
gamma functions arising in the problem of obtaining analytic continuations of Eisen-
stein series for GL(n,) via analogues of emann’s method of theta functionsa
method used by emann to continue the emann zeta function and obtain its
functional equation. In order to keep our discussion at a simple level, we will only
discuss a special case that does not really illustrate the power of the method.
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Before describing these results, we need a few more definitions. When generalizing
the Roelcke-Selberg spectral decomposition to GL(n, 7/), one must study special func-
tions called automorphic forms t; for F GL(n, 7/) defined to be v :n C having the
following three properties"

1) v is an eigenfunction for allLD(n); i.e., LV=XLV, h LC;
2) v(Y[A])=v(Y) for allA F;
3) v has at most polynomial growth at infinity; i.e., it grows at

most like a power function p,(Y).

We shall use the notation A(F, X) for the space ofsuch automorphic forms corresponding
to a given eigenvalue system . Let

Then 6an is the symmetric space corresponding to the Lie group SL(n, R). We will
also consider functions o’Sa,C to be automorphic forms for GL(n,7/) if they
satisfy the same 3 conditions with 5a, replacing n. And we use A(F,) to denote the
space of automorphicforms for F on.

Consider the partial Iwasawa decomposition of Y,, corresponding to n n + n 2,

with 1 =<nl, n2<=n given by

(1.21)
Y=a[v], with a

0

O=
0 Inz

X( R rtl X2

o)a2(Y ) ai(Y)ni

Inj ny nj identity matrix.

Let fA(GL(n,Z), ) and form the gamma function associated to fl and f2"

(1.22) F(f,f)=fr.fi(ai(Y))f2(a2(Y)) exp(-Tr(XY-)} dtt.

The integral will converge for suitably chosen f. Since fl(al(Y))fz(a2(Y)) is an eigen-
function of the invariant differential operators, it follows from Proposition 1, that there
is s s(fl,f2) C" such that

(1.23) F(f,f2)=f(al(Y))f2(a2(Y))I’,(s(fl,f2)).
This considerably simplifies a proof of a special case of this result given in Maass [16,
71.

It is possible to form many analogues of the Eisenstein series that appears in Table
2. One such Eisenstein series for GL(n,7/) is associated to two automorphic forms
f A(GL(n s, 7/), X ), for 1, 2, with n n + n 2, via:

(1.24) E,l,,2(f,f2; r)= Y’ fi(ax(r[Al))f2(az(r[A]) ).
A .GL(n,.)/P(nl,n2)

Here P(n,n2) denotes the parabolic subgroup of GL(n,.Z) consisting of matrices with
block form:

(1.25) ( A1 A12)0A2
for A GL(n i,/), A12 Z nl Xn2
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We can always decompose Yn as

(1.26) Y= Yll/nY, where y0

Suppose that

(1.27) forsomeriC,fiA(GL(ni,71),Ai).
Then the Eisenstein series (1.24) converges when Re(r r2)> n/2, assuming that the
growth conditions on the f0 imply integrability on the fundamental domains. This can
be proved using a generalization of the integral test (cf. Terras [27, {}4.4, Exercise 23] or
[29]).

When the Hecke operators are introduced, it is possible to relate Eisenstein series
(1.24) with zeta functions. Since Hecke operators were discussed in [30] and [27], we
will merely recall the definitions. Suppose that

f Sa,/GL( n 7/ ) -- CThen, for any positive integer m, the mth Hecke operator T,, is defined by:

(1.28) Tmf(V)= E f((V[A])),
A .nn rkn/GL(n,Z),

where we use the notation (1.26). Suppose that f is an eigenfunction of all the Hecke
operators; i.e., Tinf= Umf for some u,, C, rn >= 1. Form the Dirichlet series:

n
(1.29) Lf(s)= E Umm-s, Res>.

m>__l

Define the zeta function associated tof A(GL(n i, 7/), i)’ 1, 2, by:

(a.30) Z(fx,f ; Y)= E
A - Z rk n/P(n n2)

f(al(Y[Al))fg.(ag_(Y[A])).

Then we have"
THEOREM 2 (The relation between Eisenstein series and zeta functions formed from

two lower rank automorphic forms).

Z(fl,f9.; Y)=E(f,f; Y)LA(2rl)Lf(2r)
holds if f are given by (1.27), E(fl,f2; Y)=Enl, nzl,f2; Y) defined by (1.24), and
Z(fx,fz; Y) given by (1.30).

Proof. Use the same argument as in the proof of Terras [30, Prop. 1]. The main
idea is that the same discussion which gives explicit representatives for the quotient
summed over in the definition of the ruth Hecke operator yields a complete set of
representatives for A 7/nX"rkn/GL(n,7/)of the form A BC, where

B GL(n,7/)/P(n,n2)
and

C1 0 )C=
0 C2

C e 7/hihi rkni/GL(ni, 7/).
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It is now possible to relate the Eisenstein series (1.24) with a Euclidean theta
function defined for X, Yn by:

(1.31) O(Y,X)= E exp{-rTr(Y[A]X)}.
A.

Riemann’s method of analytic continuation of zeta functions leads us to define the
following matrix Mellin transform, for r suitably restricted so that convergence occurs:

(1.32)

where

J(fl’f2)"- fn/p(nt,n2)fx(a( X))f(a( X))O"(r’X-)dtt

Om(Y,X)= E exp(-rTr(Y[AIX)}.
A .nn rk m

It follows from (1.23) that

(1.33) J(fl,f2) F,,(s(fl,f2))Z(ft,f2; rY).
To see this, you must switch the quotient modulo V P(nt, n2) from n to ’ n,. This
requires the following calculation:

Tr( Y[ A V] X-) Tr( Y[ A] X- I[’V ]) Tr( Y[ A]( X[ V-])-1).
Since P(nl, ng_ ) is a group it follows that V-t P(nl, n:z). So, if s(ft,f2 ) is determined
by the eigenvalues of fl, f, (as in (1.23)), then

(1.34) J(fl,f2)=elr-(nlra+n2r2)n(S(fl,f2))Z(fl,f2 Y).

It is then possible to use Riemann’s method of analytic continuation of the Riemann
zeta function, as modified by Selberg (cf. Maass [16], Terras [27], [29] [30]) to study the
analytic continuation and functional equations of the Eisenstein series. In this special
case, however, the method does not lead to anything new. For we have:

TnFOREM 3 (an easy functional equation of the Eisenstein series). When f is as in

(1.27) and Re(r r2)> n/2, we have

Enl,n2(fl,f2 y)=En2,nx(f,f; y-t) iff,(y)=f(y-1).

Proof. Note that if

0 0 a 2 I

af 0 Inl
Y-I[wl= ( aO

and observe that both series converge for Re(r r2)> n/2.
In order to obtain nontrivial functional equations by Riemann’s method, one must

add an extra dimension, as in Maass [16, p. 267]. We will not discuss all the details
here.

Speh [25] has considered analogous results with applications to the determination
of the residual spectrum of GL(n, 7/) (cf. also Jacquet [12]).
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2. K-Bessel functions for 9. We consider K-Bessel functions for which arise in
Fourier expansions of automorphic forms for GL(n,Z). These and related special
functions have been studied from many different points of view (see Bengtson [3],
Bump [35], Goodman and Wallach [5], Gross, Holman and Kunze [6], Herz [10],
Jacquet [13], Muirhead [19], Shalika [24], Terras [27, 4.3]).

For 1 =< m =< n 1, define the abelian group:

Then we say thatf:n C is a K-Besselfunction if:
1) f(Y[o ])=exp{2riTr(tNX)}f(Y), for all Yn, Xgm(n-m); i.e., f trans-

forms according to the above character of N(m, n m);
2) f is an eigenfunction of all the invariant differential operatorsLD(,);
3) f has at most polynomial growth at infinity.

The growth requirement in 3) may appear to be somewhat weak at first GLance. In
certain cases, we actually obtain exponential decay (see (2.6) below). However, we are
also including singular cases. When n 2, for example, we find that

o /y) cyl/2Ks 1/2 (2 rlR[y ) ifRO,

where K denotes the ordinary K-Bessel function. As y o, this function approaches 0
exponentially. But, as y --, 0, the function blows up like a polynomial in 1/y. Moreover,
if R=0, the function is ayS+ byl-L The ordinary K-Bessel functions are discussed in
detail in Lebedev [44].

We are studying a matrix entry corresponding to a representation of GL(n,R)
induced from a character of N(m,n-m). Kirillov [38] shows that irreducible unitary
representations of the nilpotent Lie group N of all upper triangular n n matrices with
real entries and one’s on the diagonal come from inducing characters of this type with
m=[n/2]. Such representations of N are infinite dimensional. There are also one
dimensional representations of N that arise in the theory of Whittaker functions to be
considered at the end of this section.

It is easy to give examples of such K-Bessel functions. The main example of a
matrix argument K-Besselfunction is:

(2.2) k (s Y,R)=fx exp(2vriTr(tRX)}P_
U:[mx(n_m)

Here sC" with sj restricted to suitable half planes, Y,, RGR rex(n-m), l<=m<=
n- 1. The power function Ps is defined in (1.9). Formula (2.2) is useful for demonstrat-
ing that km, n_m(.[Y,. is indeed an eigenfunction of all the invariant differential
operators on ,.

Another K-Bessel function is obtained by choosing A GL(m,R), B
GL(n-m,R), CR"x(n-m) such that R=ACB. Then define:

(2.3) f(Y)=k,,,,n_m ( s]y[tA-I O ] c)tB
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It is easily seen that

i_m
exp(2riTr(t(ACB) X) )f( X).

We shall see that when n_ 3, it is the functions (2.3) that appear in the Fourier
coefficients of Eisenstein series, rather than the simpler functions (2.2). It does not
appear to be possible to move the A and B over to the C-variable, in general.

In order to understand the convergence properties of the integrals above, it is
useful to define a matrix argument K-Besselfunction:

(2.4) K,.(s V, w)=frsf(Y) exp( -Tr(VY+ WY-)) dl.(Y).

Here sC m, WVm. The function can be extended to singular W if the sj are
suitably restricted.

Example 1.

kl,1 ((s,0) y-1 0)0 y
,a ( 2 rl/2l ral - /2r(s)-lyl/2K - /2(2 rlalY)’

F(1/2)r(s-1/2)F(s)-lyl-s,

g(slv, w) 2( w/o)/2g(2x/ ).

Here Ks(y ) denotes the ordinary K-Bessel function.
Example 2.

k,x((s,s2,0)lI,(a,O))= ff (1 + x12) -sx(1 +x21+x)-S:exp(2riaxl)dxxdx2

where we have used
F(p)F(q)/F(p+q).

In general, one does not appear to have such a factorization.

a4:0,

a=0,

s C"*, l__<m__<n-1,

s# -s+ (0,. ,0, n-m).2

Sext=(s,O)C n,

S*-- [Sm_l" "SI m)
Bengtson [3] develops many more properties of these K-Bessel functions. Assuming that
V and W lie in n, it is shown by Terras [27] that if a denotes the smallest element in
the set of eigenvalues of V and W, then (for fixed s C m):

(2.6) rm(slV, W)=O(a-m(m+l)/4e-2ma) as a---) c.

Tom Bengtson [3] proves the following formula relating the two Bessel functions:

(.)
V 0 ,R =,r"("-m)/2lW Im(s#1W[rtRI, V-1),F’(-s*)k’’"-m Sext 0 W

where

=f(1 + x)-s-s=+l/2exp(2riaxl)dXlf(1 +y2)-S=dy

kl,l(Sl +s2-1/2la)B(1/2,s2-1/2),
the substitution x2 =(l+x2)l/2Y and B(p,q)=
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However, when we study Fourier coefficients of Eisenstein series, we obtain functions
of the form (2.3). Then Bengtson’s formula (2.5) shows that we will need to study

Km (sl F, W), with F singular.

When n 3, rn 2, the function of interest is

K_(sltqq,I), with qll 2.

Bengtson [3] shows that this converges when

Rest_ and Re(s +s2) < 1/2, if q=0,

(2.7) Res < 0, if q_ 0, q 4: 0,

Re(S + S2 ) < 0, if q2 :/: 0.

Our first concern is the relation between these Bessel functions for GL(n, R) and
the gamma function for Sp(n, R), the symplectic group defined by

G*=Sp(n,N)= gSL(2n,lt)’gJg=J, where J=
-I. 0

The symmetric space for Sp(n, II) can be identified with the space

(2.8) * ( W:,]WSp( n, n) }
(cf. Terras [27, Ch. 5]). The partial Iwasawa decomposition of such a symplectic matrix

W* is:

(2.9) W=
0 Y 0 I

for Yn, tX-’Xnn"

The basic eigenfunctions of the G*-invariant differential operators on n* are the power
functions:
(2.10) ps(W)=ps(Y), forsC n, with Wasin(2.9),psasin(1.9).

The G*-invariant measure on ,* is

(2.11) d*(W)=lYl-("+l)/=dl.(Y)dS,
where W is as in (2.9) and dtzn(Y) is defined in (1.7). Then the symplectic analogue of
the gamma function is:

(2.12) exp{-Tr(W)} dl* (W).

TrlnOgM 4 (the symplectic gamma function is a Bessel function for GL(n)).

F,*(s)=r"(’+)/4K,(s-(O,. .,0, 1/2)11,I).
Proof. By definition,

exp(-Tr(Y+ y-lq_ y-l[g])}ps(y)ly]-("+l)/2.an(Y)dX.r.
tX=X
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Perform the integral over X and obtain"

F* (s) r"+)/4f exp( Tr(Y+ Y-1))p(Y)lYl-/2"a,(Y).
"Ym

Formula (2.4) completes the proof.
The noneuclidean analogue of the theta function corresponding to the Siegel modular

group Sp(n, 7)’)= (A Sp(n, R)IA has integral entries}= F is

(2.13) 0r(a)= E exp(-aTr(tyY))for a>0.
y_F/+l

If one can develop the analogue of the Roelcke-Selberg spectral decomposition of the
invariant differential operators on L2(,*/Sp(n,7/)), then the noneuclidean Poisson
sum formula for Sp(n, ’) must relate 0r(a ) with sums and integrals of functions:

(,lr/a)n(n+ l)/4Kn(s- (O, ,0, 1/2)laI, aI).

Hopefully, extending ideas of Mennicke [18], it will be possible to use Poisson summa-
tion for Sp(n, 7/) and SL(n, 7/) to study nonholomorphic cusp forms for these groups.

As a last application of matrix K-Bessel functions, consider the problem of esti-
mating Fourier coefficients of automorphic formsfA(GL(n, 7/), h). Since

0 In_ =f(Y), for allA 7/m>((n-m), y#.,

it follows that f(Y) is a periodic function of period one in each entry of X when Y has
the following partial Iwasawa decomposition:

(2.14) Y=
0 W 0 I,_ V:m’ Wn-m’ xNmx(n-m)"

Evidence from Goodman and Wallach [5], Shalika [24], Imai and Terras [11], Takhtad-
jan and Vinogradov [26], and Terras [31] leads one to believe that the Fourier expansion
off should have the form:

(2.15) f(Y)= Z ’NTgm:(n-m) A,B,C
N=ACB

exp(2iTr(tNX))af(A,B, C)

Xkm, s C
0 w[tn]

Here the matrices A GL(m,7/)/P, BGL(n-m,7/)/P’, C-7/m(n-m) with P, P’=
parabolic subgroups. When f is an Eisenstein series, the coefficients af(A,B, C) are
analogues of singular series or divisor functions. Such expansions are the natural
analogues of those obtained by Siegel [37, Vol. II, p. 115] and the starting point for the
expansions considered by Bump [35], Jacquet, Piatetskii-Shapiro and Shalika [40] and
many others. It would be useful to study the Fourier coefficients of other automorphic
forms such as those considered by Ash or those corresponding to cubic fields found by
Gelbart, Jacquet, and Piatetskii-Shapiro. It would also be interesting to obtain cusp
forms from integrals of theta functions using an analogue of the construction of
Marie-France Vign6ras [34].
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We can use the theory of matrix argument K-Bessel functions to estimate the
af(A,B, C) for bounded f(Y), generalizing an argument of Hecke (cf. Terras [27, 3.5,
Exercise 15]).

THEOREM 5 (estimates of Fourier coefficients). Suppose that fA(GL(3, 7/),h) is
bounded with Fourier expansion (2.15). In this case B 1 and there is a constant x > 0
such that

[az(a, 1, C)IZ IICI[re(’ +2+l.

Here we assume that the eigenvalues of f are the same as those of the Bessel function
k 2,1(sIY R ) under the action of the invariant differential operators.

Proof. Suppose bf(Y)l=<L, for all Y5’#3 Then by the definition of a Fourier
coefficient,

af(A 1’ ’C)k2’I(sI(V[tA-1]O W’0)C)
I Xi])exp(2riTr(tXN) }0

dX< L.

So we find that

la:(A’’C)[<-
[k2,1

L

By (2.5), if s# -s + (0, 1/2), s* =(S1, --(S + $2)),

k2,1 s V[4 -1

0 1/V
-Ivl-lg2 tC, V-[AI)

ChooseV2 such that V= t-iV with t--lvl-i/2--Ilcl1-2, V=AtA. Then, assuming
s# satisfies the inequalities (2.7):

K2(s# Irr2IVI-1CtC, V-I[AI)=K2(s# Irt2t-2CtC, tI)=ps#(tl)K2(s# Irr2t-lctc,I).

By choosing t-IICII 2, we insure that the argument Ct -1/2 lies in the unit sphere. Since
a continuous function takes a minimum on a compact set, we can write:

M= min( K2(s# Ir2u’u,I)l Ilull- m).
Then

tlr(-s*)lllCII 4

la/(A 1 c)l< 2 Re(s + 2s + 1)

If -s* C 2 is chosen as in the Harish-Chandra-Helgason inversion formula, then
we need Res Res2= 1/2. Note that

K2 (s# Iqtq,I2)
as q___0,2(_$1,$1 + $2-- 1/2) r(_-)r(, +- 1).
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It follows that by multiplying by a suitable constant, we can assure that

K2(s# Irr2t-lctc,I)
Note also that r2(--S*) -1= F(s2)-lF(sl + s2-1/2)-14: 0 when Resi= 1/2, for i= 1,2.

Questions.
1) Can we similarly generalize other arguments from classical automorphic forms

that depend on Fourier expansions?
2) Can one compute the Fourier expansion of the Eisenstein series (1.24)?
Remarks on connections with Whittaker functions and Fourier expansions of auto-

morphic forms in series of Whittaker functions. Whittaker functions and Fourier expan-
sions of automorphic forms as sums of these functions are discussed by Bump [35],
Jacquet [13], Jacquet, Piatetskii-Shapiro and Shalika [40], Proskurin [39], and Shalika
[24]. For r R n-l, y,, and s (3 with Res suitably restricted for convergence, the
Whittaker function can be defined by:

(2.16) W(s[ Y’r)= fn NP-s(Y-l[tn]) expl
n-X )2ri riX, i,i+ dx,
i=1

where N is the nilpotent group of matrices n of the form:

XiJl I"
The exponential appearing in the integral is easily seen to be a one-dimensional
character of N. The integral itself can be easily shown to converge wherever the
numerator in the Harish-Chandra c-function (a function giving the spectral measure for
the Fourier transform on n) converges (see Jacquet [13] and Terras [27]). One also sees
easily that

W(slY[n],r)=expl

The W(sl Y, r) are analogous to Eisenstein series with the largest possible number of
complex variables (sC"); i.e., the highest dimensional part of the spectrum of the
Laplacian. Thus one can use techniques developed by Selberg [23] to obtain n! func-
tional equations of the Whittaker functions (see Bump [35]) by writing them as integrals
of "lower rank" Whittaker type functions such as the k-Bessel functions (2.2). This is
analogous to writing an Eisenstein series with n complex variables as a sum of Eisen-
stein series with a smaller number of complex variables (see Terras [27]).

More explicitly, one can write the Whittaker functions as Fourier transforms of
k-Bessel functions (2.2). For example, when n 3:

W(slY, r)=f k2,1 s.Y 1 0 ,(O, r2) exp(2*rirx2)dx2
"x12 E ; 0 1

Then one can obtain functional equations of the Whittaker functions from those of the
lower rank functions, and vice versa, since the k-Bessel function is also a Fourier
transform of the Whittaker function. This same sort of idea relates the Fourier expan-
sions (2.15) with those involving Whittaker functions. For example, in the case of a
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cusp form for GL(3,/), Bump [35] obtains the equivalent of the expansion:

f(Y)= Z Z arxr2W( s
A SL(2, Z)/( :) rl, >__

y A
0

This is obtained by starting with the expansion:

f(Y)= E L(Y), where
rx r2 . .

I x])=exp(2qritrx)fr(y) for all X[] 2.

Then one notes that if A SL(2, ’), r C 2, we have

Furthermore, if r2 /i, one has

f(r,,rb) Z 0 1 0 =f(r,rb-rr2)(Z)"
0 0 1

So, if r 0, the coefficient must be invariant under

1 r2 0]YY 0 1 O.
0 0 1

Thus one can Fourier expand the fr’S with respect to the x12 variable in the matrices in
the nilpotent group N. That goes from Bessel to Whittaker functions. It is the multiplic-
ity one theorem of Shalika [24] that says the resulting functions must be multiples of
Whittaker functions.
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THE LIMITING EIGENVALUE DISTRIBUTION
OF A MULTIVARIATE F MATRIX*

JACK W. SILVERSTEIN

Abstract. Let Xij, Yij i,j 1, 2, be i.i.d. N(0,1) random variables and for positive integers p, m, n, let

Xp=(Xij i= l, 2,. .,p; j--1,2,...,rn, and Yp=(Y/j) i=l,2,...,p; j=l,2,...,n. Suppose further that
p/rn-,y > 0 and p/n-,y’ (0, 1/2) as p--, o. in [5], [6] it is shown that the empirical distribution function of
the eigenvalues of (1/m Xp X)(1/n Y yff)-i converges i.p. asp c to a nonrandom d.f.

In the present paper the limiting d.f. is derived.

1. Introduction. Let Xij, i,j= 1,2,... be i.i.d. N(0,1) random variables, and for
any positive integers p,m, let We= XpXer, p=(Xij) i= 1, 2,...,p; j= 1, 2,- .,rn, be the
pp Wishart matrix W(I,m). It is well known [1], [2], [4] that ifp/my>O asp c,
then the empirical distribution function Fp of the eigenvalues of (1/rn)Wp (i.e. F(x)=
(l/p) (# of eigenvalues of (1/m)W<__x)) converges a.s. for every x>__0 to a nonran-
dom d.f. Fy, where for 0 <y =< 1, Fy has density

1 (1 frfi)z)((l+v/fi)-x)fy(X)= 2ryx }/(x-
0

for (1 f)2 )2<x < (1 + rf
otherwise,

and for 1 <y < c Fe has mass 1 1/y at zero and densityfe on ((1 Vc) 2, (1 + /-)2).
In [6] it is shown that the empirical d.f. of (1/m)WTp, under certain conditions on

the pp matrix T, converges in probability to a nonrandom d.f.F. The specific
conditions on Te are the following:

1) T is symmetric positive definite a.s.
2) W and Tp are independent.
3) If G is the empirical d.f. of the eigenvalues of Tp, then for every positive integer

k, fx’d@(x) converges in L to a nonrandom value Hk, where ,--k=l--’-1/2__

The moments { Ek }--1 of F are also derived. They are given by

k
(1.2) E/,= _, yk-W E nl! n !w’H H’w"

w---1 nl + +nw=k_w+ l,
n1+2n2+ +Wnw=k

No further information of F is given.
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In [5] it is shown the conditions are satisfied for T=((1/n) W___p) -1 where W___r is
W(1, n ), W and are independent, andp/n ---,y’ (0,1/2) as p --, oo. In particular, 3)
is verified by showing

L2f x*dG,(x) /(1+-7)2 1 dF,(x)
x

The matrix ((1/m)W)((1/n)W..) -1 is seen to be a multivariate F matrix, fundamental
to statistical work in multivariate analysis.

In this paper we will derive the limiting empirical d.f. of ((1/m)W)((1/n)W___p) -1.
We will show for anyy’ (0,1), if

/(1_ V/-7)I X k
k=1,2,...,

then { Ek }o= are the moments of the d.f. Fy,y,, where for 0 <y =< 1 Fy,y, has density

(1-y’) (x- (1- i- (1-y)(1-y’)
--7 )=)( (1 + 1- (l-y)(1-y’)

1-y’ )= -x )
27rx(xy’ +y)

for (1-l-(l-y)(1-Y’))21_y,<x< (I+i-(1-y)(1-Y’))21_y,
otherwise.

and for 1 <y < o Fy,y, has mass 1 1/y at zero and density fy,y, on

((1-/i-(1-y)(1-Y’) )2 (I+/1-(1-y)(1-Y’) ) 2)1 -y’ 1 -y’

The derivation of Fy y, will be handled in the next section by first evaluating a
general expression for E(esx) sC, where X is a random variable having moments
(Ek }, and { Hk } are the moments of a random variable Y having support on a dosed
interval on R / bounded away from zero. This expression will be seen to involve an
integral of a function in the complex plane depending on the generating function of the
moments of Y-1. Then Fy,y, will be determined by evaluating the integral when Y-1
has d.f. Fy,.

2. Derivation of Fy,y,. Assume that ( Hk } are the moments of the random variable
Y having support on [a,b] with 0<a<b< oo. Let G(z)=E((1-zY)-I), zC. Then G
is analytic on C -[1/b,1/a] and for Izl < l/b, G(z)=E..oHzk (Ho= 1). Let Gi(z)
E((1-z-l)-l). Then GI is analytic on C-[a,b]. Moreover, we have Gz(z)=l-
G(1/z), zC-[a,b].

Let X be a random variable having moments { Ek } given by (1.2). We may ignore
the question of whether { Ek } are the moments of a random variable since the following
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steps will be reversible and we will wind up with Fy,y,, a proper probability d.f.
Expanding E(eSX), s C, in a formal power series around s= 0 we have

E(esx) E Eks---k =1+ Y’.m s k Y’. yk-W . H11... Hww
/=0

k! w! n l...nk=l w--1 nl + +nw=k_w+l, 1" w"

nl+ +Wnw=k

k k-w H2 ooHnw=l+EE Y
w! nV...n

k--1 w=l n2+2n3 + +(w_l)nw=w_l, 2" w"

k-(2n2+ +Wnw)>=O

Hi(k-(2n2 + / wnw))

(k-(2n.+ +Wnw))!

-1 1+1 y,nx E y Ee +
Y Y w=2

wl *...n
n2 + +(w--1)nw=W- n2" w"

E
/

k>__lllax(w,2n2+ +Wnw) (k--(2n2+ +Wnw))!

Notice when w >_ 2 and n 2 + + (w 1)n w 1, 2n 2 + + wn >- w. There-
fore

(1.4)
1 ysHE( eX) l --l +-e

Y Y

+ eYSH Y
w.-.2

w! E
n2 + +(w--1)n,=w--1

n2_ nW (sy )2n2 + +wnw
n2! nw!

s" (ysH2) "x mn
1--1"t-1-’eYsna E ’1)! Y’ (ysH"+I)

Y Y n=0 (n ml+2m2+ .--+,m,=n ml!...m,,!

Notice that

E (ysH2) ml... (ysH,, +1)
ml m,,!m q- nrnn,=n

defined to be 1 when n 0, is the coefficient of z in the series expansion about z 0 of
exp(ysEk_lHk+lzk)=exp(ys((G(z)--l)/z--H1)). Note also that 1/(n+l)! is the
coefficient of z n in the expansion about z 0 of (e- 1)/z. Both functions are analytic
in a neighborhood of the origin, independent of y and s. Therefore we can write ([3, p.
158])

(1.5) E(eX)1 1+ 1 ysH (e/z-a) ( )e eYS((G(z)- 1)/z- H) 1
dzy y2ri "lzl-r<X/b S/z z

1
1 + 1 O S/ZeYS((G(z)-l)/z)e dz.y sy2ri lzl=r<l/b
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Making the substitution z --+ 1/z we have

(1.6) E(e*X)=l-l+sy2i
I-y r -r>b

eSeysz(G(1/z)- 1)Z- 2 dz

=l-l+sy2riY I=r>b
eSZ -yszGi(z)z 2 dz.

Using integration by parts we have

1E(eSX)=l--+
Y

1 1 d (l_yGr(z))esz(l_y6i(z))(1)dz.y2rri i=r>b Z (z --Z

Provided

(1.8) v=z(1-yGt(z))

is invertible along Izl-r, we make the substitution (1.8) and arrive at

(1.9) E(eSX) =1 1 + 1 lz e, 1

7 y2ri (u)l=r>b Z(U)
de.

Since Gt(z)O as Izl o, for any 8 (0,1) we have for all r sufficiently large

(1.10) (1-  )lzl=< (1 + a)lzl

along the contour.
To derive Fy,y,, 0<y’< 1, we apply (1.9) to the case when y-t has density fy,.

Using the identity

(1.11) Ld /(x c ) ( d X
dx r ( v/-d v)2

valid for 0 =< c < d, it is straightforward to show, first for z real, z > (1- X/7) -2, and
therefore for all zC-[(1 +

(1.12) 1/’(1+#t2 1 /(x_(l_/-;)2)((l+))._x)dxGt(z)= 2ry’ J(I_C) (1--XZ)X

1-z(1-y’) + (1-y’)i(z-(1 + 1/)-2)(z (1- -) 2)
2 y’z

where we will interpret all square roots of the form

(1.13) /(z al)(z a2), at, a 2 n, a < a 2

to be positive on (a 2, o) and to vary continuously off this interval. Notice then, that
the square root will be negative for z ( o, ax).
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Solving for z in (1.8) we find

(1.14) z
(2y’/y+(1-y’))o+ l-y+_- (o(1 -y’) + (1 -y))2- 4o

2( y’/y + l y’)

(2y’/y + (1-y’)) v + 1-y +__ (1-y’)/( O- bl)( O- b2)
2( y’/y + l y’)

where

bt= -7} b2=
1 + 1 (1i_7;-y)(1 -y’) ) 2.

Notice in (1.14) if the plus sign in front of the square root is used we would have
z--o for o large, whereas if the minus sign is used, then z--(y’/y)/((y’/y)+(1-y’)).
Therefore, for r in (1.9) sufficiently large (1.8) is invertible along Izl r and we have

(1.15) z(v)=
(2y’/y + (1-y’)) o + 1-y + (1-y’)/( v- bt)( v- b2)

2( y’/y + l y’)

and

1
(1.16) z(v) 2v(vy’/y+ l)

(2y’/y + (1-y’)) o + 1-y- (1-y’)/( o- b)( v- b2)

Integrating eS/z(v) along contours as in Fig. 1 when y 4:1, and letting the two
horizontal lines approach the real axis, we get (noting the discontinuity of the square
root across b, b2])

(1.17) E(eSX)=l 1+ 1 + e, 1

-7 y2ri +y/y,l=rl<y/y, (O) do

+ ’y2ri ,=r2<min(y/y,,b)

1 (1-Y’)(X-bl)(b2-x)
+ [ e+x-

x(xy’ +y)

For y 1 the limiting inner contour should not encompass the origin, and we will
get (1.17) except the second integral will not appear.

We see that when o= -y/y’, the numerator of 1/z(v) is zero. Therefore the first
integral in (1.17) vanishes. When v=0 the numerator of 1/z(o) is 2(l-y) when
0 <y =< 1, and is zero when y > 1. Therefore, the term involving the second integral in

1 tr(Y)(1.17) is (1/y- ,)l(o,x 1, where 14 is the indicator function on the set A.
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b2

FG. I.

We therefore have

(1.18) ( 1)i(y) +foo sx (x)E(ex) I 7 (,,oo) e :fy,,,dx.

Using the fact that Fy,y, is a proper probability d.f. we conclude that (1.18) for
s= it, gO, is the characteristic function of the random variable X with d.f. Fy,y,, so
that the d.f. of X must be Fy,y,.
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SOME SUMMATION FORMULAE FOR NONTERMINATING
BASIC HYPERGEOMETRIC SERIES,*

A. VERMAf AND V. K. JAIN

Abstract. Basic hypergeometric series extensions of some classical results on hypergeometric series are
obtained. These include non-terminating extensions of summation formulas of Watson and Whipple and a
pair of Cayley-Orr type identities.

AMS-MOS subject classification (1980). Primary 33A35

Key words, basic hypergeometric series, q series identities

1. Introduction. Andrews [2] obtained a q-analogue of a terminating version of
Watson and Whipple’s summation formulae for 3F2[ 1]"

q,q aq, bq, q" 9. 1:an/2I a b
q

cq
q, abq cq ab

where b= q-", n a nonnegative integer and

(1.2)

cq2
a, ,- q,q ea,

,("3v’
a a e ae.= qn(n+ l)/21-[

--q,e,-q cq cq_2
e e,eq, --,

e e

where a=q-". Later on Jain [9] obtained a q-analogue of terminating Watson and
Whipple summation formulae due to Bailey [5] in the form

(1.3) [a;q]rtb;qlr[q-2n;q2]rq"-[aq;q:zl]n[bq;q]n
r=0 [q; q];i-bi ’2T’-’n;-r-" [q; q ,,[abq; q2ln

and

(1.4)
a,
q q-" q-""

4t3 q 2

-q,b, b

q,q
= .[ab ;.q] n[bq/q; q]n

[b; q]2,,
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and gave an alternative proof of (1.1). Andrews [2] showed that the summation for-
mulae (1.1) and (,1.2) hold only if the 43 series involved are terminating basic hyperge-
ometric series. In {}2 of this note we prove a summation formulae for a nonterminating
well-poised 87,

lbc 2 2(1.5) .8W7 ,b ,c, -c,
c

q’

abcv/., cv/- c2q c2q. 2

ab
q aq bq ---- b--- q

=II
acv/_ bc/

II a

cZq 2b 2q
b a aZbz,q,a 2q,c

and

(1.6) a’C’-d’,- ,q,c

1-I cd,
cq cq II acd,ac, ---a- d -l q

where p+3Wp+2[ a; b,b_,...,be; q,z] denotes the well-poised basic hypergeometric series

a,qf-,-qf-,bl,bz,...,bp; q,z

1,+ 3q1,/ 2 V/-d rd aq aq aq

’bl’b2 ’bp

(1.5) and (1.6) may be regarded as a q-analogue of the nonterminating version of
Watson and Whipple summation formulae for nonterminating 3F2(+ 1) to which they
reduce on replacing a,b,c,d by q", qb, q. and qd respectively and letting q 1-.
However (1.5) on setting b-q-.n/2 and transforming the well-poised 87 by Watson’s
q-analogue of Whipple’s transformation [4, 8.5(2)] a -acq-’/-1/-, c --,

-aql/2-"/2/c, g--,q-", d-,-c, e--,a 2, f---,c 2) reduces to (1.1). On the other hand
setting a-q-" in (1.6) and then once again transforming the well-poised 87 by
[4, 8.5(2)] (a -c, c --+ -d,d -, e c,f ql +,,,g___, q-,,) reduces to (1.2) on replacing
c and d by - and e/ respectively.

It is of interest to note that (1.6) is a q-analogue of the following summation
formula for nonterminating well-poised 6 F5( 1) due to Whipple 13, (14.1)] to which it
reduces on replacing a, c and d by qa, q. and -qd respectively and letting q--, 1-

(1.7)
a

a, /, -/x, --x, -/y, --y; -1

6F5 a-, -+a--x, -+a+x,-+a--y, +a+y

"r
F -+ a + x, -+ a x, -+ a +y, -+ a y

22"-1 l+a+x+y l+a’+x-y l+a-x+y l+a-x-y
a,l+a,

2 2 2 2



SUMMATION FORMULAE FOR NONTERMINATING SERIES 649

On the other hand replacing a,b and c by qa, __ql/2+x-a and --qY respectively in (1.5)
and letting q 1- yields a known summation formula for nonterminating very well-
poised 6F5( 1) due to Whipple [13; (15.73)]"

(1.8)
x+y, 2+x+y

2
,2a, l+2x-2a,y,l+x-y; -1

x+y
2

,l+x+y-2a,y-x+2a, l+x,2y

+x, -,y+-,2a+y-x, +x+y-2a;
=F

a+y-x,a+-, +x-a,y-a+-, +x+y

In 3 using (1.5) and (1.6) the sum of a bilateral 8q8 is obtained which is a q-analogue
of M. Jackson’s [6] bilateral analogue of Watson and Whipple summation formulae.

The note is concluded by obtaining a q-analogue of two transformations of Bailey
[3] and applying them to find q-analogues of Cayley-Orr type identities due to Bailey
[31.

2. Proof of (1.5) and (1.6"). In the transformation [12, (5.1)]:

(2.1)

a2q3
ol,V9 -a; a,b, -b, -c,c, -eq,q-"; q,

(bce)

[-aq;ql.[e;q].
a"[-q;ql,,[e2/a;q],,

a2q 2

a aq, e 4q2,,, -c?z ,q-2,,;
4 aq 2qe2 e2q a a

b2 c2

q2,q2

setting e-aq/bc and then replacing a,b,c by a 2, av/b and abv/-/c respectively and
transforming the resulting well-poised oq9 on the left-hand side by [4,8.5(1)] and the

4t3 on the right-hand side by [10; 8.3]

a,b,c,q n.

4qb3
e, g, h

g_.;q -;qq,q_ c n_

-qi[ eg’[g; c;q

"4t3 cq-. cql-n
e,

g n

q,q
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where egh = abcq -n, we obtain

(2.3)

W9[ abc
,b210 -’-q C, --C ,a 2,

abf-
2q,,, ]-c q-";q,q

--aT ,q ,-s-;q2 [-abcvT q]

a
;q

b
;q

rl

2b2a2,b2, a.4..ql-2n,q-2n; q2,q2
"4t3 2ql-2n b2ql-2naEb2q, a

c2 c 2

In (2.3) let n--,o and sum the resulting 2@1 on the right-hand side by the
q-analogue of Gauss’ summation theorem [4, 8.4(3)]. We get (1.5).

To prove (1.6) we transform the well-poised oq9 on the left-hand side of (2.3) by
[4, 8.5(1)] to obtain

(2.4)

af’ b cf- abf’
’; ]loW9 --c; T’ T’ ab ’C’ ---------C -’c2qn q- q’q

.._ q _._ q2 ,,[-cq; q ]"[-abv q]"[c2" q]"

[c2q;q2]"[c;q]" ab- ;q

a 2 b2 a2b2ql-2n -2n; 2 q2-i4 ,q q

"4t3 a2 b2

a2b2q, ..ql-2n, _ql-2n

In (2.4) letting n--, oo and summing the resulting 2q’ by q-analogue of Gauss’
summation theorem [4, 8.4(3)], we get (1.6) after replacing a by ably and then setting
b2 = cq/ad.

Note that (1.5) for c--,0 reduces to the q-analogues of Gauss’ second summation
theorem due to Andrews [1]. In (1.6) replace d by d/c and let c0 to get the
q-analogues of Bailey’s summation theorem due to Andrews [1].
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3. Jackson [6] obtained a summation formula for a bilateral hypergeometric series
which contains the Watson and Whipple summation formulas as special cases. We
begin this section by obtaining the q-analogues of Jackson’s formula in the form:

(3.1)

H
aq, aq, b2c 7aq q q- "7- -7" " b " -’ 7

2aqqy_ aq
aq,y, y,-, a’ b2y

__q b2c
2’ qb, a

a2q a2q qf qfb, b, c,y, b2---
b2

aq

_
aq __b2c __b2y /- _f--if" b’ c y’ a a

aq aq_ aq b2c

7 II
2q bEa yqa q,y,b_y2 b2’--’---’y a a

2 cqy ayq 2 yb2q y, cb4

II cb2 ac a

b2Y2q
a 2

q2

2 acq a3q3 aq__ b2cq b2y 2

aqiI
q

b2y’b4yc’ cY ’-aY a2
+ b-y a2q

b2y 2

2

b4y 2 b4cy a3qb2Yac aq q by
b2y bEy a2q bEy 2 aq aq_ 2 aaq2 b4y 2

aq ’-’--’ y’ ’azq ,- b2y b4y’ a3q
b2

To prove (3.1) set a = a, a =y, a4= a2q/b2y, aT= b, a c, a 9 = a2q/b2c, ao= b
in Jackson’s [7, 2.2] transformation connecting a 8q8 with two 87 series (which can also
be obtained by setting N=4 and specializing the parameters in a transformation of
Slater [11,2(7)]) to obtain
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(3.2)

aq aq aq b2c q
b’ b’c’a’b’

I-I
2qa q y aq

aq,y, -, -,
by a a by

q q b2c
2b’c a

2

b,-b,c,y, a2‘
bc -b qv/-, qf q,

"8q8
aq, aq, q, aq, b2c, b2Y,v -VTdT-a -a

b2

yq yq b2cy yq aq aq

---’ c a 2 b ’q’by’ cy
y i-[

a

_
aaq q y_q q

-f, ,Y,by, a’b’ a y2

aq b2c
by’ ay

a
q

"8 a - a a b2c b2
q;

a

+ a2ql-[
b2y

a2q z a2q z cq a2q 2 by b2y b4yc by b4y 2.,,-,q-, ,,
bay bcy y bay a ac aaq a aaq z

b2y bEy a2q b2y 2 aq aq z a3q 2 b4y 2

aq’ a 2 ’b2y a2q bZ’b2y’.b4y 2’ a3q

.8WT[a3q 2 aq aq acq a3q z aq. b2 ]b4y’; by’ by’ bEy b4yc ’-’ q’ -
Summing both 8Wv’s on the right-hand side of (3.2) by (1.5), we get (3.1). It may be
noted that (3.1) for b--a yield a q-analogue of (1.7) whereas in (3.1) first setting b-a
and then letting a-,y- q3/4 we get a q-analogue of yet another summation formula
of Whipple [2, 3(i), p.97]. On the other hand (3.1) may also be regarded as a q-analogue
of another summation formula for 6H6( 1) due to Jackson [8, 1.2] to which it reduces
on letting q 1- in the usual way.

4. We begin this section by obtaining the following q-analogue of two transforma-
tions due to Bailey [3]"
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(4.1)

-abq l/2--n.__ q
abq/2-n

c 2
,-c,c,a,b2 q-"’, q,q]

--d- ;q c2q; q
2b2

;q
a

a 2 b2 a2b2q-2n
4

,q-2n; q2,q2

a2ql-2n b2ql-2na2b2q,,
C2 C2

_,q2 [a2q;q

b
;q --- ;q ’q

ab
;q

b2, q--2n C
2

c2 b
2,q 2.; qZ,q2

"43 2ql--an l--2na q c2q
C
2 a 2

The transformation (4.1) has been written by transforming the well-poised 10q9 in the
left-hand side of (2.3) by [4; 8.5(1)], whereas (4.2) is obtained by transforming the 4b3 in
the right-hand side of (4.1) by (2.2). The transformation (4.1) for c-ab// yields the
summation formula

3--2n

a b- q -,,; ,q)-
a a-O

q q

2--2n 2--2nq
a 2 b2

azb2 ][a2" q],,[b2" q
q 2n[--q; q]"

q
,q [a2b2q, q

whereas for c-a/v/, (4.1) yields the interesting summation formula

;a 2, b2 a a bq3/2-n

;q2 qn-, q
b2q

[a2;q2]n[bZ;qZ]n

-- q abv q b
q --- q
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On the other hand using (4.1) and (4.2) the following identities of the Cayler-Orr
type can be written.

THEOREM I. If

q,z
43

a---’- a’--"-- b ’
c2

-q’ -abq/’ ab

ab [ a2,b2,c, --c;

"+’q 4*3 c2,abf,_abf4
q,qz

4b3
ab ab

-q, -abq/2,

o (l+abf) ---a-;q
n+l Z

f- n=O
(1 +abqn+’/2 / ab

q,z

then

a b2.

21
a2b2q

q2,qz
c 2_Aq c :__2q
a 2 b2

a2q 2

n
oo [c2q;q21.2]
=0 [c4q/a2b2; q anZn.

THEOREM II. If

a2,b2,c, ---c;
4*3 c2, abf’, -abf

q,z
cf4

43
ab ab

-q, -abq3/2,

q,qz

ab I a2’b2’c’ -c,;
-1" q4t3 c2,ab/’,_abf-4

q,qz
cf- c/ af

I ab ab b

-q, -abq/,

o "-d- q
,,+, ab +abv

= X
[ ab ;q]

-; q,z
a

c
ab
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then

b2 2,. a2q, c2q 2

2(1 b2’
q2 qz

211 a2
q ,z [a2b2q, q2; anz.

c2q c2q n=0 [c2q; q

Theorems I and II are q-analogues of known results of Bailey [3, Thms. I and iI].
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RATIONAL INTERPOLATION TO e x, II.*

PETER B. BORWEIN"
Abstract. The following estimate is derived for the error in approximating e by rational functions. Let

r denote the polynomials of degree at most n.
THEOREM. Let , Ya,’" ",Yan+t be points (not necessarily distinct) in [0,a], a<2. Choose Pn, Qrn so

that

Pn(Ti)-Qn(Ti)e-v’:O for i: 1,2,- .,2n+ 1.

Then for x [0, a]

and

n!n!IP(x)/Q"(x)-e-xl<-c (2n)!(Zn+ 1)!

2n+l

II (x-,)
i--1

n!n!
(2n)!(2n+ 1)!

2n+l

II (x-,)
i:1

where C, and Da depend only on a.

1. Introduction. We derive precise estimates for the error in interpolating e on
[0, et], a <2, by rational functions whose numerators and denominators have the same
degree. These estimates show that, up to a constant, the optimal choice of interpolation
points are the zeros of the Chebyshev polynomials shifted to the interval [0,a]. The
estimates provide another proof of the main diagonal case of the Meinardus conjecture
concerning the error in best approximation to e x, at least, up to a constant and on a
smaller interval. (See [1], [2], [3, p. 168], [4]and [5].)

Let rr, denote the real algebraic polynomials of degree at most n.
THEOREM. Let ,3[1,’’’,/2,+1 be points (not necessarily distinct) in [0,a], where

a <2. Choose P,, Q, r, so that

Pn(li)-Q,(yi)e-v,=O for i-- 1,2,.--,2n+ 1.

Then, for x [0, a],

and

where

n!n![P(x)/Q"(x)-e-x[<C (2n)!(Zn+ 1)!

2n+l

H
i--I

n!n!Ie"(xl/a"(xl-e-Xl>-D (2n)!(2n+ 1)!

2n+l

II
i=1

’6
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If we set all the 3i to zero in the above theorem then we get bounds for the error in
main diagonal Pad6 approximation.

The theorem is a refinement of a similar result in [1].

2. Preliminaries. We proceed, initially, exactly as in [1, p. 143]. Suppose that
P,, Q, ,r and suppose that P,,(x)-Q,,(x)e has 2n+ zeros on the interval [0, a]. If
Q,(x)- qo+ qlx + + q,,x" then on taking n + derivatives

(1) (P,,(x)-Q,,(x)e-X)("+l)-(Q,(x)e-X)(’+)- n+ }Qnk)e-X(_ 1)(,+l-k)
kk--0

X k n-k

=(_l),+te-X x n+l

=o. j=0,
i(-1);(k+j)!q,+;.

Since (Qn(x)e-X)(n+l) has n zeros on [0, a], we deduce that there exist fl,...,fl,[0,a]
so that . n+l (-1 (k+j)!qk+j q,,

k=0 j=0 J i=1

Thus, if q, II i"__ l(X- fli)- bo+bx+ +b,,x", we have

(2)

0

_(n+l)l +(n+l)2 (--1)n

(n+l)0 _(n+l)l (--1)n-’

0 0 0

In+l]n

In+

We can invert (2) to obtain

qo)!
ql[!
q22!

Lq,, !

bo0!
bl!
b22!

bnn!

(3)

() (n+l),n (n+2)n (2nn)
0 (r) (nn+l)"’" (2n- )

0 0 0 (n

boO!
bll!
b22!

b.n

" qo0!
ql!
q22!

qnn!

We observe that (3) can be easily derived from (2) combined with the fact that the
(m,n) Pad6 approximant (the case where bo-b-... -b,,_-O) to e is given by

m ()(__x)V / ()XX (m+n’} 19’ (n-’vTn) 19’
v=0 v v=0
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We now consider eXPn(x) Qn(x) and perform similar calculations to those above.
We write Pn(X)--po+ +pnx" and we deduce the existence of a,...,anglO, a] so
that

(eXen(X))(n+’)--eXpn I (X--ai),
i---1

where

(4)

Pn I (x--ai)--ao+ Wanxn,
i-0

PoO! ] aO! 1Pll! al!
p2! I- a2!

pnn J ann!

and

0

)
)

a00! P00!
al! pll!

a22! P22!

ann!., _Pnn!

The information about Pn and Qn that allows us to analyse the error in interpolat-
ing e x is contained in the following lemma.

LEMMA. Suppose that Pn(x)=po+px+ +pnx and suppose that Qn=qo+qx
+... +qnx where q0>0. Suppose also that Pn(x)-Qn(x)e has 2n+ zeros at

1’" ",’YEn+ ( [0, ].
Then:
a) Pn has alternating coefficients;
b) IP.l<-(n!/(2n)!)lPo[;
c) if a <_ 2, then

and
2-z: (2n)! Iqol;

d) if a <2 then Qn has positive coefficients,

qn--< 2L_a (2n)!,,qo and
qo2e
(2-a)
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e) if a <2 then

P(O) 4
< <

e3/2-O,(O) (2_a)2"

Proof. That Pn and Qn can be found with the desired interpolation properties is a
consequence of results in [3, pp. 16 and 165].

Part a) is a direct consequence of (5) and the observation that the a in (4)
alternate in sign.

Part b) follows from (5) and the above, that is,

[p0[ [i!al(n+i)>_(2nnt), (2n)!
n lan[- n! IPI-

i=0

then

To prove part c) we see that, if 0 -<a,. ., a,---a <2 and
n

an H (x--ti)--ao+ +anxn,
i=1

Thus, from (5) (or (3) for the second part),

n n --k

[P[-< (n+k) (n+k)!a"
k=0 k=0 k!(n-k)!

Since 2"-k/(n- k)! <-(-)"-.-,

[P[--< 91a"12
k0 (n+k),k! (2)n-’- -< 91a"12 (2n)’(ln! )"-’ (2)-’__<__[p[274 (2n),n

k=0

The first part of d) follows from an examination of (3) using the facts that, for
i<_n,

<1(i-1)!]b/_ [<a(il)[bi[ and (n+i-1)_.(n+i)n n

The second part of d) is proved by noting that

qo>_nt[b,[ (2nn) ( 1),{bn_[(2n-l)_(1 )( )!
n- > qn"

TO see the final part of d), note that

i!qi-- n+k (k+i)!b+
k--0

n

and

(n+k-ln)(k+i-1)!lb+’-’l<-(n+k)
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Hence, since the bk alternate in sign,

(2n)!
i,qi<_ (2nn-i)(n,)lb,l<_ (2)n’lb,l- ni qn

or

2 ) q0
q"--< 2 -."

Thus

Q,,(x) < 2.q,,
-2_ae

Finally, from (5), one can show that

<1I(i/ 1)!p+,l--li!pl.

Since,

e- .r, P___.9_o Yio ( Pi/Po ) ( "Y )
qo " (qffqo)(’ )i--0

It follows that

and

<%< 4

e3,,/2 --qo (2-)(2- ot)

3. Proof of the theorem. Let Pn+,, Qn+k r.+ , be such that

P,, + ,( x )
Q,,+,( x )

--e-x, k=O, 1,...

has 2k zeros at zero and a single zero at each of the 7. Then, for x [0, a]

(6) Rk(x ) ---+ i-(-i Q,,+(x )
Otk+ lX2k II 2in- l( x Yi )
Q,,+,+l(x)Q,,+,(x)

Also, if P,,+k(x)- + +p,+k,x "+k and Qn+-q0,k+ +q,+k,x n, then

tk+ :Pn+k+ i,k+ 1" qn+k,k--Pn+k,k" qn+k+ ,k+

and by parts a) and d) of the lemma
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Parts b), c) and d) of the lemma yield the following bounds for ak+l:

and
( 2 (n+k+l)!(n+k)!I,+,1 2" a (2n+2k+2)!(2n+2k)! (Iqo’k"Po’k+’l+lqo’’*l’Po’’l)

(7)
2 (n+k+l)!(n+k)!lak+ll--> (2n+2k+2)!(2n+2k)! (Iqo,,’Po,k+,l+lqo,,+’Po,,l).

From part d) of the lemma

2e
q’’<-Q"+’+(x)<-(q’’) 2--a

For k -->0 we note that qo, k+ --Po,k-- 1. Thus, for k _>

24 (2- ) (n+k+l)!(n+k)!IRk(X)[<-- x2" [x--’il (2n+2k+2)’(2n+2k)’i=1

and

}Rk(x)l-->2 27ea x 2k 2nl ) (n+k+l)l(n+k),Ix--vii (2n+Zk+Z)’(Zn+Zk)’’i--1

For k--0

Ix-,,I (2n+2)’(2n)’ I+Q,,(o)2-a
i=

and

[Ro(x)l>_ (4-2a27e 2(2n+1 ) (n+ l)!n! ( P,(O) )II I1-’,1 (2n+2)’(2n)’ +,O,,(o)i=1

Note that

Thus,

(n+k+2)!(n+k+ l)! / (n+k+ l)!(n+k)!
(2n+Zk+4)!(Zn+Zk+2)!/(2-r772-k-7+- 25 ( 71- ) 16(n+k)2"

and

en(X)
e-x-Q,,(x)

-->
27e"

Ix- ,l (2n+2)!2n’i=1 1+73-2 )2],,= 16(n+k
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ON THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS
TO KINETIC EQUATIONS*

M. J. LEITMAN

Abstract. A "kinetic equation" here refers to a Cauchy initial value problem in L2(( o, o))

dx
dt -Axe, xo=g,

where ,4 is a bounded, symmetric, positive semidefinite, linear operator in L2(( o, o)) with a mean-value
property: f,4x=O. The specific operators considered typify a class which arises in the study of certain
stochastic differential equations. This work addresses the following question: For which initial functions g in
L2((-o, o)) do the solutions decay in the L2-norm more slowly than any exponential function? (The
Ll-norms are constant.) It is shown that a sufficient, but not necessary, condition that g induce this slow
decay is that g have nonzero mean: f g4 0.

1. Formulation of the problem and principal results. By a "kinetic equation" we
mean a Cauchy problem in L2 of the following form:

d
(K) dtXt Axt, t>O

x0=g,

where A is a bounded symmetric linear operator in L2 which is positive semidefinite
and has zero mean: 2 Ax Z = f.,4x O.

Roughly speaking, solutions x of (K) have the following properties:
(i) if g >= 0 then xt> O, for all >= 0;
(ii) if gL, thenxtL and Ilgll---llxtllx, for all t>_0;
(iii) if P denotes the projection onto the null space of A, then Ilxt- Pgll 2 decreases

monotonically to zero as t o.
We are concerned here with the rate at which x approaches Pg. Specifically, we will
describe those initial conditions g for which this decay is exponential and those for
which solutions decay more slowly than any exponential.

The significance of this problem is discussed in [3], primarily with reference to the
propagation of plane waves in a random medium. It is worth pointing out, however,
that -A generates a Markov process whose values for measurable sets ’ are generated
by taking the initial function g to be the characteristic function of . The "kinetic
equation" may thus be construed as the Kolmogorov equation associated with the
Markov process. Here we concentrate on the mathematical question of decay rate,
referring to [3] as needed.

*Received by.the editors February 28, 1983. This work was supported by the National Science Founda-
tion under grant MCS 80-02852.

Department of Mathematics and Statistics, Case Western Reserve University, Cleveland, Ohio 44106
Here, and in the sequel, LP always means Lp (( o, )), for p >__ 1.
2For functionsf L we write f f for f-oo f(x)dx when no confusion is likely.
For details not explicitly presented here, we refer to our earlier paper [3]. Note that we have replaced A

by -A, for convenience.
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The operator A is an integral operator in L2, with kernel q of the following form"

(A) /, (Ax)(/,) 6(g,/1)[x(g)-x(v)] d/1, !,(, ).

Its kernel p is required to satisfy:
(A1) q (#, /1) >__ 0;
(A2) q (#,/1) q (/1, #);
(A3) q(/,,/1) =< k < ;

def’n.
(A4) q,(/,) fo tp(/x,/x)d/1<q< "
(A5) f_2o 2(/z) d/.t < ca:);

(A6) for ), > 0, the set q-x((0, ,)) has positive Lebesgue measure.
In [3] it was shown that (A1)-(A4) together imply that A is a symmetric, positive

semidefinite,4 bounded linear operator in Lz(]IAII2__<2). Moreover, xL implies
Ax L1, and fAx 0. The inclusion of (A5) guarantees that A takes L2 boundedly into
LI(IIAIIz, I_<2IIqII2), in which case fAx=O for all x.L2, and that zero is in the
essential spectrum of A. The further inclusion of (A6) suffices to guarantee that zero is
not an isolated point of the spectrum of A.

Remark 1. A is not compact as an operator in L2. In fact, it may have no
eigenvalues at all of finite multiplicity, say if the interval (0, q,) is in the range of
Moreover, if g is an eigenfunction corresponding to a positive eigenvalue, then neces-
sarily g L and f g-- 0.

Remark 2. Technically, condition (A5) guarantees that the integral operator x
given by

oo.
is compact in L2. It then follows that the operators x Ax and the L2-multiplier
x qx have the same essential spectrum, the essential range of q,. Clearly zero is in the
essential spectrum of x qx, and condition (A6) guarantees that it is not an isolated
point.

Remark 3. The "acoustic kernels" which originally motivated this study (see [3]
and {}2); are of the type (/1,/1)=f(pt2-//2), wherefL1NL, f_ 0, and f is even; e.g.
f(s)= 1/(1 + s2). Such kernels satisfy (A1)-(A5); moreover, (A6) is redundant, since A
is then positive definite, and so zero is in the continuous spectrum of A rather than
being an eigenvalue.

Another example, discussed in [3] and in the next section, is that of convolution;
that is, k(/, v)=f(/-/1), wherefLINL, f>=O, and fis even. In this case (A1)-(A4)
and (A6) are satisfied, but (A5) is not. It will turn out that A is positive definite, and
that zero is in the continuous spectrum of A. Also, A does not map L2 into L but
merely L L2 L f3 L2.

Separable kernels +(l,/1)=f(l)f(/1) which satisfy (A1)-(A4) always satisfy (A5),
but not necessarily (A6). For example, if f--xt-l,ll, the characteristic function of the
interval [-1,1], the spectrum of A consists of exactly two points (0, 2}, each of which
is an eigenvalue of infinite multiplicity.

4 In [3] q was assumed positive rather than nonnegative. In the latter case, A may or may not be positive
definite.
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The solution of the Cauchy problem (K) is given through the solution semigroup
(Tt’t >_ 0 } generated by -A; that is, xt Ttg exp(- tA)g, > O. In [3] it is shown that
this is an analytic semigroup of bounded, symmetric, positive definite, positive, linear
operators in L2. If gLlCL2, then TtgLIr3L2 and fTtg=fg, for t=>0. Finally, if P
denotes the projection onto the null space N(A) of A, and Q 1- P is its complement,
the function IITt0gll2 decreases monotonically to zero as t---, 0. 5

Our main result concerns the rate at which IITtQglI2 approaches zero. For each
h L2, h :gO, we will see that (d/dt)lnllTthll2 is a negative, nondecreasing function
for >_ 0. Hence )t h >= 0 is well defined through

d
)t h lim - lnll r,h

t--, o

For h 0 we formally write ?0 oe, so that h )k h makes sense for all h L-.
If gL2 is such that X?g> 0, we say that g decays to Pg exponentially fast with

decay rate X t?g or, simply g ED. For in this case it is easily seen that

IlTtOgll=__< IlOgll.e-Xe’, t>_ o,
and, for each e > 0, there is a t >_ 0, such that

IIr,agll=z IlT,agllze -x"+)’t-), t>=t.

If gL2 is such that )tOg=0, we say that g decays to Pg more slowly than any
exponential or, simply, g SED.

To formulate our main result succinctly it is convenient to define a subset Cgin L
by

=(xL2"eitherxqLiorbothxLiandfxO).
Its complement N in L2 is the subspace of zero means"

={xL’xLandfx=O}.
We may now state our main result: If (A1)-(A6) hold, then

Qg cg SED or, equivalently, g ED Qg .
Remark 4. In [3], where P--0, it was conjectured that g decayed to zero more

slowly than any exponential whenever g was nonnegative and nonzero. Since all such
functions are in ., the conjecture is certainly true.

Remark 5. The main result is not quite as sharp as one would like, for our method
does not seem to tell us which functions g such that Qg are also in SED. That there
may be such functions will be shown by explicit example in the next section.

We examine the solution of (K) by means of Hille’s famous formulae [1]"

(H1) Ttg=fe-XtdxExg
and

(H2) Ttgll = f  X’dl =
2 e IExgll _,

5These assertions were verified in [3] for A positive definite, in which case P---0.
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where X Ex is the resolution of the identity of the operator A. From (H2) we obtain
the explicit formula

d f Xe-2XtdxllExQgll
(H3) dt lnl[ Ttagl[2

f e-ZXdxllExagll

The heart of the argument lies in the analysis of the resolution of the identity of
the operator A. To this end we abstract just those properties of A which are needed.
Henceforth, A is assumed to be a bounded, symmetric, positive semidefinite, linear
operator in L2 such that

(B1) gL2Ag;
(B2) zero is a nonisolated point in the spectrum of A.

We will prove our main result as the following.
THEOREM. Let A be a bounded, symmetric, positive semidefinite, linear operator in L2

which satisfies (B1) and (B2). Then

Qg cg SED or, equivalently, g ED Qg .
Remark 6. In Remark 3 we observed that convolution kernels do not satisfy (B1).

However, they may, as in the first example in 2, satisfy:
(B1)’ Ag L (q L2 =* f Ag= O.

In this case we have a modification of the theorem.
THEOREM (alternate version). Let A be a bounded, symmetric, positive semidefinite,

linear operator in L2 which satisfies (B1)’ and (B2). Then, for those gL2 such that
Qg Ll fq L2,

gED=fQg=O
or equivalently

fQg 0 g SED.

Thus, under these weaker hypotheses, we do not conclude that all those functions gL2

such that Qg L are in SED.
The hypotheses of these two theorems may be motivated by the following heuristic

argument. Suppose that zero is an accumulation point of the spectrum of A, but not
itself an eigenvalue. If g is an initial function with components in infinitely many of the
corresponding "eigenspaces", then Exg cannot be zero near ),=0. The Hille formula
(H1) then shows that the induced decay cannot be exponentially fast. Clearly such a g
cannot be an eigenfunction, since every eigenfunction must induce exponentially fast
decay. Now the properties of A guarantee that the Ll-eigenvalues all have zero mean,
whence the hypothesis that the functions without zero mean ought to be the ones which
induce decay slower than any exponential. The examples in the next section show that
this heuristic argument, while essentially correct, is somewhat simplistic.

2. Some examples. The case of convolution is simple and physically less interest-
ing [3]; nevertheless it provides insight. We suppose (/, v) =f(/- v), wheref L1C3L
is nonnegative and even. This is sufficient to guarantee that (A1)-(A4) and (A6) hold.
The formulae which follow will show that A is positive definite so that zero is in its
continuous spectrum.
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If we denote the, Fourier transform in L2 by (^), and use Plancherel’s theorem on
solutions to (K), we get

IIT,gll2==f
where

o) fi(o))= 2- f(O) -f( o) )l 2L[1 -cos(o)s)] f(s)ds.

Alternatively, the resolution of the identity can be computed directly, as in [1], to yield

(E,g)()--
-oo - l([o,h])e do) g(p)dp,

and hence

( Exg’g)= ff-,([o,x])
From Hille’s formula (H2) we get

From its definition we see that f is continuous, f(0)=0,/(o))> 0 for o)4: 0, and
limll_, of(o)) =f(0)= f f. The set f-I(0,X) has nonzero Lebesgue measure for h > 0. As
a consequence, the function X (Exg, g> is continuous at zero for every gL2, so
that zero cannot be an eigenvalue of A. If gLIC3L2 and fg4:O, then I(0)1>0 for o)

near zero. In this case (Exg, g) is positive for all > 0. Hence, zero is in the continuous
spectrum of A (P 0). Of course A is positive definite, since Ex 0 for X =< 0. We have
thus shown that gZlc3L2 and f g4:0 together imply that g SED. Now there are
certainly functions g for which vanishes at zero but not in any neighborhood of
zero.6 Such functions, of course, are also in SED. It follows from a result of Polya that
there are also functions in with arbitrary positive decay rate.7

We have seen that the conclusion of the Theorem, and its alternate in Remark 6,
applies to this example. But, as pointed out earlier, (B1) does not hold. Furthermore the
conditions on f do not seem to guarantee that (B1)’ holds either. To guarantee that
(B1)’ does hold, add to the assumption the.requirement that f s"f(s)ds< oo, for
some a >__ 1/2.

6The function g(g)-- Xto,1)(lgl)-x[1,z)(lgl) is certainly in. In this case (o) 2(sin o)/o- (sin 2o)/2 o
so that (0) 0 but (0)> 0 for o near zero.

7To construct a function in with arbitrary positive decay rate, use the method in Chung [2, Thm. 6.5.3]
and the discussion which follows.

For x L2, x Lx, and y L defined by

we would like to conclude thaty L f y-O. This is equivalent to I(0)1 < m (0)- O, where= 2f. Now
if f has finite (fractional) moment a>= g, then f(o)= 0(0’) as 00. If (0)0, then 2 cannot be in L.
Hence y(O)-- O.
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Observe that if f has finite second moment: f s2f(s)ds< c, then f(0)=O(o2)
as I10. In this case IIT,gll2- O(1/V7) as tc, a case of algebraic decay as in the
heat equation.

The second example is a modified form of the first: q(,v)=f(/.t-v)+f(+ v),
where againfL10 L is nonnegative and even. This kernel has the same symmetry as
nonnegative even functions of (#2_2); that is, q is symmetric and even in each
variable.

We can proceed as in the convolution example above to obtain

exp(-4f( )t)leven( )ldo+exp(-4ff)llgoaall
where geven and godd are the even and odd parts of g. In this example, all the odd
functions in L2 are eigenfunctions of A corresponding to the eigenvalue 2 f f; and zero
is still in the continuous spectrum (P--0). All the comments of the preceding example
apply here as well to the even functions in L2.

The third example to be considered has the same symmetry as the second, but
satisfies (A1)-(A6) and, hence, (B1), (B2).

For n 1, 2, 3,... set 8n x/n- 1, I [q’n- 1, v/n-), and write x for the
characteristic function of the interval In. Now define b by

n=l

Then , is given by

4’ (t) =2
n=l

Since /-8,--, 1/2 as n, it follows that L2CL, but ffL1. Clearly (A1)-(A6)
hold.

The calculation of A is straightforward, yielding

(Ag)(.) 2 E
n=l

where ’n is the mean value of the even part of g on

n-- geven(P) dp"

The null space N(A) of A consists of all functions of the form En=l c,x,(Itl) for which

Enc= n2n is finite. The projection P onto N(A) is

n=l

The solution to (K) can now be given explicitly by

(Ttg)() (Pg)() + E e-28"t[g(l) rn]2Xn(I/l)
n=l
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Thus

,,= -I.u.

where -I, is the interval (- vrn--, v/n 1 ].
From this last formula we see that g L2 is in ED if and only if, for some N >__ 1,

goaa 0 and geve, ’, on each I,,, n >__ N. In this case )t Qg= 28N> 0, for the least such N.
By direct use of this formula we see that if Qg cg then g SED. However, all the odd
functions gLlnL2 with unbounded support also lie in SED. For such functions
Qg=g.. If gLlnL2, g is even, and g4, on an infinite sequence of I,,’s, then
Qg but g SED.

Our final example is the most interesting. Let q(/,,)=f(/-u), where once
more we takefLln L to be nonnegative and even. As pointed out in Remark 3, the
"acoustic kernel" f(s)= 1/(1 + s) is of this type [3]. Under these conditions (A1)-(A6)
are satisfied. In fact, q is even and

ds

1 f_/
so that f f as

As before, symmetry allows us to consider the even and odd functions separately.
Since Xodd ZXodd tXodd, the L2-multiplier, we have from (H2)

r,gll:--fe-2Xtdx{Exgeven,geven) + fe-2Xtdx(f,- <Io,
Hence the odd functions gL2 with unbounded support are in SED, while those with
bounded support are in ED.

It is not hard to show that A is positive definite [3], so that zero is in the
continuous spectrum. If gL2 is even (g4:0) and gL1, then, gC, and, by the
Theorem, to SED. On the other hand, if g L1CI L2 is even (g4: 0) and f g--0, then
g N. At this point we cannot tell if such a g is in SED. Thus SED certainly contains
the odd functions with unbounded support, and the even functions which have nonzero
mean or which are not integrable at all.

3. The spectral resolution of the identity and the asymptotic behavior of solutions.
As a preliminary we specify some notation. For fL we write f f for the Lebesgue
integral f

_
f(s) ds. For functions f and g such that fg L we write { f, g) for f fg.

Then for f,gL2, (f,g) is the standard inner product and ]]jql2=--(f,f)1/2 is the
L2-norm of f.

Since A is a symmetric linear operator in L-, it has a real spectral resolution of the
identity Ex. Recall that (Ex: -oe <X < o } is a family of bounded symmetric
linear operators in L2 such that:

(i) Ex is (normalized) left-continuous in the uniform operator topology;
(ii) Ex, Ex,, Emin(X,, x,, }.
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Properties ((B1), (B2)), or ((B1)’, (B2)), further imply"

Ex=0, oe <)t_<0,

(iii) Ex is a nonzero projection, 0 < x_< I1 I1=,
Ex 1, the identity, IIa I1 - < <

(iv) lim Ex= ( 0xo P4:0
if ) 0 is in the continuous spectrum of A,
if )t 0 is an eigenvalue of A.

The spectral theorem in L2 can be stated as follows" for each pair g,hL2,
--, {Ex g, h ) is of bounded variation on ( , o), and

.(g,h)= fdxExg,h),
(Ag, h)= fXdx(Exg, h).

Our main technical result is embodied in the following lemma.
LEMMA. Let A be a symmetric, positive semidefinite linear operator in L. Then for

each g L, and 0 < a < b < , there is an f,, L, depending on f, such that

Afa, b=Eta,b) g

Moreover,

1
IlL  11= < -IlEt gll=,

The proof of this lemma will be deferred until the next section. In this section its
consequences will be explored. To facilitate this we define h, for each h L2 by

Xh=inf(,’<Exh,h) >0).

COROLLARY 1. Let (B1) hoM. If gL2 is such that g>0, then g; that is
gL L2 and f g=0.

Proof. For b > I[All_, Ei,b)g=g-Eag. Now Eg=O for 0<a__<,g. For this choice
of a and b, use the lemma to conclude that Afa, b=g. By (B1) we have g. []

COROLLARY 2. Let A satisfy (B1). For each gL2, and 0<a <b< c, we have
Eia,b)g. If, in addition, IIAII2,1 < c, then

a

The boundedness ofA as an L2operator is not required in the inequality.
Proof. From the lemma we have that

Afa, b--E[a,b) g.

Hence (B1) implies E[a,b)g.
Next, if IlAll=,x < o we have

a
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Observe that if (B1) holds Corollary 2 implies that EagL1NL2 if and only if
Ebg LIN Z2. Hence, the boundedness of A guarantees that gLIL2 if and only if
ExgLlcqL for some, and hence all, ,>0. In this case f g--f Exg, >0.

Proof of the theorem. From Corollary 2 we see that
(i) ifgL and gq L, then Exgq L for ,>0;
(ii) if gLL and f g4=0, then f Exg=/=O for ,>0;

that is, if g c, then g 0.
From (H3) it follows easily that XOg= X Og; that is, ) qg is the decay rate of g. Since

we have assumed that (B1), (B2) hold, the theorem is proved. E]

Remark 7. Suppose (B1)’ holds instead of (B1). Then, from the lemma, we see that
E[a,b)gLL2implies f Eia, b)g=O. We then obtain a modified version of Corol-
lary 1.

COROLLARY 1’. Let (B1)’ hold. IfgLNL2 is such that ,g> 0, then g; that is,
fg=O.

From this we see that if QgL L and gED, then f Qg=O. This proves the
alternate version of the theorem in Remark 6.

4. Proof of the lemma. For each gL2 the function )Oyg()) induced by g
through

is nondecreasing and left-continuous. Moreover

(i) yg(X) 0, X=<0,
2

(ii) yg(X) Ilgll=, x > IIA 112,

(iii) lim 7g(X) IIPgll==,
$o

Let k f(h) be measurable with respect to the Lebesgue-Stieltjes measure
the Hilbert Space of suchinduced on (-o, o) by the function yg. Denote by Lg

functionsf for which

22is given by (f,h)g=ff(X)h(X)dxyg(X), and the LgThe inner product of f,hLg
norm of f is denoted by I11 g,2. The elements of Lg2, while still called "functions", must
be understood as equivalence classes with respect to dyg in the usual way.

As mentioned in the Spectral Theorem, the function X (Exg, h) is of bounded
variation on (- o, ). Indeed, from the polar equality

1
(Exg,h)= [(Ex(g+h), (g+h))-(Ex(g-h), (g-h))]

1

which is the difference of two bounded nondecreasing functions.
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2 L2CLAIM 1. There is an isometry f f taking Lg onto realized by

(v) <f,h> ff(k)da<Exg, h )

for all h L2.
Proof of Claim 1. We will show that the right-hand side of (V) defines a continuous

2 Then by the representation theorem of F. Riesz,linear functional on L2 for eachfLg.
there is a uniquefL2 such that (V) holds for all h L. Writef=

The map f f is clearly linear. To see that [I/]l=-IIlg,=, proceed as follows. By
(v),

(Exg,f)= ff()dZE.g,Exg)

ff()d.(E.Exg,g)

ff()d(Emin(X,)g,g)

fa f(l)d,E,g,g).

Thus

(Exg,f)= fx f(l)dyg(l).

But then

2

To complete the proof we must show that the right-hand side of (V) defines a
Let ( Ik) denote any partition ofcontinuous linear functional on L for each f Lg.

(- , ), and let X k I.
First suppose fis continuous. Since the support of dyg is bounded, fis certainly in

2 Consider sums of the formLg.

k



ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO KINETIC EQUATIONS 673

Note that E1kg=O if Ikc (-,0] (llall, o), so that the sums are finite. Then

k

From the definition of the Lebesgue Stieltjes integral we have

ff(X)dx(exg,h) <- ff(x) Ilhll=_-<[Ifll,=llhll=

for all continuous f. Since the continuous functions are dense in Lg2, Claim 1 is verified.

Remark 8. Denote the range of rby Mg. Let 3/g be the subspace of L2 generated
as follows:

3/g=clspn(Ebg-Eag" <a<b< ).

Then 3/g= Mg. To see this, note that

Ebg-Eag=E[a,b)g fxt o, (x) dxExg.

Hence Jf/ c M. But spn{ Xla,)" o < a < b < o } is dense in Lg, so that/f/ M.
Remark 9. gM. Indeed, since drg is bounded, it follows that 1", the constant

Thus 1"function with value 1, is in Lg. g--
On the strength of Claim I we write

f= ff(X) dxExg
to denote

2 is isometrically isomorphic to the (closed) subspace Mg ofWe have shown that Lg
2L2. The next result shows that A is, in effect, multiplication in Lg.

2.CLAIM 2. The restriction ofA to Mg is equivalent to multiplication in Lg

x)= xf( ).

Proof. We first show that, for fMg and hL2, dx(Exf, h)=f(X)dx(Exg, h ).
Indeed,

(Exf h)=(f Exh= ff(l)d(Eg,Exh)
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Then from the spectral theorem we have

2 f 2Finally, since X hf(h) is in Lg whenever Lg, we see that (Y/’- 1Af)(X) hf(5,),
wheref= Y/’f. This proves Claim 2. []

At last we turn to the
Proof of the lemma. For 0 < a < b < o the function

1
g ’)L,b()-’--X[a,b)()

: Then for f.. /jT.. bis in Lg. b we have, by Claim 1,

IlL ll - 2 f 1 1 2

2"-" [[L, b[[ g,2 --g2 x a, b)(/X)dyg(p,)=< -5 [[EI a, b) g[[ 2-

Next, by Claim 2,

1
(Afa,b,h>= l-X[a,b](tx)d,<Eg,h)

fa Eg,h>=<E[a,b)g,h).

The lemma is proved. D
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GENERALIZED OPERATOR RICCATI EQUATIONS*

HENDRIK J. KUIPER"
Abstract. The Riccati equation

dU
=AU+ UB* + UCU+ D
dt

on the space ,o(X) of bounded linear operators on a reflexive Banach space X arises in control theory and
transport theory. A more general problem is the following. Let A and B be closed linear operators in X and
X* respectively and let be a map from [0, T).(X) into Z,e(X) and consider the initial value problem

dU--- cg’ A U+ UB +( U U O Uo

onZ’(X). It is shown that for a certain class of initial conditions, determined by A,B and the geometry of X,
there exist continuously differentiable solutions with respect to the uniform operator topology. It is also
shown that if A and B have compact inverses, then there exist solutions with respect to the strong operator
topology for arbitrary initial conditions.

1. Introduction. Let .o(X, Y) be the linear space of all bounded linear operators
from the Banach space X into the Banach space Y and let Z’(X)=Z’(X, X). When we
endow this space with the strong operator topology we obtain a topological vector
space which we will denote by s(X, Y). Similarly we can obtain a Banach space
u(X, Y) by imposing the uniform operator topology. In either one of the two spaces
.as(X) or *u(X) we can look at the infinite-dimensional Riccati equation

cg’ AS + SB + SCS + D,

s(o)=So,

where egg, denotes operator closure and where A and B are closed linear operators in X.
This equation arises in optimal control theory (see e.g. [14]) as well as in transport
theory (see e.g. [11], [18]).

Several results have been obtained since Lions proved the existence of distribu-
tional solutions. In particular we mention .the work of Curtain and Pritchard [3],
DaPrato [4], [5], Lukes and Russell [15], Tartar [21], and Temam [22]. All of these
results deal with either distributional solutions or solutions which are differentiable in
the weak operator topology. The question arises whether there exist solutions in .s(X)
(i.e., strongly differentiable) or even in Zau(X). Generally, when the coefficients A and
B are unbounded, one can not obtain a solution in .au(X) unless the initial condition is
such that the orbit will be restricted to some smaller subspace of operators such as the
compact linear operators. Such a restriction is sometimes natural. For example (1.1)
arises in linear filtering theory where S represents a covariance operator which indeed,
typically is compact. An existence theorem for strong solutions for equation (1.1), with
noncompact initial values, was obtained in [11] in case X is a Hilbert space. The proof

*Received by the editors March 1, 1983, and in revised form February 9, 1984. This research was partly
supported by the National Science Foundation under grant MCS 81-03441.

*Department of Mathematics, Arizona State University, Tempe, Arizona 85287.
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is very much dependent on the quadratic structure of the right-hand side of (1.1) and
can not be extended to more general equations such as

dS
(1.2) -=AS+ SB+tb(S), S(0) S0.

Here we have deleted the operator closure which is, however, implied. We will do so in
the future when there is no risk of ambiguity. Tartar studied this equation [23] and
obtained existence of distributional solutions as well as many qualitative results such as
strong continuity from the right and a priori estimates. Generalized Riccati equations
such as (1.2) arise in some applications such as optimal control of linear systems with
state dependent white noise and quadratic cost. The finite-dimensional version of this
problem is studied, e.g., in [23] and [24]. The infinite-dimensional version is similar and,
of course, also of practical interest.

Let g(X) denote the closed linear operators and let ,)g0(X) denote the compact
linear operators in X. For the sake of simplcity we shall assume that X is a reflexive
space and we shall identify X** with X. Using Sobolevskii’s results on nonlinear
semigroups [20] we shall obtain in {}4 the existence of a continuously differentiable
solution of

(1.3) dSd___7 rg’[A(t S)S+SB(t S)*]+ S) S(0) S0a

in a subspace of -,(X), where aY’0(x)cc/g’. Here A: [O, to)’,(X)--,rg(X),
B: [0,t0)x&,(X) cg(X*) and o’: [O, to)XX’(X)+ff’,(X). The definition of 5/gde-

pends on A and B. For example, if A and B are bounded linear operators then
,,*U=&,, ( X), as we should expect.

We also prove the existence of strong solutions for arbitrary initial values in
’,(X). Although our results allow X to be a Banach space, it should be pointed out
that they are new results even if X is a Hilbert space. The major difficulty in the proofs
of these results lies in the fact that before we can apply Sobolevskii’s results we must
show that the operator

A: S-+ e[as+ SB*

can be extended to a densely defined closed linear operator which is accretive. Of
course, this is not in general true and our approach depends heavily on the relation
between A, B and the geometry of X. First of all, we need the norm attaining operators
to be dense in X’(X). Lindenstrauss [13] showed that this is the case when X is
reflexive, although that is not a necessary condition. For example, Iwanik [9] proved
that the norm attaining operators are dense in (L[0,1]). Secondly, we need (very
loosely speaking) the geometry of X (resp. X*) to be "nice" on that part where A (resp.
B) becomes unbounded. To make this statement rigorous, we employ the concept of a
rr-space which was introduced by Lindestrauss. These concepts will be discussed in {}2.
The results from the theory of semigroups of operators which we will need will be given
in {}3.

Although the results obtained here are for the case where the underlying space X is
reflexive, it is possible to extend them to cases where this is not true. For example,
LI[0,1] is a rr-space and the norm attaining operators are dense in Xu(L[0,1]). These
two main requirements having been met, we can obtain existence of solution to Riccati
equations on ,a(Ll[0,1]). At the end of this article we will point out how to alter the
hypotheses in order to handle the situation where X is not reflexive.
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2. Preliminaries. We first define whatwe shall mean by a or-space.
DEFINITION 1. A Banach space Y is called a rx-space if there exists a collection

( F,)r of finite-dimensional subspaces, directed by inclusion, such that their union is
dense in Y and such that for each there exists a linear projection operator cry, with

rY-F and Ilcrll __<,. The space Y is said to be a or-space if it is a rx-space for some
),>1.

When this concept was introduced by Lindenstrauss, he referred to it instead as a
"space with the projection-approximation property". Browder and deFigueiredo [1]
introduced the notation "rl-space", which was subsequently used by several other
authors. Similarly Singer in his book on the theory of bases [18, p. 611] refers to these
spaces as "spaces which have an extended rx-basis". Before we give a few examples of
or-spaces, it should be noted that a space Y is a or-space if there exists a uniformly
bounded net ( ux ) of finite rank projection operators which converges to the identity, I,
in’s(Y) ([18, Thm. 18.4]). Also if Y* is a or-space then so is Y ([18, Thm. 18.8]).

Clearly any Hilbert space is a or-space, as well as any Banach space which has a
Schauder basis: Let (el, e2,.-. ) be a Schauder basis, and for any x--i___lotie let

i=lotiei. Since lim, rr,,x x for all x we conclude, using the uniform bounded-
ness theorem, that there exists a k > 0 such that IIr, ll__< k for all n. As another example
suppose/ is a o-finite measure on a set f, then LP(p,), 1 <p <= x3, is a r-space. Indeed,
consider the set of all partitions z of 2 into finitely many sets of finite measure
22,.--, f,, and (unless t is a finite) a set f0 of infinite measure. These form a directed
set, T, in the obvious manner. Let z= { 20, fl, f2,"" ",fm } T and set F, equal to the
linear space of all functions of the form Eim__ laiXi, where X is the characteristic function
of f. Finally define

r,f Y’ tz ( 2
-1 fag

i=1 Xi

One easily verifies the requirements of a r-space are satisfied.
Other Banach spaces which are r-spaces include Co, and C(S), S any compact

metric space 17].
If Y is a rk-space with associated projection operators (rr}, indexed here by their

ranges, then the net rrY tends to y for each y Y. To see this suppose e is an arbitrary
positive number. Then there exists an element z which lies in the range of one of these
projections, say r, such that [lY z[I _-< e(k + 1)- 1. Then

Ily- yll I[y- zll+ IIz- Fzll+ II FZ- FYlIz +

for any F3 G.
LEMMA 2. Let be a dense linear subspace of a w-space Y. Then there exists a

constant k and a net { r+ ) of linear projection operators such that, for each a, rY is a
finite-dimensional subspace of , II+rll_<kt, and such that r--+ I in the strong topology.
Similarly if* is a dense linear subspace of Y*, then there exists a net { rt } of linear
projection operators in Y such that rY* is a finite-dimensional subspace of*, I1+?11 _-< kx
for all , and r/j ---> I in the strong topology.

Proof. Let Bo be the ball of radius O centered at 0 in Y and let +Bo be its surface. If
S is any subspace of Y then we let So S Bo and +So S 3Bo. Since Y is an w-space
there exists a net { #j+} of linear projection operators, IIFII _--< k, indexed by their ranges
(i.e., +rFY= F and F is dense in Y). We note that if p is any bounded linear projection
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operator in Y with range R and kernel K then IlPlldist(K, OR1)--1. This. follows from
the definition of the norm:

( I’rl’ Ir3RI,K}Ilpl[ =sup
ilr_ll

--[inf( [[r-x[llrORx,xg )]-1.
In particular if KF denotes the kernel of #F then Y= F+ KF and. dist(K F, OF)-- IIFI1-1
>= k-. Since is dense in Y we can find a linear subspace GF such that G FC,
GFcF + 8F + 8KF, and 3G(c 0F + 8F + 8K with 0 < t < 1/4kd, d= dimE. Hence

Clearly Y= GFI) KF and the associated projection operator rv which projects onto GF
along KF satisfies ]lqrrll<=2k. Next we estimate IIrr- #VII. Suppose x Y, Ilxll 1, then

qrVX + ( I "n’F)X FX + (I ’FI’F) X. Therefore "n’Fx CrFX (Gfk Fk ) (’IKFc 2k(G(-- F1)
c2k(F2+-,KIF)CKF2kSK1r. Hence IIrv-Fll<__2k,<l/dimF. But this means
that the net rFX converges to x. We next consider the second case. Since r? is a

projection operator on Y* whose range is finite-dimensional, the same argument as
above shows there exists a projection operator PF whose range is contained in * and
which satisfies []pv--qrffl] =< 1/dimrflY*. Letting r=p we are done.

The concept of numerical range of an operator in a Hilbert space naturally carries
over to operators in Banach spaces by means of the duality map:

J" X2x*,

We now define the numerical range, 0(L), of an operatorL (X) as the closure of

( z C Iz =( Zx,x*),x(Z), IIx II--- 1,x* ejx ).
DEFINITION 3. We say that L is of type (0,t), 0R, 0<t<r/4, if Lcg’(X)

and"
(i) o(L)tAO(L)c E,s =- (zC llarg(oo-z)l<= r/2-8 };
(ii) there exists a closed linear subspace XLc X such that (L)= XL+o where ff

is a w-space, and X=X ff.
Suppose F is a map from a set S into (X) and that there exist 0, 8 and a decomposi-
tion X= XL ff as above such that F(s) satisfies (i) and (ii) for each s S. Then we

will say that F is of class (0, 8).
The first part of the definition is like the usual restriction put on a linear operator

in order to ensure that it generates a holomorphic semigroup. The last part of the
definition is satisfied if, for example, X is a r-space, or if L is bounded.

We shall assume

A" .@(A)XXandB" .@(B)X*--,X* are of type (0,8).

This means that (A)= X, +gA and that there exists a bounded linear projection
operator r onto z along XA (i.e., Kerr=XA). Similarly (B)=X/ +gff and there
exists a projection operator p* onto ozff along Xff. Clearly X**=(Xff)* +((if)*, so

that by means of the canonical identification of X with X** we have X=XB + where
we have used the notation (Xff)*= X/ and (g/)* =gs. Let p denote the projection
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onto B along XB. By Lemma 2 there exist nets ( ? } and { tSa } _of projection operators
on gA and

_
respectively such that # tends to the identity on gA while tSa tends to the

identity on gn and such that Range(?)CgA and Range(t)* cgo. We set % #r and
p tSap, so that % r and pa p where, for some constant k and all a and fl, IIrll _-< k
and I111 _-< k.

DEFINITION 4. Let P I- r, R I- p, P, P + %, Rt R + p and
(i) o(A) ( S u(X)IPSRa for some a and some fl );
(ii) =0(A), closure in Zau(X).
Clearly AS= fig’[AS+ SB*] is a well-defined linear operator on Za(X) with do-

main .@0(A) since AS APeS and fig’[SB*] [BRS*]* are bounded linear linear
operators on X.

One also sees that the members of trare the operators which are of the form C+ L
where C is compact and L=(I-cr)L(I-p) is bounded. If X is a or-space we may
simply take X=gA= and )tithe collection of all compact linear operators, although
this is rather .restrictive. Instead one might check the initial value SO and see if
ASo + SoB* is a densely defined bounded linear operator. If so one might try to find a
collection of’as defined above which contains SO As we will see, what this implies is that
there exists a uniform solution locally (i.e. a C1([0, 0),.(’u(X)) solution for some o > 0).

It should be observed that A defined on 0(A) is a closable operator in ,gffwhose

closure is given by S fig’[AS + SB*]. To see this suppose (S } is a sequence in o(A)
with lim_.llSll-- 0 and with A(Sn) tending to TOff. We must show T=0. Suppose x
is an arbitrary element in (B*), .then lim,_, o fig’[S,B*]x= lim,_, S,(B*x)=O. Hence
limn_.AS,x= Tx. But S,x tends to zero and A is closed. Therefore Tx=O. Since
(B*) is dense, we have T= 0. In the future we will let A denote the closure in t’of the
previously defined operator A, and (A) will denote its domain. Suppose S,0(A)
and S,S(A) and AS,AS in .’(X). If x(B*,) then ASnx converges to
(AS)x- SB*x while S,x Sx. Since A is a closed operator Sx(A) and so (AS)x=
ASx + SB*x for all x in the dense subspace (B*). This proves AS= cg’[AS + SB*].

We let I denote the identity map on La(X) and let

LEMMA 5. For any S 2f’we have
(i) IIS AASII_>_ (1 2,)11811, for all X (0,1/20);
(ii) IIA xSII >_- (1 + I?’I)IISII/C, for some constant C and all h with ReX >= 0.

Proof. We only need to prove these inequalities for a dense collection of operators
in ff. We will only consider the norm attaining members of o(A). These are the
operators S such that there exists an x,llxll 1, satisfying IlSxll IISII. Let S ,gf’, then
we know we can find an operator S’ such that rS’p %S’p, for some et and some fl and
such that S’ is arbitrarily close to S in norm. A theorem of Lindenstrauss [13] tells us
that the operators L in ’(Y, Z) whose second dual, L**, are norm attaining are dense
in Lz(Y,Z). The proof of this theorem actually gives us a little bit more. It shows that
given TLz(Y,Z) and e>0, there exists a compact linear C such that IICll<e,
RangeC Range T, KerC3 Ker T and such that (T+ C)** is norm-attaining. This
means that we can find a norm-attaining operator S", arbitrarily close in norm to S’,
and satisfying rS"o=%S"ta. Therefore let us assume that in fact S=PSRa(A)
and attains its norm at the unit vector x0. Let Sxo=yo. We claim S*JYollSll=Jxo To
see this, suppose y’ JYo; then IlSII-2S*y <= 1, and

( llsll-2S*yg’,Xo) IIsIl-2(JSxo,Sxo)- (1}.
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Therefore we have, letting z’ IlSll- JSxo:

Clearly II-hOl-XO2l>= 1-2hw. The proof of (ii) proceeds similarly, showing that
IIh xSII >_-IX / 2w + 1 o o2lllSII where 01, 02 ,o,. But

IX + 2w + 1 o o2l_> dist(X, E2,- 2w 1) > (1 + IXl)sin .
This means (ii) is satisfied with C (sin8)- 1.

This lemma shows that 2w I A is an accretive operator on cog’.

LEMMA 6. Whenever ReX>0, A exists as a bounded linear operator in .
Moreover IIA K 11 < C(1 + IXl) for some constant C.

Proof. Consider the operator K AK-,oK with domain 0 defined earlier. De-
note the closure of this operator by AA. Its domain is dense in Sf’and XI-AA is
invertible on egg" whenever > 0. Indeed, using the inequality

I( {,(x + }x, x*),1>= X<x, x*>
which holds for all X > 0 and x* Jx, we see that for L )fand X > 0 we have

II( Xl-Aa)- 1( t >11-I1[( x / )I-A]-ILII<= (l/X) Iltll.
Applying the Hille-Yosida theorem (see next section) we conclude that Aa generates a
strongly continuous (with respect to the uniform operator topology) semigroup of
confraction operators on 5f’. We denote this semigroup by Ta(s ). Of course A-wl
generates a semigroup Ta(s of contraction operators on X. Consider Kog’, x X and

+(s)= [TA(s)(K)lx- T(s)(Kx).

Clearly (0) 0 and q’(s) (A wI)q (s) for s > 0. By uniqueness of the solution to
this initial value problem it follows that T(s)(K)= T(s)K. Similarly we can extend
the operator K--, gg’(KB*)-oK to a closed, densely defined operator A s, on ’which
generates a strongly continuous semigroup Ts,(s) on X’. Let x* X* and let Ts(s ) be
the strongly continuous semigroup on X* generated by B- col Consider

q(s) [Ts,(s)(K)l*x*- rs(s)K*x*.
It satisfies (0)= O. Using the fact that taking adjoints is continuous with respect to the
uniform topology, we see that d/ds (B- oI)(s) and hence, again by uniqueness,

Ts,(s)(K)=KTB(s)*.
Hence defining T(s)(K)= T(s)KTB(s ) we see that T(=T TB=Ts T) is a strongly
continuous semigroup of contraction operators on cog’. Taking the derivative of T(s) in
the weak operator topology we see that its infinitesimal generator must be A-2w.
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Applying the Hille-Yosida theorem again, but this time in the other direction, we see
that A exists for all X > 0. The rest follows from the previous lemma.

3. Some results trom the theory of semigroups. In this section we will state several
results whose proofs can be found in [6], [7] and [20]. Included are several estimates
which we will need. These will be stated more carefully than they usually are. More
specifically, the constants which appear in these estimates, and which are usually
treated generically, can be though of as functions of 0 and where 0 and. are chosen
such that the numerical range of the generator is contained in

Let A be a densely defined closed linear operator on a Banach space Z and let
N(A) denote its domain. In the previous section we indicated the use of the Hille-Yosida
theorem. This theorem says that A is the infinitesimal generator of a strongly continu-
ous semigroup of contraction operators if I-A is invertible and I](XI-A)]] < 1/X for
all X > O.

A somewhat similar result is the following. Suppose that the resolvent set of A
contains the wedge

(3.1) Sf,n= {zCllarg(z-f)l<__’/2+rl }
for some " N and some 0 < l < r/2, and that

M
)S(3.2)

IX-
where M is some constant. Then A generates an analytic semigroup, denoted e TM. A
slightly stronger hypothesis is to assume that the spectrum and numerical range of A
are contained in the wedge X,o,8 (= closure of the complement of
and 0 < i < r/2. To see this, let 0 < l < iS, f > to and x a unit vector in Z. Then for any
x*Jx, I((XI-A)x,x*)l=lX-(Ax,x*)l>__dist(X,O(A))>-_dist(X,Y.,n). One may
easily verify that if 6, and hence also l, is taken to be less than r/4 then for S,,
with q, ]arg( )l and p larg( o )l, we have

Ix fIcos(, ) + )cos
dist()k’R’,n)=

ix_col= [I)k-’l+(’-o)2+21x-’l(’-0)cos] 1/

> { IX- ’[sin(8-l)+ ({’-*)cs8
I /cos 

Since sin(i /) _< cos i __< v/cos i we have

[sin(-l)]-t XS,.(3.3) I1( X A) 111 < IX ’1 + ’ o

We note that the above calculation actually proves that the continuous and point
spectra ofA are contained in the closure of its numerical range. The residual spectrum
of A is contained in the closure of O(A*) and hence the hypothesis on A may be
changed from o(A)uO(A)cZ,,,,n to O(A)tOO(A*)cR,,n. For bounded operators
O(A) O(A*), however this might not be true for certain unbounded closed operators.
If it were, then at least on reflexive spaces, the hypothesis would just need to be
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O(A)cE,o.. If o <0, then letting M= [sin(B- /) min(1, Iwl)] -1 and ’=0 we obtain

MIll-< Ixl + 1
if Re X _< 0,

which is the inequality assumed in [7] and [20] in order to ensure that A in fact
generates an analytic semigroup.

The crucial inequality on which most other estimates depend can be easily ob-
tained from the identity

A,,,etA= 1 frX,(Xi A) -1 xt
2rr--7 e dX

where F can, for example, be taken to be the boundary of
oriented in the upward direction, i.e. X=+rexp_+( / )i, 0Nr< m. Using (3.3) we
then obtain after some manipulation and letting, for example, w + [w[/2"

(3.4) [lAme[[ C(w,B,m)e’t-.
The value of & is important only insofar as that it has to exceed w unless w 0.

For the rest of this section let us assume that w < 0, & w/2. Then we may also
define fractional powers:

A-a
e- ia

r()
eSAsa-lds (a>0),

a-=(A--)-l.
For any real a the domain N(A) is also dense in Z and N(A)cN(A
Moreover

A,Av AA% A,+o
where y max(a, fl, a + fl), and

for all v(A),

(3.5) IIAI C(,,,,)ll<-X-ll%[l--
for all v(Ar), a </3 < 3. This inequality together with (3.4), using w/2, yields

(3.6)

Next we allow A to depend on the parameter t, requiring however that N(A(t))C
N(A (s) is dense for any s, >__ 0 and that there exists a 0 < a < 1 and a constant Cr such
that

II(A( A- (s)II Crlt-l

uniformly for all 0 __< t, r, s __< T. We also assume that the numerical range O(A(t))cX
for all so that the above inequalities are satisfied uniformly for all t. It is known that
there exists a fundamental solution or propagation operator U(t,s)oW,(Z) for 0 =< s __<
i.e. (t,s)- U(t,s)is strongly continuous in and s, the derivative OU(t,s)/Ot exists in
the strong topology and belongs to .g(Z) and is also strongly continuous in for
> s >__ O. Moreover the range of U(t,s) contains the domain (A(t)) of A(t) for > s



GENERALIZED OPERATOR RICCATI EQUATIONS 683

and

=A(t)U(t,) (t<),8t

We can verify that in fact the domain (A(t)) is independent of (see Lemma 7).
Let f: [0, ) Z be uniformly HOlder continuous. Then

(3.7) u(t)= U(t,O)uo+ U(t,s)f(s)ds

is the unique solution to the Cauchy problem

du
-=A(t)u+f(t), 0<t<T,

u(0)=u0.

Actually (and we shall make use of this fact) we only need f to be uniformly HOlder
continuous on compact subintervals of (0, c). This can be seen by splitting the integral
in (3.7) into two parts (one from 0 to t/2, the other from t/2 to t) before proceeding
with the usual differentiability proof such as given, e.g., in [7, p. 129]. The following a
priori estimates can be obtained using the fact that

U(t,)=exp(t-)A()+ exp(t-s)A(s)d(s,)ds,

where solves the Volterra equation

where

ql(t, ’) [A(’)-A(t)]exp(t-’)A(,).

This .means that again, as before, the various constants can be thought of as depending
upon the operators A(t) only via the parameters 0 and & In other words the estimates
are uniformly valid for all A(t) provided their numerical ranges O(A(t))cX,,,. It
should also be noted that even though the constants C appearing in the estimates below
will also depend on a, T and Cv, we will not explicitly indicate this.

(3.8) IlAV(s)[S(t,)-exp(-t)A(t)]A-()llNC(,8,y,B)lt-zl+-

for 0Ns, O<NtNT, 0NBN1, 0NyN1.

(3.9) [[av(t)U(t r)A-a(,)ll < C(w 8, y,fl)]t-,

for0Nz<tNTand 0fly<l+a.

(3 < ’ for 0 < fl N 1.

(3.11) I[A’(s)A(t)[U(t,,)-exp(t-,)A(t)]A(t)A-a()l[

c(,6,v,B,,)lt-,Ia-’-1+-* for anye>0 and0Bl,

If fl > 0 or if fl 0 and s then e 0 is allowed.
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=<C(o,8,)h-+(lloghI/l) max I]f(r)][
t<r<t+h

forO<=<=t<=t+h<=T, 0=<,< 1.

Finally we consider the nonlinear Cauchy problem

du -a(t,u)u=f(t,u) (0<t< t0),
(3.13) dt

u(0)=Uo.

it has a unique solution on [0, t*] for some 0 < t* =< 0, which is continuously differentia-
ble (in the norm topology) on (0, t*) and is continuous on [0, t*] provided the following
hypotheses are satisfied.

(I). A(0, Uo) is a closed operator with dense domain Do,

C
(3.14) II[xI-A(o UO) -111 < (Rey <0).

l/lXl

(II). For all v R(0) { wlllwl[ < R }, A(t, v) is well defined on DO for all 0 __< =< o.
Furthermore for any " [0, to] and w, v R(0)

(3.15) where0<o<l.

(III). For all t, rE [0,t0] and w, v(0)

(3.16) [If(t,v)-f(’,w)ll Z I1 - wll).
(IV). uo l(O)qD(A/(O, uo)) for some/3>0.
Actually the hypotheses as stated, above are more restrictive than they need to be

(see e.g.. [7] or [20]),
We conclude this section with three lemmas which will give us some qualitative

results for the nonlinear problem which we will need in order to prove existence of
strongly differentiable solutions for (1.3).

Let Y be a Banach space and let denote the open ball of radius R in Y. We
have

LEMMA 7. Suppose that, for each [0, T) and u Y, A(t, u) is a closed linear
operator with dense domain and with numerical range contained in Yo,, o <0. Let
Ao=A(0,0) and suppose that for each R>0 there exists a constant C(R) such that
.@(A(t,u))C)(A(s,v)) is dense in Z for all (t,u) and (s,v) in Q--[O,T-R-1)XI
and

(3.17) II[A(t,u)-A(s,v)lAffxil<_C(l )(lt-sl+llu- ll).
Then (A(t,u)) is independent of and u. Suppose in addition that there exist numbers
k > 0 and 0 < y < 1 such that for each the map d(t, u) defined by

t, u) ( t, u)

is continuous. Let { u v } be bounded net of HOlder continuous maps from [0, T) into Y such
that Iluv(t)-u(t)[lO uniformly on compact intervals in (0, T). Denote by U(t,s; uv) the
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fundamental solution for the operator A( t, uv( )). Then

IIu(t,s;u)-u<t,s;u)ll-o
for any O <=s <= < T.

Proof. First we endow [0, T) Y with the topology induced by the metric

O((t,u), (s,v))= It-sl / Ilu- 11.
Let N=N(A0) and let 6abe all (t,u)[O, to)XY, for which N(A(t,u))=N and let 6a0
be the component ofwNch contains (0, 0). It will suffice to show that0 is both open
and closed in [0, T) x Y. Let (t’,u’)oQ and choose s and v such that (s,v)Q
and C(R)(It’-sl+llu’-wll)< 1. If xN(A(t’,u’))N(A(s,v))=No then

[l(A(s,v)-A(t’,u’))x[I Z I[(A(s,v)-A(t’,u’))A(t’,u’)A(t’,u’)-aA(t’,u’)xl[
Z bllA ( t’, u’) xll ( b Z 1).

Hence A(s,)-A(t’,u’), restricted to 0, is an A(t’,u’)-bounded operator (see e.g. [10,
p. 190]) and hence A(t’, u’) and A(s, v) have the same domain. Ts proves that 0 is
open, but the same technique shows that the complement of0 must also be open, and
hence o is also closed. Before we prove the second part of the lemma, we note that
since ur is uniformly HOlder continuous on compact subinteals of [0, T), A(t, ur(t))
indeed generates a fundamental solution. We have

3.8 S (t,;u) A (, u )(.,, s;u).
Hence letting vn(t,s)= U(t,s;uv)-U(t,s;u) we have v(0,0)=0 and for T> t>
s0"

rn(t,s) =A(t,uv(t))rn ( t,s)+ A( t, uv(t))-A( t,un( t)))U(t,s; ue)

which means

vn(t,s) t U(t,; u)[A(,uv())-a(,u8(r)) U(,s; us)dT.

Choosing 0 < e < 1 we have

(3.19)

II(t )11< IIu(t u)A+ u())[

The constant C(, 8, V, e) also depends on T (which causes no problem at all) and on

sup sup IIv(t,’;u,ll.
y ONs<tNT
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However, in the next lemma we shall show that that this quantity is finite (in fact
exp T). We can therefore now apply the dominated convergence theorem to show that
the net IIAv(t,s)ll converges to zero. Here we regard {,8) as a directed set in the
obvious manner: ,/i > ,’8’ if , > ,’ and 8 > 8’.

The a priori estimates which we have for the fundamental solution U(t,s) depend
on the modulus of continuity to A(t)A(O) -1. In order to prove a global existence
theorem for the nonlinear problem (1.3) we will need the following estimate which
depends only on .

LEMMA 8. Suppose U(t,s) is a fundamental solution for the closed linear operators
A(t) on the Banach space Z and suppose that the numerical range O(A(t))c ,o, for all
t.. Then

(3.20) u(t, )11 z exp 0 ( s ).

Proof. We will use some results and notation found in [16, pp. 31-45]. Let ,(z)
1/211zll 2 and q(z)=llzll. These are convex functionals and therefore possess one-sided

Gateaux derivatives as well as subdifferentials. We define these as

and

8+q(z)y= lim
h-O+ h

3q(z)=(x*Z*lq(z+x)>=q(z)+Rex*,x) for all x in Z}.
First we note three facts (see [16]). First, that if x* 3+(z) then IIzllx* q,(z), This
follows immediately from the definition of subdifferentials. Secondly, 3=J, the du-
ality map. Thirdly that

(3.21) {(x*,Y)lX*3+(z)}=[8_+(z)y,8+q(z)y ].
Such an equality does not hold for since we need the additional properties + (x +y)
+(x)+f(y) and +(rx)=r(x) for r>0, in order to obtain (3.21) and clearly fails to
satisfy the second of these. Let us u.se the notation

x(t)= V(t,s)x(O) and x’(t)=A(t)U(t,s)x(O).
Since x(t + h)=x(t)+hx’(t)+o(h) we see that O(t)[lx(t)[I satisfies

d+
TO(t)=+(x(t))x’(t)= (x*,x’(t))

for some x* O+(x(t))llx(t)ll-q(x(t)). This means

d+

which in turn implies O(t)N exp (t- s).
LN 9. Suppose that

du

where A( t, u) is of type ( o, ) and where

IIf(t,u){I
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for some positive, continuous functions a and b. Then for each 0 <=’/< 1 there exists a
continuous function qv, determined by Ilu(0)ll, , o, , a and b, such that

[[AV(t,u(t))u(t)[l <=kv(t) on (O,T).

Proof. Lemma 9 and (3.9) show us that if we lety(s)=llu(s)ll then

y(t)<=e ’t y(0)+ a(s)e-Sds+ b(s)e-

Defining the first two terms in the brackets to be fi(t) we have

f0’e ’ty(t)<=gt(t)+ b(s)e s)ds.

We can now apply Gronwall’s inequality, to find a function k0 (in terms of and b)
such that

(3.22) y(t)<=+o(t ) on [0, T).

Now letting z(t)=llav(t,u(t))u(t)ll we have

z(t)<-_llAV(t,u(t))U(t,O;u)u(O)[l+ IIa u(t))U(t s’u)[l[If(s u<s))[Ids.

By using (3.7), (3.9), (3.16) and (3.22) we get

z(t) <= C(o,8,7, (0(t)))t-v

+ fotC(o,e,/,d(o(t)))(t-s)-(a(s)+b(s)o(s))ds.
We now define pv(t) to be the right-hand side of this inequality:

(3.23) on (0, Z).

4. Existence theorems. In this section we will first prove the existence of solutions
in C1([0, o),) to the problem

dU(4.1) =A(t, U(t))U(t)+ U(t)B(t, U(t))* +(t, U(t))

for the initial conditions

(4.2) U(0) Uoo,
whereo is the domain of A 0, the closure of the operation oneu(X) defined by

L cgg’ A (O, O) L + LB(O, O)*
as described in 2. We conclude by proving the existence of strong solutions in (4.1)
with initial conditions

(4.3) U(O) Uo L’(X)

under more restrictive hypotheses on A(t, U) and B(t, U). We will always assumeto
be a well-defined map from [0, T)&(X) into .#’(X). However in order to get our
first existence theorem we must of course assume that -(t,K)oUwhenever t [0, T)
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and KoVg’. We list the hypotheses needed to ensure the existence of a solution in
C1([0, t*),oog’) for some 0 < t* < T.

(H.0) o(t,K) for 0 =< < T and
(H.1)" For each t[0, T) and U.e(X) with Ilfll<r, the linear operators

A(t, U) and B(t, U) are of type (w, 8).
(H.2) There exist a constant o > 0 and a positive function h such that for each t,

2 [0, T), tx < t2, and K, K2 r(0) we have

116(t1,g1)-5t2,g2)11 <h(t2)(Itl-t21+ Ilgx- gll).
(H.3) A,B and A satisfy property (P) on [0, T).
DEvxIXOr. A map M: [0, T) .q(Z).q’(Z) will be said to satisfy property (P)

on [0, T) if there exist constants o > 0, z > 0, and a positive function H such that for
each tx., t2 [0,.T), tl<=t2 and K, K2.LP(Y) with IlKxll<r, IlK2ll<r we have

II(M( tl, g1)- M(/2, K2 ))( M(0, 0)+’. id)- =< H( t)(
It can easily be seen that (H.3) is satisfied if, for example, A(t, U)=A(O,O)+a(t, U)
and B(t, U)=B(O,O)+fl(t, U) where et and fl satisfy continuity conditions of the type
imposed on-by (H.2).

We may assume, without loss of generality, that for =< T the hypotheses are
satisfied with w =<- 1/2, because if this were not the case then the change of variables
V= e-(2’+ x)tU would transform the problem into one where the hypotheses are satis-
fied with w -1/2. It should be noted however that this also produces a change in the
value of r, changing it to re -(2’+ 1)7".

Next we note that by Lemma 7 the domains of A(t, U), B(t, U) and A(t, U) are
independent of and U. We can apply Sobolevskii’s existence theorem to conclude the
existence of a local solution. Let t*=< T be the largest value so that (4.1)-(4.2) has a
solution U: [0, t*) --,Y’. Let

Yx(t) [IA(t, U(t))U(t)+ U(t)B(t, U(t))*ll.
Now, applying [7, Thm. 16.5, p. 175] we see that if y(t) is bounded on [0, t*) then the
solution can be extended to [0,t*]. If the hypotheses are satisfied for all r> 0 then it
follows we can extend to an even integer interval, a contradiction. Actually if we can
show 3,=IIAUII remains bounded on [0, T) then we can deduce that the solution U
exists on all of [0, T), provided U0N(Ag). We have therefore proven the next
theorem.

THEOREM 10. Suppose (H.0)-(H.3) are satisfied. Then the domain of A(t, U) is

independent oft and U. For each Uo N(or more generally @(A0), fl>0) with IIU0ll < r
there exists 0 < t <= T and a unique solution U C([O,t),.o%( X)) to problem (4.1)-(4.2).
If the hypotheses are satisfiedfor arbitrarily large r, then there exists 0 < t* <= T<= o and a
solution U C([O,t*),.,%( X) such that either t*= T or limsupyx(t)= oo. If there also
exist continuous functions a and b on [0, T) such that

i}(t, u)ll Za(t)+b(t)llull,
then t*= T.

We note that since the fundamental solution U(t,s; U) associated with the map
A(t, U) is of the form
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the solution U, whose existence was proven in the above lemma, must satisfy the
integral equation

We can use this to obtain estimates on t*. Consider, for example the case where

’(t, U)= U(t)C(t)U(t)+D(t),

where C,D: [0, )o.’(X) are sufficiently well behaved maps. Then

u(t)l[ <=e2"’t]lu(o)]] + for e2’<’-S)[c(s)llu(s)ll2/ d(s)] ds

where IIC(t)ll<c(t) and IIO(t)lld(t), cCU[0, c), dC[0, o). Then IIU(t)lly(t)
where y(t) is the solution of the corresponding equality, i.e.

y’(t) 2y(t)+c(t)y(t) + d(t).

One now easily shows that, letting IIU(0)ll =Y0, we have

u(t)II =< c(t)-[ z( t)-g(t)]

where

z’= z + h (t), z(0) (0) Y0+
1 (ln c(t))’"g(t) o: + -- 1 (lnc(t)),]] 1h(t)=c(t)d(t)- o+ - + (lnc(t))",

and hence t* is the largest value such that z(t) is defined on [0, t*). In particular if we
assume c and d are constant then h=cd-o2 and we can find t* explicitly. Let
tt icd_ 01- /2; then

1
/ [r- 2 tan- /(cyo + o)]
[cyo+ 0.)] -1

1 ln[(l+ +/o)/(1 )1"l lcYo cYo I

if cd> a2,

if cd oa2, Yo > C

if cd< 2, yo >

c if cdw2,yo<=

-o+ 1//z

where we interpret 1// 0 when cd o2.
In order to obtain existence of strong solution in L’(X) for equation (4.1) with the

general initial condition (4.3) we also assume
(H.4) A(0, Uo) + (o + o )I and B(0, U0) + (0 + o )1 have compact inverses for > 0.
(H.5) There exists a 0<3,< 1 such that A(O,O)-VA(t, U)A(O,O)- is continuous

from [0, T) .oq’u(X) into L’u(X)
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THEOREM 11. Suppose (H.1)-(H.5) are satisfied with r arbitrarily large. Then there
exists a (0, T such that (4.1), with initial condition (4.3), has a strongly differentiable
solution U on [0,tl). U is uniformly HOlder continuous (with arbitrary exponent in (0,1))
on any compact subinterval of (0, tl) and tl may be chosen such that tt T or

(4.4) lim sup II (t, u(t))II
tStl

Proof. Let us assume for the moment thatthere exists a positive number R such
that

(4.5) Ill-(t, U)II z R
for all [0, T) and all U.(X). Let us also consider the problems

(4.6) d_flU =A(t U(t))U(t)+ U(t)B*(t, U(t))+P,(t, U(t))gBdt

with initial condition

(4.7) U(O)= PUoRB.

We know that there exist uniform solutions on all of [0, T) (see (3.13), (3.14)). We
denote these solutions by UB. We can consider the indices ctfl as forming a directed set
in the obvious manner and hence we have a net UB which we wish to show has a
subnet which converges in the compact-open topology of C((0, T), .o’(X)). By the
Arzela-Ascoli theorem this is true provided the UaB’S are equicontinuous on compact
intervals and the operators (UaB(t)} form a precompact set in Z,u(X) for each (0, T).
First we note that

(4.8) UaB(t) UA(t,0; UaB)PaUoRBUB(t,O; UaB)*
-t- fo UA(t,s SaB)Pas SaB(s))RBSB(t,s; NAB)* ds

where

(4.9)

t+hA(,r, UaB(,r))U,(,r,s; UaB)d’r <_
IS_t

and a similar inequality for U*. Therefore the first term on the right-hand side of (4.8)
satisfies the necessary equicontinuity condition. Applying [7, Lemma 14.4, p. 163] we
see that

thus proving that the UaB’s are .equicontinuous on compact subintervals of (0, T). This,
by the way, also shows that the UaB’s are uniformly bounded on compact intervals and
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hence that we may apply Lemma 7. In order to prove the compactness requirement, we
write:

Ao(0, to)

Using inequalities (3.9) and (3.10) we see that the first term is uniformly bounded for
each fixed > 0 and all a and fl and that the second term can similarly be bounded by

40(t-s) ds< 

provided 0 < 1/4. Therefore, for each > 0 there exists a number r such that

U,(t)A-(O, Uo).,.(O)B*-(O, Uo) for all a and ft.

However this set is compact in &u(X). By the Arzela-Ascoli theorem the { U,t } are
compact with respect to the compact-open topology of C((O,T),Zf,(X)) and hence
there exists a subnet U,,t, which tends to an element UC((O,T), .5’u(X)) in that
topology. Moreover we note that by (4.9) and (4.10)

11U(t + h) U( ) <= CRh (llogh] + 1) + Chit

for all >0 and h >0. By Lemma 7 we note that UA(t,s; U)- UA(t,s; U) and simi-
larly for U(t,s; U). We may therefore apply the Lebesgue dominated convergence
theorem for Banach space valued integrals and obtain

(4.11) u(t)= u (t,o; U)UoUy(t,o; u)+ u)a .

We denote P,--(t, U)R, by ’,,(t, U) and P,UoR by U0,,. The integrals

’ { A(t, U.t)exp[A(t, U.)(t-s)](t, U.)exp[B*(t, U.)(t-s)]

+ exp[A(t, V.)(t-s)l(t, V.)cdd[exp[B*(t, V.)(t-s)] B*(t, U.fl)] ) ds

exist as improper Riemann integrals and as Lebesgue integrals in the strong topology
and are equal to

.t(t) -..(t, U)+exp[A(t, U.)t].(t, U.)exp[B*(t, U.)t].
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We define

J/(t) fotA(t, U){ U(t,s; U)-exp[A(t, U)(t-s)] )

o(, u)uy(t,;

+ fo’A(t, U)exp[A(t, U)(t-s)](s, U)
x (U(t,s; U)-exp[B*(t, U)(t-s)]} ds

+ A(t, U)exp[A(t, U)(t-s)]

x {(s, U)-(t, U)}exp[B*(t, U)(t-s)] ds

+ u(,; v.).(, u)

x <[{u(t,s; U)-exp[*(,,U)(t-s)]*(,,U)}]ds
+ ’ {UA(t,s; U)-exp[A(t, U)(t-s)] }(s,

x 8{exp[B*(t, U)(t-s)]B*(t, U)} ds

+ t exp[A(t, U)(t-s)] ((s, U)-(t, U)}
x 8{exp[B*(t, U)(t-s)]B*(t, U)} ds.

All the terms occurring in the definition of are well defined as can be seen by using
the various estimates in 3. We next define

B(t)=A(t, UB)Un(t,O; UB)UoBU;(t,O; UB)
+ u(,0; u.)Uo.<(u;(t,o; u.)*(t, u.))+(, u.).

We now note thatJ++is just another way of writing the right hand side of
(4.6) so that

dU
dt

Let x* (A*) and yN(B*); then using inequalities (3.9), (3.8) and (3.6) we can
apply Lemma 7 and the dominated convergence theorem to the expression

Letting J, and denote the expressions corresponding to J, and respec-
tively but with U replaced by U, and using the fact that (A*) and (B*) are dense
we have

() +](t)+() (A(, u)u()+ u()*(t, u)) +t, u).
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We can also apply Lemma 7 and the dominated convergence theorem to the expres-
sions

to conclude that

(4.12) U(t)x= Uox + L [(s)+cC(s)+(s)]xds

for all x x. Hence we can differentiate U and we have

dUx
dt

This completes the proof for the case where is uniformly bounded. If does not
satisfy (4.5) for any R then we define

=(t, U) max(l, II t, u) IlR-x)-1t,u).

Using what we have just proven we can deduce the existence of a solution U on an
interval [0,t) for the problem with replaced by. Here t is the first value of
where [[t, U(t))[[ attainsthe value R. In fact we have a net of uniform solutions wch
converge to a strong solution U on [0,t) of the problem (4.1) with initial condition
(4.3). Now we can take the corresponding net of solutions for2 (i.e. with the same
initial conditions) and find a subnet which converges to a strong solution U2 which
perforce agrees with U on [0,t). Ts implies that there ests a value 0 < m and
a strong solution U on [0,t) such that m or such that

lim sup [t, U( )
t?tl

We have not been able to show uniqueness of strong solutions to generalized
ccati equations. However if A and B* do not depend on U, i.e. (A A(t), B* B*(t))
then the Lipschitz continuity of t, U) with respect to U easily is seen to imply
uniqueness witn the class of strong solutions which also satisfy the integral equation
(4.11). In fact by imposing Lipschitz continuity on AdM(t, U)AdV for some 0 < < 1
we can use the ideas in Lemma 7 (more specifically equation (3.19)) to extend this
uniqueness result to the case where A and B do depend on U. In particular we have
existence and uniqueness in case A(t, U)=Ao(t)+a(t, U) and B(t, U)=Bo(t)+ fl(t, U)
where a and fl satisfy the hypothesis (H.2) imposed on.

One may obtain similar existence theorems when the space X is not reflexive.
Suppose, for example, that X is the dual space of some other Banach space" X= Z*. We
may then sppose that B is densely defined in Z and that its domain is Zo + gff where
Z= Zgff and gff* is a -space. This induces a silar spitting on X, X=Xog and
we can proceed as before up to Lemma 5. It is in the proof of this Lemma that only
significant use was made of reflexivity in deducing that the norm attaining operators
were dense in (X). Therefore we could instead of reflexivity assume that the norm
attaining operators are dense in ,(X). Another approach is to consider the map
Lg[A**L+LB***] provided A** and B*** are well defined with dense domain and
with numerical ranges contained in ,. If this is so then, using the fact that the
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members of Zau(X) whose second conjugates are norm attaining are dense, we can show
that Lemma 5 still holds.
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AN ABSTRACT MODEL FOR RADIATIVE TRANSFER IN AN
ATMOSPHERE WITH REFLECTION BY THE PLANETARY SURFACE*

W. GREENBERG AND C. V. M. VAN DER MEE

Abstract. A Hilbert space model is developed that applies to radiative transfer in a homogeneous,
plane-parallel planetary atmosphere. Reflection and absorption by the planetary surface are taken into
account by imposing a reflective boundary condition. The existence and uniqueness of the solution of this
boundary value problem are established by proving the invertibility of a scattering operator using the
Fredholm alternative.

1. Introduction. It is well known (cf. [10], [1], [13], [8]) that on neglecting polariza-
tion and thermal emission the transfer of radiation through a plane-parallel, vertically
homogeneous planetary atmosphere of finite optical thickness r can be described by the
abstract differential equation

(1.1) (Tg)’(x)= -Ag(x), 0 <x <’r,

where T is a bounded injective self-adjoint operator and A a positive self-adjoint
compact perturbation of the identity, both of them acting on a complex Hilbert space
H. For the rnth Fourier component problem in radiative transfer one has H= L2[- 1,1],
while T and A are given by

Here the phase function p is nonnegative and f11p(t)dt=2, while O=<c=<l is the
albedo of single scattering (cf. [5], [15], [11]). Equation (1.2) also appears in neutron
transport theory (see [3], [7]).

In the mathematical literature (1.1) usually is endowed with partial-range boundary
conditions of the form

(1.3) Q+g(0)=f+ Ran Q+, Q_g(r) =f_ Ran Q_,

where Q + is the (., .)-orthogonal projection onto the maximal T-positive/negative
T-invariant subspace of H. For the specific T in (1.2) one in fact has

(Q +h)() ( h(#),0, >0, {0, t>0,
/x<0,

(Q_h)(g)= h(g), g<0.
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Although in neutron physics equations (1.3) are a realistic set of boundary conditions
(because neutrons typically do not reflect), .in planetary physics equations (1.3) are
satisfied only on neglecting reflection by the planetary surface. In order to formulate
abstract boundary conditions to (1.1) that describe reflection and absorption by the
planetary surface for the example (1.2), we assume the existence of a signature operator
J (i.e., J J* J- 1) such that

(1.4) JT TJ, JA AJ.

For T and A in (1.2) one may, indeed, take

(1.5) ( Jh )(l ) h ( l ).

Now let be an operator on Ran Q+ such that 0 =< T=< T on Ran Q+. Then on (1.1)
we impose the boundary conditions

(1.6) Q +g(0) =f+, Q_g( ) JQ+g( ).

We call J an inoersion symmetry, the surface reflection operator and (1.1) with
boundary conditions (1.6) an (abstract)planetary problem. Equation (1.1) with boundary
conditions (1.3) we shall call an (abstract)finite-slab problem, which is the name
prevalent in neutron physics. By a solution of the planetary problem shall be meant a
continuous function g: [0,’] H such that Tg is differentiable on (0,r) in the strong
sense and (1.1) and (1.6) are satisfied.

Equations (1.6) are so-called reflective boundary conditions. In rarefied gas dy-
namics [4] and radiative transfer [6] they are common practice. It has only been recently
that Beals and Protopopescu [2] have given a rigorous treatment of such problems for
the generalized Fokker-Planck equation. However, their boundary conditions differ
from (1.6) and do not show a general abstract form. In the present article we shall draw
on some results of van der Mee on the abstract finite-slab problem [13] and reflection
and transmission operators [14] as well as on an inner product of Beals [1].

Under the weak assumption that Ran(I-A)c_RanlTI for some 0<<1, the
finite-slab problem (1.1)-(1.3) has a unique solution given by

(1.7) g(x)= [e-XWlAPP++e(-x)WlAPP_+(I-xT-1A)(I-P)]g(l(f++f_).
As we shall point out in {}2, T-1A is self-adjoint with respect to an equivalent inner
product, except possibly for an isolated eigenvalue at zero. Then P, I-P, PP+ and
PP_ are the spectral projections of T-IA corresponding to the nonzero, zero, positive
and negative part of the spectrum, respectively, while

(1.8)

Vr=Q+[PP++e’rT-IAPP_+(I-P)] +Q_[PP_+e-’r-IPP++(I-T-A)(I-P)]
is an invertible operator. The result is due to van der Mee [13], a parallel proof of the
invertibility of V, (but for strictly positive A) was found by Hangelbroek, and a related
result, with the solution in some extension of the Hilbert space H but for more general
A, was proved by Beals [1]. As in [14], we write

(1.9) g(O) R +,f+ + r_,f g(’r)= T+,f+ + R_f
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where R + are reflection operators and T+ transmission operators. These operators are
uniquely specified by (1.9) and the requirement R +Q :- T+__ Q q:= 0, and their closed
form can be found using (1.7).

Let us combine (1.9) with the boundary conditions (1.6) and apply Q + to the left.
We obtain

(1.10) (Q+- Q+R_,J)Q+g(’r)= Q+T+f+.

Once Q+g(’) has been found from (1.10), one computes Q_g(’) from (1.6) and gets
the solution in the form (1.7) with f_= Q_g(-). Hence, the vector equation (1.10) is
equivalent to the abstract planetary problem. From (1.4) one finds JQ += Q_J and
JR +_ --R

_
,J (cf. [14]), whence

J(Q+- Q+R_,J)= (Q_- Q_R+,J)J.

In order to solve (1.10) we thus have to investigate the invertibility of the -scattering
operator

(1.11) S=I- Q +R_,J- Q_R+J.

We state the main results of this article.
THEOREM 1.1. Let Ran(I-A)_ Ran[T[ for some 0<a < 1, and let 0<_ T<= T on

Ran Q +. Then the -scattering operator in (1.11) is invertible.
Using standard semigroup theory we then have as a consequence the next theorem.
THEOREM 1.2. Let Ran(I-A)c RanlT] for some 0 < a < 1, and let 0 <= T<= T on

Ran Q +. Then for every f+ Ran Q+ the planetary problem (1.1) and (1.6) has a unique
solution, which is given by (1.7) where

f_-JS1Q+ T+f+.

We have required that 0__<T__< T on Ran Q+. For the example of radiative
transfer this implies that the radiative flux returning from the planetary surface does
not exceed the flux incident to the surface. For=0 one has total absorption, for=I
specular reflection and for

(h)(/) 2 f01/’h (/’) d/’

diffuse reflection. In [2] and [4] the only surface reflection operators studied are
=(1- a)I where, in rarefied gas dynamics terminology, 0 __<c <_ 1 is the accommoda-
tion coefficient. In [6] the more general surface reflection operator

(h)(l)=osh(#)+20d l h(l’)dl’

is used, where 0s + Od <- 1, 0,>__0 and Od>__O. In all cases the hypothesis 0__< T__< T on
Ran Q / is fulfilled. If the phase function p Lr[-1,1] with r > 1, then Ran(I-A)_
Ran]rl for every 0 < a < (r- 1)/2r [13, VI.1].

In {}2 we shall review some properties of reflection and transmission operators,
partly from [14] and partly hitherto unknown. In {}3 we prove the invertibility of the
-scattering operator for =I (specular reflection). Finally, in {}4 we prove Theorem
1.1.
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2. Reflection and transmission operators. Throughout the present and the next
section T is a bounded injective self-adjoint operator and A a positive operator, defined
on the complex Hilbert space H. We assume that I-A is compact and Ran(I-A)_
RanlTI for some 0<a < 1. By (2 + we denote the orthogonal projection onto the
maximal positive/negative T-invariant subspace of H. If KerA {0}, then, as
Hangelbroek [9] observed, H is a Hilbert space with respect to the inner product

(2.1) (x,y)A=(Ax,y)

and T-1A is self-adjoint with respect to (2.1). The (.,-)a-orthogonal projection onto
the maximal positive/negative T-1A-invariant subspace of H is denoted by P +. If
KerA 4= {0 }, then T-1A has a nonzero and finite-dimensional zero root linear manifold

Zo(T-XA)= { xH/::ln>=O (T-XA)"x=O},
while the (.,-)-orthogonal complement ZI={T[Zo(T-A)]} +/- of the subspace
T[Zo(T-1A)] is T-1A-invariant and a Hilbert space with respect to (2.1) and the
restriction of T-IA to Z is (., .)A-selfadjoint. The projection of H onto Z along
Z0(T-A) we denote by P, whence the (.,.)A-orthogonal projection onto the maximal
positive/negative T-1A-invariant subspace of H is given by PP +, where Zo(T-1A)c__
KerPP +. The idea to study T-1A on the finite-codimensional subspace Z was first
exploited by Lekkerkerker [12] for neutron transport with isotropic scattering.

For everyfH the abstract finite-slab problem (1.1)-(1.3), where f+= Q +f, has a
unique solution g, which is given by (1.7) (see [13]). In terms of the solution g one may
specify in a unique way reflection operators R _+, and transmission operators T+, such
that R + ,Q := T+ ,Q q:= 0 (see (1.9)). More precisely, if f+= 0 (resp. f_ 0), then g(0)=
T_,f_ (resp. g(0)= R +,f+) and g(r)= R_,f_ (resp. g(r)= T+,f+). The expression (1.7)
can now be used to find the following explicit formulas"

(2.2)

(2.3)

(2.4)

R+ =[PP++eT-APP +(I-P)]V-IQ
T+ =[PP +e-rT-1APP +(I-’rT-1A)(I-P)]V-IQ+
R r=[PP +e-’r-’aPP +(I-rT-1A)(I-P)]V-IQ

Using (1.8) one easily finds

(2.6) Q+R+,=Q+, Q_T+,.=O,
(2.7) R +_Q +_=R +, T++_Q += T+_.

We also find that R+, is a projection operator such that R+,-Q + is compact (cf.
[14]). In a less elementary way (see [14]) one derives the intertwining properties

(2.8) TR +=(I-R%,.)T, TT+= T*+_T.

PROPOSITION 2.1. One has the decompositions

RanR +, Ran Q q: H.
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Proof. Put

Ut=Q+R++Q_(I-R+).

Then the invertibility of U is easily proved equivalent to the decomposition

RanR + Ran Q_ H.

Using (2.6) one computes that

Ut=Q++Q_-(I-Q+)R+,=I-(R+-Q+),

whence I U is compact. If Uh 0, then the vector Q +h (I- R +)h Ran Q +
Ran Q {0}, which implies Q +h I R +)h 0 and therefore

h=R+,h+(I-R+)h=R+h=R+Q+h=O.

Thus Ker U (0} and the invertibility of U is clear.
PROPOSITION 2.2. One has the decomposition

RanR+ RanR_ H.

Proof. Assume that, for some k, H,

R+k R_,l.

Putting x += +_ Q +(k- l) one finds h k + x_= + x + and

R+,h=R_h.

On premultiplying this equality by Q + and Q_ one gets

h=R+,h=R_h,

which implies (see (2.2)-(2.5))

Hence,

Q.E.D.

T+,h= T+R_h=O, T_,h T_.R +.h O.

h R +.h + T_,.h [PP+ + er-I’PP_ + (I-- P )] V-lh,

h R_.h + T+,.h e-r-’APP+ + PP_+ ( I-T-A)( I P )] Vf h.
From these equations one finds

/ th, h0= (1-e )F(dz)Vf (I-P)V =(I-P)hKerA,

where F is the resolution of the identity of (T-1AIZ1) -1 (as a self-adjoint operator with
respect to (2.1)). Hence, PP Vf Xh= PPh=0, while

h V,h KerA.

Then, since Te ,h 0, we have

PP + Vf XQ h=0 PP VfQh=O,
(I-P)VfQ_h=O, (I-zT-1A)(I-P)VfQ+h=O.
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All this implies

V- 1Q h KerA+_

Using that Vx x for x KerA (cf. (1.8)), one obtains

Q +h KerA.

However, we also have V-Xy =y for y KerA. Thus, in view of T+ h 0,

Q+h= ( I- P V-IQ+h I-rT-1A)( I- P V-IQ+h=O,

Q_h=(I-P)V-Q_h=O,

which implies h 0. From this we find the injectivity of the operator

U2=R+(I-R_)+(I-R+)R_.
However, the compactness of R _+ - Q + implies that

Uz-I=(R+-Q+)-R+(R_-Q_)+(I-R+)(R_-Q_)

is a compact operator. As Ker U2_ RanR+n RanR_= {0}, we conclude that U2 is
invertible. From the invertibility of U2 we easily derive this proposition. Q.E.D.

We note that neither of the proofs of the propositions required the existence of an
inversion symmetry J satisfying (1.4). In case there exists such an inversion symmetry,
one may conclude that

(2.9) JQ +__= Q _J, JPP +_= PPJ,
(2.10) JR +_ .= R -v--J, JT+_ .= Tq: .J.

3. Invertibility of the scattering operators. First we prove Theorem 1.1 for =I
(specular reflection).

PRO’OSITION 3.1. The 9-scattering operator for=I is invertible.

Proof. We have

Sz=I-Q+R_J-Q_R+J.

Clearly this operator is reduced by the orthogonal decomposition

{ x U/Jx x } { x I-I/jx x } u

(see (2.9)-(2.10)) and therefore it suffices to prove the invertibility of the operators
I+(Q+R_+Q_R+). As a result of (2.6) one has to prove the invertibility of the
operators R +, + R_ and 2I- (R++ R_,). Since R +- Q _+ is compact, both of these
operators are compact perturbations of the identity and therefore it is sufficient to
prove that neither R=0 nor k= 2 is an eigenvalue of R++ R_.

If R + + R )h 0, then

R+h R_h RanR+,n RanR_.

Using Proposition 2.2 one finds R+ h=0 and therefore Q +h= Q +R +,h=0. So we
may exclude 3, =0 as an eigenvalue of R++R_.

If R+ + R_)k= 2k, then

(I-R+)k= -(I-R_)kRanQ+RanQ_= (0},
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whence k= R+,k=R_,k. Proposition 2.2 implies k=0, which excludes X= 2 as an
eigenvalue of R +, + R_,. Q.E.D.

The next result will play an important role in the proof of Theorem 1.1 but is also
interesting for its own sake.

PROPOSITION 3.2. For 0<< the operator ITI(R+,+ R_,) is self-adjoint and
satisfies

If Q, denotes the projection ofH onto RanR +, along RanR_,, we have

(3.2) [R+,+R_,]-I=Q+Q,+Q_(I-Q,),
(3.3) [2I-(R+,+R_,)]-I=Q,Q++(I-Q,)Q_.

Proof. With the help of (2.7) and the elementary identities

R+,Q,=Q,, R_,(I-Q,)=I-Q,

one easily proves (3.2) and (3.3).
Using (2.8) one computes that

(ITI(R+,+R_,)}*= T((I-R_,)+(I-R+,)}(Q+-Q_).
Next one exploits (2.7) and subsequently (2.6) and derives

(ITI(R+,+R_,)}*=2ITI- T(R+,-R_,)=[TI(R+,+R_,),
which establishes the self-adjointness of ITI(R+,+R_,). Hence, the eigenvalues of
R+,+ R_, are situated on the real line. It suffices to prove that
C/XI (R +, + R _,) is not invertible}

_
(0, 2).

Using (1.7) and (1.8) one concludes that

(3.4) lim IlI- (R/ + R )lI 0.
r$0

However, for every 0 < < m the operator R +, + R_, is a compact perturbation of the
identity. If o(R+,o+R_,o)g(0,2), either the smallest eigenvalue of R+,o+R_,o is
negative or the largest eigenvalue exceeds 2. Because both the infimum and supremum
of o(R+,+R_,) depend continuously on and (3.4) holds true, there must exist
0 < "1 < *0 such that either 0 or 2 is an eigenvalue of R +,, + R which is a contradic-
tion. Hence, o(R/+R_)___ (02) for all 0<,< . Q.e.D.

We remark that

(Q+-Q_)[R+,+ R_,]= [2I-(R+,+R_,)](Q+-Q_),
so that the (real) spectrum of R +, + R_, is symmetric with respect to )t 1.

Proof of Theorem 1.1. Let us first extend the surface reflection operator from
Ran Q + to H by putting

h=Q+h +JJQ_h, hH.

Then the -scattering operator is given by

S=I-[Q_R+,+Q+R_,IJ.
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Since J,=J, this operator is reduced by the decomposition (3.1). Thus it suffices to
establish the invertibility of the two operators

I+ [Q_R+,+ Q+R_,]=I+(R+,+R_,-I),

I-[Q_R+,+ Q+R_,]=I-(R+,+ R_,-I),

both of which are compact perturbations of the identity.
Following Beals [1] we introduce the completion Hr of H with respect to the inner

product

(x,y)r- (lZlx,y).
As the (extended) operator satisfies 0 __< ITI_< IT I, one has

and therefore extends to a positive contraction on Hr, also denoted by . Proposi-
tion 3.2 implies that R +, + R_,- I extends to a strict contraction on Hr. Hence,

(R+,+R_,-I)

has Hr-norm strictly less than unity. We thus find the invertibility of the operators
I + (R +, + R_,-I) on Hr. On the original Hilbert space H these operators have
zero null space and are compact perturbations of the identity and therefore invertible
too. Q.E.D.
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LINEAR OPERATORS RELATED TO TIME-INVARIANT DISCRETE
FILTERS*

JOS] M. MORAL MEDINA"
Abstract. Discrete filters are studied as continuous translation-invariant linear operators in some fixed,

but otherwise rather general, sequence space. The central questions raised is whether or not it is true that
every filter L acts upon any input sequence f in a "convolution form", that is, the output Lf can be expressed
as f. h, where h is a fixed sequence completely determined by L. For the most important input space
considered, namely , the conjecture above is found to be false if the usual normed topology is adopted.
However, the conjecture becomes true when is endowed with the weak* topology, which also appears to
be a natural assumption from a physical viewpoint.

1. Introduction. In electrical engineering, a discrete time-invariant linear system L
is described as a linear physical device with constant features, which assigns to every
input signal f (a bilateral sequence) an output signal Lf. We shall often refer to such a
system as a filter.

Simple and well-known heuristic reasoning permits us to conjecture that the
behaviour of the filter is governed by the formula Lf=f. h, where h=L8 is the
so-called impulse-response of the filter, that is, the output corresponding to the "im-
pulse signal" defined by 8(0)=1, 8(k)=0 if k0. A large part of this paper is
devoted to an examination of the validity of such a conjecture.

1.1. General considerations. Let us consider the translation operator T, which
assigns to each sequence f the sequence Tf whose n th term is (Tf)(n)=f(n- 1). The
constancy of the features of the device is expressed mathematically by imposing the
condition L(Tf)= T(Lf) for any input sequence f, which means that a delay in the
input only causes an identical delay in the output. Thus, to clarify the question of
whether or not the outputs of a filter can be represented as the convolution of the
inputs with a fixed signal, it is necessary to study the general form of continuous
translation-invariant linear (c.t.i.1.) operators acting on different sequence spaces. The
results we shall state here can be interpreted as confirmation of the validity of the
conjectured representation, conditional on the replacement of the normed topology on

by a more suitable one. We think the weak* topology reflects better than the
normed one the continuity of the physical phenomenon under consideration.

In order to introduce some necessary mathematical preliminaries, let us call o
0(Z) the F-space [3, p. 51] of all complex bilateral sequences endowed with the
topology of pointwise convergence. If , c 0 and X C o are topological vector spaces we
denote by B(,X) the space of continuous linear operators from , to X, and by
TI(,, X) the subspace of those which are translation-invariant. As is well known, when, and X are Banach spaces, so is B(X, X) with the usual definition of the norm [10, p.
234]. Moreover, the same is easily seen to be true for TI(X, X), when T is continuous on
X.

1.2. A preliminary result. In this subsection we will show that there is an isomor-
phism between TI(h,) and the space of continuous linear functionals on k (i.e., the

*Received by the editors August 12, 1980, and in revised form December 14, 1982.
E. T. S. Ing. Caminos, Universidad Polit6cnica, Barcelona, Spain. Now in E.T.S. Ing. Agr6nomos,
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conjugate space X* of X). This fact will enable us to replace every argument about
translation-invariant operators by one about linear functionals.

To this effect we assume the normed topology in , given by ]]j]] sup(br(n)]"
n Z ) and we state the following:

LEMMA 1. Let ?t, ?t c to, be a topological vector space such that T is a topological
isomorphism from ?t onto itself. Then TI(X, to) is isomorphic to *. Furthermore, TI(X, to)
=TI()k,/) whenever ?t is an F-space and T an isometry, and TI()k,/) and ?t* are
norm-isomorphic if in addition ?t is a Banach space.

Proof. For each n Z, let us call % the n th projection from to onto the space C of
complex numbers. Let us define q (L) ,/ for each L TI(X, to), where 7(f) (Lf)(0)
for every fX. It is clear that + is a linear and injective mapping from TI(X, to) to X*.
Suppose , X* and let L be the translation-invariant linear mapping from X to to given
by (Lf)(n)=/(T-"f) for all fX and n Z. All mappings %L=,T-" are continuous,
and then L TI(?t, to). Obviously , ,, which proves the first part of the lemma. As to
the second, if L TI(X, to) let e > 0 be such that I(Lg)(0)l < 1 whenever g X and
d( g, 0) < e. Given f in X we can find a > 0 such that d(af, 0) d(r- "(af), 0) < e for each
integer n. Therefore,

I( tZ-"( f))(O)l-- l( tf)(n)l< 1

and Lf . The continuity of L as an operator from X to follows [3, p. 58] from the
continuity of all mappings %L. Thus LTI(X,/), and TI(X, to)cTI(X,/). The
reciprocal inclusion is evident, as well as the third part of the lemma.

Remark 1. Lemma 1 is not always valid for spaces of nonbilateral (ordinary)
sequences, as p may fail to be surjective in this case, see [11].

2. All spaces X considered in this paper are linear subspaces of to with topologies
stronger than the one induced by to, so that TI(X, X) c TI(X, to).

2. Operators representable as convolutions with sequences.
2.1. Operators defined on the space t. We start this subsection with a result which

serves to justify the necessity of considering proper subspaces of in the mathematical
formulation of filtering theory. We denote by the linear space of all sequences with a
finite number of nonnull coordinates.

THEOREM 1. Let L be an operator from to to 6o and h=L. Then L belongs to

TI(to, to) if and only ifhq and Lf=f h for all fin to. Moreover, the collection.Y’= (Tk:
k Z } is an algebraic basis of TI(to, to).

Proof. The theorem follows easily from the first part of Lemma 1, since to* is
isomorphic to tp in the following sense [1, p. 50]. If / to* there is a sequence h such
that y(f)=kh(k)f(-k) for every fto, and, conversely, each htp defines, via this
formula, a functional ,/from to*. If we let k Tk for each integer k, it is obvious that
h(k)=,(6_k). As to the last assertion of the theorem it suffices to observe that the
equality L=Y’.nk=_mh(k)T for fixed m, nZ+ is equivalent to (Lf)(j)=
=_mh(k)f(j-k) for allf to andj Z.

COROLLARY 1. If L TI(to, to) and the sequence h L8 has more than one nonnull
coordinate, L is not injectioe.

In fact, if et is a nonnull root of Eh(k)z k the image under L of the sequence (a -k)
is the null sequence, and so KerL 4: {0}.

In other words, the filter destroys information: the input cannot be known from
the output, in contrast to the situation for ordinary sequences (11, p. 362).

Remark 3. The importance of Theorem 1 lies in the fact that it identifies the class
of all c.t.i.1, filters which admit arbitrary inputs, with the class of those filters that may
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be decomposed into a finite number of delay (translation), multiplier and adding
elements operating in a nonrecursive way, i.e., without processing the coordinates
(Lf)(k), k < n, to get (Lf)(n). To enlarge the class of c.t.i.1, filters we must restrict the
inputs by choosing smaller spaces, such as q, p (p _>_ 1) and c0. As usual q is topolo-
gized as the inductive limit of the family of spaces (%: m,n Z+}. Each p,, is the
space of those sequences vanishing outside of the interval [-re, n] of Z, endowed with
the only possible topological vector space structure. The topology on q9 is thereby the
strongest which induces on each Pm its own topology, and a mapping from p to
another topological space is continuous if and only if its restriction to each q),, is
continuous.

2.2. Operators defined on the space p. The arguments put forward in Remark 3
lead us to consider filters whose inputs belong to q.

THEOREM 2. Let L be an operator from q) to oa and h= L6. Then L is linear and
translation-invariant if and only if Lf=f, h for all f in q), and then LTI(p, 0).
Moreover, L TI(p, q)) if and only if in addition h

Proof. If L is linear and translation-invariant and fq, then from f=Egf(k)T8
we get Lf= Z,kf(k)Th, since the summation is over a finite number of nonnull terms.
Thus Lf-f h. Also, L is continuous, its restriction to each qo, being a linear operator
on a finite-dimensional topological vector space. The remaining assertions are evident.

Remark 4. In contrast with the above result it is worth noting that
if we consider the pointwise topology, and so we only obtain as c.t.i.1, filters those
which consist of a finite number of delay, multiplier and adding elements.

2.3. Operators defined on the spaces I’ and c0. In order to gain theoretical insight
into filter operations, we will now consider spaces larger than q. We begin with the
spaces p, p >= 1, and the space co of the sequences f for which limlnl_,of(n)= 0. The
norm on each p is defined as usual by IlJqlp=(E[/(k)lP)l/p, and co is regarded as a
subspace of , so that both of them are Banach spaces. We denote the norm of L as an
element of TI(IP, r) by IILIIp, (1 <=p,r <= o). The conjugate index ofp shall be noted by
p’ (1/p + l/p’= l).

TI-IEOREM 3. Let p >= 1 be a real number, L an operator from lp to , and h LB.
Then L belongs to TI(lP, ) if and only if hlp’ and Lf=f , h for all f in p. Further-
more, Y-= (T’" kZ} is a Banach basis for TI(lP, ) and IlLllp,o-llhllp,. If L
TI(lP, ) and hLq, l<__q<=p’, then LTI(lP, lr), where 1/r-1/p+l/q-1, and
lim m, o[[L Y.f,= mh(k) r’[[ p,r O.

Proof. The first assertion and the equality [[Lllp,o=llhl[ p, may be deduced from
Lemma 1 and the well-known representation of the conjugate of p [1, p. 67]. Let p, q, r
be as above and hlq. Then Young’s inequality [4, p. 199] gives us [If,
for allflp, which proves that LTI(lP, lr). Let us set hm,=F=_mh(k)T8, so that
[[hmn-h[[q---O as m, n oe. For every fin p we have:

[[(L- h(k)Tk)flk=-m =]]f*h-f*hmnllr<=[[h-hmnllq[lf[lP"

Therefore, lim,, IIL-E mh(k)Tll =0, i.e.,L=E

_
h(k)TinTI(lP, lr).Thisk= p,r

expression of L is unique, since limm,__, ollYg= aTllp,r 0 implies

lim aT8 [ai] =0
m,n--.o k= -m
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which in turn implies ak=0 for all integer k. To prove that,-lS a basis for TI(lP, ) it
suffices to observe that h p’ for each L in this space, and therefore r= c.

Remark 5. When r is finite we can not assert that -is a basis for TI(IP, lr), since
there are operators L for which h does not belong to q (and so Young’s inequality does
not hold). For example, if p> 1 and h(k)=2/(2k+ 1)r for each k, then the corre-
sponding operator L belongs to TI(lP, p) [12, p. 321]. However, h does not belong to 11.
For operators from 2 to 2 there is a very precise result relying upon the Fourier
transform h of h, i.e., the function in L2[0, 2r whose k th Fourier coefficient is h (k). It
asserts that an operator L in TI(!2, ) belongs to TI(12,12) if and only if
L[0, 2r]-i.e., if h is essentially bounded--in which case IILII2,=-Ilhll; L is injective if
and only if h vanishes in no subset of [0, 2r] ofpositive measure; andfor every g - there
is a unique fl2 such that Lf=g if and only if 1/hL[0,2r]. Most of this result is
proved in [14, p. 168]. In particular, when the "transfer function" h of the filter is
continuous and never zero the filter is bijective from 12 onto itself and the input can be
recovered from the output using the known relation between the convolution of two
functions and the product of their Fourier transforms.

For completeness, we next state without proof a theorem about filters with inputs
from co whose intersect stems from the fact that co is the smallest closed translation-in-
variant subspace of containing the sequence .

THEOREM 4. Let L be an operator from co to and h= Lt3. Then L belongs to

TI(c0, l ) if and only if h l’ and Lf f h for allf in co. Furthermore, ’= ( Tk: k Z )
is a Banach basis for TI(c0, ) and IlZll Ilhllx

The proof follows almost exactly the lines of Theorem 4, taking into account that
the conjugate space c’ of co is isometrically isomorphic to [10, p. 201]. It is also
worthy of note that TI(co, lC)=TI(co, Co) and that TI(lP, l)=TI(IP, co), whenever
p > 1 [14, p. 331], [6, p. 295].

3. Operators not representable as a convolution with a sequence. Right at the
beginning of this paper we posed the question of whether or not a filter would always
be of "convolution form". We now show that this question gets a negative answer if we
use the normed topology for .

3.1. Preliminary counterexamples. The simplest extension of co is the space c= co
(v), where (v) is the linear manifold spanned by v, i.e., the constant unit sequence

(each coordinate equals 1). The space c may also be extended to the space cc c (u),
where u is the unit-step sequence (u(n) 0 if n < O, u(n ) 1 if n >__ 0). Thus, cc is the
space of all sequences f for which lim

_
f(k) /and lim__, f(k) " exist (and are

finite), and c is the subspace for which ’. For both the spaces c and cc (which are
closed within normed in the usual way) the question of filter representation has an
easy answer, which we summarize in the following theorems.

THEOREM 5. Let L be an operator from c to and h= L6. Then L belongs to

TI(c, ) if and only if h and there exists a number A such that

lfc, Lf=A. lim f(n).v+f*h.

For any operator of this form Iltll--Ilhll + IAI, and L TI(c, c).
Proof. We can define an isometrical isomorphism between c* and 11 by assigning

to each 3’ in c* a sequence h and a number A such that [1, p. 66]

T(f)=A- lim f(n)+ E h(k)f(-k)
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and then ll3’ll =[Ihlll+ IAI. Now, an application of Lemma 1 proves the first two asser-
tions of Theorem 5, and it only remains to prove that f, hc, whenever fc and
h 11. If liml,l__, of(n) the sequence f-lv belongs to c0. By putting
we get

(f-lv)* h=f * h-l(v* h)=f * h-avco.

From here it is clear that f h c.
THEOREM 6. Let L be an operator from cc to and h= LB. Then L belongs to

TI(cc, ) if and only if h and there exists two numbers A,B such that

Lf=(A. lim f(n)+B, lim f(n)).v+f , h.Vfecc,

For any operator of this form IILII Ilhlll + IAI + IBI and L TI(cc, cc).
Proof. It can be easily seen that, as in the preceding proof, we can define an

isometrical isomorphism between cc* and by assigning to each , in cc* a sequence
h and two numbers A,B such that [[y[[ [[hl[ +[A[+ [B[ and

/fcc, ,(f)=A. lim f(n)+B, lim f(n)+ E h(k)f(-k).

By applying Lemma 1, we get me first two assertions. To prove that f h cc iff cc
and hl1, let us set limk_,ocf(k)= and limk_,_ ocf(k)= ’, so that g=f-v-(l-)u
co and g hco. Then (f , h)(n)=(g, h)(n)+E_oh(k)+(j-)Eh(k) for
every n Z, and (f h)(n) approaches ,1E_oh(k) as n o and E_oh(k) ash

Therefore f h cc.
Remark 6. These two theorems show us that any operator belonging to TI(c0,1)

can be extended to c in infinitely many ways. This surprising result is due to the fact
that the restriction of any L from TI(c, ) to both co and to its closed complement (v)
in c are not related by continuity, for both spaces are closed and translation-invariant
and therefore we can get a c.t.i.1, operator on c by combining only two c.t.i.1, operators,
one defined on co and the other on (v). Thus, the sole constraint on extensions of
LTI(co, ) to (v) stems from the equality Tv=v. This implies T(Lv)=Lv, and so
Lv Kv for some constant K.

The extension of an operator L on c to an operator L on cc can be viewed in a
similar fashion. Equality u-Tu=8 holds, and we must have Lu-T(Lu)= h, whence
Lu= Ko + u, h for some constant K. Again the continuity has not played any role
whatsoever.

The preceding considerations could also be used to get direct proofs of Theorems 5
and 6.

3.2. Operators defined on the normed space I. We now come to our final goal in
studying the form of c.t.i.1, operators on . These operators appear important to us if
we assume that any filtering theory that intends to be complete should pay some
attention to such a standard signals as the (sampled) sinusoids and, by extension, to the
class of almost periodic signals, which contains all those signals resulting from the
discretization of periodic analogical signals.

The conjugate space of the normed space is isometrically isomorphic to ba(Z)
[3, p. 296], the Banach space of all bounded finitely additive measures on the algebra
(Z) of all subsets of Z. The norm of an element # in ba(Z) is given by Iltzll
supE’__ll/(E;)[, where the supremum is taken over all partitions { Ei}l<i< n of Z. The
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isomorphism can be defined by mapping each y in (l)* to the element/ from ba(Z)
given by

w z,
where E ( n Z: n E ) and X is the characteristic function. If we call f the
sequence symmetric to f, the above relation is equivalent to

Vfl, Y(f)=fzfdl
the integral being understood in a generalized Riemann-Stieltjes or Lebesgue sense [5,
p. 869], [10, p. 401] or, equivalently, as a limit of finite sums corresponding to linear
combinations of characteristic functions approximatingfin [8, p. 425]. As customary,
we call the convolution of fl and teba(Z) the sequence given by (f,/)(n)=
fz T"fdt for all n Z.

THEOREM 7. Let L be an operator from to , h L8 and Ix be the set function on
(Z) defined by I(E)=(Lx_e)(O) for every Ec Z. Then L belongs to TI(I, ) if and
only if i ba(Z) and Lf=f , i for all f in . Furthermore, in this case IILII,- IItll,
h and h(n)=/(( n )) for all n Z.

Proof. We can define an isometrical isomorphism between (l)* and ha(Z), as we
have just described. Given L in TI(I, l), we set yz(f)= (Lf)(0) for everyf as in
Lemma 1 so that (Lf)(n) y(T- nf) for all n Z. The corresponding measure/ is
defined by

or, equivalently,

Vfl, VnZ, (Lf)(n)=fz (T-"f)’dt=(f, t)(n).

Then Lf=f Ix as desired, and also IILIIo, I1"/11 Iltz 11. Since the restriction of L to
co belongs to TI(c0,1), Theorem 4 shows that h l1. Finally, X_(,)= 6_ implies

VnZ, txL({n})=(L_n)(O)=h(n).
This completes the proof.

Remark 7. Engineers are primarily concerned with causal systems, which are
defined as those which yield a causal output -i.e., are null on negative integersmfor a
causal input. If L is a translation-invariant linear operator from 2t to X and T(X)= X,
T(X) X, it can easily be seen that L is causal if and only if, given any integer m,f )t

and f(n)=0 for n<m imply (Lf)(n)=0 for n<m. This property is adopted as a
definition when we turn to consider operators L whose inputs and outputs are causal
sequences. If /JX and Lf=f, h for all f in X, then L is causal if and only if the
impulse-response h is causal. When L can not be represented by a convolution with a
(fixed) sequence this condition may not be sufficient for causality. In particular, an
operator L in TI(I, ) is causal if and only if its associated measure/ vanishes on all
subsets of the set Z- of negative integers.

Any translation-invariant linear operator from XN to XN is causalin the sense
defined above--when kN and XN are linear subspaces of the space 0N of all causal
sequences and T(kN)C)kN, T(XN)CXN. Theorems 1-4 remain valid with a few unes-
sential changes if we substitute for each space its intersection with 0u. Moreover, when
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;k and X are linear subspaces of w such that T(X)= X, T(X)=X, any translation-in-
variant linear operator L from ?t cw to X 3 wn verifies Lf=f h for everyf X q w,
where h is a sequence in 0n uniquely determined by L. For the particular cases
corresponding to Theorems 1-7 L is continuous only if h is a causal signal belonging in
each case to the space referred to in the theorem. This does not contradict Theorem 7,
since fzTnfdl (f, h)(n) for each n Z when f and/ vanish on Z-. Operators on
spaces of causal signals are treated in (11).

Any sequence h in defines, through the formula Lf=f, h, an operator L in
TI(/,/), as is obvious from the inequality Ill * hl]o _-<lllllhll. The corresponding
measure Iba(Z), defined by i(E)=(X_E,h)(O)=,keeh(k) for every EcZ, is
countably additive. In fact, since h is an absolutely convergent series, if E is the union
of countably many pairwise disjoint subsets E of Z we have:

kE kE

Conversely, the result which follows points out that, if is a countably additive
bounded measure on (Z), the corresponding operator L can be expressed by means
of the convolution with h.

THEORE 8. Let L be an operator from to , h L6 and be the set function on
go(Z) defined by (E)=(LX_E)(O) for every E c Z. Then h and Lf=f h for allf in, if and only if L TI(I, ) and is countably additive. Moreover, in this case limm,

IIL-Y’." h(k)Tgll --0.k= o,

Proof. Let us suppose that L TI(I, ) and/ is countab]y additive. According to
Theorem 7, we can write, for every E c Z

(LXE)(O)=I(-E) E t((k})= E h(k)= E XE(-k)h(k)
k -E k -E -o

We consider now the functional L defined in Lemma 1 and the functional 3’ (1)*
given by ,[(f)=E_f(-k)h(k) for every f in . It is clear from the above equality
that 3’L(g)= 3’(g) for any g which is a linear combination of characteristic functions of
subsets of Z. Now, the set of all these linear combinations is norm-dense in [8, p.
425], so that 3’L 3’. Therefore,

(Lf)(n)=v(T-f) E f(n-k)h(k)
k=

for allf and n Z, which concludes the proof of the "if" part of the theorem. The
"only if" part was proved before. An argument analogous to that used to prove
Theorem 3, proves the last assertion.

Remark 8. Theorem 8 reveals the difference between operators in TI(I,/)
expressible as a convolution with a sequence (operators that we will say are of type Lh)
and operators which are not (which we call of type L,). The behaviour of any operator
of type Lh out of the norm-closed space co is determined by the behaviour on co
(represented by the "impulse-response" Zhi), and all sequences, whether or not they
belong to c0, are "translated" by the operator in the same way. This does not happen
for operators of type L,, whose associated measures behave on some subsets of Z
independently of how they behave in the one-point sets. In this case we can assert that,
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for any f in ,
p

Lf=lim E ld,(Ei)Zr’f,
II i=

where H= (Ei}l_i_p is a partition of Z, riEi, and the limit is taken in 0 following
the well-known ordering of partitions of Z. We can say that L= fzTSd(s) in the sense
of the strong operator topology of B(l,o), while the integration can be interpreted in

I1" IIo,o for an operator L of type Lh.

Remark 9. Unfortunately, no finitely but noncountably additive measure on (Z)
can be defined in a constructive way. Indeed, such a measure can be extended to a
Radon measure on the Stone compactification flZ of Z, and this Radon measure does
not vanish on some subset of flZ-- Z, each of whose points requires Zorn’s lemma to be
defined [2, p. 38].

Remark 10. The result expressed by Theorem 7 is partially contained in a very
general and abstract theorem of multiplier theory [9, p. 147]. This latter result is stated
within the framework of a general locally compact group, for which reason it is,
nevertheless, less clearly defined than the result here obtained for the particular group
Z.

3.3. A significant example. In spite of Remark 9 above we have a large number of
c.t.i.1, operators, not representable as a convolution with a sequence, that can be
defined in a constructive way on subspaces of wide enough to allow the development
of a quite complete filtering theory within them, and of course wide enough for any
practical purpose. To be precise, let c consist of all sequences f in for which
limn(1/(2n + 1))Zf,___nf(k) exists. This subspace c, is closed within , and con-
tains the nonseparable space ape co, where ap=ap(Z) stands for the space of almost
periodic bilateral sequences.

Now define L as follows:

1 f(k).o.IfCm, Lf= lim
n-.o 2n+l k=

Obviously, LTI(c,,Cm). However, Lf=O for every fco mand so LS=0--which
proves that L is not representable as a convolution with a sequence.

The algebra R d of subsets of Z on which the corresponding measure/ is defined
consists of all EcZ for which there exists the so-called density of E, d(E)=
lim(card([- n,n]E)/(2n + 1)). Then t(E)=(Lx_e)(O)=d(E).

In a forthcoming paper about periodic signals, some other examples of non-
convolution operators will be presented and studied.

4. A natural filtering topology on 1. We now turn back to the arguments in
Remark 8. From an intuitive viewpoint it appears that the continuity of any operator of
type Lh is in some heuristic sense stronger than that of any operator of type L. The
behaviour of the latter on co does not completely determine its behaviour on the
remainder of the space , although there exists some interdependence due to the
nonexistence of a closed complement of co in [8, p. 426], and also to the translation-
invariance of L. When we define Lf forf Co, we also define L(Tnf), and we can not
do it in a free way if the linear manifold generated by (Tnf: n Z} contains a
sequence for which L has already been defined. Anyhow it seems natural to search for
an adequate topology in for which the only translation-invariant linear operators



LINEAR OPERATORS RELATED TO DISCRETE FILTERS 711

that will remain continuous will be those corresponding to countably additive mea-
sures. A desirable property of this topology is that it be strictly stronger than the
pointwise convergence topology, a condition certainly fulfilled by the weak and by the
weak* topologies on . As to the first, no operator in TI(l, ) fails to be continuous
if we consider endowed with it [3, p. 422]. On the other hand, the weak* topology is
adequate for our purposes, as the following theorer expresses:

THEOREM 9. Let L be an operator from to o and h=LS. If we .consider
endowed with the weak* topology, L is a c.t.i.l, operator if and only if h and Lf f h
for allf in l. In this case L is also a c.t.i.l, operatorfrom to .

Proof. A collection of seminorms generating the weak* topology on is (p:
al), wherep(f)=lY’.f(k)a(k)l=l(f * )(0)l for all fin . If hl and Lf=f h
for every f in , given a we can write:

p(tf)=l((f h), )(0) I(f ,(h ))(0) =p#(f),

where fl h a. Therefore L is continuous from to , and afortiori to 0. To prove
the converse, let us observe that, for allf and a 11

oo n o n

E f(c)a(c)= lim E f(j)a(j)= lim E a(k)E f(j)8(k)
o m, n--* o j= m m, n-- o k= o j=

and, therefore, f=limm, n_oE=_mf(j)TJ8 in the weak* topology. If L is a c.t.i.1.
operator from to 0,

Lf lim f( j ) ( LTJ6 ) lim f( j ) T:h
m,n--o j=--m m,n--o j=--m

in o. Then (Lf)(k)= (f h)(k) for every k Z. A simple argument shows that this
implies h 11.

Within the framework of multiplier theory an abstract result is proved [9, p. 74]
which is not difficult to interpret as yielding Theorem 9 except for inessential details.

Remark 11. Note that with the weak* topology is not an F-space, and so does
not fulfill the requirements of the second part of Lemma 1 for the input space. This is
the reason why we have chosen to as the output space in the statement of Theorem 9.

Remark 12. To get deeper insight into the physical meaning of the weak* topology,
we may note that any f in is, as we have already written, the limit of its "sections"
E.=_mf(j)T8. This seems to make this topology better reflect physical reality, since
infinite signals are not actually observable, but only conceived of as the limits of finite
signals, which does not imply uniform convergence.

Remark 13. To underline the arguments of Remark 12, consider the operator L on
the space c defined in {}3.3. For each et [0, 2rr) let e(k)=ei’g for every k Z. Then
Le,=O if a 4:0 and Leo=v, so that a little change in the value of ct yields a great
change in the corresponding output. This does not contradict the normed continuity of
L, as this small variation in a deeply changes the norm of e-e0. However, in practical
situations we only have finite registers of signals, and it is not possible to exactly
determine the value of a. When we consider signals belonging to the spacep of periodic
sequences, this fact may be particulary important, because the collection of the e for t
rational is an algebraic basis of p, and then a small error in the determination of the
coordinate of anfp with respect to e0 may yield a large error in the determination of
the output. Thus, it does not seem convenient to consider such a system L continuous.
This is another reason why the weak* topology is a natural topology for filtering.
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STRONG RESOLVENT CONVERGENCE OF DIFFUSION
OPERATORS*

HAROLD E. BENZINGER"
Abstract. It is shown that differential operators arising from boundary value problems with eigenvalue

parameter in the boundary condition occur as the limits, in the sense of a generalized notion of strong
resolvent convergence, of families of Sturm-Liouville operators modeling heat flow in a rod, where the
diffusion coefficient becomes arbitrarily large in half of the rod, thus modeling a mixing-diffusion problem.
The generalized notion of strong resolvent convergence is defined, and a development is given in the. setting
of the abstract theory of self-adjoint operators in a Hilbert space and the theory of semigroups.

Key words, differential operators, eigenvalue parameter in boundary condition, semigroups, strong
resolvent convergence

1. Introduction. In this paper it is shown that the differential operator modeling a
problem involving both mixing and diffusion in a composite rod is the limit, in the
sense of a suitably generalized notion of strong resolvent convergence, of a directed set
of differential operators modeling pure diffusion problems. Regarding these differential
operators as the infinitesimal generators of strongly continuous semigroups which
describe the time evolution of the physical systems, we then show how the time
evolution of the mixing-diffusion problem approximates (or, conversely, is approxi-
mated by) the time evolution of a pure diffusion problem.

Consider a rod occupying the interval -1 =<x =< 1. If heat energy is subject to
ordinary diffusion in the portion -1 =<x =<0, and is instantaneously mixed in the
portion 0 =< x =< 1, so that the temperature in this interval is independent of position,
then the resulting differential operator (which will be described in detail in 2) has the
eigenvalue parameter appearing in the boundary conditions. A method for reformulat-
ing such a problem as a self-adjoint operator was given by J. Walter in [5]. We show
that this formulation arises naturally as the limit of a directed set of standard diffusion
problems, where the diffusion coefficient in 0 =< x =< 1 becomes large without bound.

In 2 we give precise formulations of the differential operators modeling the
diffusion and mixing-diffusion problems, and we show that these operators are semi-
bounded. In 3 we present expressions for the resolvent operators, eigenvalues and
eigenfunctions of the differential operators, and in 4 we examine the behavior of these
objects, for the diffusion operators, as the diffusion coefficient in 0 =<x < 1 becomes
arbitrarily large, showing how they approximate the related objects for the mixing-dif-
fusion problem. Strong resolvent convergence of a family of self-adjoint operators is
defined in [6, 9.3]. See also [4, p. 206]. In 5 we are concerned with abstract spectral
theory, giving a generalized definition of strong resolvent convergence and developing
related theorems. In [}6 we consider the semigroups arising from operators converging
in the strong resolvent sense, and interpret these results for the diffusion and mixing-
diffusion problems.

*Received by the editors August 2, 1983, and in revised form March 19, 1984.
Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, Illinois 61801.
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2. Formulation of the differential operators. Let Io=[ 1, 0], It=[0,1]. We first
consider a pure diffusion problem, described by

(2.1a) (p(x)uo +qo(X)Uo ,w(x)uo+w(x)fo(x ), xinI0,

(2.1b) -l(p(x)u)’+ql(x)ul=)w(x)ul +w(x)f(x), x in I1,

where pf C(!j), wf C(Ij), qj L(I), L2(Ij; wf), XC, 3>0, p)(x) > 0, wf(x)
> 0, and q is real. The notation L2(I; w) refers to the L2 space on I with Weight
function w. The parameter 3 > 0 can be used to control the diffusivity of the portion of
the rod in Ix, in particular for 3 close to zero, temperature gradients in 11 will decay
more rapidly than those in I0. The boundary conditions associated with this problem
are

(2.2a) u0(- 1)=0, p(1) u(1)=0,
(2.2b) u0(0) Ul(0) p(O)u(O)=8-2p(O)u(O).

For the mixing-diffusion problem, we give a more detailed discussion of the
formulation of the boundary value problem. Let v(x, t) denote the temperature in I9,
where denotes the time. Since heat flow is still controlled by diffusion in I0, we have

eX(xl +qo(xo(X,,

(.4 o(-1,=0.

In I, the assumption of complete mixing means that v(x, t) is independent of x, and
in fact equals Vo(1, t):

(. (x,=o(1,l, x.
Such an assumption is consistent with the physical nature of the problem only if the
end point x 1 is perfectly insulated. Thus the heat energy h(t) in I can change only
through transfers between Io and I, and leakage across the sides of the rod, 0 < x < 1.
We have

(. h(l= ?(xl(x,leX=o(O,?,

where W= fw(x)dx. Let Q= fq(x)dx. Then

h( -eg(0l o(O,e a+ 1o(0, ),

so, using (2.6), we have

Ov(O’t) -p)(O) v(O’t) + QlVo(O,t).(2.7) w12 Ot )x

Equations (2.3), (2.4), (2.7) define the time dependent problem. Using separation of
variables: Oo(X, t)= T(t)Uo(X ), we are led to

(2.8a)
(2.8b)
(2.8c)

,)’(P(X)Uo +qo(X)Uo Xw(x)uo+w(x)fo(x), xinI0,

-p)(O)u’o(O)+Qiuo(O)=W12uo(O)+ Wz, z in C,

Uo(-a)=0.



STRONG RESOLVENT CONVERGENCE OF DIFFUSION OPERATORS 715

Let H=L2(Io;wo)L2(Ii, w), and let V=L2(Io;w)C(WI), where C(W12)
denotes the complex plane with norm [[z[[= Wllz [. The diffusion problem (2.1), (2.2)
determines a self-adjoint operator T8 on H, with domain () consisting of all (Uo, Ux)
in H such that u exists, pfu is in AC(Ij), (pZlu)’ is in L2(/, wj.2), and the boundary
conditions are satisfied. For such functions, T8 is defined by

(2.9) T
PoUo) +qoUo]

Wl
2 Pl Ul "k qlUl]

and the problem (2.1), (2.2) can be reformulated as

(2.10) T Ul
-"X

gl
-["

fl

for (fo,fx) in H.
The mixing-diffusion problem (2.8) defines a self-adjoint operator TO on V with

domain (0) consisting of all vectors (Uo,Z) such that uo and -PoUo are in AC(Io),
(pu’o)’ is in L2(Io;w), z=limx__,o-Uo(X), and go(-1)-0. See [5]. Note that the
absolute continuity of u0 and 2poUo implies that Uo(X ) and pg(x)uo(x ) have limits as
x 0-, and since po is continuous, lim o-p(x)uo(x) 2=po(0)Uo(0). For such (Uo, Z ),
we have

(2.11)
Uo -- Pg(X)Uo(X)) + qo(X)Uo(X)

T[go(0)]= 1

-? [-po: (o)Uo(o)+ OlUo(O)]

and the problem (2.8) becomes

(2.12) TO
U o

go(O) =X[ uuo O ]+[z
for (fo, z) in V.

These self-adjoint operators are semibounded. Let

Q(x)=
qx(x w(x)=

w?(x)

THEOREM 2.13. For u in (),

max
-l__<x=<l l’i’i ]]U[[

Proof. For > 0, using integration by parts and the boundary conditions, we have

  lu,ol ,i--- PIUI "[-
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Since po > 0, p2 > 0, we can eliminate them, obtaining

fl Q(x) 2
w(Tau,u)<=

2(
u(x)l 2(x)dx’

-1 w x)

from which the result follows. The case that 0 is similar.

3. Resolvent operators, eigenvalues and eigenfunctions. Consider the problem (2.1),
(2.2). Let = -p-, and let ql(x,p), q,2(x,0) be a fundamental set of solutions for the
homogeneous form of (2.1a), and let +1(x,,3), q.,2(x,p,) be a fundamental set of
solutions for

(3.1) ( P2 ( x ) u ) nt- 2ql ( X ) Ul p22W?( X ) Ul,

which is equivalent to the homogeneous form of (2.1b). We assume these solutions
satisfy

2 2 (-1’0)=
poql pooh2 0 1

2, 2, (1,0,3)
plq pigs2 0 1

Since 0,3 appear in the differential equations as entire functions, these fundamental
sets are entire functions of p, and the fundamental set for (3.1) is an entire function of
8. See [1, p. 37]. It is easily seen that each of these fundamental sets has constant
Wronskian (= 1). Let

d( x,y, p --d?l X, p )dp2 ( y, p ) q-2 X, P)l ( y, p ),
(x,y,p,8 --/l (X,p,3 )/2( y,p, 3 +ff/2(x,p, 8 )/x( y,p, 8 ).

Using the method of variation of parameters, we see that the general solutions of the
nonhomogeneous equations (2.1) are

(3.2)

(3.3)

Uo(X,p)--AdPl(X,p)+Bd?2(x,p)q- d(x,y,p)Wo(Y)fo(Y)dy,

Ul(x,p,8)=C/l(x,p,8)+D/2(x,p,8)-82ft xt’(x,y,o,8)w21(Y)f1(Y)dY.

It is easily seen that the conditions (2.2) are satisfied if A D 0 and if B, C satisfy

(3.4)

+1(0’ Pt’ )_3-2p(0)+t(0,p, 3) [Bc
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The determinant of the coefficient matrix is

D(, ) -p12 (0) + (0, , )+ (0, ) +po(0)+ (0, )+(0, , ).

For fixed t$ > 0, the zeros of D give the eigenvalues of T.
For the problem (2.8), we use (3.2), and note that conditions (2.8b, c) are satisfied

if A 0 and B satisfies

(3.6)

Let Do(p ) denote the coefficient of B in (3.6). The zeros of this function give the
eigenvalues of To.

For > 0, the eigenfunctions of T arise, when D(p)= 0, as thenontrivial solutions
of (3.2), (3.3) whenfo=0, fl =0. Thus

B,_(0, ) C+(0, , ),

SO

B--E+I(O,p, ), C=EO,(0,O),

and the eigenfunctions are

(3.7) u(x,o,)-- g[lpl(O’o’)2(x’O) ](0,O)+l(X,O,)

where Ilull- 1 provided

(3.81

E-- [@l(O,p,()[ [,2(x,p)[ w6(x)dx+l,=(o,p)[
2 ]@l(X,p,)12w(x)dx

For t$=0 and p a zero of Do(p), we have

(3.9) u(x,p,O)=E
+2(O,p)

with normalization constant

2 2 21(/)2(X,p)[ W0 (x)dx--[- W [(/)2(O,p)[
2 1/2

4. Behavior as 8- 0.
LEMMA 4.1. The following limits hold unformly for 0 <= x <= 1 and p in any compact set:

lim [l(x,p, ) /2x,p,]l p-2(y)dy
-,o g,i(x,o,) p(x)/2(x,o,,) 0 1
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Proof. Since qx, 2 are analytic as functions of 8, they converge, as 8---> 0, to the
corresponding fundamental sets for 8 0. For the uniformity with respect to the other
parameters, see [1, p. 37].

LEMM, 4.2.

lim -2p 12 (0) /1 (0, p, ) Q1 + p2W?,
80

uniformly for p in any compact set.

Proof. Using the differential equation (3.1) and the condition p2(1)q](1, p, 8)= 0,
we have

-2p2(0)t/,’i(0, O,8) =f0 [ql(Y)+O2W21(y)] tl,’l(Y,O,)dy.

The result then follows from Lemma 4.1.
LEMMA 4.3.

lim -D(p,8) =D0(p),
8--+0

uniformly in each disc tl-< R,
Proof. This is a direct consequence of the defining formulas and Lemma 4.2.
LEMMA 4.4. Let R > 0 be fixed, and let { o }, k= 1,...,N(R) denote the zeros of

DO(p) in tl < R. Let e > 0 (but sufficiently small) be given. There exists a positive number
A=A(e,R) such that if S<A, then D(p,8) has N(R) zeros {p) in Ipl<R, andlp-pl

Proof. Let e>0 be small enough so that the finitely many circles Ip-pl=e,
k=l,-..,N(R) do not intersect the p0. Then for some a>0, ID0(P)l__<a on these
circles. Using Lemma 4.3, we can select 8 small enough so that IDo(p)+D(p,6)l<a in
Ipl=< R. Thus by Rouch6’s theorem, the zeros of -D(p,8) in Ipl< R lie within the discs

IP Pl < , and multiplicities are preserved.
Next we consider the resolvent operators

R(X)=(,I- Tn) - 8>0

From (3.2), (3.3), we see that for > 0.

x

R (X) fl t"2 ,i(x,y,p,8)w2(y)fl(y)dy

where B, C satisfy (3.4). From (3.2),

B2(x,Pl+f_Xx d(x,Y,O)wg(Y)fo(Y)dY
(4.6) Ro() ) fz] Bq2(O,p)+fOlCb(O,y,p)wo2(Y)fo(Y)dy
where B satisfies (3.6).

Let Px denote the projection of L2(I; w21) onto C(W12) given by

1 foXPtft =-t2 fl(y)w?(y)dy
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THEOREM 4.7. For each (fo,fl) in H,

8401im Rs(X ) flf =R0(k)
Plf

uniformly for Il R, IX- hl >= e > 0, where convergence is in the norm of H.
Proof. For >0, let Ba(p;fo,fo ), Ca(p;fo,f) denote the solutions of (3.4), and let

Bo(P;fo, z ) denote the solution of (3.6). Using (3.4) along with Lemmas 4.1, 4.2, 4.3, we
see that

lim B(o;fo,fl)=Bo(O;fo,Pf ),
84-.0

lim C(o;fo,f)=Bo(O;fo,Pf).(O,0)+ (O,y;O)Wo(Y)fo(y)dy,
8---0

where the convergence is uniform with respect to t) in any compact set bounded away
from the zeros of Do(t)) (since reciprocals of D0, D are used). Then using (4.5), (4.6),
the result is established (along with the stronger result that convergence holds uni-
formly on [- 1,1]).

Let Uks, k 1,... ,N(R), 8 >= 0, denote the normalized eigenfunctions of T.
THEOREM 4.8.

lim Uk8 Uko,
840

uniformly for k= 1,... ,N(R), where convergence is in the norm of H (and also in the

uniform norm on [-1,1]).
Proof. This is a direct consequence of the expressions (3.7)-(3.9), and Lemma 4.1.

5. Strong resoivent convergence. The situation described in Theorem 4.7 is now
considered in an abstract setting. Let H be a complex Hilbert space and let V be a
closed subspace. Let P denote the orthogonal projection of H onto V. Let (T), i > 0,
denote a family of self-adjoint operators defined in H, and let TO denote a self-adjoint
operator defined in V.

DEFINITION 5.1. ( T } converges to TO in the sense of strong resolvent convergence
if for some z in C -R, and each f in H,

lim gn(z)f=Ro(z)Pf
0

in the norm of H.
For the special case V= H, P--In, this definition and consequences are discussed

in [6, 9.3], [4, p. 206].
LEMMA 5.2. IfR ( z)f- go( z )Pffor each f in H, then

gk ( z )f Ro z ) Pf, k >= l.

Proof. This can be proved by induction on k, using

R)(z)P= (Ro(z)e) "
and the uniform boundedness of the resolvent operators"

(5.3) IIR(z)ll<_ Ilmzl -.
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THEOREM 5.4. If Definition 5.1 holds for one nonreal z0, then it holds for all nonreal
z. Further, the convergence in Definition 5.1 holds uniformly with respect to z in each disc

[Z-Zol_lXmzol-, >0.

Proof. Using the analyticity of resolvent operators and (5.3), we obtain (modifying
[6, p. 294]),

N

IIR (z)f-Ro(z)Pfll E Izo-xlllR/l(zo)f-R+X(zo)mf[[
k=O

+2 E Izo-zllImzol --1
k=N+l

Given e > 0 and ]z-z01_<]Imz01-a, the second term on the right of (5.5) can be made
smaller than e by making N large. For all such z, the first term can be made smaller
than e by making 3 sufficiently small, using Lemma 5.2. This establishes the uniform
convergence. The remainder of the proof follows [6, Theorem 9.15].

Remark 5.6. Since for any self-adjoint operator T,

I]R(z,T)I]<= [dist(z,o(T))]-1,
we can modify the proof of Theorem 5.4 to see that if x0 is a real number in o(T0), and
if for 3 > 0 sufficiently small, some fixed interval Ix- x01 < a lies in p(T0), then R(Xo)f
--> R(xo)Pf

For the case V= H, it is proved in [6, Thm. 9.17] that if Definition 5.1 holds, then
for any bounded, continuous function u: N C, u(T)fu(To)f. If V=/= H, the result
u(To)f u(To)Pfis obviously false for all such u, since if u(x) =- 1, then

u(T ) IH 4: Iv= u( To ).

For the same reason, Lemma 5.2 does not hold for k 0.
THEOREM 5.7. Let u: R C be a continuous function such that

(5.8) lim u(x)-0.

Assume Definition 5.1 is satisfied. Then for each f in H,

lim u(T)f u( To ) Pf

Proof. As explained in the proof of [6, Thm. 9.17], the set of polynomials in
(_+ i-x)-x is dense (with respect to the supremum norm) in the set C() of bounded
continuous functions u(x) on R such that u(+ oo)=u(-). Now for u in C(), v in
,fin H, we have

(5.9)
I[u(T)f u(To)Pfl[<= [[u(T)f-v(T)i[l+ [[v(Tf)-v(To)Pf[l+ [[v(To)Pf- u(To)P/[I.

Let e > 0 be given, and select v such that

(5.10) lu(x)-v(x)l<e, all realx.
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Then by the functional calculus for self-adjoint operators [6, Theorem 7.14],

Thus (5.9) becomes

(5.11) [lu( Ta )f u( Zo Pf[{< 2 ellfl[+ [Io( za )f ( Zo ) Pfl[.
Since (+__i-x) -10 as Ixl , we see that a:= limxo(x is the constant term in
the polynomial o. If u(+ )=0, then from (5.10), I1< , so if w=o-a, we see that w is
a polynomial in ( + x) 1, the constant term is equal to zero, and

[u(x)-w(x)[<2e.
Using w in place of , we have

(5.12) [In(Z )f u(To) efll < 4l[fl[+ Itw )f w( Zo efl[
Using Lemma 5.2, this final term can be made smaller than ellfll by making 6 suffi-
ciently small.

COROLLARY 5.13. Iff is in V and u is in C() then

lim u (T)f= u ( T0)f.

Proof. Sincef= Pf, we can go from (5.11) to (5.12) without assuming u( + )= 0.

6. Semigroups. The self-adjoint operator T (8 >__ 0) generates a strongly continu-
ous semigroup (Us(t)}, >=0 if it is bounded from above. We assume there exists a real
number K, and positive number 80 such that for 0 __< 8 =< 8o, and all u in the domain of

(6.1) Tu, u) Kllull =.
By Theorem 2.13, this holds for the differential operators considered earlier. We note
the easily proved identity

(6.2) R( + i,tT)= t-lR( +it -1, Ts).
THEOREM 6.3. Let f be in H and let 0 < < 2 < oO. Then

lim U(t)f= Uo(t)Pf,
0

uniformly for <= <= 2. IfK< O, then convergence holds uniformly for <= < .
Proof. Let

u(x)={e, x<=K,
e 2K-x, x>K.

Then U(t)=ut(T). Lety=x-K. Then for t>=0,

ut(x)=eKtleyt, y<=O

e -yt, y>0

:= eKtuto(y ).
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Note that

Let vo(y ) be a polynomial in (+ i-y) -1 such that, for some preassigned e>0, [u0(y)-
vo(y)l<e for all real y. Note that 0 can be chosen with constant term equal to zero,
and for each >= 0,

(6.4) lUto y ) Oo ( ty ) l< e.

If v (x) e %o(Y), then for all real x,

(6.51 lut(x)-v(tx)l=emluo(ty)-vo(ty)l<eem <=ee m2.

Now

(6.6) U ) e I’:tu to T
SO

(6.7) U ( )f Uo ) Pfll-- eI’lluto ( Zn )f uo ( Zo ) Pfl[

=< e/(t2 ( Ilu (Z )f vo ( tZ )fli/ I10 ( tZ )f o ( tZo ) Pfll
/ Iloo(tZ )Pf-U’o(Zo)Pfll).

Using (6.4) in the first and last terms on the right of (6.8) gives

(6.8’) [Ifn(t)f- Uo(t)Pfll<=et(2l[fll+ [[Oo(tZ)f-o(tZo)Pf[I).
Since Vo(tT) is a polynomial in R(+ i, tT), one can use (6.2) and Theorem 5.4 to see
that for =< =< 2, we can select 8 sufficiently small so that

I10 ( tZ )f vo ( tZo ) Pf[[< ellfll.
This establishes the first part of the theorem. If K< 0, we return to (6.7) and note that
since luo(Y)l =< 1,

Ilu (Z )f- U’o(To) PflIz llfll, z 0.

Thus given e > 0, we select 2 large enough so that >= 2 implies

e’tlluo(T)f-uto(Zo)Pfll<llfll, >_0.

For =< =< 2, we use the first part of the proof.
For f in v, the interval of uniform convergence for the semigroups can contain

0, provided we make the further assumption that any finite interval is contained in a
larger interval (a, b) such that for eachf in V,

(6.9) --,01im fa’ dE(x)f=fat’ dEo(x)f.

In the case of the differential operators considered earlier, this is certainly true,
either by direct computation, or more abstractly, by exploiting the gaps in the spectra,
the strong resolvent convergence, and the representation of the integrals in (6.9) as
contour integrals.
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THEOREM 6.10. If (6.9) holds, and iff is in V, then

lim Ua(t)f- Uo(t)f
0

uniformly on each interval [0, 1]. IfK< O, convergence holds uniformly for = O.
Proof. Let e > 0 be given and let f in V be given. Then

f-f dEo(x)f

so there exists an interval (a, b) such that if

h 0 :- dEo(x)f

then [If- h 0[[ < e. Assume (a, b) is as in the assumption, and let

h a := dEa(x)f, >__0.

Then there exists A A(e, f) > 0 such that 0 =< 6 __< A implies

(6.11) ]lha-ho[l<e.

It suffices to consider the last term in (6.8.1) (withf= Pf). We have

(6.12)

[lo ( tTa )f Vo tTo )f
-< Iloo ( tT )f Oo ( tTa ) h

+ [IVo(tTo)ha-hall+ I[ha-boil+ ][ho-vo(tTo)ho[[+ I[Vo(tTo)ho-vo(tTo)fl[.

Since IVo(y)[ =< 1 + e and Ill- hall < 2e for 0 =< 8 =< A, we have

]lVo(tTa)f-to(tTa)hal]<2(1 +e)e, >=0.

This takes care of the first and last terms on the right of (6.12). For the middle term we
use (6.11). For the remaining two terms, we note that

b

Vo(tT)ha-ha=ja (Vo(tx)-l)dEa(x)ha.

For a < x < b, there exists t(e) > 0 so that 0 < < t(e) implies

Thus

II<,o (tr.)h- h 11< llh 11< ( IlSll + ),
for O<=t<=t(e) and 0=<i=<A. If t(e)<ti, we use the previous theorem on [t(e),t], with
possibly still smaller. If K< 0, then we again use the previous proof to obtain uniform

convergence for all >__ 0.
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In the case of the diffusion operators T (8 > 0) and the mixing-diffusion operator
To, given f=(fo,fl in H=L2(Io, wo2)L2(I1,w21), we have V=L2( Io, wo2)C(W2) and

6.1 [1-[Plf 1’
where P is defined just above Theorem 4.7.

Let v(x, t) denote the solution of

(6.14)
3
--o(x,t)= To(x,t) o(x 0)=f, 3>0.
3t

Then

(6.15)
Also let

o(x,t)= (Us(t)f )(x).

(6.16) )---[Co(X,t)= Toco(X,t ) Co(x,O)=Pf

Then

(6.17)
Thus the temperature o8 on any time interval 0 < tl =< =< 2 < will approach the
mixing temperature as 8 0, we can select 2-- x if the rods are poorly insulated
(K < 0), and we can select t =0 if f=(fo,fl) is already in V, i.e., fl is constant.
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ON THE SINGULARITIES OF SINGULAR STURM-LIOUVILLE
EXPANSIONS AND AN ASSOCIATED CLASS OF ELLIPTIC P.D.E.’S*

AHMED I. ZAYED AND GILBERT G. WALTER

Abstract. We consider elliptic equations of the form Uxx + Uyy -- a(x,y)u + b(x,y)Uy + c(x,y)u=O that
are separable in the polar coordinates (r, 0). Upon separating the variables one obtains an angular equation
of the form d2w/dO +(X-p(O))w=O; 0<0<2r where p(O) may have a singularity at one of the end
points but is otherwise analytic in 0 < Re 0 < 2 r. This leads to the singular Sturm-Liouville problem d2y/dx
+ (,- q(x))y=O; O< x < o, y(O, h)cos fl +y’(O,?)sinfl= 0 and ly(o,X)l< o. Let (x,?) be the solution
of this system with (O,X)=sinfl, ff’(O,X)=cosfl and for f(x)L2(O,o) put F(?)=ff(x)ck(x,X)dx.
We show that if F(h)=O(e-’) as ?o, then the singularities of the analytic function f(t)=
f_o F()(t,X)dp(), where p(?) is the spectral function, can be located by relating them to the singulari-
ties of the associated Laplace transform g(z)= f F(s2)eisz ds, =s2.

AMS-MOS subject classifications (1980). Primary 34B25; secondary 35B50

1. Introduction. The study of the analytic properties of solutions of partial dif-
ferential equations as well as the location of their singular points is of great importance
in both modern and classical physics. An extensive literature on this subject has been
established in the areas of quantum mechanics, quantum field theory and in particular
in the theory of potential scattering [13], [18], [20], [21].

Not surprisingly, the first attempt in that direction was to locate the singularities
of solutions of the Laplace equation i.e. the singularities of harmonic functions. In his
celebrated paper [19], Nehari devised a technique based on what is known as Hada-
mard’s argument to locate the singular points of a harmonic function in the unit disc.
On the other hand, Bergman [1], [2] was the first to use integral operators to map
holomorphic functions of one or several complex variables onto harmonic functions.
Putting Nehari’s and Bergman’s ideas together, Gilbert in a series of paper [7], [8], [9],
and [10] was able to study the singularities of harmonic functions in n variables as well
as the singularities of solutions of more general elliptic equations.

Gilbert’s technique has also been applied to solutions of certain meta-parabolic
and pseudo-parabolic systems [11]. Different approaches to the study of the analytic
properties of solutions of partial differential equations have been considered by other
people, e.g., Vekua [22] and Garabedian [6].

In this paper we will give a procedure that will enable one to find the singularities
of the solutions of the elliptic equations

Uxx-[- Uyy-[- a(x,y)Ux+ b(x,y)Uy+ c(x,y)u=O

under the assumption that it can be solved by the separation of variables technique. We
assume that (1.1) may be separated in polar coordinates and to this end we require that
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the coefficients have the simplified form

a(x,y)=a(r)cosO- fl(O)
sine,

r

b (x,y) fl (0) cos 0 + a ( r )sin 0,

c( x,y )
3"1( r + 3"2 ( 0 )

2r

where a,/3, 3’1 and 3’2 are assumed to be entire and real on the real axis. Transforming
(1.1) to polar coordinates gives

1 3 1 l__fl (3’1(r)+3’2(0)r or(rUr)+Tu+a(r)Ur+r2 (O)u+ u--O.

If we put u(r,O)=R(r)O(O), we obtain

R"+ -+a(r) + R=O
r r 2

o" + + + x)o o,

where * is the separation constant. The substitution

O(O)=w(O)exp 1

reduces (1.4) to

(1.5) d2w+ (X- q( O))w O,
dO 2

where

(1.6) q(0)= flz(0)+fl 0)-3,2(0) 0<0<2r.

As for the radial equation (1.3) we put h(r)= ra(r),

v( r r (1 + h())/2R ( r )expl
l forh(r)-h(O) dr)- r

and reduce (1.3) to

g(r)-,
2r

k(r)

where

1 (1 h 2g(r)= (r)) +3’l(r), k(r)=



SINGULAR STURM-LIOUVILLE EXPANSIONS 727

A further substitution, O logr, v--rl/2z yields

(1.7) d2z
do2

where p(o) 1/4-g(e)-ek(e).
The case where q(0) is periodic with period 2 rr and has an analytic continuation to

the entire complex plane with w’(0)- aw(O) 0 and w’(2 rr) + bw(2r) 0, i.e. a regular
Sturm-Liouville problem, was considered by Gilbert and Howard in a number of
papers [12], [14] and [15]. They found the locations of the singularities of Sturm-
Liouville (SL) expansions of the form

f(t) , a,qn(t ) lim [a,[ 1/ <1,
O n o

where ,(t) are the normalized eigenfunctions of a regular SL problem, by relating
them to the singularities of the associated power series

0

Their results have been extended by the authors to the case where f(t) is a generalized
function [23], [24], [25], [26], and [27]. Our main aim now is to extend their results to the
case where q(0) has a singularity at one of the end points of the interval (0, 2 r). More
precisely, we shall extend their results to a singular SL problem in which the spectrum
is continuous or mixed. In this case the series must be replaced by an integral and the
expansion be compared to an associated integral instead of an associated power series.
The associated integral will be the Laplace transform of the coefficient function.

The singular points of an analytic function given by a Laplace transform have
been extensively studied because of their importance in differential equations. The
nature of the stability of the solution to a differential equation is determined by the
location of those singularities [5]. In addition, their location is important in the study of
entire functions since they determine the asymptotic behavior of entire functions of
exponential type [17].

We consider the singular Sturm-Liouville problem with differential equation of
the form

(1.8) y"+(X-q(x))y=O, x(O,

where q(x) is analytic in the half-plane Rex > 0 and in LI(0, oo). Each sufficiently nice
function f(x) on (0, oo) has an expansion of the form

(1.9) f(x)

where (x,X) are the eigenfunctions of (1.8), p is the spectral function and F(X) is the
coefficient function. We shall describe these quantities more precisely in the next
section. By using "Hadamard’s argument" we relate the singularities of f(x) to the
singularities of

(1.10) g(z)= F(X)e’ds, X=s 2.
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This involves studying the integral operators which transform g into f and f into g and
the singularities of their kernels. This will be done in 2 and in {}3 we prove the main
theorem and complete our investigation by giving some examples.

2. Preliminaries. Consider the singular Sturm-Liouville (SL) problem

(2.1) y"(x,X )+ (X- q(x)) y(x,X ) =0

with boundary conditions

(2.2) y(O,X)cosa +y’(O, X)sin a 0

and

(2.3) [y(,X)l< .
This problem is regarded as a limiting case of the regular Sturm-Liouville problem

given by (2.1), (2.2) and

(2.4) y(b,X)cosB+y’(b,X)sinB=O, O<b< oe as b oe.

Let us denote by X n, b the eigenvalues of the regular SL problem and by Y,,b(X) the
corresponding eigenfunction. Put

2 fob 2
an,b Yn,b(X)dx,

(2.5) 1E x_<0,
,<,n,b <O Oln,b

and

1
O<X.(2.6) 0b(X) E 2

O<n,b< Oln,b

Then Parseval’s equality takes the form

for,f 1 (for,f )2 foe(2.7) 2(x)dx=Y’n (x)Y’’b(x)dx -FZ(X)dOb(X)’
where

(2.8) F(X)=fof(x)y(x,X)dx.
It is known [19] that the sequence (pb()k)} converges to a monotonic function p(X) as
b---, oe. Let (x)= q,(x,X), O(x)=O(x,X) be the solutions of (2.1) such that

+(0) sina, q)’(O) cosa,
(2.9)

0’0(0) cosa (0) sina

Then forf(x) L2(O, 0:) we have

(2.10) fo f (x)dx=f F2(X)do(,),
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where

(2.11)

F()) is called the generalized Fourier transform of f(x). In addition, if we assume that
f(x) is continuous on [0, m) and that the integral f_oF())ck(x,X)do(X) converges
absolutely and uniformly with respect to x on every compact subset of [0, m), then

(2.12) f(x)=

The general solution of (2.1) is of the form /(x,))=O(x,))+m())ck(x,X) where re(X)
is analytic in the upper and lower half-planes ImX 4: 0. From now on we assume that
q(z) is:

i) analytic in the half-plane Rez > 0,
ii) real for real z,
iii) integrable over any line of the form (c+im,c-im); c>0 and (ic, +ic).

We may extend q(x) to Rez < 0 so that it satisfies similar conditions but otherwise is
arbitrary. However, in most cases the even or odd extensions will be considered.
Condition (i) implies that q,(z,?) is analytic in (Rez > 0)C and condition (iii) implies
that the spectrum of the SL problem is discrete and bounded from below for X _< 0.

We denote the space of all C-functions in R with compact support by and its
dual space by ’. The topology of is the standard topology (see [3]). gwill denote the
space of all complex valued C-functions on R and g’ is its dual, i.e., the space of all
generalized functions with compact support. For f(x)’ we define its analytic repre-
sentation by

1(f(z)=-7 f(x)’
X z

zsuppf(x).

It is known that

lim

for all q g. For more details on generalized functions see [3].
We devote the remaining part of this section to proving some lemmas that will be

needed in the following section. The first lemma gives a bound on the eigenfunctions
q,(z,X).

LFMMA 2.1. Let X s -, s o + ir and z x + iy. Then

Iq(z, X)l < Ae IIm szl =Ael’lx+lYl

in (Re z > 0) (Isl > 8 > 0).
Proof. The proof is similar to the one for real z [19, p. 206]. Since O(z,X) satisfies

sin(sz)(2.13) q,(z,X)-sinccos(sz)-cosc
s 1 oZ+-- sin(s(z-t))q(t)(t ))dt,

S
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where the integral is a contour integral in the complex plane. But both cos(sz) and
sin(sz) are bounded in absolute value by exp([zlx+lyol) for Rez>0. Set 4l(z,X)=
q(z, X) e-I,Ix-lyol, whence we have

(:.a4)

Iql(z,)t)l< 1++ Isin(s(z-t))[ q(t)l I(t,X)lel’lll-x+ll’l-ll)ldt

where t + it 2.
Since the integrand in (2.13) is analytic for Rez>0, we can integrate along any

path from 0 to z. We choose the line segments (0, x) and (x, x + iy). On this contour we
have 0 < t < x and ]t2] < y; therefore (2.14) yields

Il(Z,X)l 1++ ]q(t)l Il(t,x)l [dt I.

By [19, Lemma 3.1, Ch. 4] we conclude that ]l(Z,)] is bounded for Rez>0 and
Is[ 6 > 0 and this proves the lemma. Q.E.D.

LEMMA 2.2. Let f(x) L2[0, ). If ff(x)(x,X)dx converges uniformly for X
(- , ), then it is the generalized Fourier transform off(x).

Proof. Let FN(X be given by

Then by hypothesis

fof( )O(x X)dx.uniformly on bounded sets where G (X)= x

Hence

FN(- 1) ( )k ) f0XFN () dO(l)

also converges uniformly to G(-1)(X) on bounded sets. But FN(X)-F(X in LZ(do)
and therefore

[F-I)(X)-F(-1)(X)[N IFN--Fldp

< 0 on bounded sets.

Hence F(-x(X)=G(-(X) and by differentiating with respect to X, it follows that
F= G a.e. (d0). Q.E.D.

LEPTA 2.3. The even (or odd) extension of the integral

converges to a generalized function ’(-,) concentrated at the origin, i.e.

supp {0}.
Proof. Let f be a C-function on N with compact support. Then if sin 0, we

have

(2.15) /(x)=f $2=
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where F(X) is rapidly decreasing. Hence

f(0) sin F(X)do(X)

which implies that

sin a o Mo oo M--, o oo

If f has its support in (0, m), then this last expression is just (il,f). The same is
true if the support is in (- oe,0) provided the even extension of q,(x,)t) is used. In both
cases f(0)= 0. In general we have therefore

il=0 on- {0}.

If sin a 0, we differentiate both sides of (2.15) to get

f’(0) -cosa F( )t ) do )t )

and then repeat the same argument.
COROLLARY 2.1. The analytic representation of

is holomorphic everywhere in the finite complex plane except possibly at z O.
Throughout the rest of this article we shall assume that the measure do()t) is such

that the generalized function

1 --isx82(x)=
2 -oe dO(X)

is also singular only at the origin, i.e., its analytic representation is holomorphic
everywhere except possibly at the origin. This holds if O’(s 2) is a rational function of s,
since its Fourier transform in this case is a linear combination of the Dirac &function,
its derivatives and functions which are holomorphic everywhere except possibly at the
origin. Under this assumption it follows that the analytic representation of

f?op(s)e-i’Xdo(X)
is holomorphic everywhere except possibly at the origin for every polynomial p(s).

LMMA 2.4. Let

1 f
o

2 isz(2.16) K(t,z)=
2 -oq(t’s )e dO(X)

and

1 fo
o

2 isz(2.17) L(t,z)= 2 q,(t,s )e ds.
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Then
a) K( t,z ) defines a holomorphic function in the region

(Ret > 0) (Imz < -IXmtl).
b) For and z real K(t,z) is a solution to theproblem

2K 2K
)z 2 Ot 2

-q(t)K, 0<t<,

K(O,z)=sinaaz(Z),

K(t,O)=8l(t ).
t=0

cos, (z),

c) L(t, z) defines a holomorphic function in the region

(Ret > 0) (lXmtl< Imz).
d) For and z real L (t, z) is a solution to the problem

32L 32L
3z 2 3t 2

q(t)L, 0<t<,

L(O,z)=sina6+(z),
3L
Ot t=0

-cos, a+(z).

Proof. a) Since [4, Lemma 2]

O’(X)=
0

1
ifsinaO

s

and by Lemma 2.1 dp(t,.)=O(e Ilmtls) as sm it easily follows that the integral in
(2.16) converges absolutely in the prescribed region and uniformly in any compact
subset thereof.

b)

1 fox) 2 isz1 qd’(t ))e-iSZdo())=
2

(q(t)-s)(t X)e

=q(t)K(t,z)+

The boundary conditions can be easily verified. The proof of c) and d) is similar except
for the fact that the Fourier transform of the Heaviside function is 8 +.

In the following lemma we continue both K(t,z) and L(t,z) beyond their original
domains of definition as given by Lemma 2.4.

LEMMA 2.5. Let K(t,z) and L(t,z) be the even extensions of the expressions given in
Lemma 2.4. Then as functions of two complex variables they are analytic everywhere
except possibly on the manifolds +_ z and Re 0.

Proof. By Lemma 2.4, both K and L are solutions to the hyperbolic equation

02U 2u

Ox 2 Ot 2
-q(t)u



SINGULAR STURM-LIOUVILLE EXPANSIONS 733

for real x and t, > 0, with initial conditions:

Ou
(o x) =A(x))t

where fl and f2 are generalized functions whose analytic representation is singular only
at the origin. By using a well-known technique from partial differential equations, this
problem may be converted to an integral equation, namely

l ftfx+t-u(t,x)=Uo(t,x)--Ox_t+ u(r,y)q(r)dydr

where

1 l f+tf2(Y)dy"u(t’xl=- (fl(x + tl+fl(x-- t) ) +- -t

(See [19, p. 2741.)
This is a Volterra equation of the second kind and hence may be solved by the

Picard method of successive approximations. That is, starting with u0, define u as

(2.18) Ui(t’X)--
"O’x-t+r 2 u(z’)ddz

ff G(t,x; ,ti)Uo(,)ddr

where G(t,x; r,)= -q(r)/2 on Ftx, t= ((r, ti)lO <_ r <=t, Ix-lil< t-r }.
The function G, the kernel of the equation, defines a mapping from Loc(R 2) into

itself which we also denote by G. It can be extended to an operator on ’ since it
involves only multiplication by a C-function and integration. Symbolically we have

Ul GUo.
We then repeat the procedure by defining successively

u2- GUl u3 Gu2 Un-- Gun_ 1,

or

2U0 --G/’/2 G /’/3 t/o, Hn’-- Gnuo
The operator G" is also an integral operator with kernel G,(t,x; r,). Moreover it is
dominated by

(2 19) Ia.(t x. ,2)1__< Iq()l (X--)"-I (flq[),-1
2" (2-1! (nZ-ii

This ensures that the series defining the resolvent operator converges in the sense
of L2 on bounded domains and hence that
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is a formal solution to the integral equation

U=Uo+Gu

for u0 sufficiently well behaved.
However fl(x) and f2(x) are generalized functions which are not in L2 andloc

hence we must use their analytic representations instead. Fortunately this presents no
problem since the latter are singular at most at x=0. It follows that the analytic
representation of Uo(t,x ), given by

(2.20) ft(t’z)-2ri 2 _ x-t-z  +t-za
where F2 is a generalized function such that F’ =f2, is singular at most at z + t.

We now convert our integral equation (2.18) into an integral equation involving
the analytic representations,

f fo + Gf.

But we have

(2.21)
-1 l fo, q()_fx+,-G(t,zl= f x-z 2 -x ,+,

u(r’)ddrdx

-1 fot q(r2ri
_ 2 _+x+s-s-z

=-fo’q(r)2 fz+’-’(r’)ddr_,+,

We now apply the Picard method to ft0(t,z and observe that ftl, ft2,...,ftn,.-.
may have singularities at most at z= +t. For example ft0(r,) has singularities at

= +r. Hence, its antiderivative f0-1) does also, and fto-1)(’,z + t-r) has singularities
at most at z + t-r +_ r. Multiplication by the holomorphic function f(t) adds no new
singularities nor does integration from 0 to t. Hence, the only possible singularities
from this first term are at z + t- t-- + and z + t- 0- 0, i.e. at z _+ t. The same is true
of the other term ft{o 1)(r, z + r). Thus the series

E
n=0

which gives us our solution, converges uniformly on bounded domains excluding these
values to a function whose singular points at most coincide with those of fto(t,z ). The
same is true of u(t,z) since ft is nonsingular everywhere u is.
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3. The singularity theorem. The main result of this paper is the following theorem.
THEOREM. Let the generalized Fourier transform F(X) off(t) be such that F(2t)=

O( e -‘’s) as s c for some c > O. In addition, let

1 foF())ei,Zds(3.1) g(z)=
2

Then, iff(t) has a singular point at a(Rea > 0), g(z) has one at either z a or z -a

according to Im a < 0 or Im a > 0. Conversely, if g( z) has a singularity at z fl, f t) will
have one at either fl or -fl @ending on whether Im/3 < 0 or Im/3 > 0.

Proof. First of all, the function f(t) is holomorphic in the strip (Ret>0)
([Imt[ < c). For we have

F(X)q(t,5,)do <=A e-cselImtlSds< oo

for IIm I< c. Moreover,

(3.2) f(t)=f F(X)rk(t,X)do(X)+foF(X)rk(t,X)do(X).
Since the negative part of the spectrum is discrete and bounded below, the contribution
from the first term, say 7(t), is holomorphic in Re > 0 because (t, ;k) is holomorphic
therein. The second integral has just been shown to be absolutely and uniformly
convergent in Ilmtl<c-e for e>0, hence it defines a holomorphic function in the
prescribed strip. It is readily seen that g(z) is holomorphic in the half-plane Imz > -c.
Now we define an integral operator that maps g onto f. From the inversion formula for
the Fourier transform we have

(3.3)
1 x>0

2V
g(x + iy)e is(x+iy)dx=- 0, X<0,

or

1 fi]a+g(_(3.4) F(X) 2v/_
z)e-iZdz, X>0

where a > -c. Upon substituting (3.4) into (3.2) we obtain

a-t-
(3.5) f(t)=rl(t)+

_m

g(z)K(t’z)dz"

Interchanging the integrals is permissible by the uniform convergence. The line of
integration can be replaced by any other contour y(z) going from -m to m provided
that is real and for all z, Imz >-c. In fact, this representation of f(t) holds for
complex as long as -IImtl>Imz>-c. By using Hadamard’s multiplication of
singularities argument we can continue f(t) beyond this initial domain of definition. As
moves in the complex t-plane (Re > 0) the singularities of the integrand move in the

complex z-plane and the initial domain of definition of f(t) is enlarged to contain all
these points for wch the contour of integration y can be deformed without a
singularity of the integrand passing over y. This process can be continued until we have
a singularity of the integrand threatening to cross the contour and it is no longer
possible to deform to avoid it. This happens whenever g(z) and K(t,z) have a
common singular point. Therefore, if g(z) has a singular point at z a, then f(t) has a
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possible one at t= +_a since by Lemma 2.5, K(t,z) may have singularities only at
t=+z.

Going the other direction we construct another integral transform that maps f onto
g. We have

(3.6) g(z)=2 ds
/r

e ds )

fof(t)L(t,z)dz.
It is easy to see that for real and Imz > 0 the integrals converge absolutely and

uniformly on compact subsets and hence interchanging the integrals is permissible. This
representation of g may hold for other values of z. For example let z be real and
positive; since L(t,z) has a possible singularity at t=z, we deform the contour of
integration to the following one /= (0,z-8)UT’u (z + 8, ) where -’ is the lower half
of the circle that is centered at z and has radius 8 such that 8 < c. Now we continue g to
the lower half plane and by using the same reasoning as before we can show that the
only possible singularities of g(z) in Rez > 0 are the common singularities of f(t) and
L(t,z). Therefore, iff(t) has a singularity at t=c it follows from Lemma 2.5 that g(z)
may have one at z +_ a.

Furthermore we may deduce that g does in fact have a singularity at one of those
points. Indeed if g were not singular at either, neither would f be singular at a by the
first part of the proof. The same argument works in the opposite direction as well.

Q.E.D.
Briefly, the theorem states that f(t) and g(z) have the same singularities in the

fourth quadrant and the singularities of f(t) in the first quadrant are mapped into those
of g(z) in the third quadrant via the map a -a.

COROLLARY 3.1. If q(t) and f(t) are even, then f(t) and ,(z)=fF(h)eiStds
have the same singularities in the second quadrant and the singularities off(t) in the third
quadrant give rise to singularities of ,( z ) in the first quadrant.

Proof. Similar to that of the main theorem.
We close this section by giving some examples.
Examples.
1) The simplest case is the Fourier-cosine transform i.e. q(t)= 0 and a r/2.
In this case

1
X>0,p’(h) ’ q(t,X)=cos(st),

0, h<0,

F(X) f( )cos( st ) dt, f(t) F( h )cos( st ) ds.

Then

a) As an example consider

/(t)= 2 1

t2+o2
t>0, Rea > 0.

F(x)=le-s, s>0,

1 fo 1
aSeiSZ--e- dsg(z)= 1 1 a+iz

21 O/ O/2+Z 2

1 1
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f(t) has two singular points at t= +_ia and since Rea>O, Imia>O. If Ima<O, then
f(t) has one singular point in the first quadrant at ia and one in the fourth quadrant at

ia. In either case g(z) has one singularity at ia.

b) More generally, for

f(t)=
2+(a-t)2 +flz+(a+t)2

where a is real and Re fl > 0, we have F(k)= e-t%os as and

1 { fl+i(a+z) fl+i(a-z) }
-2 27- fl-i(a+z)

+
fl-i(a-z)

2) As for the case where q(t)=0 and 0 4: a 4: r/2, we have

(a>o),
p’(s)= cos2a+s2sin2a

0

q (t, X sin a cos(st)
cos a sin(st)

S

Thus,

F())= f(t) sin a cos( st )
cos a sin( st )

dr,
S

and for x real

fo fof ) ( x’ ) dtf(t)(x,t)dt cosag(x) sina

where

1 fo COS(St) ds
ix(x,t)= e =(x+iO)2_t2

and

1 f ix, sin(st) 1
’(x,t)= Jo e ds= [ln(x-t+iO)-ln(x+t+iO)]

s -q2r

Clearly " and are interpreted as generalized functions. See [3]. Now by going to the
analytic representations of ’, and using Hadamard’s argument one can show that if
f(t) has a singularity at a, then g(z) has a possible one at z +_ a.

3) The Hankelformula. Let q(t)--(v2- 1/4)/t 2 with v> 1.
At the first glance it may appear that our technique does not apply to this case

since it arises from a singular Sturm-Liouville problem on the whole real line or
equivalently a singular SL problem on half-line with a singularity at the finite end
point. However, a close analysis of the problem shows that our technique is still
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applicable with slight modifications, e.g. the role of (t,) is now played by q(t,X); see
the sentence following (2.12) for the definition of q(t,). Thus we have

fof( ( ts ) dtF( ) )vJ

where J,(x) is the Bessel function of the first kind and order v.
a) Let

f(t)= Rea>0.
(t2+a2)3/2

Then F(X)= (1/a)e and

b) Let

g(z)_i 1
a z+ia

t+ 1/2

f(t)= Rea> 0, Rev> 0.
(t2q_a2) +1/2

Then

V/-s le
F( X .;-( ;

_
-/-)

r(.) e ivtan-l(z/")

(z2.k_a2)V/2"
c) Let

f(t)__t-v+I/2( [/i2q-2--]"t2q_/2
Then F(X)=(e-S-e-’’)/s and

Rea, Refl>O, Rev>-l,

4) Let

ln +i tan-1 z z

Z2q_fl2 -tan 1__0

q(t)=v2-1/4
2

with 0 < v < 1.

Then

c 2 2cs2Vcosvrr + s 4v
c<0,

(/’, .) V/[cJ(ts)-s2J_(ts)].
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For

1
f(t)=t2+a2

Rea> 0, ,=
we have

F(2t)=cv/K1/2(as) V/--d -1/2(as)

where K.(x) is the modified Bessel function of order ,. Hence

g ( z )
4v-z -r a,2 /z+u(1 +i)-

a iv z
/z/ u

1 r(3/4)r(5/4) (351 -z2

+ a: g;

2izF(5/4)F(7/4) (5 7 3 z-)]a
2F1 , ; ; a2

where u V/z 2 + a 2.
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FUNCTIONAL PERTURBATIONS OF SECOND ORDER
DIFFERENTIAL EQUATIONS*

WILLIAM F. TRENCH"
Abstract. Conditions are given which imply that the functional differential equation

(r(t)x’(t))’ + q(t)x(t)=f(t,x(g(t)))

has a solution which behaves for large in a precisely defined way like a given solution . of the ordinary
differential equation

(r(t)y’)’+q(t)y=O.

It is not assumed that g(t)- is sign-constant, and f(t, u) need only be defined and continuous on a subset of
the (t, u) plane which is near the curve u =.F(g(t)) in an appropriate sense for large t. The integral smallness
conditions on f(t, u) permit some of the improper integrals in question to converge conditionally. Separate
treatments are given for the cases where the unperturbed equation is oscillatory or nonoscillatory. The results
are new even in the ca.e where g(t)= t.

1. Introduction. We present conditions implying that the functional differential
equation

(1) (r(t)x’(t))’ + q(t)x(t)=f(t,x(g(t)))

has a solution . which behaves for large like a given solution f of the ordinary
differential equation

(2) (r(t)y’)’ +q(t)y=O, t>a.

We give specific estimates of ff-F as t---)oc. We do not require g(t)-t to be sign
constant, and the perturbing function f=f(t,u) need be defined and continuous only
on a subset of the (t,u) plane near the curve u=.P(g(t)) for large t, in a sense made
precise below. We believe that our results are new even if g(t)=t. Our integral
smallness conditions on the function f(t,F(g(t))) require only ordinary (i.e., perhaps
conditional) convergence; however, we do impose conditions which imply absolute
convergence of certain integrals involving differences

(3) f(t,x( g(t)))-f(t,( g(t))),

where x is a function near .F in an appropriate sense. Since forcing functions (i.e., terms
in f(t,u) which are independent of u) obviously cancel out of (3), this means that our

integral smallness conditions on them always allow conditional convergence; however,
this is not the only way in which possibly conditional convergence enters into our

hypotheses. Accordingly, all integrability assumptions below should be interpreted as

allowing conditional convergence, except when the integrands in question are obviously
nonnegative. Moreover, to avoid repetition, it is to be understood that whenever we

write an improper integral in stating an assumption, we are assuming that it converges.

*Received by the editors October 4, 1983, and in revised form April 6, 1984.
Department of Mathematical Sciences, Drexel University, Philadelphia, Pennsylvania 19104.
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Since the asymptotic theory of (1) depends critically on whether (2) is oscillatory
or nonoscillatory, we consider these two cases separately in {}{}2 and 3. Some of our
results in 3 are related to results of Kusano and Naito [3] and Kusano and Onose [4].
Hallam [2] obtained related results, valid when (2) is either oscillatory of nonoscillatory,
for the case where r 1 and g(t)= t.

To avoid repetition, we state here that three proofs below demonstrate the ex-
istence of a solution of (1), with prescribed asymptotic properties, as a fixed point of
a mapping ’defined on a closed convex subset D of the Frechet space C[ r0, ) (for
some r0>= a), with the topology of uniform convergence on compact intervals. In this
context we write

(4) D lim xk=x

to mean that (xk) is a sequence of functions in D which converges uniformly to x on
compact subintervals of 0, ).

The proof in each case consists of establishing the following:
(i) (D)c D.
(ii) YSs continuous; that is, (4) implies that

D lim Y’xk Y-x.

(iii) There is a continuous positive function + such that

(5) l(’x)’(t)l<=/(t), xD, t>=o.

The last inequality implies that the function in Y-(D) are equicontinuous on
compact intervals. Since it will be clear in all cases that the functions in D are
uniformly bounded on compact intervals, this and (i) imply that Y-(D) has compact
closure,, by the Arzela-Ascoli theorem. The Schauder-Tykhonov fixed point theorem
will then imply that -= for some Y in D, and routine differentiation (which we
omit) will show that ff satisfies (1) on some interval (t0, m), with t0>=z0. We will call
such a function a solution of (1).

All quantities are assumed to be real. The following assumption applies throughout.
Assumption A. The functions r, q, and g are continuous on a, ), r > 0, and

(6) g(t) >= a, lim g(t) .
t

The functions Yl and Y2 are solutions of (2) such that

1
(7) ’--Y2Yl--YzYl- r

and

(8) . ClY -+- c2Y2 Cl, C2-- constants)

is a given solution of (2). The function q is positive, continuous, and nonincreasing on

[a, m), and either

(9) lim q(t)=O or=l.



FUNCTIONAL PERTURBATIONS 743

2. Perturbations of an oscillatory equation. In ,this section,

(10) z= y21+y ) 1/2.
Our proofs here make no use of the assumption that (2) is oscillatory, so our results
apply even if it is nonoscillatory; however, in the latter case, better results are obtained
in 3.

THEOREM 1. Suppose

(11) lim ((t)) -1

t-- o

and

(12)

y,(s)f(s,(g(s)))ds =a,< o

lim (,(t)) -1 [y,(s)lo(s)ds--fl,<

(13) M> K-- [(1 -- 1)2 -- (if2 q" 2)2] 1/2

such that f is continuous and

(14) If( t,u)-ft,y( g( t))l=< ( t)

on the set

(15) f]= ((t,u)lt> T,[u-(g(t))[<=Mq(g(t))z(g(t))}.
Then (1) has a solution such that

(16) lim [q,(t)z(t)]-]Y(t)-y(t)[<=K.
t-- oo

Proof. Let

(17) li(t)--
o

lYg(S)I(s)ds+sup yg(s)f(s,y(g(s)))ds
z>t

and

(1.8) u__ (vl2 + )1/2.
then (11), (12), and (13) imply that

(19) lim (q(t))-lv(t)K,

and that there is a ro_>_ T such that

(20) v(t) <=Uq(t), t>__o.

Let

(21) D= ( Clio, )

for 1, 2, where o is positioe and continuous on a, o). Suppose further that there are
constants T> a and
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(recall (10)), and choose to_> 0 so that

(22) g( ) >= zo, t>=to

(recall (6)). Then (21), (22), and our assumptions on f imply that f(t,x(g(t))) is
continuous on [t0, o) if x is in D. Moreover, since

yi(s)f(s,x(g(s)))ds-’- ys(s)f(s,(g(s)))ds

+ ys(s)[f(s,x(g(s)))-f(s,(g(s)))] ds,

(14) and (17) imply that

(23) y,(s)f(s,x(g(s)))ds <=v,(t), t>to xD

Now define Y-on D by

(24)

fi(t)+f [y2(s)yl(tl-Yl(S)y(tl]f(s,x(g(slllds,

.P(tl+ft [Y2(S)Yl(t)-Yl(S)yg(t)lf(s,x(g(s))) ds,

t>to

$o=<t<to.

(The second line is vacuous if % > to. From (23) and Schwarz’s inequality,

(25) [(Y-x)(t)-f(t)[<=z(t)v(t), t>=o

(to see this for Wo=< =< o, note that v is nonincreasing), which, with (20), implies that
g’(D)c D.

If D lim x, x, then

yg(s)[f(s,xk(g(s)))--f(s,x(g(s)))] ds

<=fo ly,(slllf(s,xk(g(s)))-f(s,x(g(s)))l ds,
to

t>=to,

where the integrand on the right converges pointwise to zero as k--, o, and is bounded
for all k by 2[yi(s)[o(s ) (recall (14)); hence, (12) and Lebesgue’s dominated conver-
gence theorem imply that the integral on the right approaches zero as k--* o. There-
fore, if > 0 there is an N such that

(26) Yi(s)[f(s,xk(g(s)))--f(s,x(g(s)))] ds t>=to, k>=N,

for i= 1, 2. From this, (24), and Schwarz’s inequality,

t>__0, k>=N.

This implies that D limk- q-xk q’x.



FUNCTIONAL PERTURBATIONS 745

By differentiating (24), we see from (18), (20), (23), Schwarz’s inequality, and the
monotonicity of 4 that (5) holds, with

and this completes the verification of (i), (ii), and (ii) of {}1. Therefore, " has a fixed
point (function) ff in D. From (24),

(27) if(t) =fi(t)+f [y2(s)y(t)-y(s)yz(t)]f(s,ff(g(s)))ds, tto,

so ff satisfies (1) on (t0, m). Setting x= Y in (25) and recalling that ff=ff, we see that

IY(t)--Y(t)lz(t)O(t), ta to,

so (19) implies (16). This completes the proof.
Taking =1 in Theorem 1, so that obviously a=fli=0, yields the following

corollary.
COROLLARY 1. Suppose the integrals

(28) yi(t)f(t,y(g(t)))dt, i=1,2,

converge, and

(29) z(t)o(t)dt<

with o positive and continuous on a, oe ). Suppose also that there are constants T>= a and
M> 0 such that f is continuous and satisfies (14) on the set

(30) = ( (t,u)[t>= T, iu-(g(t))l<=mz(g(t)) )
Then (1) has a solution Y such that

(31) ff( =( + o( z( )).
Remark 1. Although (9) was not used in the proof of Theorem 1, it imposes no loss

of generality, since Theorem I without (9) is easily shown to be equivalent to Corollary
1 if lim,_ q(t)> 0.

Remark 2. If, in addition to the assumptions of Corollary 1, the stronger integral
conditions (11) and (12) hold (with i= 1, 2), then it is routine to verify that the solution
which satisfies (31) actually satisfies the stronger condition (16). However, this does

not mean that Theorem 1 is only a trivial extension of Corollary 1. The hypotheses of
Theorem 1 with limt_q(t)=0 do not imply those of Corollary 1, since the set 2 in
(15) on which (14) is required to hold in Theorem 1 is then smaller than the set f in
(30). Put another way, the hypotheses of Theorem I in this case imply the hypotheses of
the Schauder-Tykhonov theorem for the subset D of C[ ’0, oe) as defined by (21), but
not for the larger subset D which would result if q were replaced by one in (21).
Example 2 below will illustrate this point.

Remarks similar to these apply to other results which follow.
THEOREN 2. Suppose (11) holds with i= 1, 2. Let )t be nonnegative and continuous on

a, z ), and

(32) lim (q,(t))-f ly(s)l)t(s)z(g(s))(g(s))ds=b, i=1,2,
t--* o "t
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where

(33) bl + b2 < 1.

Suppose further that there are constants T>= a and M> 0 such that

(34) (oq + Mbl)2 + ot2 + Mb2)2<M2

andf is continuous and satisfies the inequality

(35) If(t, u)-f(t,y( g( t)))l<(t)lu-y( g(t))

on the set f in (15). Then (1) has a solution such that

lim [ck(t)z(t)] -llff(t)-y(t)l< [(0 + Mbx)2 + (: + Mb2)2]/
t---, o

Proof. (Note that (34) holds if M is sufficiently large, because of (33).) If f satisfies
(35) on f, then it also satisfies (14) on 2, with

o( t) M,( t)z( g( t))dp( g( t)).

This and (32) imply (12) with/3;= Mbi, and then (34) implies (13). Hence, Theorem 1
implies the conclusion.

COROLLARY 2. Suppose the integrals (28) converge, and

z(t)X(t)z(g(t))dt< ,
where is continuous and positive on [a, ). Suppose also that there are constants T>= a
and M> 0 such that f is continuous and satisfies (35) on the set in (30). Then (1) has a
solution which satisfies (31).

We now apply our results to the equation

(36) (r(t)x’(t))’ + q(t)x(t)=p(t)(x(g(t))) v + h(t),

which has the form of a generalized Emden-Fowler equation, but is unusual in that (2)
may be oscillatory. (In 3 we consider (36) in the case where (2) is nonoscillatory.)

THEOREM 3. Suppose p, h C[a, ), and is positive and rational, with odd
denominator. Suppose further that the integrals

(37) Yi(t)h(t)dt, i=1,2

converge, and that

(38) f z(t)lp(t)l(z(g(t)))dt<

Then (36) has a solution such that

(39)

Proof. For (36), the function f in (1) is

f(t,u)=p(t)u v + h(t),
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which is continuous on 2 in (30) for any T>= a and M> 0. Moreover, if (t, u) 2, then

(40) [u[<=[(g(t))[+Mz(g(t))<=(C+M)z(g(t)),

where C= (c2 + c)1/2. (See (8) and (10).) Since obviously

If( t, u)-f( t,( g( t)))[<= IP(t) lul+ (( g(t))) ]
<= Ip( t)l lul’/ C( z( g( t))t v],

(40) implies (14) for (t,u)f, with

o(t)--]p(t)](z(g(t))) V[(C+ M) v + Cv],
Therefore (38) implies (29). Since (37) and (38) also imply that the integrals (28)
converge, Corollary 1 implies the conclusion.

THEOREM 4. Suppose p, h C[a, o) and 7 >= 1 is rational, with odd denominator.
Suppose also that

(41) lim 4)(t) 0,
t--- o

lim ((t)) -1 ft
and

(42) lim (,/,(t))-x/ ly,(s)p(s)l(z(g(s)))(g(s))ds=B,< c, i= 1,2.
too

Finally, suppose that

-,/C 3’- B? q- B:)l/2 < 1

andM> 0 satisfies the inequality

(,, + acrc_ )2 +(a2+MyC-IB2)2
< M2.

Then (36) has a solution such that

lim [(t)z(t)]-[ff(t)-y(t)[ [(a +MrCV-IB1)2W(a2+MyCV-IB2)2] 1/2

t

Proof. Again, f as in (39) is continuous on in (15) for any T a and M> 0. As in
(40),

]u[ [C+M(g(t))]z(g(t)), (t,u).
Therefore, the mean value theorem implies (35) with (t)=y[p(t)[[C+ M(g(t))]-1.
This, (9), (41), and (42) imply (32) with bi=yCV-Bi, and this for any M. Now
Theorem 2 implies the conclusion.

In the following examples, we take y(t) cos and y2(t) sin t.
Example 1. Suppose p, h a, m) and is as in Theorem 3. Suppose further that

(43) lim h(t) :0, [h’(t)ldt< ,
t
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and flp(t)ldt < . Then Theorem 3 implies that the equation

x"(t)+x(t)=p(t)(x(g(t))) v + h(t)

has a solution i such that

(44) if(t)- c cos t+ c2 sin + o(1)

for any given constants c and 2. (Notice that (43) and Dirichlet’s theorem imply the
convergence of the integrals (37):)

Example 2. It is straightforward to verify that the equation

2X
(45) x’" + x=--[-

satisfies the hypotheses of Theorem 4 with g(t)= t, 4(t)= l/t, and Ba, B2_< 1. There-
fore, (45) has a solution i such that

(1)i( ) Cl COS + c2 sin + O -provided Cl
z + c22 < 1/2. Notice that even though its conclusion would only be of the

weaker form (44) anyway, Theorem 3 does not apply here, since (45) does not satisfy
(38). This illustrates the point raised in Remark 2.

3. Perturbations of a nonoscillatory equation. If (2) is nonoscillatory, then it has a
fundamental system which satisfies the following assumption on some semi-infinite
interval, which we take--without loss of generality--to be a, c).

Assumption B. The functions Ya and y2 of Assumption A are also positive on a, )
and, if

Y2(46) 0
Yl

then

(47) lim 0(t) .
t---, m

Also, in all of the following, either (a) i= 2 andj= 1, or (b) i= 1 andj= 2. In Case (b)
there is a number/ < 1 such that q0" is nondecreasing.

Assumptions A and B apply throughout the remainder of the paper.
Note that

(48) 0,
1

from (7) and (46).
The following lemma will be used to prove Theorem 5.
LEMMA 1. Suppose F C[ o, for some o >= a and fya(t)F(t dt converges. Let

fyz(s)F(s)ds
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Then

(49) S [yz(s)Yl(t)-Yl(s)y2(t)]F(s)ds
t

<-v(t)yl(t), to<=t<=t,

and

(50) Yl(S)F(s)ds <=2v(t)/p(t), t>to.

(51)

Proof. With U(t)= fty2(s)F(s)ds, integration by parts yields

f [Y2(S)Yl(t)-Yl(S)Y2(t)]F(s)ds

=U(tt)y(t)[X p(t) p’(S) U(s)dsP(tl) +Y2(t) ftl p2(s )

where the integral on the right converges absolutely because of (47), (48), and the
boundedness of U. Since [U(s)[<=V(tl) if s>t1, (51) and the monotonicity of p imply
(49).

We obtain (50) by writing

yl(s)F(s)ds= U(t)/p(t) 2}) U(s) ds

and applying a similar argument. This completes the proof.
THEOREM 5. Suppose (11) and (12) hold and there are constants T>= a and M> 0 such

that f is continuous and satisfies (14) on the set

(52) a-- {(t,u)[t>= T, lu-(g(t))l<=MO(g(t))yy(g(t)) }
Then" (a) if i= 2, j 1, and

M> 02 +/2

then (1) has a solution such that

(54) lim [,(t)yl(t)]-ll(t)-y(t)l<=a2+ fl2

(55)

(b) If i--- 1, j 2, and

M>(al + fll)/(1-1),

then (1) has a solution such that

0ll -[- [1(56) t--,oolim [o(t)y.(t)]-l(t)-N(t)l<= 1 -l

Proof. From (11) and (12),

(57) lim ((t))-lpi(t) oti+ ii
t--. o
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(See (17).) If r0> T, let

V.= (x Clio, o)ll()-Y()l<-M,l,()y(), >=o }.
We now consider Cases (a) and (b) separately.

(a) Choose r0 >__ T so that

(58) ,2(t)<=Mq,(t), t>o,

which is possible because of (53) and (57) with i= 2. Then choose to> r0 to satisfy (22).
As in the proof of Theorem 1, (23) holds with i= 2, and, with -as defined in (24),
Lemma I implies that

(59) I(-x)(t)-f;(t)l<=l2(t)Yl(t), t>=ro, xD.
This and (58) imply that Y-(D1)c Dx.

If D lim,__,oo xk x, then the argument given in the proof of Theorem 1 implies
that for each e > 0 there is an N such that (26) holds with 2. This and Lemma 1 with

F(s) =f(s,xk( g(s)))--f(s,x( g(s)))

imply that

l( x)(t)-(-x)(t) 1_< ey (t), t_>_r0, k>N,

so D lim , oY-xk -x.
Since (23) holds with i= 2, Lemma 1 (specifically, (50)) implies that

ft y(s)f(s,x( g(s))) ds
2,2(t)
< t>to.

Therefore, differentiating (24) and applying routine estimates verifies (5), with

lY’l+ ly;I + 2---
Now we conclude that -has a fixed point (function) ff which satisfies (27), and

therefore (1), on (t0, o). Setting x= in (59) and recalling that oq-=ff yields the
inequality

IX(t) -y(t) =< ,(t) Yl (t), t>to,

so (57) with 2 implies (54). This completes the proof in Case (a).
(b) Choose r0 >= T so that

(60) ,(t) <=M(1-1)(t), t>=o,

which is possible because of (55) and (57) with i= 1. Then choose to> r0 to satisfy (22).
Now define.Y-on O2 by

(61) (Y-x)(t)=
(t) yl(t) p’(r) y(s)f(s,x(g(s)))ds dr,

(t) ro <=t <_to,

t>=to,
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where the second line is vacuous if Zo > to. (See (46) and (48).) Then

(62) ( oY-x)(t) -y(t) O, % __< __< o

while (23) with i= 1 implies that

(63) I(Y-x)(t)-(t)l<=y(t) f’p’(z)’(z)dz,
to

If >__ a, let

t>=to.

751

(64) 1( t)= sup/)1( "g)/ (’)-
->t

Then, if >= t __> a,

ft pt(,r)/,,1 (.)d.<=,l(tl)ft to’()q()d
tl tl

Z 1( tl)(/9(t))/t (t) f’ p’( ’r)(/9(’r)) -/ d’r,
tl

sincep is nondecreasing. Since/ < 1 and p’ > O, this implies that

(65) f’o’(),(’)d’<f,(t)q,(t) O(t)
t 1 -tt

Setting o here and recalling (60), (63), and (64) shows that

which, with (62), implies that Y’(D2)c D2.
If D2 lim k xg x, the argument used in the proof of Theorem 1 again implies

that for each e > 0 there is an N such that (26) holds with i= 1. This and (61) imply that

which implies that D2 lim, x, x.
Differentiating (61) and recalling (23) with i= 1 shows that

to

if xD2 and tto. Since x=y on [0,t0] for every x in D2, this is enough to imply
the conclusion of (iii) in 1, soas a fixed point (function) X in D2. From (61),

t0

This function satisfies (1) on (to, m), and, from (63) with x=(=) and i= 1,

l0

This and (65) imply that

(66) I(t)-y(t)lYx(t) ftl O’(,)gl(7)d+ l(tl)(t)y2(t)/(l-)
to
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if toNt <__t. From (47), (48), and our assumption on q,p’, limt_,(t)p(t)= ; hence,
from (66),

lim [q,(t)y(t)l-lx(t)-y(t)l<=,(q)/(1-t)

for every tl >= 0. Letting ta oe and recalling (57) (with i= 1) and (64) therefore implies
(56). This completes the proof.

Setting q 1 in Theorem 5, and noting again that this means that ai= fl;= 0, yields
the following corollary. (Here we reemphasize that Assumption B applies; specifically,
that either 2 andj= 1 or i= 1 andj= 2.)

COROLLARY 3. Suppose fyi(t)f(t,(g(t)))dt converges and fyi(t)o(t)dt < o,
where a is positive and continuous on a, ). Suppose also that there are constants T= a
and M> 0 such that f is continuous and satisfies (14) on the set

Then (1) has a solution such that ff(t)=2(t)+o()(t)).
COROLLARY 4. Supposeh C[a, ), f is continuous on [a, )(0, m), andlF(t,u)l

is either (i) nondecreasing in u for each t, or (ii) nonincreasing in u for each t. Suppose also
that

(67) fy,(t)h(t)dt
converges, and

f yi( t)lf( t, ,y,( g( t))) dt < o

for some 8 > O. Tken tke equation

(r(t)x’(t))’ + q(t)x(t)=F(t,x( g(t))) +h(t)
has a solution Y such that

(68) lim
if(t)

provided 0 < cj < in Case (i), or cj > i in Case (ii).
Proof. It is straightforward to verify that the present assumptions imply those of

Corollary 3 with =cy, f(t,u)=F(t,u)+h(t), and o(t)=zlr(t,Sy(g(t))l. In Case
(i), choose M< min{ cj., 6 cj }; in Case II, M< c- 8. In either case, let T= a.

Kusano and Naito [3] have given necessary and sufficient conditions for the
equation

(69) (r(t)x’(t))’=f(t,x(g(t)))

to have nonoscillatory solutions with specific asymptotic behavior, under the assump-
tion that (69) is sublinear or superlinear (see [3] for definitions of these terms), where
g(t) =< and lim t_ g(t)= . Kusano and Onose [4] have obtained analogous results
for the case where g(t)>= t. Corollary 4 essentially contains the sufficiency halves of [3,
Thms. 1, 2] and [4, Thms. 1, 2, 5, 6]. The reader who wishes to check this should let

yl(t)=l, y2(t) t(r(s))-lds if (r(t))-ldt=,
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or

Yl(t)-- ft (F(S))-lds, y2(’)=l if (r(t))--dt< o.

The next corollary follows easily from Corollary 4. It is perhaps noteworthy in that
it deals with the generalized Emden-Fowler equation without the usual assumption
that y > 0. (For other results concerning such equations with arbitrary 3’, see [1], [5], [6],
[7], and [8].) This observation applies also to Theorems 7 and 8 below.

COROLLARY 5. Suppose p, h C[ a, ), y is any real number, and cj is any positive
constant. Suppose further that (67) converges, and

fy(t)lp(t)l(y;(g(t)))Vdt< .
Then (36) has a solution which satisfies (68).

This corollary essentially contains the sufficiency halves of [4, Corollaries 1, 4].
Theorem 5 implies the next result in much the same way that Theorem 1 implies

Theorem 2. We omit the proof.
THEOREM 6. Suppose (11) holds. Let be nonnegative and continuous on a, ), and

(70) lirn (q,(t))- xftt
y(s),(s) y( g(s))( g(s)) ds=b.

Suppose further that there are constants T>= a and M such that f is continuous and satisfies
(35) on the set f in (52). Then (1) has a solution Y, such that

(a) limto[q(t)y(t)]-l(t)-(t)l<=a2+Mb if i=1, j=l, bz<l, and M>
a2/(1 b2); or

(b) lim,_[q(t)yz(t)]-ll(t)-y(t)l<=(a + Mbx)/(1-t) if i= 1, j= 2, b < 1-t,
andM> al/(1- tx bl ).

We close by applying Theorem 6 to the generalized Emden-Fowler equation (36).
THEOREM 7. Suppose p, h C[ a, ), { is any real number, and

(71) lirn (q(t))- lftt
Y(s)]p(s)l(Y(g(s)))V(g(s))ds=Bi< "

Suppose also that

and

(7)

and let

o( t))

ft yg(s)p(s)( y( g(s))) V ds= O( q( t)),

lira (q,(t)) -1 p +

where cj is a given positive constant.

(a) If 2 andj 1, suppose also that

I’/Ic-IB2 < 1
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and

(73) M> a2/(1
Then (36) has a solution ff such that

lim [p(t)Yl(t)] -ll(t)-cy(t)l <=a+ Mlylc-B2.
t---> oo

(b) If i= 1 andj 2, suppose also that

and

(74) M> G (1 --IIcN-1nl ).
Then (36) has a solution such that

lim [(t)y2(t)]-x[(t)-c2y2(t)[ <= (al +Mly[c-XBx)/(1-1).
t--o

Proof. Since Corollary 5 implies the conclusions if q 1, we assume that

(75) lim q(t) =0.

Choose M to satisfy (73) or (74), whichever is appropriate, and then choose T so that
Mq(g(t)) <c if >__ T. (This is possible because of (6) and (75).) With this M and T and
P=CY., it is easy to show that if (t,u) is in fj. as defined in (52), then 0<[cj.-
Mq(g(t))]yi(g(t))<=u<=[c+Mq(g(t))]y(g(t)). Therefore, the function f in (39) is
continuous on fj., and, by the mean value theorem, satisfies (35), with

(76) t(t)=[yp(t)[[cj+Mdo(g(t))]v-x(_ yj(g(t))) v-x

where the plus applies if >__ 1, the minus if 7 < 1. In either case, (6), (71), (75), and (76)
imply (70) with bg= [7[c]-Bi. Now Theorem 6 implies the stated conclusion.

THEOREM 8. Suppose p, h C[ a, oe), is an arbitrary real number, and

o p’(g(t)) Ig’(t)ldt<(77) f pZ(g(t))

Suppose also that

(78) lim (q,(t))- if,to
yz(s)[p(s)[(yz(g(s))) v lyl(g(s))(g(s))ds=B< o,

(79) Y2(s)h(s) ds= O(q(t)),

and

(80) E(t)= y.(s)p(s)(y(g(s)))Vds=O(q,(t)).

Let c2 be a positive constant such that

[YIc-1B2 < 1,



FUNCTIONAL PERTURBATIONS 755

and let cly + 2Y2, where cl & arbitrary. Then the quantity

y (s) +(81) a2 lirn (q(t)) - j
exists and is finite; moreover, a2=O if (79) and (80) hoM with "0" replaced by "o."
Furthermore, if

(82) M> a2/(1 -IVlc-B2),
tken (36) kas a solution suck tkat

lim [(t)yx(t)] -}(t)-ctyx(t)-c2y(t)l Na2+M]lc-B.

Proof. From (80) and integration by parts,

(83)

ft y2(s)p(s)( y( g(s))) v ds

(see (46)), since lim, E(t)=0 and

lim
t y2(g(t)) =c2"

The integral on the right of (83) converges because of (77). From this and (79) it is easy
to verify that a2 in (81) has the stated properties.

Now choose M to satisfy (82), and then choose T so that

y(g(t))M(g(t))y(g(t)), tT.
(This is possible even if = 1, because of (6), (47), and the assumption that c2 > 0.)
With this M and T, it is easy to show that if (t, u) is in as defined in (52), then

Therefore, the function f in (39) is continuous on fl, and, again by the mean value
theorem, satisfies (35) with

where the plus applies if 7 1, the nus if < 1. In either case, since the quantity in
brackets behaves asymptotically like

(78) implies (70) with i= 2 and b2=[Vic-B2. Now part (a) of Theorem 6 implies the
stated conclusion.
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Remark 3. Since t9’>0 and limtO(t)=o (77) is automatically satisfied if
g’(t) > 0 for sufficiently large.

Remark 4. Theorems 7 and 8 show that integrability conditions involving other
than forcing functions may permit conditionally convergent integrals, since (71) does
not imply that the integral in (72) converges absolutely if limtq(t)=0, and (78)
does not imply that the integral in (80) converges absolutely, even if q, 1.
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THE CONDITION OF ORDINARY INTEGRAL CONVERGENCE
IN THE ASYMPTOTIC THEORY OF LINEAR DIFFERENTIAL
EQUATIONS WITH ALMOST CONSTANT COEFFICIENTS*

JAROMIR gIMA*

Abstract. In this paper, we continue the work started in [2], wherethe asymptotic integration of nth order
linear differential equations was considered under smallness conditions, expressed in terms of ordinary
integral convergence. The method of integration in [2] was based on using the Banach contraction principle
for a linear nonhomogeneous operator in a Banach space. In this paper, we use the same principle for a
nonlinear operator which corresponds to the equation for the logarithmic derivative of the original dependent
variable. The result proved concerns a class of equations considered in [2] under essential additional
restrictions.

1. Introduction. This paper deals with asymptotic estimates for solutions of a
scalar differential equation of the form

(1.1) x(n)+ [a1-+-pl(l)]X(n-1)+ -+-Jan_ +Pn_l(l)]X’q-[an-+-Pn(t)]x=O

where ak are complex numbers and Pk(t) are continuous complex-valued functions
defined on the half-line 0=<t< o. We assume that the functions p(t) are "small"
perturbations in the sense that the integrals

(1.2) fp(t)tqdt
converge (possibly not absolutely) for some real q >= 0.

It is well known (see [1, Thm. 17.2]) that if the real parts of the roots Xj of the
characteristic equation

(1.3) ,n q_ alan-1 .+.....+, an_l + a=0

are distinct and if the integrals (1.2) converge absolutely, then there exist n solutions

xj(t) of (1.1) such that

(1.4) x-(k)(t)=(t+o(t-q))exp(Xt), O<k<n-l= astern.

Our first attempt to extend the validity of this classical assertion to the class of
equations (1.1) with conditionally convergent integrals (1.2) was made in [2], where the
following theorem was established.

THEOREM A. Suppose that the real parts of the roots 1,’" ",’n of (1.3) are distinct.
Let the complex,valued functions p(t) be continuous for >= 0 and satisfy the following
conditions"

(i) flPl(t)ldt < o.
(ii) The integrals (1.2) converge (perhaps conditionally) for some nonnegative con-

stant q.

Received by the editors April 5, 1983, and in revised form December 14, 1983.
Department of Mathematical Analysis, J. E. Purkyn University, Jankovo nun. 2a, 662 95 Brno,

Czechoslovakia.

757



’758 JAROMIR gIMgA

(iii) /f 0 =< q < 1 in (ii), then

f t-q pk(s)sqds dt < o, 2 <=k <_n.

Then (1.1) has n solutions xl(t),. .,x,(t) satisfying (1.4).
As shown in [3], the condition (iii) cannot be omitted in Theorem A. For the

reader’s convenience, we state the counter-example given in [3] as the following theo-
rem.

THEOREM B. Let q and r be any real numbers satisfying 2q- 1 < r < 1 or 0 < r < 1 2 q,
according as 1/2 <= q < 1 or 0 <_ q < 1/2. Then there exists a real function p (t) continuous for
t>=O such that the integral fp(t)tqdt converges and the equation x"-x=p(t)x has a
solution x ( ) satisfying

(l+t-r+o(t-r))ex(t)=
exp(t_tr+o(tr))

/f1/2 =<q<l,
ifO<=q<1/2.

We now state our main result.
THEOREM 1. Assume that all conditions of Theorem A are satisfied except condition

(iii). If O <= q < 1 in (ii), then (1.1) has n solutions Xl(t),.- ",xn(t ) satisfying

(1.5)
(1 +o(tX-2q))exp(,jt)

x(t) exp(Xjt + o(logt))
exp(,jt+o(tX-2q))

if 1/2<q< l,

ifq=1/2,

ifO<=q<1/2,

and

xJk)(t)(1.6)
xj(t) =XkJ+O(t-q) (l=<k__<n- 1).

Remark 1. Theorem A was proved in [2] under weaker conditions imposed on the
roots Xj of (1.3). Namely, we assumed that Xj4:Xm for any j and m instead of

ReX4: ReX m. Then the assertion of Theorem A holds if theintegrals (1.2) converge
along with the integrals fpk(t)exp(iflt)tqdt (l=<k=<n), where fl=fljm=Im(j--,m)
whenever ReX ReX,,. Unfortunately, the condition Re ,j. 4: Re,, seems to be "nec-
essary" for our proof of Theorem 1. Thus the problem of an extension of Theorem 1 to
the case of "multiple values" of ReX is unsolved.

2. The main ideas of the prooL Our proof of Theorem 1 is based on using the
Banach contraction principle [1, p. 404]. Although this principle is very simple, the
proofs of needed estimates are rather complicated because of the weak condition of
ordinary integral convergence. This is why we now restrict our attention to the basic
arguments leading to the conclusion of Theorem 1. The propositions stated here as
Lemmas 2.1-2.3 will be proved in detail in [}3.

To avoid unnecessary subscripts, we let r be a fixed integer (1 _< r =< n) throughout
the proof. We will show that under the hypotheses of Theorem 1, there exists a solution
x x, of (1.1) satisfying (1.5) and (1.6) withj r.
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First we make a transformation of the form

(2.1) x=exp(hrt)Y, y(t)=Coexp

where CO is a nonzero constant, u(t) is an unknown function and the number o >= 1 will
be chosen later. In the following, assume that > o and --* in all asymptotics.

It follows from (2.1) that

k

(k)x-Jy(J) (l<k<n)(2.2) x (’)= exp()trt)
j

j=O

and

(2.3)

where gl[ u 0 and

y(k)= (u(k-X)+g, ul)Y (l=<k=<n),

(2.4) gk+l[U]--uu(k-1)-I-Ugk[Ul+gk[U] (l_<k<_n- 1).

So we have g2[u]=u 2, g3[U]’-U3+ 3UU’,’’’. Note that the function gk[u] is a sum of
expressions of the form

(2.5) Dak,...,amU(a)U (az)’’" U (a’’),

where D2l,...,am are constants, 0 =< aj. =< k- 2 (1 =<j =< m) and m 2, 3,..., k, for k
2, 3,. .,n. This fact follows from (2.4) by induction.

Equation (1.1) is transformed by means of (2.1) to a nonlinear equation of (n- 1)th
order. By (2.2) and (2.3), this equation is of the form

bou(n-1)+blu(n-2)+ +bn_lU=-R[ul(t),(2.6)
where

(n) (n-J)3t-J (0<k<n-1)(2.7) b,= k xr+ a
j=l n-k

(2.8)
n-1 n-1 n-1

R[u](t)=[.(t)+ Y’. k(t)u(n-k-1)+ E bkgn-k[U]+ E [gk(t)gn-k[U],
k=l k=O k=l

and

(2.9) /Sk(t)= E n--j X-Jpj(t) (1 <k<n).
j=l n k

Note that the new functions p(t) satisfy the same conditions stated in Theorem 1
as well as the functions p(t). To simplify our notation, we shall write pk(t) instead of
,(t).

An easy computation based on (2.7) shows that the characteristic equation for
linear differential operator on the left-hand side of (2.6) has (n- 1) distinct roots

(2.10) lj=Xj-,r, jJ=(1,2,...,r-l,r+l,r+2,...,n)

with nonzero real parts.
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In what follows we apply the method of the variation of constants [1, p. 64] to
(2.6). Namely, we will consider an operator equation

u=r[ul,

where

(2.12) r[ul(t)=- E cjexp(tjt)Ij[u](t)
jJ

and

(2.13) Ij[u](t)= fto, (jJ).

The numbers c in (2.12) satisfy the system

0 if 0_<k=<n-3,(2.14) Ecj=
1 ifk=n-2jJ

and the limits t0 in the integrals (2.13) are equal to o or , according to whether
Re/zj. < 0 or Re/j > 0.

First we show that each solution of (2.11) is a solution of (2.6). In fact, if the
integrals (2.13) exist for some function u(t), then, by (2.12)-(2.14),

(2.15)

(2.16)

T)[ul(t) ct)exp(tt)l[ul(t) (0__<k__<n-2),
jJ

T(n-1)[u](t) E c7-aexp(ljt)I[u](t)-R[u](t)
jJ

and, therefore,

T(n-)[u](t)+blT(n-2)[ul(t)+... +bn_iT[u](t)=-R[u](t).

Consequently, (2.11) implies (2.6).
We will consider the operator T in the space U[t0, ) of all functions u(t) in

Cn-2[t0, ) satisfying

u(k)(t)=O(t-q), O<=k<=n-2,

which is a Banach space with respect to the norm

n-2

(2.17) Ilull=sup
t>to k---0

Denote by S(t0, e) the closed sphere of the space U[ 0,

{ U[to, Ilull  },
where the number e (0 < e =< 1) will be chosen later.

We will show that the operator T is a contraction mapping of the set S(to, e) into
itself, for suitable o and e. By (2.15), it will be sufficient to estimate the integrals
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Ij[u](t). According to (2.8) and (2.13), we may write

n-1 n-1

(2.18)

and

(2.19)

(2.20)

(2.21)

and

(2.22)

n-1

lj[u](t)=Lj(t)+ E Ljk[U](t)+ bkMjk[U](t)+ Njk[U](t),
k=l k=0 k=l

Lj.(t) ftipn(s). exp(-/,a.s) ds,

Ljk u](t) =fto.k(S)U("-k- I>(S) exp( -t*js)ds,

Mk u ]( ) fto,g,. -k U ](S ) exp( t*s ) ds

Na.k ul(t) k(s)g,_k[u](s)exp(-tzs)ds.

In what follows, all constants C1, C2, are independent of o and e, 0 < e =< 1 =< o

LEMMA 2.1. Under the hypotheses of Theorem 1, the functions L2(t), La.k[ u](t),
Mak[fi](t ) and Nk[fi](t ) are defined on the half-line to <=t < , for any u in U[to, m) and
any in S(to, e). Moreover, there exists a function m(to, ) of type (,) (see Definition 1 in

{}3), independent of e (0 < e _< 1), such that the estimates

(2.23)

(2.24)

(2.25)
and

(2.26)

]Lj( ) I< m( to, t)exp( 8jt ) -q,

u]( t)l=< Ilullm (to,t)exp( 8jt)t -q,

[Mk f* ]( ) Mk ]( ) [<= Clellfi tll exp( jt ) 9-q

[Njk fi (t).-- Njk ](t)I__< lift fillm (to, t) exp( 8jr)t-3q
holdfor any u in U[to, ) and, in S(to, e). The numbers 8j in (2.23)-(2.26) are defined
by

(2.27) 8j= -Relxj=Re()r-j), jJ.

The proof of Lemma 2.1 is given in {}3.
From (2.15), (2.18) and from (2.23)-(2.26) with t= u and h=0 we find that

(2.28) IT)[u](t)l<= C2(1 + Ilull)m(to,t)t-q+ C3llullt -=q,
for any u in S(to, e), k=0,1,...,n-2. Since m(to, ) is nonincreasing in t, it follows
from (2.17) and (2.28) that the function T[u](t) lies in U[to, ) and its norm satisfies

(2.29) IIZ[u]ll<=(n-1)[C2(1 +llull)m(to,to)+C3ellull].
Moreover, in the case q > 0,

(2.30) T(k)[u](t)=o(t-q ) (0__<k <_n-2),
because m(t0, t)

The asymptotics (2.30) do not follow from (2.28) if q= 0. Then we need a weaker
property of the operator T stated as follows.
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LEMMA 2.2. Assume that q O. Let

n-2

(2.31) Ilullt=sup E (tto),
tl >=t k=0

]]ull lim Ilull,= inf
t--- o t>=

for any u in U[to, ). Then there exists a C4 such that

(2.33) [IZ[u][l_-< c4([lul[) =
holds for any u in S( o, e).

The proof of Lemma 2.2 is given in 3.
Now we first choose a number e and then a number o so that

(2.34) 4(n- 1)C3e< 1, C4e< 1 (if q=0),
and
(2.35) 4(n-1)C2m(to,to) <__e,

which is possible because m(to, to)O as o .
Since Ilull__<e__<l for any u in S(to, e), it follows from (2.29), (2.34) and (2.35) that

IIT[u]ll<=3e/4, hence the operator T maps the set S(to, e into itself. If we put u=fi-fi
in (2.24), then, by (2.15), (2.18) and (2.24)-(2.27), we find that

IT(*)[](t)-T()[](t)l<=(Cm(to,t)+C3et-q)[l-llt-q, O<=k<=n-2,

which along with (2.17), (2.34) and (2.35) leads to the estimate liT[]- T[ ]11 _-< I1-11/2.
Thus T is a contraction mapping of the closed set S(to, e) into itself. According to the
Banach contraction principle, there exists u in S(t0, e) such that T[ Ur]= ur. This means
that Ur(t) is a solution of (2.6) on the half-line >_

0.

It is easily seen that the solution ur(t) satisfies asymptotics

(2.36) uk)(t) O( -q) (0 <= k <= n 2)
and

(2.37) gk[Ur](t)=o(t -2q) (l__<k_<n).

Indeed, the functions g,[u] are sums of expressions of the form (2.5) and hence (2.37)
follows a priori from (2.36). To prove (2.36), we distinguish two cases: q > 0 and q= 0.
If q>0, then (2.36) follows from (2.30) with u= T[u]=ur. If q=0, then we put
U--T[u]--u in (2.33). We obtain IlUrlI<=Ca(IlUrlI)L Thus we have either Ilull=0
or Callu4l] _>_ 1. Since u is in S(to, e), we have Callurll<= Cae< 1 (see (2.34)). Obviously
IiUrll >= IlUrll and, therefore, IlUrll 0, which proves (2.36) (see (2.31) and (2.32)).

We also need an integral estimate for the solution Ur(t).
LEMMA 2.3. If 1/2 < q < 1, then the integral f ur(t)dt converges and

(2.38) Ur( S ) ds-- o( tl- 2q).

If O <= q <= 1/2, then

(2.39) ft0 (o(logt) if q=1/2,Ur(S)ds--
o(t1-2q) ifO<_q< 1/2.
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where

The proof of Lemma 2.3 is given in [}3.
Now we are able to finish the proof of Theorem 1. According to (2.1), we put

xr(t)=Coexp Xrt-- Ur(S)ds
to

exp Ur(S)ds
0 l0

1

if 1/2 <q< 1,

if0_<q=<1/2.

Then xr(t ) is a solution of (1.1) on [t0, c). This solution can be extended to [0, ).
Using (2.2) and (2.3) with x=xr(t), u-Ur(t ) and y=exp(-)rt)x(t), we find from
(2.36)-(2.39) that the function Xr(t satisfies (1.5) and (1.6) with j= r. This completes
the proof of Theorem 1.

3. Integral estimates. In this section, we verify the integral estimates stated in the
proof of Theorem 1 given in 2. To avoid unnecessary repetition, we first introduce a
factor smallness condition in the following definition.

DEFINITION 1. Let m(to, ) be a real function defined for all o and t, 0 < to__< < ,
which is nonincreasing in and m(to, t)O as t, for any t0>0. If in addition
m ( o, o) 0 as o , then we say that the function m (t0, t) is of type (,).

To prove Lemma 2.1, we express the corresponding integrals in the form

(3.1) f’K(s)h(s)ds,
toj

where h(t) is an integrable function and the function K(t) satisfies

(3.2 m) Igm(t)l <=gmexp(ott)t- (Km const., to <= < )

for m 0 and, if need be, for m 1. The general result concerning the integrals (3.1) is
given in the two following lemmas. Their proofs are described in the end of this section.

LEMMA 3.1. Let h(t) be a real or complex-valued function in C[0, ) such that

flh(t)ldt converges and let a and fl be real numbers, fl >_ O. Then there exists a function
m(to, ) of type (,), having the following property: if a function K(t) in C[to, o), where

o > O, satisfies (3.2 0), then

(3.3) fto(a)K(s)h(s)dsl <=Kom(to,t)exp(at)t- (t0__<t< ),

where to(a)= o or to(a)= m, according as a>0 or a <_0. If a <=0, then the convergence
of the integral on the left-hand side of (3.3) is a part of the assertion.

LEMMA 3.2. Let h(t) be a real- or complex-valued function in C[0, m) such that

f h (t) dt converges (perhaps conditionally) and a and fl be real numbers, a 4= 0 and

fl>=O. Then there exists a function m(to, ) of type (,), having the following property" if a
function K(t) in C[to, ), where to> 0, satisfies (3.2m) with m=0,1, then (3.3) holds
with Ko replaced by Ko + K1. Furthermore,

(3.4) <__m(to,t)t- (0< to=<t< c).
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Remark 2. In the proof of Theorem 1, we consider a finite set of estimates of the
form (3.3) or (3.4). To simplify our notation, we assume that all these estimates include
a common smallness factor m(t0, t). In fact, if mk(t0, t), k= 1, 2,-.. ,N are all factors
considered, we can replace each of them by

N

re(to,t)= ., mk(to,t),
k=l

because all estimates (3.3) and (3.4) remain valid and the function m(to, ) is of type (,)
as well as each function mk(t0, t).

Proof ofLemma 2.1. From (2.17),

(3.5) lu(k)(t)[<__llul[t -q (O<=k<=n-2),

for any u in U[t0, ). We show that the estimates

(3.6)
and

(3.7)

[gn_k[](t)-g._k[](t)lZ Csll-[It-2u

Ig’_[ ft]( t)-g’_[ ]( t)l< cse[lft- [lt -2q

(O=<k=<n-1)

(l=<k=<n-1)

hold for any functions fi, fi in S(t0, e). Obviously, it is sufficient to verify

(3.8) Ig[](t)-g[](t)lZ c6ell-llt-zq

for a finite set of expressions g[u]=u(,)u’2)... U (Otm), where 0__<aj.=<n-2 (l=<j__<m)
and 2 =< m =< n. Put u= fi-fi for fi, h in S(to, e). Multiplying the identities
u,; (1 =<j =< m), we obtain

(3.9) (Otl)u(Ot2) U(Otm)= (01)(02)., (Otm)+

where, on the right-hand side each of (2m- 1) nonwritten members is a product of m
factors fi (’), u) so that at least one factor is u ) in each member. Since fi )(t)l =<
Ilfillt -q, lu’J)(t)l<_llullt -q and Ilull--II- 11__<1111/1111_<2__<2, each of the nonwritten
members in (3.9) does not exceed (2e)’-lllullt -q" in absolute value. Thus we have

Ig[ ](t)-g[ ](t)l=< (2m- 1)(2e) 11 -- tllt -qm,
which proves (3.8), because 2 __< m __< n and 1 =< o < < . Consequently, the estimates
(3.6) and (3.7) are valid for a sufficiently large C5.

Now we are able to prove the estimates for Lemma 2.1. To prove (2.23), we express
the integral Lj(t) (see (2.19)) in the form (3.1) with h(t)=pn(t)tq and K(t)=
exp(-ljt)t q. Since h(t) is integrable and K(t) satisfies (3.2) for m=0,1 with a=89 4: 0,
fl=q, K0--1 and KI=I/j.I+ q, (2.23) follows from Lemma 3.2. The integral Lk[u](t )
(see (2.20)) is of the form (3.1) with h(t)=pk(t)tq and K(t)=u("-k-)(t)exp(-lt)t -q.
By (3.5), K(t) satisfies (3.2m) for m=0,1 with a 3j.4: 0, fl=2q, K0=llull and, K--Ilull
(1 /l/j.l/q) except the case k=l, because, in general, (3.5) does not hold for the
(n- 1)th derivative of u(t). Consequently, in the case k > 1, (2.24) follows from Lemma
3.2. If k=l, then we put h(t)=p(t) and K(t)=un-2)(t)exp(-l2t). Since h(t) is
absolutely integrable and K(t) satisfies (3.20) with a=82, fl=q and K0=llull, (2.24)
with k= 1 follows from Lemma 3.1. (Here we need the assumption (i).) To prove
(2.26), we note that Nj.k[fi](t)-Nk[fi](t ) is also an integral of the form (3.1) with
h(t)=pk(t)t q and K(t)=(gn_k[ft](t)--gn_k[](t))exp(--2t)t -q (see (2.22)). Then, by



ORDINARY INTEGRAL CONVERGENCE IN ASYMPTOTIC THEORY 765

(3.6) and (3.7), K(t) satisfies (3.2m) for m=0,1 with a=Sjq:0, fl= 3q, K0= Qell-ll
and K Cxll- fill(1 /ltb.l/ q). Consequently, (2.26) follows from Lemma 3.2. It
remains to establish (2.25). From (2.21), (2.27) and (3.6),

ftti,( g,-k ft ](s )- g,,-k ](S )exp(- Ijs )) ds

f, texp(js)s-2qds
toj

for any functions , in S(t0, e). Thus (2.25) holds if there exists a C7 such that

exp(-jt)t2qlStexp(js)s-2qdsl< C7.
toj

The last inequality is valid for a sufficiently large C7, because, by L’Hospital’s rule, its
left-hand side converges to I.1- as o. Note that the convergence of the integrals
M.k[ ](t) and N.k[ ](t) follows from the preceding with 0, because M[0] N.[0]

0. This completes the proof of Lemma 2.1.
It is worth remarking that this proof is correct only in the case when 8 Re(X,-

X.)0, for any j r, because Lemma 3.2 is not applicable if a function h(t) is
conditionally integrable and K(t) satisfies (3.2 m) with a 0. See also Remark 1.

Proof of Lemma 2.2. From (2.31) we obtain luk>(t)l<=llull,, O<=k<=n-2, which
enables us to bound any expression (2.5) by IO’*,...,ml(llullt) m. Consequently, there
exists a C such that

(3.10) Ik[u](t)lf8(llullt) l<k<n tot< uS(to)

Using (3.10), we obtain a new estimate for the integral Mg[u](t). If 8j=-Re.<0,
then

(3.11) ftg,,_ fi ](s ) exp(- iys ) ds

Z C8 (llullt)2 ftexp(s) ds C8I/1-1( Ilull, )2exp( ijt).

If i/> 0, let tl =(to+ t)/2. Then

(3.12) ftog,_ , u ](s ) exp( #s ) ds]
ftilg,_ k u l(s) exp( Is) ds]+ gn-k[ U ](S ) exp( gs ) ds

)2 tloCs([lullto f_ exp(8]s)ds+C8(llu]lt)2f exp(8s)ds

C8(; 1( iiull2/0exp .( tl-t)] + [lUlI2tl )exp( 8it ).
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Using (3.11) and (3.12) instead of (2.25), we obtain a new variant of (2.28)

(3.13) C=(a + Ilull)m(to,t)+C911ull,=l
+ C101lull = 2

,+Clllull,0 E exp[8(t-t)]
jJ

.>o
for any u in S(t0,e), 0=<k =<n- 2. Since R13 the right-hand side of (3.13), is nonincreas-
ing in t, it follows from (2.31) and (3.13) that IIT[u]llt <= (n 1)R13. As t in the last
inequality, we obtain (2.33) with C4=(n I)(C9+ C10), because m(to, t)O, t
and --, o in R13 as . This completes the proof of Lemma 2.2.

Proof of Lemma 2.3. Let us integrate (2.6) with U=Ur(t ) between the limits o and
t. By (2.8), the result of integration may be written in the form

n-2

E bk(Un-k-2)(t) -"r(n-k-2)(tO))’’bn-lftlur(S) dS
k=O

n-1

k=l

Since the characteristic equation for the left-hand side of (2.6) has no zero root, it holds
that b,_ 14:: 0. Consequently, we can express the integral from the left-hand side of the
last equality. Taking into account (2.36), we obtain

ds const. + o( -q)

+bn--l Pn(t) E bk tgn_k[url(s)ds
k=O

n-1 n--1 )+ y’ ftoP(s)un-k-1)(s)ds+ ftoe(s)gn-k[Ur](S) dS
k=l k=l

where, in view of assumption (ii) and (3.4),

(3.14) P(t) p(s)ds=o(t-q ) (l=<k=<n).

Hence Lemma 2.3 will be proved if we show that the integrals of the following three
types

f/Oek ( s ) un-k-1)( s ) ds, ftlgn-k[Ur](s)ds, ftoe ( s ) gn-k[ Ur]( S ) dS

have either the property (2.38) or (2.39). Since

(const.+o(t1+) iffl-l,(3.15) (sZ)ds=
o(logt) iffl= -1,
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the above-mentioned property of the middle type of integral follows from (2,.37).
Integrating by parts yields

(3.16)

and

(3.17)

(n-k-l)Pk(S)U (s)ds-"Pk(S)U -k- 1)(S) ("-(s)clse(s)u

oe,’oe()go_ ur]()as= e()g._[ Pk(S)gn_k[Ur](S)ds.

Besides (2.37) we now need the asymptotics

(3.18) g’[Url(t)=O(t-2q) l<__k<__n-1,

which follow from (2.36) as well as (2.37). In view of (2.36), (3.14) and (3.18), the
integrals on the right of (3.16) and (3.17) may be estimated by means of rule (3.15).
Consequently, the needed property is established except for the integral (3.16) with
k= 1, because, in general, un-1)(t)4:o(t -q) and hence integration by parts is useless.
However, we can estimate the integral directly by using (2.36) with k=n-2 and
assumption (i):

f, Ipl(s)o(s-q)lds--o(t-q).

This completes the proof of Lemma 2.3.
A sketch of the proofs of Lemmas 3.1 and 3.2. Denote

H(t)--fth(s)ds, Hl(t)--lh(s)lds and H2(t)-sup]H(tl)l.

If a =< 0 ( < 0), then Lemmas 3.1 and 3.2 follow from the estimates

ftK(s)h(s) ds]<= f,lK(s)h(s)lds <= Koexp(at)t-Hl(t)

and

ftK(s)h(s)ds[<= IK(t)H(t)l+flK’(s)H(s)lds
=< K0 exp( at ) t-aH2 ( ) +K t-aH2 ) ftexp( as ) ds

--(Ko+ lal-lK1)H2(t)exp(at)t-.
If a > 0, denote (to + t)/2. Under the hypotheses of Lemma 3.1, we can write

ftoK ( s ) h ( s ) ds <= ftilK(s)h(s)lds+ ftilK(s)h(s)!ds
__< Ko H1(to)exp(ate)tB + HI(t)exp( at)t;
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Therefore, the estimate (3.3) holds if

m(t’t)>=Hl(to)exp[a(tl-t)]

Since t/t= 2t/(to+ t)=<2 and the function 2Hl((t0 + t)/2) is of type (,), the function
m(to, is of the form m(to, t)=m(to, t)+2aH(t), where ml(to, ) is a function of
type (,) such that

(3.19) ml ( t’ ) >= H( t)exp[ a( t ) -o
This inequality is satisfied by a (finite) function

m(to,t)=Hl(to)sup (exp[a(to-t2)/2](t2/to)a),
t2>__t

which is nonincreasing in and converges to 0 as z, for any to>0. For m(to, ) to
be of type (.), it remains to show that m(to, to)O as to . Since H(to)O as

o , the last fact will follow from the inequality

(3.20) sup {exp[a(to- t2)/2](tz/to) } =<2(1 + MT-),
>= to

where M is an upper bound of the function exp(-at/2)t on the half-line 0 _< < .
To prove (3.20), we note that for 2 [to, 2t0] we have exp[a(to- t2)/2](tz/to) __<2 a. If
t2_> 2to, then, by the definition of the bound M, exp[a(to- t2)/2]<=M(t- to)- and
thus exp[a(to t)/2](t2/to) <= Mt[t/( 2 to)] =< 2 tmt, because t/( 2 to) 2.
This completes the proof of (3.20). To prove Lemma 3.2 in the case a > 0, we find that

[K(t) H(t) 1_< KoH2(t) exp( at)t-a

and

f’lK’(s)H(s)ld  lK’(s)H( )lds+ IK’(s)H(s)lds
to tl

<_KH(to)taf’ exp(as)ds+KH2(tl)t;t exp(as)ds

Kxa-I[H(to)exp( atl)t- + H:z (tl) exp(at) t-t].
Therefore, the estimate (3.3) with Ko replaced by Ko + K holds if

m(t’t)>=(l+a-) H2(t)exp[a(t-t)] o + I-I (t)

+H:(t)exp[a(tl-t)] o
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Since we have et(t0- t)<=a(to- t)/2=a(t t) and t/t= 2t/(to+ t)<2, it is sufficient
to require

m(t’t)>-- (l +a-) 2H2(t)exp[(tl-t)] -o -F 2 fln2 ( tl ) + n2 ( ) l
Now we can put

m(to,t)=(l +ot-1)(2m(to,t)+2#H2(t)+H_(t)),
where m(to, ) is a function of type (,) satisfying (3.19) with Hi(to) replaced by
H2(to). The existence of the function m(to, ) in (3.19) was proved before. This
completes the proof of both lemmas.
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ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF A CLASS OF
HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS*

TAKAI KUSANO" AND BHAGAT SINGH

Abstract. The asymptotic behavior of solutions of perturbed disconjugate differential equations of the
type

(A) tnx -}- F( t, tox tlx,. ,tn_lX)--f(1),
Lox=x/po Lix=(Li_lX)’/pi, 1 <i<n,

is studied. Bounds on the growth of solutions are given, criteria for all solutions to be oscillatory or
nonoscillatory are established, and conditions are presented which guarantee that every solution tends to a
limit as t---, . Our results for (A) can be applied to the qualitative study of a class of elliptic partial
differential equations.

1. Introduction. In this paper we are concerned with nonlinear ordinary differen-
tial equations of the type

(A) tnX -{- F( t,LoX,LlX," ,tn_lX ) =f(t)

in an infinite interval [a,c), where Li, O<i<n, denote the differential operators
defined by

X(I) Lix(l)
1 d

(1) Lox(t)-Po(t) dlLi_lX(t), l <i <n,

in terms of the positive continuous functions p(t), O<i<n, on [a, o). Here f(t) and
F(t, Uo, Ua,...,Un_x) are continuous functions defined on [a,c) and [a, oc)Rn,
respectively. Notice that in the particular case where pi(t) 1, O<i<n, equation (A)
reduces to

(B) x(")+ F(t,x,x’,." ,X (n-l)) =f(t).

By a solution of equation (A) we mean a function x(t) which has the continuous
"quasi-derivatives" Lx(t), 0 <__iNn, and satisfies (A) on some half-line [Tx, ). Such a
solution is called oscillatory if it has arbitrarily large zeros; otherwise it is called
nonoscillatory.

Our main purpose is to study the asymptotic behavior of solutions of equation (A).
More specifically, bounds on the growth of solutions will be given in 2; conditions for
all solutions to be oscillatory or nonoscillatory are presented in 3, and 4 is devoted to
establishing criteria which force every solution to approach a limit as t---> c. Roughly
speaking, our consideration is focused on the situation in which the "perturbation"
F(t, LoX, LlX,...,L_lX ) is so small that the solutions of (A) essentially behave as
those of L,x =f(t) asymptotically. Equations of the form (A) with large perturbations
F will be the object of a forthcoming paper.
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This work combines the existence theory with the asymptotic theory of oscillatory
solutions. Existence of nonoscillatory solutions has been established using the fixed
point methods in a number of papers. Since the fixed point theory is not applicable to
the existence of oscillatory solutions, we believe that this work is a step toward filling
this vacuum.

In recent years there has been an increasing interest in studying the qualitative
behavior of solutions of equations of the type (A); see, for example, the papers [2]-[7],
[11]-[28], [31]-[33]. Most of the literature, however, has been concerned with equations
of the form Lnx + F(t,x)=f(t), and it seems that very little is known about equations
which really involve the lower quasi-derivatives ZlX,... ,L ix. The present paper is an
attempt to make a systematic study of such general differential equations. It should be
emphasized that most of our results seem to be new even when specialized to equation
(B). For typical results on the asymptotic theory for (B) the reader is referred to the
papers [8]-[10], [29], [30].

2. Bounds on the growth of solutions. Unless otherwise stated explicitly the follow-
ing conditions are assumed to hold throughout the paper:

(2) pi(t)dt=o for l<i<n-1,

n-1

(3) IF(t,Uo,Ul, ",Un-1)l=< E q,(t)lu,I
i=0

for all (t, Uo, U,...,Un_l) [a, c)Rn, where r are nonnegative constants and qi(t)
are nonnegative continuous functions on [a, ).

Let h(t), h2(t), be continuous functions on [a, ). We define for t,s [a, )

(4)
I0 =I,

Ii( t,s; hi,’" ,hi)=fth,(r)I,_l(r,s; hi_l,’’" ,hi)dr,
s

i=1,2,...

The following identities are easily verified:

(6)

(7)

Ii(t s hi, hi) (1)"", Ii(s,t;h,...,hi)

Ii(t s;hi, hl)= fsth(r)I (t r hi, ,h2)dr

li(t,s;hi," ",h)= E li-j(t,r;hi,’" ",hj+l)lj(r,s;hj,’" .,h).
j=0

LEMMA 1 (Hallam [9]). If ai O, b >= O, r >= O, 1 <= _< n, and if b > 1 for some i, then

(8) , aib;’< a b where r=maxri.

i=1 i=1 i=1

LEMMA 2 (Bihari [1]). Let x(t) and k(t) be nonnegatioe continuous functions on

[t o T ), T <= , and let g(x)> 0 be a continuous nondecreasingfunction on (0, oe). If

(9) x(t)<=M+fik(s)g(x(s))ds, t [to, T ),
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for some nonnegative constant M, then

(10) x(t)<=G- G(M)+ k(s)ds t[to,T),

provided that both sides of (10) are defined, where G(x) is an antiderivative of 1/g(x)
and G-l(u) is the inverse function of G(x).

Let to> a (an initial time) be fixed and let x(t) be a solution of equation (A)
satisfying the initial condition

(11) Lix(to)=li, O<i<n-1,

where di are given constants. Explicit bounds on the growth of x(t) will be given in the
following theorem vhich is one of the main results of this paper.

TnEORFM 1. Let the functions %( ), 0 <_ <= n 1, be defined by

(12) %(t)=max{ I,_i_l(t,a;Pi+x,...,p,_), In_i(t,a;Pi+," ",Pn-,Pn[fl)}"
Suppose that

(13) p,(t)qi(t)[%(t)lr’dt< , O<=i<=n-1.

Then, if r=maxiri<_ 1, all solutions x(t) of(A)satisfy

(14) Lix(t)=O(%(t)) ast, O<i<n-1,

and if r> 1, solutions x(t) of (A) satisfy (14) provided o is sufficiently large and l are
sufficiently small.

Proof. The method of Hallam [9, Thin. 1] will be adapted. Integrating (A), we have

n-1

(15) Lix(t)= E Ljx(to)Ij-i(t,to;Pi+,"’,Pj)
j=i

+I,_i(t,to;Pi+,. .,p,_,p,f )-I,_i(t,to;Pi+," ,p,_,p,F[x])

for 0 =< =< n 1, where

(16) F[x F( t,Lox,Lxx,. ,Ln_lX ).

Dividing (15) by %(t) and noting that Ij_(t, to;p+,...,pj)/qi(t), i<=j<=n-1, are
bounded and

In- ( t, to,Pi+ 1,’’" ,p._ ,p.IF[x l)/q( )

In--i( t,to;Pi+ 1’’’" ,P-I,PIF[x]I)

n-1

<-- fo E P,(s)qk(s)[Lkx(s)l rkds,
k=0

Z n(s)lF[x](s)lds

we obtain

(17) IL,x(t)l n_l (--<=A,+f’ E pn(S)qk(S)[qk(S)] rk Itx(s)l
t0 k=O kk(3

rk
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for >__ o and 0 < < n 1, where

n-1

Ai=l +sup E IlI-i(t,to;p,+l, ",Pj)/q)i(t)"
t>=to j=i

From (17) it can be shown that there exists a constant A > 0 such that

[L,x(t)[(18)
g=o %(t)
--<_A + nf’ p,,(s)qk(s)[ep,(s)] rk IL ,x(s)l

ds

for >__ 0, where r= maxiri. To see this, let P(s) and Q(s) denote the integrands in (17)
and (18), respectively, and put

n-1

R(s)= E P.(s)qk(s)[cP,(s)]
k=O

Then, obviously P(s)<=R(s) if

(19) [L,x(s)[/%(s)<__l, O<=i<_n-1,

while P(s)<= Q(s) if (19) does not hold, by Lemma 1. Therefore

(20) P(s) <= Q(s)+R(s)
in either case. Since ft R(s)ds < because of (13), combining (17) with (20) implies
(18) as claimed, with A defined as

n-1

A= i"o Ai+ to
R(s).

Applying now Lemma 2 to (18), we conclude that if r=< 1, then ILix(t)l/%(t), O<i <n
-1, are bounded for any values of i, and that if r > 1, then the same is true of x(t)
provided the initial time o is large enough and the initial values g are small enough so
that

(21) (r- 1)nAr-lf Pn(S)q(s)[q)k(S)] rkdS< 1.
to k=0

This completes the proof.
Remark 1. Using L’Hospital’s rule, we have

(22) lim
I,_i(t,a;pi+l,...,pn_l,p, lfl) fo+t---,o In_i_(t,a;Pi+,’’’,Pn_l) P"(t)lf(t)[dt"

Consequently, if

(23) pn( t)lf( t)l dt <

then the functions %(t) in (12) can be taken to be

(24) %(t) I,,_i_( t,a;pi+ 1," ,P,,-I), O<i<n-1,
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and if

(25) p,(t)lf(t)[ dt= ,
then the functions Pi(t) can be taken to be

(26) qi(t) In_i( t,a;pi + 1," O<_i<_n-1.

Remark 2. In the particular case wherepi(t) 1 for 0 < < n we obtain

In i_l(t a;pi+," ",pn_l) (t-a) ’-i-

In_i(t, a;Pi+l," ",Pn_X,Pnf )= fat(t-s)n-i-t(n_i_i f(s)ds.

It is easy to see that:
(i) if limt_.of(t)/tm=constant 4:0 for some m> 1, then

t(t--s
lim -i-! f(s)ds/tm+"-i=cnstantO;
t--- o (n

(ii) if lim t- of(t)/t- constant O, then

lim fat(t-S)n-i-1to (n-i--l-ii f(s)ds/t"-i-lgt=cnstant4=O"

(iii) if limt__,oof(t)/t’ebt=constant 40 for some m and b >0, then

lim fat(t-s)n-i-xt--* (n--i-l-ii f(s)ds/tmebt=cnstantO"

From Theorem I and Remarks I and 2 we have the following corollary.
COROLL,R 1. (i) Suppose that

(27) If(t)ldt<

and

(28) (n-i- 1)r’qi (t) dt < , 0 <= <= n 1.

Then, if r= maxiri < 1, all solutions x(t) of(B) satisfy

(29) x(i)(t)=O(t n-i-x) as t--- 0<i<n-1,

and if r > 1, solutions x(t) of (B) with large initial time and small initial values satisfy (29).
(ii) Suppose that If( t)[ =<f*(t), where f*(t) is continuous,

(30) lim f*(t)/t constant > 0 for some m > 1
t---,o
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and

(31) t(m+-i)rq(t)dt< o, O<_i<_n-1.

Then, if r <__ 1 all solutions x( ) of (B) satisfy

(32) x(i)(t)=O(t m+"-i) asto, 0_</_<n-I,

and if r > 1, all solutions x(t) of (B) with large initial time and small initial values satisfy
(32).

(iii) Suppose that If(t) _<f*(t), where f*(t) is continuous,

(33) lim f*(t)/tmebt=constant>O for some m and b>0
t--o

and

(34) (tmeb) "qi(t)dt< O<_i<_n 1.

Then, if r <__ 1, all solutions x(t) of (B) satisfy

(35) x(i)(t)=o(tme b’) asto, O<i<n-1,

and if r> 1, solutions x(t) of (B) with large initial time and small initial values satisfy (35).

3. Oscillation and nonoscillation of solutions. On the basis of Theorem 1 we can
establish conditions which guarantee that all solutions of (A) are oscillatory or non-
oscillatory.

THEOREM 2. Suppose that f( ) is eventually positive (or negative) and

(36) p,(t)f(t)dt=o (or -o).

Suppose moreover that (13) holds with qgi(t ) defined by (26). Then, if r=maxiri<=l, all
solutions of (A) are nonoscillatory, and if r > 1, solutions of (A) with sufficiently large
initial time and sufficiently small initial values are nonoscillatory.

Proof. We may assume that f(t) is eventually positive. Let x(t) be a solution of
(A) (with large initial time and small initial values if r > 1). We have (15) (with i= 0):

n-1

(37) Lox(t)=

_
Ljx(to)Ij(t,to;Pl,...,pj)

j=0

+ln(t,to;P," ",p,_x,Pnf )-l,(t,to;Pl," ",Pn_x,PnF[x]).
Dividing (37)by p0(t) and letting o, we conclude that Lox(t)/%(t) 1 as o,
which shows that x(t) is nonoscillatory. To see this it suffices to verify

(38) I(t, to;P,. ,p)/%(t)0, O<=j<=n- 1,

(39) I,(t,to;Pl,...,p,_l,p,f)/%(t) 1,

and

(40) I,, (t, to;p,’’’ ,p,_ 1,p,F[x ])/% (t) - 0,

as o. Relations (38) and (39) follow with the use of L’Hospital’s rule. By Theorem
1 there are positive constants c such that [Lx(t)[<=c%(t), t>__to, for O<_i<=n-1.
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Using this inequality and (38), we can prove (40) as follows"

I (t,to;Pl,’’’ ,Pn_l,PnlF[ x I)/tpo (t)
I_(t,to;P,’",p_) I(t,to;p,"’,P-,P[F[x][)

qo( t) In-x( t, to;Px," ,Pn-X)

<In-l(t’to;Px’i" "Pn-x) ftP-o; p.(s)[F[x](s)[ds

n--1<In-l(t,to;Px," ",Pn-x) ft E Pn(S)qk(s)lLkx(s)[rds

Z-l(t,to;Pl, ",Pn-1) f lpn(s)uk(s)[ckk(s)l rdsO
 0(t) ,o

as . Ts completes the proof.
Remark 3. Starting from (15) with any i, 0 n- 1, and arguing as in the above

proof, we can show that the solution x(t) under consideration satisfies

(41) limLx(t)/(t)=l or-l, Oin-1,
t

according as f(t) is eventually positive or negative.
Cogoag 2. (i) Suppose that

(42) lim f(t)/tm= constant 0 for some m > 1
t

and (31) holds. Then, if r=maxiri 1, all solutions x(t) of(B) satisfy

(43) lim x()(t)/tm+"-g=constantO, Oin-1,
t

and if r > 1, solutions x(t) of (B) with large initial time and small initial data satisfy (43).
(ii) Suppose that

(44) lim f )/tmet= constant 0 for some m and b > 0

and (34) holds. Then, if r 1, all solutions x(t) of (B) satisfy

(45) lim x(g)(t)/tet=constantO, Oin-1,
t

and if r > 1, solutions of (B) with large initial time and small initial data satisfy (45).
Remark 4. Corollaries 1 and 2 unify some of the main results of Hallam [9].
Tnog 3. Suppose that for any o a

I,(t,to;Pl,"" ,P,_,P,f)(46) lim sup ,
t I,-l(t,to;Pl,"

(47) liminf
I"(t’t;pl" ",P,-1,P,f )

t I,_(t,to;p,. .,p,_)

Suppose moreover that (13) holds with %(t) defined by (26). Then, if r=maxril, all
solutions of (A) are oscillatory, and if r > 1, solutions of (A) with sufficiently large initial
time and sufficiently .small initial values are oscillator.
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Proof. First observe that (46) and (47) imply that fapn(t)[f(t)ldt o. By Theo-
rem 1 and Remark 1 there are positive constants c such that ILix(t)l<=ci%(t), t>=to,

for O<i<n-1. We divide (37) by In_l(t, to;pl,...,p,_l) and let to. Since

!i(t, to;Pa,...,pj)/In_(t, to;p,...,p,_), O<_j<=n-1, are bounded as t o and

In( t,to;Pl," ,p_,p[F[x][)
I.-t(t,to;Pl," ",Pn-1)

we then conclude that

Z Pn(S)lF[x](s)lds

<=f E Pn(S)qk(S)[Ckqgk(S)] rkdS< 0,
to k 0

limsupLox(t)/I_l(t,to;Pl,... ,p_) o,
t-- O

lim inf Lox ( )/ln_ t, to; PI," ,Pn-1) 0

This shows that x(t) is oscillatory and the proof is complete.
Remark 5. We now replace condition (3) by

(48) uoF(t,Uo,Ul,.. ",Un_l)’0 for (t,Uo,U,,..
Then only the conditions (46) and (47) (without requiring (13)) guarantee the oscilla-
tion of all solutions of (A) that are continuable to o. In fact, suppose to the contrary
that (A) has a nonoscillatory solution x(t) which is eventually positive. Then, since
F[x](t)>= O, >= o, o being sufficiently large, it follows from (37) that

n-1

Zox(t)<- E Ljx(to)Ij(t, to;Pl," ",Pj)+In(t,to;Pl," ",Pn-l,Pnf )
j--0

for t>= 0. Dividing the above inequality by I,_l(t, to;Pl,." ",P,-1) and letting t o,
we see with the aid of (47) that

lim infLox (t)/I._ l(t, to; Pl,’",Pn-1)
t---, o

which contradicts the eventual positivity of x(t). Likewise we are led to a contradiction
if we assume the existence of an eventually negative solution of (A).

Remark 6. Oscillation results similar to but weaker than Theorem 3 have been
obtained in the papers by Kusano [16] and Singh and Kusano [26].

Example 1. Consider the equation

(49) x(")+c(t)lx[sgnx=imsint, t>= 1,

where 3’ and rn are positive constants and c(t) is a continuous function on [a, o).
Assume that rn > n- 1 and

(50) t("+")vlc(t)ldt<

From Theorem 3 it follows that if ,/__< 1, then all solutions of (49) are oscillatory and if- > 1, then solutions of (49) with large initial time and small initial values are oscilla-
tory. In view of Remark 5, if c(t)>__O on [a, o), then the same conclusion holds
without condition (50).
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Remark 7. Theorems 2 and 3 are concerned with the case where the integral of
p,,(t)[f(t)l diverges. The situation is different if pn(t)[f(t)l is integrable on [a, ) or
satisfies a stronger integrability condition. In fact, if fpn(t)[f(t)ldt < and if (13)
holds with qgi(t ) defined by (24), then there exists a nonoscillatory solution x(t) of (A)
such that limt_ Lix(t)/%(t) 1 for 0 < _< n 1. This result is contained in the
following theorem due to Fink and Kusano [5].

THEOREM 4. Let k, 0 <= k <= n- 1, be fixed. Suppose that

(51) I__(t,a;p_,. .,p+l)P(t)[f(t)ldt<

(52) I,-I l(t,a’Pn 1" ,Pk+l)[lk-i(t,a;pi+l ,Pk)] ri,... pn(t)qi(t)dt < o

forO<i<k,

(53) I, (t a;p, ,P+}[/i ( a’e ,p+)]-,... ,...

Then (A) has a nonoscillatory solution x( t) with the property

(54)

for k + l <_i <n-1.

lim Lix(t)/Ik_i(t,a;pi+,...,pk) constant4:0, Oi<k,
o

lim Lix(t).Ii_(t,a;pi,...,p+l)=O, k+l<i<n-1.
t---oo

The desired solution x(t) is obtained via the Schauder-Tykhonov fixed-point
theorem as a solution of the integral equation

Lox (t) clk ( t, T;p ,pk )

+ ( 1) I_l(t,s;Pl,...,pk_)p(s)

fsln-k-(r,S;Pn-, ",pk+l)

pn(r)[f(r)-F[x](r)]drds if0<k=<n-1,

Lox(t)=c+(-1)"ftmI,_l(S,t;P,_l, .,pl)p.(s)[f(s)-F[x](s)] ds ifk=0,

where c > 0 is any given constant, T> a is a suitably chosen large constant and F[x] is
defined by (16). That x(t) satisfies (54) and (55) follows by differentiation of this
integral equation; identity (7) is needed in order to verify (55).

4. Asymptotic behavior ol solutions. The purpose of this section is to establish
conditions which guarantee that every solution of (A) tends to a limit as m.

THEOREM 5. Suppose that

(56) I,_(t,a;p,_l," .,p)p,(t)lf(t)ldt< ,
(57) In-l(t’a’Pn ,Pl)[In-i l(t,a;pi+l ",Pn 1)] ri

,’’’ pn(t)qi(t)dt<c

forO<i<n-1.
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Then, if r=maxiri<__l, for every solution x(t) of (A), Lox(t ) tends to a limit (finite or

infinite), and if r> 1, for every solution x(t) with sufficiently large initial time and
sufficiently small initial values, Lox(t) tends to a limit as t- . In particular, for every
oscillatory solution x(t) of(A), Lox(t ) tends to zero as - o.

Proof. Our proof patterns after that of Singh and Kusano [24]. Let x(t) be a
solution of (A) (with large initial time and small initial values if r > 1). Since (56) and
(57) imply (13) with qi(t)=In__l(t,a;pi+l, ",Pn-1) (see Remark 1), by Theorem 1,
there exist positive constants c such that

(58) ILgx(t)l/In_g_(t,a;p,+l,. .,p,_l)<=c,, O<=i<=n-1.

Suppose to the contrary that Lox(t ) does not approach a limit as o. Then, there
are two constants and /such that

(59) lim inf Lox (t) < < < lim sup Lox ( ).
t-- t-* :

Let T> a be large enough so that

(60) In_l(t,a;.Pn_l," ,pl)P,(t)

If(t)l+ , [ciI"-i-l(t,a;Pi+l,’’’,Pn-1)] r’

i=0
qi(t)]dt<

Choose T< So < To < S < T so that

Lox So ) < < n < Lox ( ro )

and

Lox(S) < < n < Lox (T).

Let [Sl,S2] be the smallest interval containing To such that

(61)
LoX(Sl)=Lox(s2)=l, and

max{ Lox (t)" $1, s2 ) gox (s’) > .
Clearly, T< S < S < S2. Let s2 t =< 2

_< __< t_ be such that

(62) L,x(t)=O, l <i<n-1.

Such t; exist, since Lx(t), 1 <=i <=n- 1, are oscillatory because of (59).
Integrating (A) n- 1 times and using (62), we obtain

(63)

glx(t)--(-1)n-llt’p2(r2) fr]2""
ftn

-2

P"-x(rn-)
J’rn-1

P"(r")[f(rn)-F[x](G)] dGdr"-I dr2’
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where F[x] is defined by (16). Multiplying (63) by pl(t) and integrating from s to s’,
we have in view of (61)

Iln-Pn- l(Fn- 1) P.(r.)[lf(r.)l+ [F[x](r.)l] drndrn- dr2drl
rn-2 rn-1

1(/,1) lp2 (/.2 ) 1,

sl rl r2

ItnP.-l(r.- 1) pn(r.)[lf(r.)[+ [F[xl(rn)l] dr.dr._ dr2drlJ_r._

--Ssi"-Xln-l(#’,Sl;Pn-1, ,pl)p.(r)[if(r)[+ IF[x](r)l]

< _l(r,sl;Pn_l,’" ",Px)P,(r)

If(r)l+ E [ciln-i-l(r,a;Pi+l,’’’,Pn-1)]r’qi(r) dr<l-l
;=0

2

where we have used (60). This contradiction completes the proof.
As a byproduct we have the following nonoscillation theorem for the homogeneous

version of (A), i.e.

(Ao) L,x + F(t,LoX,LlX,. .,Ln_lX)--O.

THEOREM 6. Suppose that conditions (3) and (57) are satisfied with ri= 1, 0 <= n 1.
Then, all nontrivial solutions of (A o) are nonoscillatory.

Proof. Suppose to the contrary that (Ao) has an oscillatory solution x(t). By
Theorem 5, Lox(t)O as t o. It can be shown that Lix(t)O as t o0 for 1 <_i<=n
-1. In fact, let be fixed arbitrarily and take i, 0 =< =<n-1, so that =< to__< __<-.. =<
t,_ and (62) holds and Lox(to)=O. Then, integration of (A), for any i, l<i<n-1,
yields

Pi+l(ri+l)

ftn_Pn-l(rn-1) Pn(rn)F[x](rn)drndrn-1 dri+l.
rn- rn-1

Therefore,

(64) gin-

[Lix(t)[<=Jt I.-i-l(r,t;p-l,’",Pi+l)p(r)[F[x](r)ldr

n-1

<= I._i_l(r,t;p_x,’" ",Pi+l)Pn(r) _, qk(r)[Lkx(r)[ dr
k=0

n-1

<--_ I.-i-l(r,t;P.-1," "’,Pi+I)Pn(r) E q(r)lLx(r)ldr,
k=0
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which implies that Lix(t) --, 0 as --, oc, 1 _<i _< n- 1. Inequality (64) also holds for 0.
From the above observation it follows that

n-1

(65) ]Lix(t)l<_ I,_i_l(r,t;P,_l,...,pi+l)p,(r) _, q(r)lLx(r)[dr
k=0

for 0 < < n 1 If we put X(t) v’,,-
,..i= 0 ,._.x,.,,, we (65)II, {tl then conclude from that

n-1

X(t)<=supX(s). In_i_l(r,t;Pn_,...,pi+)p,(r)qk(r)dr
st i,k=O

and consequently

n-1

supX(s)<=supX(s).

_
I,_i_l(r,t;p,_,...,Pi+l)pn(r)q,(r)dr.

s>t s>=t i,k=O

Since, in view of (58) and r 1, the sum of the last integrals tends to zero as --, , we
have a contradiction. This finishes the proof.

Example 2. Consider the equation

(66) 1__x 1 2sin(log t) 3 cos(log t)
(tx")"+t4 "+TX 7

10 sin(log t) + 20 cos(log t)
4

The conditions of Theorem 5 are satisfied, and so all solutions of (66) approach limits
(finite or infinite) as . In particular every oscillatory solution of (66) tends to zero
as . One such solution is x(t)= sin(logt)/t. Equation (66) also has nonoscillatory
solutions. In fact, Theorem 4 is applicable and one sees that there exist solutions x;(t),
1 =< =< 4, with the following properties"

lim x(t) constant 4: 0,

lim x (t)/t log t= constant 4= 0,
t---, o

lim x2 (t)/t constant 4: 0,

lim x4(t)/tZ=constant =gO.
t-o

COROLLARY 3. Suppose that

(67) t’-lf(t)ldt

(68) tn-l+(n-i-1)riqi(t)dt O<i<n-1.

Then, if r <= 1, every solution of (B) tends to a limit (finite or infinite) as t o, and if
r> 1, eoery solution with large initial time and small initial values tends to a limit as. In particular, every oscillatory solution of (B) tends to zero as .

COROLLARY 4. Consider the equation

(Bo) x(")+F(t,x,x’,... ,x("-)) 0,

where F(t, Uo, Ul,. .,u,_) satisfies (3) with ri= l, O<=i <__n-1. If (68) holds with ri= l,
0 <= <= n 1, then all solutions of (B0) are nonoscillatory.

We conclude with an example showing that the above results concerning the
ordinary differential equation (A) can be applied to the qualitative study of a particular
class of partial differential equations.



782 TAKAgI KUSANO AND BHAGAT SINGH

Example 3. Consider the fourth order elliptic equation

(69) A2u + a(ly [)Au + fl(]y [)u= /(ly ])
in an exterior domain fl in R 3, where y=(yl,Y2,Y3) R3, [y[ is the Euclidean length of
y,A is the Laplace operator, and a(t), fl(t) and ,(t) are continuous functions on [a, )
for some a > 0. Noting that for a spherically symmetric function v(]y])

d 2dr d2
=t- t=lyl

dt

we see that a spherically symmetric function u(ly[) is a solution of (69) in some exterior
domain T=(yR3"[y[>_ T}, T>_a, if and only if u(t) is a solution of the ordinary
differential equation

d4 d(70) -1 (tu)+a(t)t-1 (tu)+(t)u=/(t) t> T,
dt 4 dt 2

which is a special case of (A) satisfying (2) and (3) with p0(t) -1, pl(t)=p2(t)=p3(t)
1, p4(t) t, qo(t) t-ll8(t)[, ql(t)=O, qz(t)= t-lla(t)[, q3(t)=O,f(t)=V(t).
Applying Theorems 1-3 and 5 to (70) we have the following results concerning

spherically symmetric solutions of (69) defined in some exterior domain in R3"
(i) If we suppose that

(71) t[a(t)ldt< , t3lB(t)ldt< , tl/(t)ldt< ,
then all spherically symmetric solutions u(lyl) of (69) satisfy u(lyl)-O(lyl ) as lyl .

(ii) If we replace (71) by

(72) t41a(t)ldt< , t6l/3(t)ldt< , t4l,(t)ldt< ,
then, for every spherically symmetric solution u(lyl) of (69), lylu(lyl) tends to a limit
(finite or infinite) as lyl-’ ; in particular, lylu(lyl)-o as lyl-’ for every oscillatory
solution u(lyl) of (69).

(iii) Suppose that 3’(t) is eventually of constant sign and

(73) ty(t)dt= or-.

If in addition

then all spherically symmetric solutions of (69) are nonoscillatory.
(iv) Suppose that for any T>__ a

(76)

(77)

lim sup f;(t-s)3s(s)ds/t3= ,
t.-- oQ

liminft ff(t- s)3s3/(s) ds/t3= .
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If in addition (74) and (75) hold, then all spherically symmetric solutions of (69) are
oscillatory.

Acknowledgment. The authors would like to express their sincere thanks to the
referee for very helpful comments and suggestions.
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ORDER STARS, APPROXIMATIONS AND FINITE
DIFFERENCES II. THEOREMS IN APPROXIMATION THEORY*

A. ISERLES

Abstract. The theory of order stars is applied to two problems in approximation theory: determination of
upper bounds on the size of blocks in the Pad6 tableau of an analytic function and the task of highest-order
approximation of a stable analytic function by a contraction. It is shown that in both cases global properties
of the underlying function--the loci and the nature of essential singularities, zeros and poles--lead to
realistic upper bounds. The given theory is applied to a range of examples that illustrate the potential of this
approach.

1. Introduction. The subject of the present paper is the application of order stars
to some problems in approximation theory. The theory of order stars started with a
paper by Wanner, Hairer and Norsett [11], who addressed themselves to stability
properties of rational approximations to the exponential function. It was subsequently
applied to rational functions that arise in the discretization of hyperbolic equations by
finite differences [7]. In paper Part I of this series [8] the present author generalizes the
theory, giving a framework for the analysis of arbitrary function, analytic except for
isolated poles and essential singularities, by other functions of similar type.

Our first problem is an approximation of analytic functions by rational functions.
Given a function f, analytic in a neighbourho0d of the origin, and a rational function
R r,,/n. where

r,,/, "= -" P, Q polynomials, degP m, deg Q n, Q (0) 1

we say that R is an approximation of order p if

R(z)--f(z)+czp+l+O(Iz[P+2),
Let us consider an approximation R,/, that attains the maximal possible order in

r,,/,,. If its order is at least m+ n, then it is called the [m/n] Padb approximation [2].
Such an approximation is unique. An arrangement of the R,,/n’s for m, n>=0 in an
infinite matrix gives the Padb tableau of f. As is well known, the Pad6 tableau is
composed out of square blocks of identical approximations. Furthermore, if Rm/
appears at the northwestern corner of a q-by-q block, then it is of order rn + n + q-1.
The question we pose is how to deduce the size of the maximal block in a Pad6 tableau
from analytic properties of the underlying function f. More formally, let p(m/n)
denote the order of Rm/. Then

(1) (f)’= max{ p(m/n)-m-n+ l" m,n>__O)

gives the maximal size of a block in the Pad6 tableau of f. We call it the block number
of f. It is known [2] that, unless f itself is a rational function, p(m/n) is bounded for
every m, n >= 0. However, it may well happen that fl(f)= .

*Received by the editors June 14, 1983, and in revised form October 24, 1983.
King’s College, University of Cambridge, Cambridge CB2 1ST, England
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In 2 we use order stars to obtain realistic bounds on the size of fl(f). It turns out
that the nature of singularities of f determinees a bound on the block number and,
accompanied by simple technical manipulation, frequently gives explicitly the value of
/(f).

Section 3 is devoted to numerous examples of functions whose block number can
be determined by the theorems of 2--Bessel functions, Mittag-Leffler functions,
trigonometric functions, a theta-like function, etc.

In 4 we address ourselves to a different problem in approximation theory, namely
the contractive approximation of stable functions. Given a complex domain V and a
function f, analytic in V and such that 0C(z)l 1 for every z 3V, with the possible
exception of essential singularities, and If(z)< 1 within V, we ask what is the highest
degree of interpolation of f by an arbitrary analytic function R in cl V which preserves
the property that R(z)] __< 1 for every z cl V. Once again, the answer comes from the
order star theory, bounding the maximal degree of interpolation in terms of the number
of zeros off in V and the nature of its essential singularities on OV.

Examples of contractive approximations are given in 5. Among other results we
derive there the celebrated result of Wanner, Hairer and Nrsett [11], namely the proof
of the first Ehle conjecture, as a special case of one of our theorems. We also establish
the connection between our results and the classical Pick theorem [10].

Our analysis consists mainly of an application of the theory that has been devel-
oped in [8]. In particular, we extensively use Propositions 1-6 therein. These proposi-
tions, as well as definitions and concepts of the order star theory, will be mentioned in
the text with no further reference to [8].

2. Bounds on the block number. Let f be a function, analytic in cl C C t3 ( }
with the possible exception of a finite number of essential singularities and at most a
countable number of poles. We further assume that the origin is an analytic point of f
and, to avoid spurious blocks in the first few columns of the Pad6 tableau, that f(0): 0.

Given that zl,...,zL are all the essential singularities off, we set

L

I(f)’= E ind(z).
j--

All the theorems of this section depend upon counting the number of sectors of A
(and possibly of D) that may approach the origin and invoking Proposition I to obtain
upper bounds on order.

THEOREM 1. Iff is analytic and nonzero in C/( z1,. .,zL } and has essential singular-
ities at z,. ,zL, where, without loss of generality, zx o, then

(2) fl (f) <= I(f) + L 1.

Proof. Let R rm/. be a given approximation of order p to f. By Proposition 1
there are exactly p + 1 sectors of A and p + 1 sectors of D approach the origin, since
f(0) =/= 0.

Since the poles of o(z):= R(z)/f(z) and of R(z) coincide, there are exactly n
poles of o. Hence, it follows from Proposition 2 that at most n sectors of A that reach
the origin may belong to analytic A-regions.

The remaining sectors belong to regions that have essential singularities on their
boundary. Each z is approached by at most ind(zj.) sectors of A. If 2 __<j__< L, then this
adds at most ind(z)+ 1 to our count of sectors at the origin, since one of the regions
may encircle zj. (cf. Fig. 1). No region encircles o and zl o adds at most ind(Zl) such
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sectors. Finally, there is the possibility for sectors of D to bisect sectors of A inside a
nonanalytic A-region. Such sectors ofD must necessarily belong to analytic D-regions.
Since o has exactly m zeros, Proposition 2 implies that this may result in at most m
sectors of A.

This exhausts all the possibilities of sectors of A reaching the origin, giving the
upper bound

I(f) + L + m + n 1

on the number of such sectors. Proposition 1 now gives

p<__l(f)+L+m+n-2.

This is true for every R ,r,,/,, in particular,

(3) p(m/n ) <=l(f) +L + m + n- 2

and the upper bound (2) follows at once from the definition (1) of the block number.

FIG. 1.A schematic’ order star with L=2, ,1 ,ind(?.l)=l, ind(,2)=2, m--2, n=l, that satisfies (3)
with an equalit.v. The dark-shaded area denotes A and "p", "z" denote poles and zeros, respectively, of o.

Note that the essential singularity at c has a distinct role in the proof of the last
theorem. Indeed, if zl,...,zL are finite, then the bound on fl(f) is slightly more
generous:

THEOREM 2. Iff is analytic and nonzero in C/{ Zx,...,zL }, has essential singularities
at z1,..., Z l. and is analytic at then

(4) /(f) =< (f) + L.

Proof. Once again, we count sectors that may approach theorigin, given R ,r,/,
of order p.
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If n >= m, we count sectors of A. At most n of them may be "contributed" by poles
of R, I(f)+ L by essential singularities and m by sectors of D that bisect sectors of A
and belong to analytic bounded D-regions--all this like in the proof, of Theorem 1.
Note that, although o has a zero of multiplicity n-m at o, this zero contributes
nothing to our count. By substituting the upper bound on the number of sectors into
Proposition 1 we obtain

p<=I(f)+m+n+L-1.

The theorem follows at once from the definition (1).
The second case, m_> n+ 1, is dealt with by counting sectors of D, instead of

sectors of A, in an identical manner. This leads, once again, to the upper bound (4).

Theorems 1 and 2 can be readily extended to functions f that are analytic and
nonzero in clC/{ ZI,’" ",ZL; $1,’" ",M; "I’]1," ",’ON }, possess essential singularities at

Zl,...,zt, zeros at ,-.., and poles at r/l,. -,/v. Let the sums of the multiplicities
of the zeros and of the poles be denoted by M* and N* respectively. It follows at once
from the method of proof of the last theorem that an approximation of f at the origin
by a function from rr,,/ leads to a similar bound on fl(f) as an approximation of a
function f*, analytic and nonzero in clC/{ z,- .,z } by a function from r,,+ ,/,+ t*.

In other words, the poles (zeros) of an approximation R play the same role as the zeros
(poles) off in our proof. This leads at once to a more general upper bound:

THEOREM 3. Iff is analytic and nonzero in clC/{ z,. .,zL; 1,’" "’M; I’’ ’’N }’
has essential singularities at z2, 1 <_j <_ L, zeros of multiplicity % at , 1 <=j <= M andpoles
of multiplicity at 1, 1 <=j <= N, then

M N

(5) (f)<=I(f)+L+ aj+ j-K,
j--1 j=l

where K 0 if all the z’s are finite and K 1 otherwise.
The bound (5) is not useful iff has an infinite number of zeros, say. However, if all

but a finite number of zeros off are real and f has only a finite number of poles, then a
much better upper bound is available.

Let a function f of that type be given. We set J=0. If a sequence { ’j }j= of real
numbers exists such that

lim ’. + o, lim If(’)l < 1,

we increase J by one and we do likewise subject to the existence of a sequence { # }..
such that

lim/z oo, lim If(/-.)l < 1.
J’---, o j--, oo

Hence J is an integer, 0 __<J __< 2.
THEOREM 4. Let the following conditions be satisfied:
(i) f is analytic and nonzero in C/( zl,...,zL; 1,’" ",M; r/i,"" ",r/v; r,r2, },

with essential singularities at zj, 1 <_j <_ L, where zx
(ii) f has a pole of multiplicty flj at each *lj C, 1 _<j __< N.
(iii) f has a zero at each rj R, 1 <_j.
(iv) f(5)=f(z) for every z C.
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Then

N

(6) ,8(f) <= I(f)-J + L + , + 1.
j=

Proof. We count sectors of A that reach the origin, given R rr,,/,. It is central to
our analysis that, because of (iv), the order star is symmetric with respect to the real
axis.

Let us suppose that q / and q_ sectors of A that reach the origin contain positive or
negative poles of o respectively. Since the order star is symmetric with respect to the
real axis, it means that these sectors enclose q/ + q_-2 sectors of D (we assume here
that q_, q/>= 1, otherwise our bound can be further reduced). Each A-region that
reaches the origin and contains points on the real axis must be either unbounded or
contain some of the q/+q_ sectors. Hence, the "contribution" of xx, x2,-.- is ex-
pressed only in these sectors.

In addition, at most I(f)+ L-1 sectors are "justified" by essential singularities
(the proof is identical to that of Theorem 1), and at most n + E=lOj are accounted for
by poles of o. Furthermore, we have m + E= fl2-(q + + q--2) zeros left and they can
contribute to sectors of D that bisect sectors of A at the origin. Finally, J sectors of A
that reach the origin from via the real axis may be bisected by sectors of D, but that
"costs" additional 2J zeros.

Proposition 1 gives

p+l <_(q++q_)+(I(f)+L-1)+ n+
jl

+ m+’B-q+-q_+2 +J-2J
j=l

=I(f)+L+m+n+ E otj+ Y’ j-J+l,
j= j-

and (6) now follows from (1). O
The role of zeros in increasing /3(f) can be even further suppressed in some

instances:
THEOREM 5. Let f be an entire function such that ind(oo)= 1, f(2)=f(z) for every

z C, all zeros off are negative and a positive number r exists such that the ray (r, o0)
belongs to D in the order star of o R/f, R rational. Then/3(f)= 1 and the Padb tableau
is normal.

Proof. Let R be a function in rr,,/,. It is obvious that a single unbounded A-region
exists in the order star. We denote it by Aoo and distinguish between two cases"

(a) No sector of A at the origin belongs to Aoo" n sectors of A can be accounted for
by poles of R. All other such sectors must belong to A-regions that contain portions of
the real negative ray. By the symmetry of the order star about the real axis, if there are
q such sectors, say, they must enclose q-1 sectors of D that belong to bounded (ergo
analytic) D-regions. Therefore q-1 =< m and, the order being p, Proposition 1 gives
p<=m+n.

(b) Some sectors of A at the origin belong to Aoo" Given that q such sectors belong
to A oo, they enclose q- 1 sectors of D that belong to bounded D-regions. Therefore, by
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Proposition 2, q<=m+ 1. Since at most n additional sectors of A may belong to
bounded A-regions, the theorem follows by Proposition 1. D

It is possible to extend further the present theory in three directions: firstly, to
obtain theorems that cater for more general functions. Secondly. to obtain stricter
inequalities. Thirdly, to examine different patterns of interpolation--two-point Pad6
approximations, N-point interpolations, approximation with loci of zeros or poles being
restricted etc. See [9] and [11] for examples of theorems that restrict the degree of
interpolation off(z)= e by rational functions of various forms.

3.. Block numbers of certain functions. In the present section we apply the theo-
rems that bound the block number to a range of functions. In all the cases we are, in
fact, in a position to find from analytic considerations the exact value of fl(f).

(a) A nonzero entire function of bounded perfect order of growth p is necessarily
of the form

f(z)=eg(z),

where g is a polynomial, degg=0 [1]. It is easy to extend this result and to show that
the conditions of Theorem 1 amount to f being of the form

f(z)--exp(gl(z)+g2((z--z2)-l)-l-g3((z--z3)-l)+ +gL(Z--ZL)-I).
Hence, subject to I(f)< , Proposition 5 implies that each g must be a polynomial of
degree ind(zj), 1 =<j < L. The bound (2) is actually attained by the function

f(z)=e

with L 1, z , ind( zx) K.

M k

(b) f(z)=e:Y’ (-1). ,
k--o

We are within the conditions of Theorem 3. f has a single essential singularity at
and, by Proposition 5,ind()= 1. It is entire and has M complex zeros. Hence

M N

L=I, I(f)=l, Y’ a.=M, Y’ fls=O,
j=l j=l

K=I

and (5) gives

/3 (f) __< M+ 1.

However,

f(z)=l+ (-1)t
(M+I)! zt+l+O(Izln+-)

and p(0/0) M. Thus, (1) gives M+ 1 __< fl(f) and, consequently,

fl(f) =M+ 1.
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A similar result is attained for

We have now Y’.= lj--’--0, Y’.= lj---N,

e

E=o(1/k!)z*

1 N+I N+2
f(z)-- 1 +

(N+1)z +O(Iz )

and (5), together with (1), give

fl(f) N+ 1.

(c) Trigonometricfunctions. Let f(z)= (sin z )/z. It is an entire function, f()=f( z ),
all the zeros are real and I(f)---2 (cf. [8]). Furthermore, J---2. Hence, by Theorem 4,
fl(f) =< 2. It now follows at once that

fl (f) 2,

since f is even (cf. [8, Fig. 2]).
A similar result can be readily obtained for f(z) cos z.
(d) f( z ) (e 2 sin z)/z.
Let z rei r >> 0. Then

1 cos 01[f( reiO)l=r le ersino --e-rSinO[(l+o(1)).

Therefore p(f)= 1 and, by Proposition 4,ind(o)_<2. The rays 0= 1/4rrand 0=-]r are
asymptotics of 0 when r o and there is an unbounded D-region in the order star of
o R/f, R rational, to the right of these rays. Furthermore, since there are poles of o

(zeros of f) along the positive axis with an accumulation point at infinity..P(o)= { 1, 2
and ind(o)= 1. Substitution in (6) gives fl(f)__< 2. It follows from the Taylor expansion

+ z + )
that p(2/0) 3. Therefore (1) gives fl(f)= 2.

(e) f(z)= J,(z)/z Il, v integer. J is the Bessel function and the factor z-I,I caters., for
the Ivl-fold zero at the origin. As is well known, all the zeros off are real andf()=f( z ).
Moreover, by the asymptotic formula for Bessel functions [4]

f(z)= z-1l+l/Zcos z- r)(1 + o(1))

for Izl >> 0, largz < r. This, together with

J(-z)=(-1)"J(z),

implies that ind(o)= 2. Theorem 4 holds with I(f)= 2, L= 1, J= 2, yielding fl(f)__< 2. It
follows at once that fl(f)= 2, since f is even (cf. Fig. 2).

o
Z k

(f) E r(.,+ a)’
.>2.

k=0
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E is the Mittag-Leffler function. It is entire, p(f)= 1/a < 1/2, all the zeros are in
(-oo, 0) and f()=f(z) [4]. Proposition 4 gives I(f)=ind(o)=0 and Theorem 4 is
satisfied with J 1. Therefore fl(f)= 1 and the Pad6 tableau of E is normal for a > 2.

(g) f(z)=Fl=x(1-qkz), 0<q< 1. This is a theta-like function and it is entire [9].
It is easy to show that

(7) f(z)= E (-1) kk(k+l)/q2zk
/,-o [q],

.,2 .,4(a) R4/o(z)=l-a. + ,orderS.

(b) R2/2(z)=(16+ 3z2)/(16+z2). order 5.

FIG. 2. Padb approximations to f( z )=Jo( z ). "z denotes a zero of o of multiplicity 2.
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(c) Ro/a( Z)= 1/(1 + z2/4 + 3za/64), order 5.

FIG. 2. (continued)

where [q]0 "= 1, [q]k=(1-q)(1-q2) (1-q’) for k>= 1. The explicit form of Pad6
approximations to f is known [5].

(_l)k[m] [q],,,+o-, /,,/,+
k [t]2-+o q l’/2Z

n

k=0
k [q],,,+o

z

where

J]’= [q]J
O<k<=j.

k [q][q]j-’

Therefore, since every two Pad6 approximations are different, fl(f)= 1 and the Pad6
tableau is normal.

Here we give a proof of that fact based on Theorem 4: since

nlogn
p (f) lim sup --1’

loglcol

where c is the nth coefficient in the Taylor expansion of f, it follows from (7) and
Proposition 4 that

I(f) ind(c #(f) O.

We are within tbe conditions of Theorem 4 with J= 1 and (6) yields at once fl(f)= 1.
(h) Let f be an entire function, p(f)= 1, with the representation

f(z)= I-I (1 +coz )
n=

where Co>0, N>= 1, and limo_, cn=0.
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LEMMA 6. If is as above then ind()= 1, o is a regular point of the order star of
o R/f, where R is an arbitrary rational function, and there exist exactly one unbounded
A-region and one unbounded D-region whosejoint boundary asymptotically approaches
the A-region being to the left.

Proof. Let z re i. Then

)/(z)l2= I-I {1 +2c.rcosO+2r2}.

Since lim._+o#=O, .>0, for every e>O there exists N such that, given n>__N,
0 < .r__< e. Therefore

cosO>e,n>N implies 1 +2c.rcosO+ c.r2 2 >1+3e2 >1;
(8)

cosO<-e,n>=N implies l+2c.rcosO+cZ.r2<l-e2<l.
Thus cos0> e implies that z D, whereas if cos0 <-e, then z A. There is still a
possibility for "thin" sectors of A and D to fit into the order star near R. However,
since the order star is symmetric with respect to , there must be an equal number of
such sectors of A in the upper and lower half-plane. In other words, if such sectors
exist, then ind(o)>_ 3. However, Proposition 4 implies that ind(o)_< 2o(f)= 2. There-
fore ind(o)= 1 and the lemma follows from (8).

As a consequence of the last lemma, the function f satisfies the conditions of
Theorem 5 and has a normal Pad6 tableau (i.e. fl(f)=l). An example of such a
function is

f(z)= ]-I 1+
)n=2 n (logn

By [6] it is indeed of perfect order of growth 1. Given a function f with the factorization

f(z)= 1- (1 +c.z),
n--1

c. > 0 for every n >_ 1, it is easy to verify whether indeed o(f) 1 and we are within the
conditions of Lemma 6--this will happen if and only if

E Cn’<O0
n=l

and

for every a < 1 [6].

4. Contractive approximation o| stable tunetions. In the present section we analyse
the following problem: given an open subset V of the extended complex plane with a
Jordan boundary, consider a function f, analytic inside V and such that El(z)[ 1
identically along 0V, with the possible exception of essential singularities. If essential
singularities on )V occur, we demand that (z)< 1 for every z along the restriction of a
circle of radius e around each essential singularity to V, for every 0 < e << 1. In that case
it follows at once that [/(z)_<l for every zclV. It is often vital to preserve this
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important property, frequently called stabifity, in approximating fmnumerical analysis
of differential equations abounds with such examples.

Following [8] we say that a function R is a V-contraction if R is analytic in cl V and
R(z)l =< 1 there. Let us assume that a point cl V has been specified and we wish to
interpolatefby R at ,
(9) c.O.

We consider the problem of finding realistic upper bounds on p, subject to V-contrac-
tivity of R. Note that R need not be rational.

It is assumed throughout this section that f is not identically a constant. We denote
by L the number of zeros of f in V. If f is analytic along OV, then 1 =< L < c" If L 0,
then also 1/fwould have been analytic in cl V and [/(z)l 1 along 0V, together with the
maximum principle, would have led to 1/It’(z)=< 1 in cl V. But this is impossible, since f
is not a constant, implying that 1 _< L. Moreover, L < oo, otherwise there will be an
accumulation point of zeros of f in cl V.

Given in cl V, we set

a()’= 2rr

if V. If 0V, we denote by a() the angle (from within V) that is spanned by the
left and right tangents to 0V at . This definition is meaningful, since the boundary is
rectifiable. Note that if is a smooth boundary point, then a()=r. In general
0 =< a() =< 2 rr, the extremal values being attained when is at an apex of a cusp.

THEOREM 7. Iff is analytic along OV and a($ > O, then

(10) p_<
(2L+ 1),r

for every V-contractive approximation R.
Proof. By Proposition 3 V-contractivity is equivalent to R being analytic in cl V

and iVnA 0. Therefore, given V-contractive R, BV separates A-regions. Moreover,
since R is analytic in cl V, o has L poles there. Consequently, the sum of mulitplicities
of the A-regions within V is, by Proposition 2, exactly L.

Given (9), it follows from Proposition 1 that ind(2)=p and that is a regular point
of . Therefore, if V, then p sectors of A adjoin 2 inside V. To count sectors of A if
2 0V, we exploit regularity. If q sectors of A adjoin 0V from within V, then

2q+1 2q-1>=a()>__
P P

(cf. Fig. 3). Hence, regardless of whether V or OV.

2q+l
e__<

q being the number of sectors of A adjoining from within V. It follows at once from
the definition that q _<p. This, together with (11), completes the proof of the theorem.

It is interesting to generalize the upper bound (10) to a more elaborate pattern of
interpolation. Let { j }ju be given in V (we prohibit j.’s on the boundary to avoid too
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complicated and messy formulas) and suppose that

R( z )=f( z )+ cj( z 2j) s,s + O( +
q4O, pj>__O, jM.

Note that M may be either finite or infinite. If pj >_ 1, then j is an interpolation point.
We define

THEOREM 8. Given the V-contractive approximation R to a function f that is analytic
in cl V, it is true that

(12) P<__L.

Proof. Follows in an identical manner to the proof of Theorem 7, by counting
multiplicities of A-regions within V and the number of sectors of A that adjoin the
points j when p. >= 1 (cf. Fig. 4). H

We now turn our attention to a function f that possesses essential singularities on
OV. It is an immediate consequence of (z)l < 1, z V, that each such essential singular-
ity is approached by exactly one A-region from within V in the order star of o R/f, R
analytic in cl V.

THEOREM 9. Let f have K different essential singularities along OV. Then, if R is a
V-contractive function that satisfies (9)for cl V, it holds that

2(L+K+m)+I(13) p_< r,

where m is the number of zeros ofR in V.
Proof. We evaluate an upper bound on the sum of multiplicities of the A-regions

that are, by Proposition 3, enclosed within V and contribute sectors that reach . Zeros
of f may lie, by Proposition 2, in analytic A-regions whose combined multiplicities may
not exceed L. In addition, each essential singularity on 3V is approached by one
A-region inside V. If that A-region contributes r >= 1 sectors, say, that reach in V then
it encloses analytic D-regions, sum of whose multiplicities is at least r-1. Since, by
Proposition 2, the sum of all the multplicities of analytic D-regions that lie wholly in V
may not exceed m, the number of zeros of R (and of o) in V, at most K+m sectors of
A that reach within V may belong to nonanalytic A-regions. We now proceed like in
the proof of Theorem 7 to derive the inequality (13) (cf. Fig. 5). H

THEOREM 10. Given V-contractive approximation R to a function f that has K
essential singularities on OV, it is true that

P<_L+K+m,

where m is the number of zeros of R in V.
Proof. Similar to the proof of Theorem 8, but with L replaced by L + K+ m. H

5. Examples of contractive approximations.
(i)f(z)= (1 +z)e-:, =0. The set Vis given in Fig. 3. The origin is a corner of OV

and ct(0)=,r/2 (this can be seen at once from Proposition 1, since 1 +z=e- 1/2z2+
O( z 3)). Hence, sincef is analytic along OV and has a single zero in V, (10) gives p _< 6.
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Let

1 : 1 lz4 3R(z)=l--z +-z g + z

the [5/0] Pad6 approximation to f. It can be shown that it is V-contractive. Figure 3(a)
gives the order star.

.,3 .,4 3 .,5(a) R(z)=l-z +’---’- +--’-

(b) R(z)=

FIG. 3.Approximations to f(z)=(1 + z)e-: at the origin. The bounda.’ of V is denoted by "&".
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Another example of a V-contractive function that attains p 6 is the [0/5] Pad6
approximation,

1g(z)-
1 + 1/2z 2 1/223- -38z4- -zll 5"

It is given in Fig. 3(b).
(j) Let V be a simply-connected domain with smooth boundary. Then it is possible

to show that subject to a single exception, there exists an approximation R that attains
the bound of Theorem 8. This is done with the help of the Pick theorem [10]. Let W
denote the open complex unit disk. Given Zo,...,Zp W and complex numbers
00,. .,%,, there exists a unique q-tuple (x,. -,Xq), q<__p, of numbers in W and a ,C
such that the function

satisfies

(14)

g( z ) knq( z; lf, l,. igq)

g(z) %., O<__j<__p,

and has the minimal Lo norm in cl W amongst all the analytic functions that satisfy
(14). Bq denots the Blaschke product,

q
Z--jBq(Z;lf’l"’’’lq)’= H 1-jz"j=l

The theorem also gives an explicit formula to evaluate [Xl=llg[], W, but this is not
important to our argument.

Let f be a function, analytic in cl W and such that If(z)[-= 1 along i)W. We wish to
interpolate it by a W-contraction at z0,. .,Zp, say. We set j =f(zj), 0 <=j <_p. There are
just two possibilities"

(i) f is the function g from the Pick theorem. In that case every other analytic
function R that satisfies (14) must have an Lo norm exceeding I and no W-contractive
approximation is possible.

(ii) f differs from g. we set R g. Since

Ilgll,< Ilfll ,--- 1,

g is a W-contraction. Note that, by Theorem 8, L >__p _> q.
In other words, unless f is the minimal interpolant from the Pick theorem, the

upper bound (12) is always attainable in W by a scaled Blaschke product. By the way, f
itself is necessarily a Blaschke product, scaled by a constant of unit modulus.

Our analysis can be readily extended to Hermitian interpolation by a limiting
process and to an arbitrary simply connected domain V with smooth boundary by
conformally mapping V onto W.

As an example we give in Fig. 4 the order star for V= W,

4
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FIG. 4. An approximation to f(z)--(z-/2)(1-(V//2)z)-2 at the origin.

R is the Pick approximant, with the Lo norm

=0.965925826

(k) f(z)=exp(z/(z :z- 1)). The set V is the half-disk ( zC" [zl< 1,Rez >0} and
there is an essential singularity at 1 OV. f is being approximated at 2 0. Therefore, by
Theorem 9,

(15) p=<2m+3,

since L 0, K= 1 and a(
Figure 5 gives order stars for three different approximations;

1 -z/2R(z)=Rl/l(Z)=l+z/2
1

R(z)=R/z(Z)=
1 +z +zZ/2

R(z)=Rz/o(Z)= 1 -z + z/2.

In all three cases m 0 and p 3, that is to say (15) holds as an equality. Note that only
the first two approximations are V-contractionsmindeed, (15) is a necessary condition
but it is far from being sufficient for V-contractivity!

(1) f(z)=exp(2z/(z + 1)). V is the unit disk and f has an essential singularity at
1 0V. Approximating at 0, Theorem 9 gives the upper bound

(16) p<=m+l.
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Consider the following approximations:

1
R(z)=Ro/z(z)=l_2z+4z2, m=0, p=3,

2
R(z)=R3/o(z)=l +2z--z re=l, p=4,

R(z)
1 +5z/2 re=l, p=2.
(1 + z/4)2’

(a) R(z)=(1-z )/(l+z ).

(b) R(z)=l/(l+z+z ).

FIG. 5. Approximations tof( z )= exp( z( z 1)- at the origin.
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(c) R(z)=l-z+-,.

FIG. 5. (continued)

The first two approximations fail to satisfy (16) and so cannot be V-contractive. It is
easy to verify that the infringement of V-contractivity occurs for different
reasons--while the first function has poles in V and is not analytic there, the second
exceeds 1 in modulus along OV. The third function is in agreement with (16) (as an
equality) and is contractive.

(m) The first Ehle conjecture" it has been conjectured by Ehle (3) that the [m/n]
Pad6 approximation to e can be A-acceptable only if m __< n __< m / 2. The proof of this
conjecture by Wanner, Hairer and Norsett [11] was the first success of the order star
theory. Here we derive it from Theorem 9. We approximatef(z)= e by Rm/n rrm/ at
--0o

The set V coincides with C- "= (zC" Rez__<0) and p=m+ n+ 1 (the degree of
interpolation always exceeds the order by 1, cf. (9)). There is a single essential singular-
ity of f along V, at o. Furthermore, L=0 and a()=,r. It now follows from (13) that
A-acceptability (identical to V-contractivity in our framework) implies

n<m+2.

As the inequality m _< n is obvious, the proof of Ehle’s conjecture follows as a straight-
forward corollary of our results.
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n-WIDTHS AND OPTIMAL INTERPOLATION OF TIME- AND
BAND-LIMITED FUNCTIONS II*

AVRAHAM A. MELKMAN"
Abstract. Denote by B(o, T) the class of entire functions of exponential type o which are bounded by 1

on the real axis outside (-T, T). It is shown that this class, considered as a subset of C[-T, T], has
approximate dimension 2oT/r in analogy to the Landau-Pollak-Slepian dimension theorem. More gener-
ally, the optimal subspaces and corresponding worst functions for the n-widths of B(o, T) are characterized.
Prominently featured is the fact that it is possible to achieve the n-widths via interpolation, provided the
sampling points are adroitly chosen. However, the interpolating functions differ from the standard ones.

1. Introduction. Denote by B(o, T) the class of entire functions of exponential
type o which are bounded by I on (- oo, T)U (T, ). This paper mainly concerns the
following problems.

(a) Given (ti} with -T<=ti<=T, find an algorithm A*" Cn--, C[- T, T] which
estimatesf B(o, T) from the data y= (f(t)) optimally in the sense of Micchelli and
Rivlin [10], i.e. it achieves

E(tt,..., tn) inf max IIf-AYllr,
A f B(o, T)

where [[-I[r is the max norm on [- T,T], andA is any map C"-C[- T,T].
(b) Find the n-widths of B(o, T) with respect to C[-T, T],

d,,(o,T)=d,,(B(o,T), C[-T,T])

X c C[ T, T] f- B(o, T) y X

where X,, is an n-dimensional subspace.
Clearly then E(tl,...,t,)>=d,(o, T); we will show that equality is achieved with

the optimal choice of sampling points in (a). Of particular interest is N(o, T), the least
n for which the n-width is I or less. This N(o, T) may be regarded as the "approximate
dimension" of B(o, T), though its dimension is of course infinite. This point of view is
best explained within the context of the original problem in which it arose. Regard
eB(o, T), e > 0, as the set of those functions which are band-limited to (i.e. with Fourier
transform supported on) (-o,o) and simultaneously time-limited to [-T, T] to within
measurement accuracy e; after all, outside (-T, T) any feB(o, T) is pointwise indis-
tinguishable from 0 within accuracy e. Thus it is reasonable to define the approximate
dimension of eB(o, T) to be the dimension of the smallest subspace which contains for
each feB(o,T) an element pointwise indistinguishable from f in [-T,T] within
accuracy e.

The dimensionality problem is therefore the Lo version of the L2 problem raised
and dealt with by Landau and Pollak [6] and Slepian [12], of which we gave an account
in a previous paper [9]. Analogously to the results found there we prove that the

Received by the editors February 3, 1983, and in revised form February 27, 1984. This research was
supported in part by the U.S. Army through its European office under contract DAJA 37-81-C-0234.

Department of Mathematics, Ben-Gurion University, Beer-sheva, Israel.
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approximate dimension of B(o, T) is 2oT/r and that the approximation may proceed
by interpolation.

Logan [7] analyzed the n =0 case, which is to find the function maximally con-
centrated in [-T, T]; his methods stimulated ours. Another source of inspiration has
been the work of Boas and Schaeffer [3] (see also Ahiezer [1]). In fact, 2 is mostly
devoted to showing how their arguments may be modified to solve the more general
problem of characterizing the extremal f0 for max(Lf:fB(o,T)), with L a linear
functional. This characterization is of use for problem (a) when taking L of the form

Lf=f(t)- otif(ti),
i=l

thereby obtaining the error in the pointwise estimation off(t) from the datay {f(ti)}7
by means of the linear algorithm Ay= Ei=xaf(t). Moreover, Micchelli and Rivlin [10]
have shown that for pointwise optimal estimation there always is such a linear algo-
rithm which is optimal and

max If(t)l.min max f(t)- _, aif(ti)
{ai} f-B(o,T) i= f.B(o,T)

f(ti)=O,i-----1,. .,n

Section 3 uses this observation to analyze the algorithm for pointwise optimal estima-
tion and shows that it is also a globally optimal one.

In 4 it is shown that this linear optimal estimation based on the best set of
interpolation points actually yields the n-widths, i.e.

d, ( o, T ) min min max IIf AYlI ,
{ti} A f-B(o,T)

a result similar to Micchelli, Rivlin and Winograd [11]. Finally in 5 the dimensionality
of B(o, T) is calculated.

2. The maximum of a linear functional. This section summarizes the main results
of Boas and Schaeffer [3] and the slight variations pertinent to the present setting.

Like them we are interested in the linear functional

m ni

(2.1) Lf= Y’. E a}J)fJ)(xi)
i--1 j--O

with a}) given real numbers, and x real points, and denote l=Em=x(ni+ 1). The only
differences are:

(i) we want to maximize Lf over the class BR(O, T) of entire functions of exponen-
tial type o which are real on the real axis and bounded by I on (- , T) and (T, )
instead of their BR(O, 0);

(ii) we require xi [- T, T], i= 1,. .,m.
In the following theorem we gather all the information needed in later sections.
THEOREM 2.1. The elementf ofBR(o, T) for which

(2.2) Lf=supLg



n-WIDTHS AND OPTIMAL INTERPOLATION II 805

is unique and either constant or of type o exactly. If not constant it satisfies a differential
equation

and is therefore of the form

f(z)=sinq(z),

{/,fz)} o ( p(z)}
l_{f(z)} 2 q(z)

( z )=o( q(w) } -1/2p( w dw + sin-if(0).

Here p ( z ) and q( z ) are monic polynomials with real coefficients.
Denote by < h_ 2 < h_ <= T, T <= h < 2 < the points in ( oo, T] and

[T, oo) at which [f(i)[ 1. If _1 T andf’( + T)O set s _(z)= z-T- T, otherwise
s _(z)= 1. Let

(2.3) s ( z s + ( z ) s ( z ), , degree s.

(1) The degree ofp is at most l- 2 + , and the zeros ofp (z) are precisely those zeros

off’ different from the i. Thus f nearly equioscillates outside (- T, T) in the sense that
f(i)f(,i+x) -1 for all <_ -2, i> 1 with the exception of at most l-2 + , values.

(2) f vanishes simply between successive i such that f(i)f(,i+ 1) 1 and has at
most 1-1 zeros in addition.

Proof. We merely sketch the main points of the proof, referring to Boas and
Schaeffer for details, whenever possible.

a. [3, Lemma 2.2]. sup Itgl is finite, positive and attained. Note: the proof of this
in [3] needs only be supplemented by the fact, Logan [5], that if f is bounded by 1 on

(- o, T) and (T, o) then it is bounded by cosh oT on (- T, T).
b. [3, Lemma 3.3]. Let fbe an extremal for (2.2). Then [f(x)l= 1 for at least one x

in (- o, T] tO [T, o); and if gBR(o, T) satisfies g(Xi)=0 i= _+ 1, _+ 2,... then
Lg=O.

c. [3, Lemma 3.7]. If g BR(o, T) satisfies g(hi)=0, i= + 1, +__ 2,... and g(x)=
O(Ixl -tt-1)) as Ixl o then g=0. Note. Our requirement xi[- T, T], i= 1,...,m
removes the obstacle noted in [3], to completing their proof in case n= 0, 1,. .,m.

d. [3, p. 863]. In particular consider f’(z)s(z) which vanishes at all h i. If it has r
additional zeros then let p(z) be the monic polynomial with precisely these zeros. The
functionf’(z)s(z)/p(z) is in Ba(o, T) and behaves as O(Ixl--"))., Thus r =< 1- 2 + m.

e. [3, Lemma 3.2]. Similarly, if (1-{f(z)}2)s(z) has r0 zeros in addition to the
double ones at the , then there is a function gBa(o,T) vanishing at all X and
behaving like O(Ixl(’o-)/2). Thus (r0- m)/2 < 1-1.

f. [3, p. 863]. Combining (d) and (e) shows that

p(z) q(z)

is a zero-free entire function of exponential type bounded on the real axis and therefore
constant.

g. In order to prove (2) let the additional zeros of f be comprised of a zeros in
[- T, T]; 2fl complex zeros which must come in pairs since f(z) is real for real z; 23,
real zeros between successive X, which must be even in number in order to preserve the
sign change. Let r(z) be the monic polynomial of degree k =a + 2/3 + 23, with these
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zeros. Now if k >= let h be a monic polynomial of degree k with all its zeros in (- T, T)
and such that htJ)(ti)=Oj=O,...,ni, i= 1,...,m. Set d(z)=f(z)h(z)/r(z). Then sign
d(t)= sign f(t) for Itl>__ T while d(t)-->f(t) as Itl oo. Thus [f(t)-ed(t)l < 1, Itl>= T, for
small enough e. However L(f-ed)= Lf contradicting the maximality off.

3. Optimal estimation ol a tunetion trom given data. Consider the optimal estima-
tion off(t),fB(o, T), from its valuesf(ti), i= 1,- .,n with T_< __< t2_< =< tn_< T
where, in case of coincident points, appropriate derivative evaluations should be taken.
Since attention can be restricted to linear recoveries, e.g., Micchelli and Rivlin [10], the
search is for optimal coefficients a’ and the extremal function f0 achieving

(3.1) fo(t)- a’/’fo(ti) min max g(t)- Y’. aig(ti)
i==1 aiC gB(o,T) i==1

As noted before, it is a result of Micchelli and Rivlin [10] that f0 is at the same time
the extremal for

(3.2) max(Ig(t)l’g B(o, T), g(t,)--0,i- 1,-.. ,n).
Since fo may be assumed real on the real axis it is sufficient to consider only

g BR(O T) in (3.1) and (3.2), and hence also only real a. Thus the knowledge that
fo(ti)=O,i 1,.-.,n can be combined with the properties fo is endowed with as the
extremal of a problem of type (2.2).

PROPOSITION 3.1. Let fo be an extremal ofproblem (3.1). Then"
(1) fo oanishes at the while all its other zeros are real, simple and outside [- T, T].
(2) fo equioscillates outside (- T, T), i.e. denoting by

<’-2<’-1_-<-T, T--<)1<’2 <’’"

the points at which [fo ( i)1 1 then fo( i) ( 1) + + with p 0 for > 0 and la n for
< 0 ( assumingfo()t) 1).

(3) f oanishes in (- T, T) at precisely n- 1 + v points /,i, 1,-.-, n- 1 + v sep-
arating the ti, with T< txx < t ifs_(z) 1, </x,_x +,< T if s +(z) 1.

Proof. Invoking Theorem 2.1 (2) with l= n + 1 it follows that, in addition to the
real, simple zeros between successive h, f0 vanishes only at the t. Therefore by
Laguerre’s theorem, Boas [2, 2.8], f0’ too has only real simple zeros separating those of
fo- Additional information on f0’ can be gleaned from Theorem 2.1 (1), to the effect that
fo’ has in (-T, T) at most v zeros in addition to the n-1 zeros between i. If, for
example, s_(z) 1 meaning f0(- T)=I, f0’(- T)>0 (since L/0(t)l__< 1 for t__< T) then
fo’ must vanish between -T and t. A similar phenomenon occurs at T causing fo’ to
possess precisely n- 1 + v zeros in (- T, T).

With notation as in Proposition 2.1 set
n-l+,

(3.3) h(z)=f(z)s(z)/ I-I (z-p).
i--1

Thus h (z) vanishes only at hi, i= + 1, +_ 2,...
THEOREM 3.1. The extremal fo ofproblem (3.2) is unique, up to a sign, and indepen-

dent of t. The optimal estimate of g(t), Itl__< T, is effected by interpolating the data g(ti),
1,..., n with a function in

n-1
(3.4) span{ h(t)ti}o
and the estimate errs at most by [fo(t)l, with equality only for fo.
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Proof. First we show that, with fo an extremal for (3.2), any function g B(o, T)
has the representation

h(Z) Li(z)+ E g(h) ’(h(z)o(z)(3.5) g(z)= g(ti) h(il) h ,k)tO(hi1 Ikl--- k

where (z)= 1-I__(z-t) and Li(z are the Lagrange polynomials, L(t2)= 2.
Indeed, let C be the rectangular contour consisting of lYl- k, x -r+ k where

is the point at which the maximum offo’ in (X,X+ x) is achieved. Then

fo(z) 1
dzz- t

satisfies lim_,oI 0 because, by Theorem 1, h(z) behaves for large z like sinoz/z -1.
Thus Cauchy’s theorem yields the desired representation.

Now for k_ 1 signh’(h)=signf’(hk)= signfo(h) since h k is an extremum of
fo (except for if f0(T) 1, but then fo’(T)< 0 leads to the same conclusion). Observe
in addition that tO(hk)>0 while t-h<0 for t__< T. Combined with similar results for
k __< 1 this yields

-1

fo(t)=h(t)to(t) . [h’(h)t(h)(t-h)[ t<__T.

Thus for anygBs(o,T) so that [g(X)[__< 1 and t[-T, T]

il

as claimed.
To prove uniqueness use the representation (3.5) for any g B(o, T) vanishing at

the . We have

Ig(t)l-- h(t)a(t) E g(h,) <[f0(t)l
[k[-a h’(X)0(,)(t-X)

since [g(X)l_<l. Moreover equality occurs for [t[< T if and only if g(X)=Sf0(X)
with I1 1 in which case formula (3.5) yields g(t)= #fo(t)-

Up to now we have dealt with the estimate of a function at a point. Another
approach is to attempt estimation of the function as a whole on [-T, T]. One looks
then at algorithms A" C’ C[-T, T], which map the data y=(g(tl),...,g(t)) to a
complex valued continuous function, and the optimal one achieves

E(t,...,t)=min max Ilg-Ayllr
A gB(o,T)

where Ilgllr-- max(lg(t)[ T=< < T).
However, the pointwise optimal estimate consisted of an interpolant which was in

fact of exponential type o and bounded on the real axis. Thus the following corollary is
immediate.

COROLLARY. The pointwise optimal estimate of g( t) given in Theorem 3.1 is also the
global optimal estimate ofg on [- T, T] and

E ( ta ) Ill011
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4. Optimal sampling and n-widths. The previous section closed with a description
of an optimal procedure for recovering a function from its values sampled at a given set
of points. In this setting it is natural to ask for the optimal set of points at which to
sample, i.e., those points which minimize E(q,...,t),

E(t,...,t*n )=minE(t,...,tn)
t

min (maxllgll r:g B(o, T), g(ti)=0,/= 1,’.. ,n ).
ti

The following theorem answers this question and at the same time provides a char-
acterization of the n-widths of B(o, T). Before stating the theorem, let us briefly
describe the notion of n-widths; for a fuller description consult Lorentz [8] or Pinkus
[121.

The procedure of interpolating a function gB(o, T), at a fixed set of n points by
the n functions (3.4) is one particular kind of linear approximation. It is conceivable,
and indeed sometimes the case that a different approximation process from some
n-dimensional subspace X, of functions will yields a smaller worst case error. Thus one
is led to the notion of the n-width (in the sense of Kolmogorov) defined as

dn(o,T)=dn(B(a,T); C[-T,T])= min max min IIg-hllr.
XncC[-T,T gB(o,T) hX

The n-width is therefore the minimum possible worst case error incurred in ap-
proximating the set B(o, T) with a set of n functions. Of particular interest, of course,
is the set of functions that achieves the n-width.

THEOREM 4.1. There exists a unique function Fn BR(O T) with the following proper-
ties:

(1) Fn equioscillates in [-T, T] between the values +_llF, llrexactly n/ 1 times at the
points Px < <Pr+, i.e. F(o)--(-1)+l-lIFll i=1,..-,n+ 1.

(2) F, equioscillates outside (- T, T) between +_ 1.
(3) Ifllfll< 1 then IFn( +_ T)l=llF.llrand otherwise IF,( +_ T)I= 1.
(4) F, has only the real simple zeros implied by (1) and (2). This function is the unique

solution to the problem

(4.1) min max
g- B(o, T)
g(ti)=O

The zeros of Fn in [- T, T] are an optimal sampling point set and

d(n(o,T); C[-T,T])--E(tF,...,t* )--IIFIIr.
Furthermore the n-width is achieved through the approximation process of interpolation at

1, wherethe points by the set offunctions { h ) J } o
n+l

F,[(t)(t 2- T2)/ II (t-Pi) ifllF.Ilr>l,
h(t)= i=1

n

F(T)/1-I (t-Pi) if llF.IIz l.
i=2

Proof. For ease of reading the proof is divided up into several lemmas. First we
prove the existence of F, as claimed and then its uniqueness. This already solves the
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optimal sampling problem. Since the concomittant interpolation procedure is a form of
linear approximation it also follows that dn<=llF, llT. The proof is then completed by
showing d->_ IlFllr.

LEMMA 4.1. There exists a function FBR(o, T) with the properties claimedfor it in
Theorem 4.1 (1)-(4).

Proof. We employ, almost verbatim, the method of Karlin and Studden [5, Thm.
10.1]. Given any j (j0,Ja,-. ",5,) within the simplex

(4.2) ji>=0, i=0,...,n, i=2T
i--0

construct interpolation points ti= T+ Y’.2.x0/, 1,...,n.
By Theorem 3.1 there exists a unique functionf such that

(4.3) Ilf ll --max(llgll : gB(o,T),g(ti)--O,i-1,"’,n)
with the normalization f(T+e)>O for small e. From Theorem 2.1 f already has
properties (2), (4). It remains to show that can be chosen so that properties (1) and (3)
hold.

With o T, t/ T let

8i(j)= max Ife(t)l,
ti<__t<-t+

and, at the suggestion of A. Pinkus,

8 (j) max6i(/j),

ei()=()--i(), i=0,.--,n, en+a()=eo().

Note that 8()=0 if and only if =0, i.e. t=t+ x, and that ei()>__0 with equality for
at least one i. Now, any f can equioscillate at most n+ 1 times in [-T, T], by
Proposition 3.1 (3). Thus the existence of F is equivalent to the existence of a such
that E,=0 e()= O.

Suppose to the contrary that

e(j)= e,(j) >0 for all
k=0

Then the mapping ---, ’ given by

(4.4) i= e()
i=O,...,n

is well defined on the whole simplex (4.2). Moreover the mapping is continuous
because, roughly speaking, a sequence of extremals converges to an extremal. More
precisely, suppose converge to , and let { k }, { ti } be the corresponding points.
Denote the extremal of (4.3) for by f. Then f converges to f because B(o, T) is a
normal family. Our claim is that f=f. Because of the uniqueness of f it suffices to
prove that if g B(o, T), and g( ) 0 -.1,..., n, then g( )1 -< If( )I. Indeed, given any
> 0 choose k large enough so that

Iti-t[<_8 minlt-tl, i=e,...,n, If,(t)l<-(l+)lf(t)l.
.I
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Consider then

Since g,(t)= 0, i= 1,..-,k. It follows that Ig,(t)l<=lfk(t)[. But

Ig(t)l> Ig(t)l
i=1
fl (1- t--t

implying Ig(t)l<=lf(t)l(1 +)(1 )-" for any 8 and therefore Ig(t)l<=lf(t)l.
Thus the mapping (4.4) has a fixed point j*

However ei(j*)=0 for some i, hence for that i, *=0 and therefore 8i(/j*)=0. But
also 8( *) 8i(*) 0 and so 8(5") 0, a contradiction.

LEMMA 4.2. Let fn be the extrema! ofproblem (3.2),

max(lg(t)[" gB(o,T), g(ti)=O,i=l,. .,n).
Iff B(o,T) oscillates n+ 1 times in [-T,T], i.e. there exist extrema -T<=e <e2<

<e,,+l_<T such that (-1)"+l-if(ei)>O, then either minbffe)l<l.llr or f is a
constant multiple off.

Proof. Assume to the contrary that min[]’(ei)l>__lbc, llr. Using the representation
formula (3.5), based on f,,

If( t)-h( t)p( t)lz If( -T<_t<_T,

n-1where h(t)p(t) is the interpolant to fbased on the points ti, from the set { h(t)tk)o
In particular

If( e,)- h (e,)p(e,) =< IIfll r
and therefore

sign h (e,)p(e,)= signf(e,)= (- 1) "+ 1-,.

If now h(e)>0, i=l,-..,n+l, as has to be the case if minlf(ei)l>llf,[[ r, then
1)" / ,p (e) >= 0 which implies p 0 because p is a polynomial of degree n 1. But

h (t)p (t) coincides with f at the t, i.e. f(t) 0, 1,..., n, and therefore by Theorem
3.1 (t)[ < Lt’,(t)[, T<t< T, a contradiction.

Note that in any case h(t)>0 for -T<t<T. Thus a modification of the
previous argument may be required only for en+a T with f(T)=f,(T)=llf, llr (or the
analogous case ex=-T). If f,(T)< 1 then from (3.3) h(T)>0 and no modification
is called for. It remains therefore to investigate f(T)--llfllr=l. In this case h(t)=
f,( )/1-I "-1 ’(--1 (t-) so that h T)4:0. Differentiating (3.5) and evaluating at T yields

f’(T)=O=h’(T)p(T)+Ro + h’(T)R1,

f’(T)=O=Ro+h’(T)S1,
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where the k 1 term has been split off as R 0. It .is easily shown, by the same means
employed in Theorem 3.1, that IRxI=< $1. Hence

h’(T)p(T)=h’(T)(S1-RI)

proves that again p(T) >= 0.
LEMMA 4.3. The function F, obtained in Lemma 4.1 is the unique solution to problem

(4.1).
Proof. Let si, i=l,...,n be the zeros of F, in (-T, T). Then the method of

Theorem 3.1 shows that there is a representation formula of the form (3.5) based on F,
and si. In particular it follows that F, is the extremal of problem (3.2), i.e. if g B(rr, T)
satisfies g(si)--’O 1,. .,n then [g(t)llF,(t)l, T_< t_< T. Thus F, is a candidate for
the solution of (4.1).

On the other hand, if f, is any other candidate, then the previous lemma shows

min IF, (p)[= [IF,[{ T < [[Lll T"

LeMMA 4.4. d,,(o, T)>=[[F,[[r.
Proof. We rely on Lorentz [8, Lemma 9.1] to the effect that if for each choice of

complex signs o,i 1,. .,n + 1 there is a function ge B(o, T) such that g(&)=og[[F[[ r
then d, >= [IFI[ r.

Let tg, i=l,...,n be the n zeros of F in [-T,T] and denote oa(t)=IIi=(t-ti).
Let p (t) be the polynomial of degree n such that

p(pi)=Oi(--l)n+l-iw(pi), i= 1,.- .,n+ 1.

Write p in Lagrange form (thanks to T. Rivlin for pointing out this tack)
n+l

p(t)--- E i(-1)n+l-i(Pi)ni(t).
i=1

Note that for t> T, sign(oa(t)Li(t))=signoa(pi)=(-1)+1-i. Thus

n+l

lP(t)[_-< E [(pi)Li(t)I
i=1

n+l

=(signo(t)) Y o(&)Li(t)-lo(t)l, t>__ r.
i=1

Therefore the function

satisfies

g(t)=F.(t)P(t)

g(p,) =o,(-
]g(t)llF(t)l<_l for {tl_>Z,

and hence g B(o, T).

5. The dimensionality of time- and band-limited tunctions. For some small e con-
sider the set eB(rr, T). Any function in this set is of exponential type rr or less, and may
therefore be regarded as band-limited to (-o, o). Moreover such a function is almost
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time-limited to (-T, T) because outside this interval it is indistinguishable from 0 to
within accuracy e.

Define the dimension, N(o, T), of this set to be the least n such that dn(eB(o, T))
edn(o, T)< e. N(o, T) is therefore the dimension of the smallest subspace of C[- T, T]

which contains for each f B(o, T) an element approximating f in the max norm on
[- T, T] to within e. Such an approximant is indistinguishable from f at the same level
of accuracy as f is known to be time-limited.

This notion of the dimension of the class of almost time- and band-limited
functions was introduced and investigated in the &a2 setting by Landau and Pollak [6]
and Slepian [13]. A slightly improved version of their results is contained in [9]. The
main result, that N(o,T)=2oT/rr, is replicated here. We will see however that the
corresponding natural basis is somewhat different. But first a preparatory proposition.

PROPOSITION 5.1. a. dn+t(o, T)<d,(o, T).
b. If T < T then d(o, T1)<dn(o, T2).
Proof.
a. Let F,, F,+ be the extremals corresponding to d,, dn+, e.g. d-- IIFllr. Recall

that F, (F,+) equioscillates precisely n+ 1 (n+ 2) times. By Lemma 4.2 dn+l(O, T)
IIF+ tilt< liE, lit d,,(o, T).

b. Let F,, Gn be the extremals corresponding to dn(o Zl) dn(o Z2). Note that
Tt < T2 implies B(o, Tt)_B(o, T) and therefore F,B(o, T2). Applying Lemma 4.2
yields d,(o, Tt)--IIFllr<llGnll-dn(o, Z) unless F,= G,. The latter however is impos-
sible" if IIGllr> 1 then G,(t)> 1 >Fn(t ) for T < t< T)_; if Ilanllr__< 1 then + T2 must be
two of its equioscillation points while F, has all of its equioscillation points in [- T1, T1].

THZORM 5.1. Let N(o,T) be the least n such that d,(o,T)<=l. Then N(o,T)
[2oT/r] the least integer not less than 2oT/r. In case 2oT/r is an integer an

optimal N-dimensional approximating subspace is spanned by the functions

(5.1) sinot and
sin(ot-kr)

ot- krr

(5.2) cosot and
cos(ot-rqr)

ot- rr

k=0, _+1,. ., +__(m- 1)
2oT

Proof. Observe that if 2oT/r=2m then F2m(t)=cosot has properties (1)-(4) of
Theorem 4.1 with IlFz,,l]r=l and therefore d2m(O,mr/o)= 1. From Proposition 5.1
dzm_l(o, mrr/o)> 1 and hence N(o,mr/o)=2m. Theorem 4.1 also yields the result
that an optimal 2m-dimensional subspace is spanned by

k-1

(t j sinot)/ ]-[ (ot-ir) j=0,...,2k- 1
i= -(k-i)

which is equivalent to (5.1). Note that the approximation may proceed by interpolation
at the points rr/o, r= + 1/2,..., +_(m-1/2). The case 2oT/r=2m-1 is proved analo-
gously. If now 2oT/rr__< 2m + 1 then from Proposition 5.1

1 =d2m(O,mqr/o ) <d2m(O, T),

d2m+l(o,T)<dzm+, o, m+- rr/o =1,

proving N(o, T)=2m+ 1= [2oT/cr]. The proof of the case 2m- 1 <2oT/rr <__2m pro-
ceeds similarly.
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Finally, let us mention those explicit n-widths that are easily derived:
1. do(o, T)=coshoT, extremal" Fo(t)=cosox/t 2- T2

2. for O<oT<=r/2, dl(o, T)=sinoT extremal: F(t)=sinot;
3. for O<oT<_r d2(o,T)=sin((oT)2/2r), extremal" Fz(t)=cosot+a with

o=/2-(oT)/2; an optimal subspace is spanned by

sinot + , j=O,1
ot 2 + a2

with interpolation at the points (T/2)2 (oT/)2.
Furthermore, as noted by Jagerman [4], an easy asymptotic estimate is obtained

via polynomial inteolation, namely

d(o, T) const

A better estimate for small n> 2oT/w is cexp[c:(2oT/w-n)], c and c: constants.
This estimate can be deduced from H. J. Landau’s results as described in his recent
manuscript Extrapolating a band-limited function from its samples taken in a finite
interval.
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RATIONAL APPROXIMATIONS TO THE EXPONENTIAL FUNCTION
WITH TWO COMPLEX CONJUGATE INTERPOLATION POINTS*

ERNST HAIRER’, ARIEH ISERLES AND SYVERT P. NORSETT

Abstract. We examine rational approximations to the exponential function which satisfy R (z)= exp(z)+
O(z :z"’-l) and R(Zo)=exp(zo), R(0)=exp(0), where m denotes the maximal degree of numerator and
denominator. It is proved that a curve bisects the complex pl.ane so that if z0 lies to its left the approximation
is A-acceptable, while if it is to the right of this curve then R (z) is non-A-acceptable.

1. Introduction. The investigation of rational approximations to the exponential
function attracted much attention in recent years. Such approximations are of central
importance in the design and analysis of numerical methods for stiff ordinary differen-
tial equations.

Let R be a function in q’l’m, ( p/q :p, q real polynomials, degp < m, deg q < n,
q0). According to the maximal interpolation theorem (Iserles [1979]) the number of
real zeros of the equation

R(x)=e x,
counted with their multiplicity, may not exceed n + m + 1. Using the technique of order
stars, developed by Wanner, Hairer and Nrsett [1978], all,A-acceptable approxima-
tions which attain the bound of the maximal interpolation theorem are characterized by
Iserles and Powell [1981].

The analysis of A-acceptability of rational approximations with pre-assigned com-
plex conjugate interpolation points is considerably more complicated. It follows at once
from the order star theory that the number of complex zeros of the equation

R(z)=e
is infinite for every choice of R rm, and that +i are their accumulation points.

The present paper is a successor of a report by Iserles and Norsett [1982b] and
contains similar results. The proofs of this article, however, are based on the characteri-
zation of,A-acceptable approximations as given by Hairer [1982] and are more elegant.
We examine approximations from rm/m which possess order 2m-2 (i.e. have an
interpolation point of multiplicity 2m- 1 at the origin) and, in addition, interpolate the
exponential at a specified pair of complex conjugate, points. There are two sound
reasons to restrict our attention to this particular case. First, it is likely in numerical
applications to use two degrees of freedom to exponentially fit a damped oscillation,
reserving the remaining degrees of freedom to attain the highest possible order. Second,
this type of approximation nicely fits into the framework of the Iserles-Powell result.
In other words, if the conjugate pair approaches the real axis within the complex left
half plane the resulting approximation is A-acceptable.

In a previous work Iserles and Nrsett [1982a] studied the case of conjugate pair
being pure imaginary. In this case the approximation is A-acceptable if and only if the
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interpolation points belong to certain intervals whose end-points are related to zeros of
spherical Bessel functions.

Our present model was considered by Liniger and Willoughby [1970] for the case
of m equaling 2. They experimentally show that a certain curve bisects the complex
plane near the imaginary axis. Conjugate pairs which lie to the left of this curve give
raise to A-acceptable approximations, while pairs to the right cause non-A-acceptabil-
ity. In the present paper we prove that this is typical to all approximations of this form,
regardless of the value of m > 2.

2. Exponential fitting. Let N (z)/N, z) be the diagonal Pad6 approximation to
the exponential function. Then

m (2m-k)!(2.1) N,,,(z) 2 (m) k

k=0 (2m)! k z

It follows from Hairer [1982, Thm. 1] that any approximation from %/,, which has
order at least 2m- 2 must necessarily be of the form

2 2

(2.2) R(z)= Nm-l(Z)(1-flz)+z m-lNm-2(z)g
Nm_x(- z)(1 flz) + z22m_xNm_2( z)go

where fl and go are arbitrary real constants.

4(4j2-1)

Our goal is to examine the satisfaction of R(Zo)=ez (and hence also R(50)= e)
by rational functions (2.2), subject to a choice of real numbers go and fl. For this
purpose we introduce (compare Iserles and Narsett [1982a]) the function

(2.3) qm(Z) Nm(z)-eZNm(-Z).
The following relations will be used frequently:

(2.4) m(z) m-1(Z) Z 22m_ lm_ 2 (Z),

(25) +tm(Z)=+m(Z ) Z

2 4(2m-1) +m-l(z)"

They are an immediate consequence of the fact that the same formulas are valid for the
polynomials N,,(z) and are easily verified. Furthermore, from Iserles and Nrsett
[1982a] we have

m! m+l/2
(2.6) m(iY) --i 27 (2m),eiy/:z() Jm+l/2()
where Jm/ 1/2 denotes the spherical Bessel function of the first kind. This implies

LEMMA 1. All roots ofqre(z) lie on the imaginary axis. Besides z 0 they are given by
iy where y is a root Of Jm+l/2(y/2).

Proof. The roots of qm(Z) are just the interpolation points of the diagonal Pad6
approximation Nm(z)/Nm(-Z). Its order star (see Wanner, Hairer and Norsett [1978])
immediately implies that all roots of Pm(Z) must lie on the imaginary axis. The rest
follows from (2.6). []

We are now able to prove the next theorem.
THEOREM 2. Suppose that Im zo 4: O, ( ZO) =/= 0 and let

(2.7) rm(Z)= lz]2m_l lm z ---_()
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For r,(Zo) O the approximation (2.2)satisfies R(zo)=ez if and only if

(2.8)
go=Imzo/rm(zo),
fl Im(qJ,(Zo)//,,_l(Zo))/rm(Zo).

Proof. The condition R(zo)= e zo is equivalent to

(Zo)go=0(2.9) bm_l( Zo)(1--flZo) +ZOm_l/m_

Dividing by +,,_ 1(Zo) and multiplying by o we get

zo-f lzol

Since go is real, the imaginary part of this equation yields the formula for go. Using
(2.4), (2.9) can be written as

 )go= 01-flzo+ qjm_l(Zo )

Again the imaginary part yields the formula for fl. E]

3. A-acceptability. The aim of this section is to investigate for which zo the
rational approximation (2.2) with go,f1 given by (2.8) is A-acceptable. We shall use the
following result of Hairer [1982].

THEOREM 3. Let R(z) be given by (2.2) with go 4: O. Then
a) R(z) is I-acceptable (i.e. IR(iy)l< 1 for eoeryy) iffgo.f >0.
b) R(z) is A-acceptable(i.e. IR(z)l< l for Rez <0) iffgo>O andfl >_O.
In order to apply this theorem to the parameters (2.8) the following lemma is

useful.
LEMMA 4. Excluding the points with /m- ( Z ) 0 we have

=0
Im +--_](z)

<0

if Re z Imz O

ifRez Imz < 0,

if Re z Imz > O.

Proof. The statement is trivial for Imz=0. For Rez=0 (i.e. z= iy) the statement
follows from

+m(iY)bm_l(-iy)=2Re{ Nm(iy)Nm_l(-iy)-e’YNm(-iy)Nm_l(-iy)},
which is an immediate consequence of the definition of qJm(Z). For z=re it (r--, ) a
simple analysis shows that

1 it

,,(z)/,,-l(z)"
2(2m_a).re if cost < 0,

1 it

2(2m- 1)" re if cost > 0.

Finally we have to investigate the behaviour of Im(Jm(Z)bm_l(Z)) near the singulari-
ties which we denote by iyk, k 1, 2,... (cf. Lemma 1; the origin is a nonsingular point
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since /m(Z)/m_l(z)=fonst. z 9- for z 0). With the help of (2.4) and (2.5) we get for
z iyk + e.e it, e O

m( Z ) Yk costIm
km_l(Z) e (2m-l)"

Now we are ready to apply the maximum principle for harmonic functions in the four
domains

{ zClRezO, Imz><O[, Izl<R, tz-iy[>e, k--1,2,. }. c

THEOREM 5. Let Imzo4= 0, km_l(Zo)4: 0, rm(Zo)4O and go,f be given by (2.8). Then
R(z) is 1-acceptable Rezo -< 0.
R(z) is A-acceptable Rezo_<0 and Imzo.rm(Zo)> O.
Proof. This is an immediate consequence of Theorem 3 and Lemma 4. t3

4. Domain of A-acceptability. In order to get the right feel for the domain of
A-acceptability we have to study the condition Imz0. rm(Zo)> 0 (compare Theorem 5)
in more detail. The following lemma presents some properties of the function rm(Z).

LEMMA 6. It holds that

(4.2)

(4.3)
(4.4)

+ iYo)=rm(- + iYo),
lim yo. r,, ( x + iyo ) > O, for yo 4: 0

39_ (b (iy)/m (iy))rm(iy)=Y m-1 m-2 -1

for fixedYo O, r( x + iyo) has at most one root in ( , 0).

Proof. The symmetry relation (4.1) follows from

bm(--x + iy)= -e-+’y .m(X + iy)

which can easily be verified. Similar to the proof of Lemma 4 we obtain for z x + iyo,

"-2(Z)=sign(x).2(2m-3) 4(m 1)(2m 3)
z Sz +o

where c is some real constant. Taking the imaginary part of this formula leads to

yrm(X + iY)= (2m- 1) -Statement (4.3) is trivial, since it follows from Lemma 4 that m_2(iY)/m_l(iY) is
real. For (4.4) it is sufficient to prove that

(4.5)
d

r,(x* + iYo) 0 and x* <0 implyyo -xrm(X* + iyo) <0.

With g(z) given by

it holds that

g(x*

g(z) Im( Zm_2(Z)/m_ (Z))

d
xrm(X* + iyo) (x.2 +y02)

_
lg’(x* + iyo).
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A.simple analysis using (2.4) and (2.5) yields

g’(z)=(2m-2)Im{ qm-?-(z) )) 4(2m- 3)
Im z -_(z)

The second term of this expression vanishes at z x* + iyo since g(x* + iy0) 0 implies
that (x* + iYo)’qm_Z(X* + iYo)/qm_X(X* + iyo) is real. The right sign of the first term at
z x* + iyo follows from Lemma 4. D

Denote the nonzero roots of qm-X(Y) by _+ iy["-x), +_ iym-l), then

0 <y[m-2} <y(m-1)<y2(m-2)<y2(m-1)<y3(m-2)<....

This follows from Lemma 1 since the zeros of spherical Bessel functions interlace
(Abramowitz and Stegun [1965, p. 370]).

Observe further that for z 0

m(Z)(1) m+l 2m+1 2m+2
CruZ +O(z ) withcm>0

so that

rm(iy)=DmY+O(y 2) fory-0, withD,>0.

Hence, by (4.3), r,(iyo) is negative if and only if

Yo { YIY 2, <y <ym-1) for some k > 1 }.
Only for such values of Yo r(x + iyo) has a negative and a positive root. The curves
consisting of the roots of r.,(z) are plotted in Fig. 1 (full lines). The shaded region
corresponds to the z0 with A-acceptable R(z). (See also Fig. 2.)

FIG 1.
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Finally let us study the limiting cases m-l(Z0)--0 and rm(Zo)= 0 which are not
covered by Theorem 5 (assume Imzo 4: 0).

A) z0= +_iym-l) (i.e. qm_l(Z0)=0)" In this case we have go=0. The rational
function (2.2) is reducible and equivalent to N l(z)/N 1(-z). This is known to be
A-stable and of order 2m- 2.

B) z= + iy(km-z) (i.e. m_2(Z0)’--0): Here we have [go[--’ and fl/go-O, so that
(2.2) becomes Nrn_2(z)/Nm_2(--Z ). Again this is A-stable, but only of order 2m-4.

C) rm(Zo)=O, Rezo4:0: The parameters go,f1 satisfy

]go[---> C, (/m(z) )/Imzo 4:0fl/go- Im -_(Zo)
With the help of the analogue of (2.4) for Nm(z ), R(z) can be written in this case as

R(z)=
22 (Z)Nm-2(z)(1-(go/fl)2m-lZ) +Z m-2Nm
2 2Nm_2(-z)(1-(go/fl)2m_lZ)+z m_2Nm_3( -Z )

21.808

18.850

15.451

12.566

8.987

6.283

24.646

21.808

18.190

15.451

11.527

8.987

m=2 m=3

FIG 2.

The results of Hairer [1982] show that this approximation is of exact order 2m- 3 and
in addition A-acceptable for Re zo < 0. For the sake of completeness let us mention for
which values of zo the order of R(z) is larger than 2m-2. By Hairer [1982, Cor. 3] this
is the case if go- 1 or equivalently if Imzo= rm(Zo). Using (2.4), rm(Zo) can be rewritten
as
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a) Zo-- -1 +7i. d) zo 1.87 + 7i.

b) zo= -1.8+ 7i. e) z= -2+7i.

c) Zo----1-834651861 +7i. f) z---4+7i.

FIG 3.
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SO that the condition g0 1 is equivalent to

(4.6) Im(/m(Z) )=0.ZOm-I(ZO)

D) z0--t-iY(km) (i.e. lpm(ZO)"-O): We have g0=l and fl=0. R(z) becomes
Nm(Z)/N,(-z ) of order 2m. As it is A-acceptable, we must necessarly have ym-)<
y <y m+ - 2).

E) r,,,+ (Zo)= 0, Rezo4:0: By definition of rm+l(Z (4.6) is satisfied in this case.
We therefore have go 1 but fl 4:0. Thus, the approximation R(z) has exact order
2m- 1 (this is denoted by dotted lines in Fig. 1).

Appendix. The order star of a rational approximation to exp(z) shows all its
essential properties (cf. Wanner, Hairer and Norsett [1978]). We depict in Fig. 3 the
evolution of the order star of R2(z with g0,fl given by (2.8) and Zo=X + 7i for a range
of values of x <0. Note that with x= -1.834651861 we have r2(z0)=0. At this point a
drop in the order can be perceived, as predicted by the above considerations.
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DIRECTIONALLY DEPENDENT ASYMPTOTIC BEHAVIOR
OF BIHARMONIC FUNCTIONS

WITH APPLICATIONS TO ELASTICITY*

KENNETH B. HOWELL"
Abstract. The behavior of biharmonic functions defined on infinite domains is investigated with interest

focused on obtaining local bounds on the gradients of these functions based on assumed local bounds on the
original biharmonic functions., The assumed bounds involve two independent distances, each raised to some

arbitrarily chosen exponent. One of the two distances is the distance to some fairly arbitrary subset of the
closure of the domain (e.g., the boundary) while the other is the distance to some arbitrarily chosen plane.
The derived bounds on the gradients reflect this "directional dependency". In addition, as the first distance
increases, the derived bounds on the gradients tend to either increase more slowly or decrease more rapidly
than the assumed bounds on the original biharmonic functions.

Several classes of problems from classical elasticity are then discussed. These problems involve un-
bounded domains and either periodic or "slightly periodic" boundary data. Using the results from the first

part of the paper "physically reasonable" assumptions are shown to insure appropriate periodicity in the
solutions to periodic boundary value problems and appropriate uniqueness in the solutions to "slightly
periodic" boundary value problems.

1. Introduction. When dealing with problems on infinite domains, one must have
some concern about the asymptotic behavior of the functions and their derivatives
"near infinity". Often, for example, it is desired--and assumed--that one or more of
the functions and their derivatives rapidly and uniformly approach well-defined (and
computable) limits "at infinity". Muskhelishvili [8] and Gurtin and Sternberg [2] have
shown the extent to which this very type of asymptotic behavior can be expected in
classical elastostatic problems on domains exterior to some compact set (see, also,
Knops and Payne [7, Chap. 6] for a discussion of similar problems on the whole- and
half-plane). Unfortunately, it is not always clear that the asymptotic behavior one
would desire or expect can be guaranteed on more complex domains. Indeed, in many
cases, just determining what behavior_ should be desired or expected is a significant
problem in itself. The problem is often complicated by the fact that the asymptotic
behavior may be strongly dependent on the direction along which "infinity" is ap-
proached. These are the sort of problems we shall examine in this and a subsequent
paper. In the first part of this paper, local bounds will be derived describing the
asymptotic behavior of the gradient of a biharmonic function based on the asymptotic
behavior assumed for the original function. This differs from previous work (cf. Knops
and Payne [7, Chap. 6]) in that the assumed asymptotic behavior will be bounded by
linear combinations of terms of the form xvp where p denotes the distance from some
fairly arbitrary set of points (in practice, the boundary of the domain), x denotes the
distance from some arbitrarily chosen plane, and 7 and/ are any fixed pair of real
constants with 7 > -1. The derived bounds on the gradient will reflect this dependency
on direction. The exact form of the derived bounds will depend on whether 7 is positive
or not. In either case fl may be positive, negative, or zero. Also, we shall allow the
domain to be a bit more general then the half-space.

Received by the editors December 7, 1982. This research was supported in part by an Incentive Fund
Research Grant from the University of Alabama in Huntsville.

Department of Mathematics, University of Alabama in Huntsville, Huntsville, Alabama 35899.
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The investigation of the first part culminates in Theorem 4.3. This theorem should
be considered the main result of this paper, and will be the theorem most commonly
referred to in the sequels.

The second part of this paper will be devoted to a discussion of the uniqueness and
some general properties of the solutions to various classes of problems in classical
elasticity. By making use of the results developed in the first part of the paper, it will be
possible to base this discussion on more satisfying and "physically reasonable" as-
sumptions than previously possible (cf. Howell [5]).

The work discussed in the second part of this paper makes fairly straightforward
use of the results from the first part. A somewhat deeper use of the results from the first
part, however, leads to a very strong Saint-Venant’s principle for certain classes of
problems in elasticity. For these problems, it can be shown that if the stress grows no
faster than some arbitrary polynomial, then, in fact, the "stress at infinity" (actually, an
affine tensor field) is completely determined by four "computable" constants. More-
over, the rate at which an elastic state approaches its asymptotic form is on the order of
O(p-) where O is the distance to the boundary of the domain and fl is any arbitrarily
fixed real number. These results go beyond the scope of the paper at hand and will be
found in the "subsequent paper" alluded to previously (Howell [6]).

2. Preliminaries. The reader is reminded that a function, q,, is biharmonic on some
open region in Euclidean space, f, if it is in C4(f) and satisfies AA4=0 throughout f.
(In this paper, A will denote the Laplacian, while 7 will denote n successive applica-
tions Of the gradient operator.) Attention shall be restricted to biharmonic functions on
two- and three-dimensional domains. Thus, the term "space" will henceforth be taken
as synonymous with the expression "two- or three-dimensional Euclidean space".
When convenient, points in k-dimensional space will be identified with vectors in R in
the standard mannermi.e., through the agency of a suitably chosen Cartesian coordi-
nate system. The induced orthonormal frame of vectors will be denoted by
(e,e2, .,e). As usual, if v and T are, respectively, a vector and a (second rank)
tensor, then u will denote v. e and Tj. will denote e. TeJ.

All calculations will be done assuming that the domain in question is three-dimen-
sional. Corresponding results for functions on two-dimensional domains will follow
immediatelyand without much commentby the fact that any biharmonic function
)(Xl, X2) on a two-dimensional domain, f, can be viewed as the biharmonic function

+ (x1, x 2, x3) on the three-dimensional domain {(Xl, x 2, x3): (Xl, x2) ’ ) where + is
defined by +(Xl,Xz,X3)=q(xl, x2).

Given any domain f in space, cl f will denote the closure of that domain, and n
will denote the outward unit normal vector field on the domain’s boundary. Two types
of domains will be of particular interest: open balls, which will be denoted by , and
"cones" (defined at the beginning of 4), which will be denoted by.

3. Some local bounds. The investigation begins with the following well-known
mean-value theorem for the biharmonic functions (Nicolesco [9]) and a slightly less
well-known corollary. For completeness, we include the proof of the corollary.

THEOREM 3.1. Let p be the ball of radius p centered at the point x in three-dimen-
sional space. Let be biharmonic in a domain containing the closure of. Then
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COROLLARY 3.2. Let q be biharmonic on a two- or three-dimensional domain contain-
ing the closed ball of radius 0 centered at the point x. Then there is a universal constant, K,
independent of the choice of x and O, such that

(3.1) IVq,(x)l__<Kp -1 sup [q(Y)t.
ix- yl =< o

In particular, if the domain is three-dimensional

(3.2) V,(x)=O 4 6 ,rdv-oo
where

y--X
r r(y)

lY- x["

Proof. In that (3.1) follows easily from (3.2), only (3.2) shall be derived.
Let Nx denote the ball of radius about x. Since

Applying Theorem 3.1 along with the divergence theorem to V4) leads to

897 X3Vt(X) 5 f qnda-Xf vda

for each X NO. Integrating this with respect to X from 0 to 0 and employing the
divergence theorem, again, yields

which is equivalent to (3.2).
In deriving the formulas describing the asymptotic behavior of X74 based on the

asymptotic behavior of q,, estimates will have to be computed for the integrals appear-
ing in formula (3.2). Some of the more tedious computations required are established in
the following lemma.

LEMMA 3.3. Let ,/be a fixed real number greater than -1, and let m be some fixed
unit vector.

If " <= 0 then there is a constant, Cv, such that for any given point ,2, and any positive
number, o:

(3.3) f(x, o)
(1 + Ix. ml)da <= Cvo2(1 + I. ml)

where 02, o) is the ball of radius o centered at Y..
On the other hand, if y > O, then there is a constant, Cv, such that for any given point,, and any positive number o"

(3.4) f(, o)
(- + Ix" ml)’da_< Cv [o2(1 + I,. ml) ’ + ,’+]

where 02, o) is the ball of radius o centered at .
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Proof. Clearly it suffices to derive the above assuming that is a point in
three-space with ,-m >= 0. For convenience .m and x.m will often be denoted by
and x, respectively and N will denote the unit ball about 0. In addition, J will
occasionally be used to denote the integral appearing in the statement of this lemma.

Three cases must be considered.
Case 1. > -1 and O<o=<.m=ff-.
Since o __< , the following manipulations are valid"

J-- (1+ Ix.ml) Vda
(x,o)

--02@ (1 +.+ ox. m) Vda

x’m]’da(1 +)vo 2 1+ l-x

Letting m define the polar axis of a spherical coordinate system leads to an easy
evaluation of the last integral. The result is

2rr (1 + ) r+ lo 1 +y+l

which can be rewritten as

(3.5) J=
2’7"/"

y+ 1 (1 +)ro2F(co),

where co o/(1 + ) and

F(co)= (l+co)v+l-(1-co)v+l

By the assumptions on o and , co lies in the interval (0,1). Now, F(co) is not only
clearly continuous on (0,1) but satisfies

lim F(co) 2(3, + 1), lim F( co 2v+ 1.
o--, 0 o1

Thus, F(co) is bounded by some finite constant on (0,1). Replacing F(co) with this
constant in (3.5) completes the proof of the lemma for Case 1.

Case 2. 1 < y =< 0 and 0 __< . m __< o. Straightforward integration quickly veri-
fies that

f0- (1 + Ix.m[)Vda __<f+ (1 + Ix. m[) da

where

-= (x (,,o)" x. m < 0),
+= (x (,,o)" x.m> 0}.
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Thus, using a spherical coordinate system centered at with polar axis defined by m,

(3.6) J=fo(x,o) (1 + [x.,ml)Vda _<2+ (1 + Ix. ml)Vda

4rro2f0 (1 ++ocosq.,)Vsing, dq.,=J1 +J2.

Here ko denotes the angle between rr/2 and rr satisfying ff + o cosk0 0 and J1 and J2
are given by

Jl=4rroZfo’/2 (1 +if+ ocosq) Vsin+db,

J2 4fro2(1 + + o cosk) rsinkdk.

Since , =< 0 it is obvious that

(3.7) J =< 4fro 2foUr/2(1 + ;g) rsin b db 4ro 2 (1 + X’) r.

Evaluation of the integral defining J2 and the fact that -1 > o-1 yields

4fro [(1 q_.) y+l

J2=7+ 1 +1]

l+ff-(l+Y)-r]o
4

0
2 .)rG(1+

where

l+Y-(1 +if-) -
Clearly, G is continuous on (0, ). Further, by L’H6pital and the fact that 1 < 7 _-< 0

lim G (X) 1 + ,, lim G (if) 1,

we see that G(.) is bounded, say by Gr. Substituting this into (3.8) and combining with
(3.7) and (3.6) yields

G
J=<4rr 1+

(1+y---- o

as claimed in the lemma.
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Case 3.0<, and
In this case, it is clear that

J=f(, o)

__<2f (1 + Ix. ml)da
(, o)
X>X

4qrozf0r/2 (1 + Y‘+ ocos+)Vsinqd+

4fro [( +1 +1]r+l
1++)’ -(1+’

Now, let N be the greatest integer which is less than or equal to ,, and let
a =,- N. Applying simple algebra and the binomial theorem to the above gives the
following:

(3.9) J<-y+14rr (l+y‘)v+lo I+.i+X 1+i+ x- -1

4rr (l+y‘)V+lo 1+
o a-iN+2 k

E CN+2,k 1-t-Y, -1
3’+ 1 1 +x ,=0

However, since a < 1,

0 ]a-i1+1+ =< min 1, i-122

and

CN+2,0 l+l+y
0

-1= 1+ -1<0.

Combining these inequalities with (3.9) leads to the following string of inequalities:

J=< (1 +Y‘)3’
,+1

o l+i+y, a-lN+2 0 )CN+2’" 1 +2
k=l

4r +1 0
< (1+ Y‘)3’

k=l

O ) N+2}CN+2’N+2 1 / ff

3,+ 1
o3’+2+ E CN+2,k(1 /y‘)3’+l k k+l

k=l

4rr 3,+2 O
V+ 1

o + E CN+2,k+l(1 /y‘)3"-k k+2

k=O
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Finally, it should be noted that, for 0 =< k _< N, either

(1 ".) ’-kok+2
_

or

(1 --/) )’-kOk +2 (1 + X)o 2,

depending on whether 1 + or o is the greater. This, and the choosing of

4rN
CN- max(CN+ k=O,1 N+ 1}y+l 2,k

allows the last bound on J to be simplified to

J<=CN{OV+2+(l+Y)vo2}.
This completes the proof of the lemma. []

4. Asymptotic behavior. At this point, it is convenient to explain the term "cone"
as used in this paper. Let x be a fixed point in space, v a unit vector, and 0 a scalar
satisfying 0 < 0 =< r/2. The corresponding cone, :U=:U(x,v,0), is the region in space
given by

OU= (y" (y- x).v < [y- xlcos 0 ).
This definition corresponds, of course, to the standard notion of a solid cone with
vertex at x, axis in the direction of v, and whose sides make an angle of 0 with the axis.

If, instead, one has a set of points in space, Z, and a unit vector field on Z, v(x),
and a single fixed 0 with 0 <0 =< r/2, then the corresponding cone, :U=:U(Z,v,0), is
given by

=(,v,0)= U =(x,v(x),0).
xG

Finally, if n is a nonnegative integer, the nth subcone, :U, of (Y, v, 0) is defined
by

It may be noted that0 :U.
Obviously, many domains of interest contain cones. In fact, when given an un-

bounded domain in space, 2, it is often possible to choose Z, v, and 0 so that =:U=:U
=:U2 or so that for "most" x in f the distance from x to 2 is closely approxi-
mated by the distance from x to Z. Some of the more simple examples of such domains
would be half-spaces and exterior domains.

The next lemma deals with biharmonic functions on the simplest type of cone.
LEMMA 4.1. Let x be a point in space, v a unit vector, 0 a constant with 0 < 0 <__ 1/2r

and U=sU(x,v,0). Let f be a positive-valued, locally integrable, nonincreasing function
on [0, ) and let fl, , and c be real constants with c positive and " greater than 1. Let
tn denote some fixed unit vector.

Suppose q is a biharrnonic function on oUwhich satisfies the following boundfor each x
in OU

(4.1) I (x) =< c(1 + Im" xl)  lx- xl’f(Ix xl).
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If 1 < 3‘ <_ O, then, for each x in :g’1 )U(xo, v, 1/2 0), Vq(x) satisfies

Ivq)(x)[__<Bc(l/lm.v[)Vlx-xl’-tf lx-x
If 0 < 3’, then, for each x in =g’(x, v, 0), Vff(x) satisfies

(4.2) V’q(x)[ <Bc( Ix X0] fl+’l’- (1 o)+(1 +[x.ml)V[x-xlt-)f lx-x
In either case B is the constant, dependent on fl, 3‘, and 0 given by

B=
sin(0/2)

where Cv is the constant, dependent on 3‘, from Lemma 3.3.
Proof. As already discussed, it suffices to only consider the case where ,)F is

three-dimensional.
Let x be fixed in :Uand let

1 IX X0oo - [sini
1

By elementary geometry it is easily seen that if

then y is in Fand the following inequalities hold"

1 o ol 3 Ix-xllx-x I<-Iy-x _-<
and so

lY- xl’=<21al[x- xl
Let 0 <_ o =< oo and let 0 be the ball of radius o about x. By the bounds assumed on

and the above

(4.3) Iq[ da <= cf (1 + [m. Yl)VlY x[/f(lY xOI)da

(l[x-x[ (l+[m’yl)Vday.Z c2’lx- xl’f
Assume first that -1 < y N0. Formula (3.3) from Lemma 3.3 and (4.3) together

imply that

(4.4) I* da cCr21llx- xl (1 + Im. xl) rf Ix-xl

In particular, for O=Oo= ]x-xl sin(O)

[ ] (11

_
[,[da< sff) Cr. Ix-x[-l(l+lm.x[)f 5lx-x(4.)
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and by integrating expression (4.5)

l f ol fO f(4.6) oO--g Iql do o--- levi da do

< o x3g]2) Cv Ix- x 1 + Im" I)

On the other hand, it follows from Corollary 3.2 that

(4.7) O4 6 Ildo+oo Ilda
o

Inequality (4.1) of this lemma now follows immediately after substituting (4.5) and (4.6)
into (4.7).

The remaining inequality of this lemma, (4.2), follows in the same manner using
(3.4) from Lemma 3.3 instead of (3.3).

On occasion it will be desirable to take several derivatives of the biharmonic
function. The next lemma is designed for such occasions. The proof will not be given,
since the lemma is actually an immediate consequence of Lemma 4.1.

LZMMa 4.2. Let x, v, 0,=(x, v, 0), f, , , c, and m be as in Lemma 4.1 with
> O. Let be a biharmonic function on which satisfies

I(x) z c {Ix- xla+v +
for each x in. Then, for each x in 1,

where

9 [2 Its+ tiC0 IlCrsin(0/2)
+ 2

and Co and Cr are the constants from Lemma 3.3.
The main results of this paper are contained in the following theorem.
THEOREM 4.3. Let Y be a set ofpoints in space, v a unit oector field on Z, 0 a constant

with 0 < 0 <= r/2, andoU=oU(Z, v, 0). Assume that

Let f be a positioe-oalued, locally integrable, nonincreasing function on [0, ) let m be
some fixed unit oector, and let , , and c be real constants with c positioe and -1 < y.
Finally, let O(x) denote the minimum distance from x to the closure of.

i) If 1 < <= 0 and k is a biharmonicfunction on )Usatisfying

for all x in U, then

I,t,(x) c(1 + Im’xl) [o(x)] af(t, (x))

(1 )v(x)l GBc(1 + Im’xl) [o(x)]/-f -ap(x)
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for all x in g’a, where

(1) 912 IBl+l
a sin -0 B= a C,

and Cv is the constant, depending on y only, from Lemma 3.3.
ii) If 0 < y and and / are biharmonic functions on satisfying

I(x) =<c(1 + Jm-xl)’ o (x)] f(p (x)),

Ik (x)I =<c { [p(x)]/+’ + (1 + Im" x[) [o (x)] ) f(o (x)),

for all x in U, then

[V,(x)[<=Bc([p(X)]B+v-I+(1 +[m.xl)V[p(x)]B-1}f -a:p(x)

(1v+(x)l <=Me { [o(x)] +- / (1 + Im’xl)[o(x)]/-a}f -aO(x)
for all x in Jg’a, where

(1)c=sin 0
B=

9 _2 ]IBI+v+I2v+l c C,,

9 [2’t’+vC0 + 21t’Cr]
M= 21/l+v+a

and Co and C are the constants, depending, only on T, from Lemma 3.3.
Proof. Choose any x in R. The bounds claimed by the theorem are easily verified

on (x, v(x), 1/20) by invoking the previous two lemmas and making the obvious use
of the easily derived fact that, if x is in K(x, v(x), 1/20),

1)sin 0 Ix-x[=<p(x)__<lx-xI.
But is the union of all cones of the form g’(x, v(x), 1/20) where x is in . Thus, the
bounds claimed in the theorem must hold throughout1.

As a corollary, it is quite easy to show that any function which is biharmonic on all
of space and is bounded by some polynomial is, itself, a polynomial. Although we will
be much more interested in biharmonic functions which are not defined everywhere,
this corollary does have some application in whole- and half-space problems in elastic-
ity and is of some interest in its own right. Also, it gives a nice simple application of
Theorem 4.3. For these reasons we shall go ahead and present the corollary and its
proof below.

COROLLARY 4.4. Let k be biharmonic on all of space and suppose there is a positive
integer, m, such that

q(x) o(Ix[
Then eO is given by a polynomial on N of degree strictly less than

Proof. Let 2; be the surface of any small ball about the origin; let v be the outward
normal vector field on Z, and let 0 be any suitably fixed angle. It is obvious that



832 KENNETH B. HOWELL

)U=-X/’I =2 and that q satisfies the conditions of Theorem 4.3 with 3,=0, fl= m,
and with f chosen so that f(a) approaches zero as a approaches infinity. Successive
applications of Theorem 4.3 yield

Now, since q is biharmonic, so is 27 "q,, and, hence, A27 mq is a harmonic function
on all of space which, by the above, vanishes uniformly "at infinity". The venerable
maximum principle for harmonic functions tells us that A27 mq vanishes everywhere.
But this means that 27"4 is, in fact, also harmonic, and, like A27 mq, the vanishing of
27 ’q "at infinity" forces the vanishing of 27 "qb everywhere.

Solving 27mq=0 by elementary methods completes the proof of the corollary.

5. Eiastostatics: preliminaries. The (elastic) body will be denoted by and its
closure by cl. It occupies an open connected subset of k-dimensional space such that,
if is any ball of finite radius, then O(N) consists of a finite union of smooth
(k- 1)-dimensional manifolds with boundary. For the remainder of this paper, it shall
be assumed that ’ is 3-dimensional (i.e., k-3). This will simplify the discussion. Also,
some special features of the corresponding two-dimensional problems would lead to a
discussion considerably beyond the scope of this paper (see Howell [6]).

An elastic state on ’ consists of the displacement (vector) field, the strain field,
and the stress field, denoted, respectively, by u, E, and S. They are related throughout
by the following system:

(5.1) E= sym 27u,

(5.2) S= C[ E] 2/E + X (tr E)Xd,
(5.3) divS+b=0,

where/ and X are real constants (the Lam6 moduli) and b denotes the body forces. If n
is defined, then s will denote the corresponding surface traction, Sn.

Those familiar with the subject have already realized that it is being assumed that
is composed of homogeneous isotropic material. These assumptions lead to the

formula given in (5.2) for the "elasticity field", C. At times additional assumptions will
be made on C. The most common assumption will be that C is positive definite, that is,
there is a positive constant, c, such that, given any strain field, E, on

E.C[E]>=c]EI

at every point in ’. C being positive definite is equivalent to the Lam6 moduli
satisfying both/ > 0 and 3h + 2/ > 0. Occasionally, the slightly weaker assumption that
C is strongly elliptic will be made. In this case the Lam6 moduli satisfy /> 0 and
2/+X>O.
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The standard continuity and differentiability conditions assumed in classical treat-
ments will be assumed here.

The reader is reminded of the following three well-known facts:
1. The strain field, E, vanishes throughout a region if and only if u is a rigid

displacement in that region (i.e., XTu is given by a single fixed skew tensor throughout
the region).

2. If b is both curl free and divergence free on 5 and F(? + 2F)4: 0, then u, E, and
S are biharmonic and infinitely differentiable on ’. Thus, the results from the previous
sections are applicable.

3. The function C, as defined by formula (5.2), is an invertible mapping of
symmetric tensors to symmetric tensors provided both F 4:0 and 2/ + 3k 4: 0.

For a given (mixed) boundary value problem, the Lam6 moduli, and X and the
body force field, b are specified and the boundary of ’ is partitioned into two
subsurfaces, 5 and 52, each of which is the domain of a predetermined vector field, f
and g, respectively. A solution to the boundary value problem consists of an elastic
state, (u, E, S) satisfying

u=f on51, s=g on52

If 51 consists of the entire boundary of , the problem is referred to as a (surface)
displacement problem, while if 52 equals the boundary of (up to a set of surface
measure zero) then the problem is called a (surface) traction problem. If the body is
unbounded, one also usually desires that the elastic state at the point x behaves
"reasonably" as Ixl approaches infinity along one or more paths in . Precisely what is
meant by "reasonable" depends on the particular problem at hand and will be the
object of much of the subsequent investigation presented in this paper.

Given any mixed boundary value problem, there exists the corresponding null
boundary value problem in which ,, and b all vanish on their respective domains
(C, ’, 5, and 52 are are in the original problem). An obvious, but important, fact is
that the difference between two solutions to the same mixed boundary value problem is
a solution to the corresponding null boundary value problem.

Other types of boundary value problems can be described. In this paper the term
"boundary value problem" implies that b,/, and X are prescribed and that if (u, E, S) is
the difference between any two solutions to the problem then u-s vanishes almost
everywhere on the boundary of . It is trivial to verify that this includes the mixed
boundary value problems described above. For this more general class of boundary
value problems, the corresponding null boundary value problem is defined in the
obvious manner.

The following theorem, proved under somewhat weaker assumptions than assumed
here, may be found in Howell [3, Thm. 2.1]. It deals with the uniqueness of the
solutions to boundary value problems on unbounded bodies.

THEOREM 5.1. Let be an unbounded body with a positive definite elasticity field.
Suppose that (u, E, S) is the difference between two solutions to the same general boundary
value problem and that

(5.4) f lul2da O( R ) as R ,
where R is the ball of radius R about the origin. Then E and S vanish on and u is a
rigid displacement.
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6. Periodicity: preliminaries. Let p be a fixed nonzero vector. A scalar-, vector-, or
tensor-valued function, q, with domain 2 is said to be periodic (with period p) if both
of the following hold:

1. x is in 2 if and only if x + p is in 2.
2, q(x + p)= q,(x) for every x in f.

For convenience, the following conventions will be implicit for the remainder of this
paper:

1. The cartesian coordinate system mentioned in the first paragraph of 2 is chosen
so that

p =pe

where p IPl-
2. Unless otherwise stated, all periodic functions have the same period, p.
A periodic boundary value problem is a boundary value problem in which the

body force, b, and the boundary data, are given by periodic functions. An elastic state,
(u,E,S), on 5 may have periodic displacement, periodic strain, or periodic stress.
Clearly, if the displacement is periodic so is the strain, and if the strain is periodic so is
the stress. Likewise, if /(2F+3):0, then periodic stress implies periodic strain.
Periodic strain, however, does not necessarily imply periodic displacement. A trivial
example would be an elastic state in which u is a rigid displacement and E vanishes
everywhere. Less trivial examples can be found in Howell [4] and [5]. Perhaps even
more disconcerting is an example of a solution to a periodic boundary value problem in
which the strain is not periodic. This, also, can be found in Howell [5].

A somewhat more general class of problems is the class of slightly periodic boundary
value problems. A problem is said to be "slightly periodic" if its corresponding null
boundary value problem--but not necessarily the original problemmis a periodic
boundary value problem. An obvious example of a slightly periodic problem would be
any traction problem on a half space.

For many slightly periodic problems it will be convenient to define corresponding
"period sections". Let x be any point in space and ’x be any plane through x which is
not parallel to p. The corresponding "period section", denoted either by x or, is the
following subset of :

for some 0 < a < 1, y ap’x )-

Because of .periodicity, the actual choice of x, and ,ex, will usually be irrelevant.
Proofs of the following theorems may be found in Howell [5]. The first is con-

cerned with the uniqueness of solutions to periodic boundary value problems. The
second theorem discusses the extent to which the displacement corresponding to a
periodic strain state may, itself, fail to be periodic.

THEOREM 6.1. Assume that the elasticity field, C, is positive definite. Let (u,E, S) be
the difference between two solutions to the same boundary value problem on 5 and assume
that u is periodic on . If, letting cR be the circular cylinder of radius R about the

Xl-axis

(6.1) f lul2da=O(R) as R m,

then E and S vanish on and u is a rigid displacement.
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THEOREM 6.2. Let (u,E,S) be an elastic state on with periodic strain, E. There is
then a fixed skew tensor, W, a constant, x, and a fixed vector, , such that

and, for each x in , p.fi=0

u(x + p) u(x) x+ xp + ft.

Furthermore, ifw is the rigid displacement given by

w(x) =p- [(p (R) fi)x-(fi (R) p)x]

and is given by

then, for every x in , =u(x)+w(x),

(x + p)-(x)= Wx + xp.

Henceforth, whenever (u,E, S) is a periodic strain state, W, x, and u will denote,
respectively, the skew tensor, constant, and vector whose existence is guaranteed by the
preceding theorem.

7. Applications. We shall now employ the results from 4 to investigate two issues
which arise in the study of elasticity. The first is the determination of the conditions
which insure the periodicity of solutions to periodic boundary value problems. The
second is the determination of the conditions which insure the uniqueness of the
solutions to slightly periodic boundary value problems. The most striking aspect of the
results presented here, perhaps, is the lack of strong assumptions concerning the
behavior of solutions near infinity. For example, in several theorems it will merely be
assumed that

E(x+p)-E(x)=O(tn) as0-,

where O is the distance from x to the boundary of the body and n is an arbitrary
positive constant.

Notation will be simplified by use of the "difference operator", 8. If is a suitable
function, then 8, , 3, etc. are defined by

8O(x) O(x + p)-O(x),
2O(x) [](x) 8O(x + p)- (x),
3 (X) 2] (X) 2 (X + p) ff (x).

Clearly, is periodic on some domain if and only if 6ff vanishes throughout that
domain. Also, there is a close relationship between 8 and . This relationship comes
from

Thus, if M is the maximum of vl along some path from x to x+ p and L is the
length of that path, then

(7.1) la(x)lL.
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For several reasons, attention will be focused on problems involving two broad
classes of bodies: periodic exterior bodies and periodic fractional spaces. A body, , is
said to be a periodic exterior body if it satisfies all of the following conditions"

i) is three-dimensional.
ii) The characteristic function of is periodic.
iii) There is a cylinder of finite radius about the Xl-axis which contains the

complement of ’.
Given any point, x, of a periodic exterior body, r= r(x) will denote distance from x to
the Xl-axis and x will be used instead of x to denote x-e.

The concept of a periodic fractional space may be viewed as a generalization of the
concept of a half space. will be said to be a periodic fractional space if all of the
following are satisfied"

i) ’ is three-dimensional.
ii) The characteristic function of is periodic.

iii) There are a straight line, J, which is parallel to the Xx-axis, an angle 0 < 0 =< r/2,
and a constant, do < , such that whenever x is a point in , then there is a y in
0,(o, e2, 0) for which Ix- yl=< d0.

In general, the main distance of interest associated with any point, x, in a periodic
fractional space will be the distance from x to the boundary of ’. This distance will be
denoted by either 0 or O(x).

The periodicity of solution proofs all follow the same pattern. One observes that if
(u, E, S) is a solution to a given periodic boundary value problem, then so is (u*, E*, S*)
where

u*(x) u(x + p),

E*(x) E(x + p),

S*(x) S(x + p).

Thus, (6u,6E,6S), which can be written (u*-u,E*-E,S*-S), is the difference
between two solutions to the same boundary value problem. Likewise, for rn 1, 2, 3,- -,
("u, mE,’S) is the difference between two solutions to the same boundary value
problem. Successive applications of the results from 4 and the observed relationship
between and V will lead, eventually, to the existence of a positive integer, M, such
that

Iulda--O(g) asR m.

At this point the general uniqueness Theorem 5.1 can be invoked showing that 6ME
vanishes on . Hence, M-E is periodic. If M is greater than one, other assumptions,
along with, possibly, Theorem 6.1, are used to show that M-1E also vanishes on
and, thus, M-ZE is periodic. Repeating these arguments as much as necessary finally
leads to the fact that E must be periodic.

By definition, if (u,E,S) is the difference between two solutions to the same
slightly periodic boundary value problem, then (u,E, S) is a solution to the correspond-
ing periodic null boundary value problem. It is, therefore, natural that each "periodic-
ity" theorem be followed by a corresponding uniqueness theorem for slightly periodic
boundary value problems. The proofs of the first such pair of theorems will be given.
Details of most of the remaining theorems will be left to the reader.
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8. Applications involving periodic exterior bodies.
THEOREM 8.1. Let be a periodic exterior body with positive definite elasticity.

Suppose (u, E, S) is a solution to a periodic boundary value problem on which satisfies
all of the following:

i) For some n

(8.1) 8E(x)=O(r") as r--+ .
ii) For each x in

(8.2) 8E(x+kp)=o(1) ask onN.

iii) Given any R > 0 there is a constant, a R such that

(8.3) [83u(x)l_< aR
whenever r r(x) <= R. Then E is periodic.

Proof. We may, without any loss of generality, assume that n is a positive integer
and that 0M is bounded (on each period section) by a circular cylinder about the

Xx-axis of radius 1.
Let,, dl, and d2 denote the folowing subsets of M:

= (xe: r(x)<l},
2= {x: r(x) < 2},
OXl-- (X f: r(x) > 1},

{x e: r(x)>2}.

By assumption iii), 183u is bounded on. It should be clear then that if M is any
integer greater than 3, then there is a constant at such that

I mu(x)l aM
whenever x is in 2-

We now make the trivial observation that =cU=cU for n=0,1,2, where

( 1)OF=CU 0,x Xlel, -r
For each x, let 0 0(x) denote the minimum distance from x to . It should be clear
that assumption i) (and the fact that if x dl then 0 actually equals r-1) implies the
existence of a locally integrable, nonincreasing function, fn, such that

(8.4) ISE (x)I=< 0%(0)

for every x in1
Observe that for any elastic state

li,jk ij,k + -ik,j "+" kj,i"

Thus,
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and, using assumption i) and Theorem 4.3

v = u(x)lz 31 vE(x)l 3non-lfn
1

for every x in 1 (B and a are fixed constants from Theorem 4.3). Moreover, using (8.5)
and the relationship between 6 and V discussed in the previous section, it is seen that:

l2XTu(x) I-<p sup (Iv 2u(y)l" O(Y)-- 0(x)}

<= 3pB"- lfn -and

l3u(x)lp sup( [=x7u(y)[. (y)-- (x)}

__< 3p2B"- if, -for each x in 1.
But, inequality (7.1) and Theorem 4.3 can be combined again yielding

l4u(x)[=<P sup{ V3u(y)[ O(Y)= p(X)}

<=Pa(3B)ao-f - 0

Repeating this last sequence of computations n- 1 more times leads to the conclusion
that

(8.6)

where

1 )n+lC=pn+3(3B) n+x and /3= -a
Now, for any x in 32, r> 2 and 20 2(r 1)> r. This, inequality (8.6), and the fact

that f, is nonincreasing yields

(8.7) 18 +"u(x)I__< 2Cr- lf. (2/3)
for each x in d2

Next, consider the following integral:

f 13+nul=da=f [ + nu[2da + f2 N O-@R
[ + nul2da"

It is easily verified that, using (8.7) and (8.3),

(8.8) f asR.
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Recall now that (u,E,S) is the solution to a periodic boundary value problem. By
periodicity, (u*, E*, S*) is also a solution to that problem provided

u*(x) u(x + p),

E*(x) E(x + p),

S*(x) S(x + p).

Thus, (Su,6E, SS)=(u*-u,E*-E,S*-S) is the difference between two solutions to
the same boundary value problem on ’. Continuing in this vein ( MU, 6 ME, MS), for
M= 1,2, 3,-.., all clearly represent the difference between two solutions to the same
boundary value problem on M. For M= 3 + n, however, (8.8) holds, and, uniqueness
Theorem 5.1 informs us that 3+nE vanishes on ’. But this is equivalent to 62+nE
being periodic on .

Assumption ii) now becomes important. It clearly implies that for each x in M

62+’E(x+kp)=o(1) as k on

which is compatible with 6-+nE being periodic on M only if 62+hE vanishes on M.
Thus, 61 + nE must be periodic on M and by assumption ii) satisfies

1 +hE(X + kp)=o(1) as k- on

and, hence, 1 +nE also vanishes on ’. Successively repeating this argument n more
times finally leads to the conclusion that 8E must vanish on M. Thus E is periodic on

THEOREM 8.2. Let be a periodic exterior body with positive definite elasticity.
Suppose (u,E,S) is the difference between two solutions to the same slightly periodic
boundary value problem on 1 which satisfies both of the following:

i) For some n

6E (x) O( r as r--,

ii) Given any R > 0 there is a constant, a R, such that if r(x)< R then

If, in addition, (u, E, S) satisfies any of the following conditions, then E and S vanish on
and u is a rigid displacement:

1) For each x in

and

S(x+kp)=o(1) ask on.

2) For each x in

vS(x+kp)=o(1) askon

S(x) o(1) as r--. .
3) For each x in

vS(x + kp)=o(1) as k--. on

and there exist three points on 5 (the surface on which s is prescribed) such that the
normais to 52 at those points span R 3.
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4) For some nonnegative integer, n, and each x in

V",(+)=o()
and 5al (the surface on which u is prescribed) is nondegenerate, that is, the projection of
1 onto the X2-X3 plane has nontrivial interior.

Proof. Reviewing the proof of the previous theorem, it is clear that (8.2) can be
replaced with the stronger assumption of condition 1 from this theorem. Thus condi-
tion 1 not only implies that S(x + kp) vanishes for each x in as k , but that S is
periodic. This is impossible unless E and S vanish.

By the relationship between 8 and it should be clear that

(8.9) VS(x + kp)= o(1) as k

also implies (8.2). By Theorem 8.1, S and, thus, vS are periodic. But, of course, VS
cannot be periodic and satisfy (8.9) without vanishing on . This means that S is then
given by some fixed symmetric tensor S. If S satisfies condition 2 of Theorem 8.2,
then, since S must vanish "at r= ", S must be the zero tensor. If S satisfies
condition 3 of Theorem 8.2, then, since (u,E,S) satisfies the null boundary value
problem, Sn=0 for a set of n’s which span all of 3. This also forces S to be the zero
tensor.

By very similar arguments it is easily seen that if

v’u(x+kp)=o(1) as k

for each x in , then V "u vanishes on . Hence u is given by a polynomial of degree n
or less, say

u(x,y,z)= xJ(y,z)
j=O

where each . denotes a (vector valued) polynomial in two variables. But (u, E, S) is the
difference between two solutions to the same slightly periodic boundary value problem,
and, so, for each x=(x,y,z) in and each integer, k,

Thus, u(x+ p) is a polynomial in with infinitely many zeros, =0, 1, 2,...,
which is possible only if each (y0,z0) vanishes whenever (y0,z0) is in the projection
of1 on the X-X axis. The additional assumption that this projection be nondegen-
erate then forces each polynomial ., to vanish on an open subset of N , which as is
well known, forces each ..to vanish throughout N . Consequently, u (and, hence, E
and S) must vanish throughout .

TNoN 8.3. Let be a periodic exterior body with positive definite elasticity.
Suppose (u, E, S) is a solution to a periodic boundary value problem such that, on any
given

(8.10) u(x + p)-u(x)= O(1) as

and, for some nonnegatioe integer, n, either

(8.11) 8 u(x) O(Ixl 1/2)
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or

(8.12) "VE O(Ixl 1/2) as Ixl on

if, in addition, either of the following holds, then E is periodic with W= O.
1) 5’1, the surface on which u is prescribed, is nontrivial.
2) The problem is a traction problem and (u, E, S) satisfies any one of the following:
i) 6Ul(X + p)--SUl(X)= o(1) as ]xl on ...
ii) E11(x+p)-E11(x)=o(1) as Ixl on.
iii) There are an R0>0 and a nonincreasingfunction, f(r), which approaches zero as

r approaches infinity, such that

IEl(X)l [r+ 1 + Ixllf(r)

for all x in with r(x)= r >_ R o and x x. e.
iv) There are an R o > 0 and a nonincreasingfunction, f(r), which approaches zero as

r approaches infinity, such that

lu,(x) I__< r2-t- (1 + Ixl)r]f(r)
for all x in with r(x)=r>=R o and x=x.e1.

Sketch ofproof. First it should be observed that several of the above assumptions
are implied by their alternatives. For example, if 2iv) holds then the second part of
Theorem 4.3 (with y= 1, fl= 1) clearly implies that for some other nonincreasing
function, g(r), which also approaches zero as r approaches infinity,

(8.13) [Ell(x) I--[U,l(X) I< [r + (1 + Ixl)] g(r)
for all x in M with r= r(x)> R 0. A second application of Theorem 4.3 (with y= 1 and
/3 0) and the relationship between 8 and X7 shows the existence of another nonincreas-
ing function, h (r), which also approaches zero as r approaches infinity, such that

lSell(X) I_< [r+ (1 + Ixl)r-] h(r)

for all x in ’ with r= r(x)> R 0. Recalling the definition of , we see that this implies
that

Ell(X)=o(1) as Ixl oo on.

This, in turn (using the relationship between 8 and X7 and the fact that Ell--Ul,1)
implies that

32ul(x)=o(1) as Ixl ona.

Thus, in the alternatives listed under condition 2, we see that

iv) = iii)= ii) = i).

In addition, using arguments demonstrated in the proof of Theorem 8.1, it can be
shown that (8.12) implies (8.11). Hence for the remainder of this proof, it may be
assumed that (8.11) and either assumption 1) or 2i) holds.

Now, by arguments similar to those above and those given in the proof of
Theorem 8.1, it is apparent that by (8.11) there exist positive constants M,A, and R 0
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such that for all x in

"+ u(x) [:< M[r-1/:z+ (1 +

and, if r(x)< R0,

[in+Iu(x)l:<A(1 -t- IX]) 1/2.

It is not hard to verify that on a periodic exterior body the above bounds imply that

f I’+.l=da--O(R) as R--->
n

and so by the general uniqueness theorem "+ 1E vanishes on . Thus nE is periodic.
Let (u*,E*,S*) denote ("u, 6nE, BnS) and let W*, *, and * be the skew tensor,

constant, and vector such that

6u*(x) =u*(x + p)- u*(x)= *x + *p+ fi*.

It should be clear that the boundedness of 8u on assumed in (8.10) implies that 6u* is
bounded on . This in turn, forces W* to be the zero tensor. Now, if 51 is nontrivial,
the periodicity of the original problem forces 6u*, and, thus, * and fi*, to vanish on
51. Thus, u* is periodic. Uniqueness Theorem 6.1 can now be applied, showing that
6"E E* vanishes on .

Suppose, now, that 2iv) and not 1) holds. Obviously 2iv) also forces * to zero.
Since a traction problem is being considered and fi* arises from a rigid displacement, it
may be assumed that fi* =0. Again, uniqueness Theorem 6.1 applies showing that
iE E* vanishes on . Thus, i "E is periodic.

The proof of the theorem is completed in the obvious manner, that is, the argu-
ments from the previous two paragraphs are repeated successively for 6"-E, 6"-2E,
etc. rq

Two corollaries to Theorem 8.3 will be given. The first is the expected "uniqueness
theorem". The second is a repeat of Theorem 8.3 combined with the observation (via
Theorem 4.3) that both (8.10) and assumption 2 are satisfied whenever u satisfies

u(x)-O(Ixl) as lxl on

Proofs of these two corollaries will be left to the reader.
THEOREM 8.4. Let be a periodic exterior body with positive definite elasticity.

Suppose (u,E,S) is the difference between two solutions to the same slightly periodic
boundary value problem such that, on any given

u(x) 0(1) as [xl--> on

and, for some nonnegative integer, n, either

,"u(x) o(Ixl as Ixl- on

or

 "VE(x) O(Ixl as Ixl- on
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If, either
1) St’1, the surface on which the displacement is prescribed, is nontrivial or
2) the problem is a traction problem and

Ell(X) =O(1) as Ixl- on

then E and S vanish on and u is a rigid displacement.
THEOREM 8.5. Let be a periodic exterior body with positive definite elasticity.

Suppose (u, E, S) is a solution to a periodic boundary value problem on such that

u(x) O(Ixl) as Ixl- on

and, for some nonnegative integer, n, either

o(Ixl
or

 VE(x) O(txl as [x[ on .
Then E is periodic with W= O.

9. Applications involving periodic fractional spaces. The proofs of the results dis-
cussed in the previous section can be fairly easily adapted to cover analogous problems
on periodic fractional spaces. The only serious modification results from the fact that
on fractional spaces r(x) cannot, in general, be considered as equivalent (for large r(x))
to the distance from x to the boundary of . As a result, to insure that uniqueness
Theorem 5.1 can be applied to some 6mu, it becomes expedient to replace to bounds
involving (1 + Ixl)/2 with bounds involving (1 + Ixl). This is not always necessary, and,
following Theorem 9.5 will be a brief discussion on relaxing these particular bounds.

Throughout this section it is to be understood that 0 and 0(x) both denote the
distance from any given x in M to the boundary of M, and, as in the previous section, x
denotes x. e.

The first five theorems of this section are the direct analogues of the corresponding
theorems from the previous section. No further discussion of their proofs will be made.

THEOREM 9.1. Let be a periodic fractional space with positioe definite elasticity.
Suppose (u, E, S) is a solution to a periodic boundary oalue prob&m on which satisfies
all of the following:

i) For some n

ii) For each x in

8E (x) 0(0") as 0 (x) .
8E(x+kp)=o(1) as k on .

iii) Given any R > 0, there is a constant, A R, such that

whenever x is in and O(x)__< R.
Then E is periodic on .



844 KENNETH B. HOWELL

THEOREM 9.2. Let be a periodic fractional space with positive definite elasticity.
Suppose (u,E,S) is the difference between two solutions to the same slightly periodic
boundary value problem on which satisfies both of the following:

i) For some n

 E(x)

ii) Given any R > 0, there is a constant, A n, such that

whenever x is a point in 6 with p (x) =< R.
If, in addition, (u, E, S) satisfies any of the following conditions, then E and S vanish

on and u is a rigid displacement.
1. For each x in

S(x+kp)=o(1)

2. For each x in

vS(x+kp)=o(1)

and

3. For each x in

ask onN.

as k--, on t

S(x)=o(1) as O(x)- m.

VS(x + kp)=o(1) as k c on t

and there are three points on 5a2, the surface on which s is prescribed, such that the
normals.to 5a2 at these points span all of R 3.

4. For some nonnegative integer, n, and each x in

V"u(x+kp)=o(i) as k---, on

and 5a2, the surface on which u is prescribed, is nondegenerate (i.e., the projection of 5a2
onto the X2-X plane contains a relatively open subset of the plane).

THEOREM 9.3. Let be a periodic fractional space with positive definite elasticity.
Suppose (u, E, S) is the solution to a periodic boundary value problem on such that, on
any given ,

u(x + p)-u(x)= O(1) as Ixl on

and, for some nonnegative integer, n, either

8"u(x) O(1) as Ixl on

or

8"rE(x) 0(1) as Ixl on

Assume, also, that either
1.51, the surface on which u is prescribed, is nontrivial, or
2. the problem is a traction problem with (u, E, S) satisfying one of the following:
i) 8ul(x + p)-Sul(x)= o(1) as Ixl--’ on ;
ii) El(x + p)-Ell(X)= o(1) as [x] o on ;
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iii) there is a nonincreasing function, f(r), which approaches zero as r approaches
infinity, such that

lEvi(x) [__< p + 1 + Ixl]f( p )
for all x in ;

iv) there is a nonincreasing function, f(r), which approaches zero as r approaches
infinity, such that

[u(x) I__< [2+ (1 + Ixl)p]f()
for all x in .

Then E is periodic on with W= O.
THEOREM 9.4. Let be a periodic fractional space with positive definite elasticity.

Suppose (u,E,S) is the difference between two solutions to the same slightly periodic
boundary value problem on such that, on any given ,

u(x) 0(1) as Ixl o,

and, for some nonnegative integer, n, either

8"u(x) O(1) as Ixl on

or

($’VE(x)= 0(1) as Ixl e on .
If either

1) 5"1, the surface on which the displacement is prescribed, is nontrivial or
2) the problem is a traction problem and

Eal(x)=o(1 ) as Ixl---) on
then E and S vanish on and u is a rigid displacement.

THEOREM 9.5. Let be a periodic fractional space with positive definite elasticity.
Suppose (u, E, S) is a solution to a periodic boundary value problem on 9Y such that

u(x) O([x[) as Ixl--> on

and, for some nonnegative integer, n, either

8"u(x)= 0(1) as Ixl- c on

or

8"rE(x) O(1) as Ixl on .
Then E is periodic with l/V O.

As pointed out at the beginning of this section, the theorems in this section are
slightly weaker than the analogous theorems in the previous section. This is, at least
partly, due to the fact that the bounds developed in {}4 behave poorly near the
boundaries of the domains. Duffin [1], however, has shown that solutions to certain
problems in elastostatics can be continued across planar portions of the boundary. The
extension is also an elastic state but is now defined on. a larger body, *, which
contains the original body. For example, if is a half space, M* may be taken to be the
entire space. Use of these reflexion principles of Duffin have led to several uniqueness
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results for problems involving half spaces (see Knops and Payne [7, Chap. 6]). They
also lead to the following result.

THEOREM 9.6. Suppose that is a periodic fractional space with positive definite
elasticity. Suppose, also, that outside of some cylinder of finite radius centered about the
Xa-axis, the boundary of consists of a pair of halfplanes both parallel to the Xa-axis. Let
such a body be termed a "periodic perfect fractional space ". Then all of the theorems in 8
remain true if the phrase "periodic exterior body" is replaced by the phrase "periodic
perfect fractional space ".

The proof of this theorem shall be left to the dedicated reader.

10. The displacement problem. It has been shown (see Howell [3] and [5], respec-
tively) that Theorems 5.1 and 6.1 remain true if the problem being considered is a
displacement problem on a,homogeneous, isotropic body with strongly elliptic elastic-
ity. Thus, the results of 8 and 9 can easily be extended to cover periodic and slightly
periodic displacement problems on homogeneous, isotropic bodies with strongly elliptic
elasticity.

11. Comparison with half-space results. To a certain extent the uniqueness results
in 9 can be viewed as extensions of the known results for half-space traction and
displacement problems (see, Knops and Payne [7, Chap. 6]). In 9 the bodies (periodic
fractional spaces) are more general and the class of problems considered (slightly
periodic general boundary value problems) are, also, more general. However, via Duf-
fin’s reflexion principle [1], half-space traction and displacement problems can be
treated as if the functions were defined on all of space. One can then prove the desired
uniqueness using properties of biharmonic functions defined on all of space (for
example, one could use Corollary 4.4 of this paper) with little regard as to whether or
not the elasticity field is positive definite or strongly elliptic.

The asymptotic behavior assumed in the half-space problems, however, should be
compared to the behavior assumed in Theorem 9.2 under either assumption 3 or 4. By
assuming that the body was not a perfect half-space it was possible to show uniqueness
under weaker assumptions concerning the asymptotic behavior of the elastic state.
Interestingly, the sort of asymptotic behavior assumed in this theorem is definitely not
sufficient to insure uniqueness in half-space problems. For the traction problem on the
half-space (x: x2 > 0) an appropriate counterexample would be any elastic state (u,E, S)
in which S is constant and

Si2=0 fori=l,2,3.

For the displacement problem on the same half-space one can use

u(x,y,z)=yv

as a counterexample where v is any fixed nonzero vector.

Acknowledgment. A major portion of this paper was preparedunder the support
of an Incentive Fund Research Grant from the University of Alabama in Huntsville.
The authOr is grateful for this assistance.
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COMPLETENESS OF THE EIGENFUNCTIONS
OF THE EQUILATERAL TRIANGLE*

MARK A. PINSKY

Abstract. It is proved that the eigenfunctions obtained by multiple reflection are complete" the gener-
alized Fourier series of a smooth function coverges absolutely to the given function.

Recently there has been a revival of interest in the detailed structure of the
eigenvalues and eigenfunctions of the equilateral triangle [2], [3]. While the existence of
a complete set of eigenfunctions may be deduced from general theorems on self-adjoint
elliptic operators, it does not follow that a concrete set of eigenfunctions is in fact
complete. The purpose of this note is to prove that the eigenfunctions obtained in [3] by
multiple reflection form a complete set. This problem is more difficult than the corre-
sponding problem for a square because in the present case the associated parallelogram
covers the triangle eighteen times, in contrast to the fourfold covering in the case of a
square.

Let D be the equilateral triangle

D= {(x,y)" O<y<xv/,O<y< V/-J-(1-x)}.
Let Z2 be the integer lattice

Z2=((m,n)" m=O, +_l, +_2, ;n=0, +_1,_2,... },

and let G be the group of transformations of Z2 generated by the operations $1, S
where

S’(m,n)(m,m-n),
S:z" (m,n)(n-m,n ).

This group has six elements, including the identity and the transformations S$2, S:zS
and SxS2S (= S:SxS2). Under the action of this group the lattice Z2 splits into orbits
which are equivalence classes of lattice points which are transformed into one another
by the group operations. Every orbit is of the form

5z’= {(m,n),(m,m-n),(-n,m-n),(-n,-m),(n-m,-m),(n-m,n)).
The union of these orbits is the entire lattice Z2.

In general an orbit may have six elements or fewer. For the construction of
eigenfunctions we need a certain class of orbits which are defined as follows.

DEFINITION. ,gais a special orbit if the following conditions hold:
(i) rn 4: 2n for all (rn, n)St’;
(ii) n 4: 2m for all (rn, n)Sa;
(iii) rn + n is a multiple of 3 for all (rn, n)Sa.

*Received by the editors October 26, 1983, and in revised form January 25, 1984. This research was
supported by the National Science Foundation.

Department of Mathematics, Northwestern University, Evanston, Illinois 60201.
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We denote these orbits by (Sak). In [3] it was shown that to each special orbit 5ak there
corresponds an eigenfunction with zero boundary conditions, i.e. a function + satisfying

Ak+kq=0 inD,

k 0 on the boundary of D,
where the eigenvalue is given by k=(16r2/27)(m2+n2-mn). The eigenfunction is
given by the formula

(1) q,= +exp(2i)(-- mx+(2n-m)Y)
m n =5’ Vf

where the + signs are chosen according to the following ordering of elements in the
orbit

(2)

Sz
(m’n)

(n-m,n) (m,m-n)

S11 $2

(n-m,-m) (-n,m-n)

Each transition induces a change of sign in the coefficient of the exponential in (1). We
can now State the result.

THEOREM. Let f be a smooth real-valued function with compact support in the
equilateral triangle D. Then

(3) f=
k=l

for suitably chosen coefficients a ).
Proof. Let b be the parallelogram and R1, R2, R the reflection operators with

translation operators T1, T2 defined as follows:

b= {(x,y)" O<y<3f/2,y/v<x < 3 +y/7-},
RI" (x,y)-o(x,-y),
R 2" (x,y)--*(-1/2x+1/2YV/-,1/2xv+1/2y),
R 3" (x,y)-o(3-1/2x-1/2YV,1/2Y+1/2V-1/2xf),
T" (x,y) (x+ 3,y),
T2" (x,y)-o(x+1/23,y+1/23V).

The parallelogram /9 covers the triangle D eighteen times as shown in Fig. 1.
Given f on D which vanishes on the boundary, there is a uniquefon R 2 such that

f
Rif
rio =f.



850 MARK A. PINSKY

A B C A

B

C

A B C A

FIG. 1. The basic triangle (shaded) and the covering parallelogram. Corresponding vertices are labeled
A, B, C. A function is reflected according to the +_ signs as indicated.

The function f may be obtained by multiple reflection and periodic extension as
indicated in Fig. 1. Now f is also smooth and may be written as an absolutely
convergent trigonometric series

(4) f= E Am,expl
(m,n).Z

To see this, note that the transformation x’ x y/v, y’ 2y/ carries the paralle-
logram D to the square 0 < x’ < 3, 0 <y’ < 3 for which the complete set of eigenfunc-
tions is known to be [4, p. 300]

,)exp (mx’+ny =exp!
2’zri m(x Y) + n

=exp -- mx+ (2n-m)y)
Applying the reflection operators and following the computation of [3, p. 822], we have

Rlf Am,m_n exp mx+
(re,n) Z 1

R2f A.-m,.exp
(m,n)Z

2ri
mx +

R3f E
(m,n)Z

2ri)A _,,,_,,, exp -- (m + n )exp
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By the uniqueness of the representation (4) we have

-A o,

(6) Rzf -f=An_m,n -Amn,

2ri)(7) R3f= -fA_,,,_m= -Amexpl -- (m+ n).

We now rewrite the absolutely convergent sum (4) as a sum over the orbits. Within each
orbit Am has the same absolute value, from (5) and (6). Furthermore (7) shows that
A,,,, is zero unless m + n is a multiple of three. We claim further that m g= 2n, n g= 2m for
each (ran). Indeed if this is not the case, then the orbit must have the form

5a= {(2n,n),(2n,n),(-n,n),(-n,-2n),(-n,-2n),(-n,n)}.
Again using properties (5) and (6) we see that the sum over this orbit is zero. Therefore
we conclude that we may restrict the sum to the special orbits 6a. The proof is complete.

The above methods may be used to prove completeness of the eigenfunctions of
the fundamental domains of general crystallographic groups, as considered by B6rard
[1]. The details are entirely similar to the case of the equilateral triangle treated here.

Acknowledgment. I would like to thank Gilbert Strang for a helpful initial con-
versation.
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HYPERGEOMETRIC FUNCTIONS OF SCALAR MATRIX
ARGUMENT ARE EXPRESSIBLE IN TERMS

OF CLASSICAL HYPERGEOMETRIC FUNCTIONS*

RAMESHWAR D. GUPTA" aND DONALD ST. P. RICHARDS*

Abstract. It is shown that the hypergeometric function of rn rn scalar matrix argument (cf. Herz, Annals
of Math., 61 (1955), pp. 474-523) may be expressed as the Pfaffian of a matrix whose entries are evaluated in
terms of classical hypergeometric functions. Applications, in multivariate statistical theory, are made to the
distributions of eigenvalues of various random matrices.

AMS-MOS subject classifications (1980). Primary 33A30, 62H10

Key words, hypergeometric function of matrix argument, Pfaffian, distribution theory, random eigenval-
ues

1. Introduction. The hypergeometric functions of rn rn argument, introduced by
Herz (1955), have found widespread applications in multivariate statistical theory
(Muirhead (1982)) and analytic number theory (Shimura (1982)), The great importance
of these functions has led to series expansions in terms of zonal polynomials (Constan-
tine (1963)), and also to relations with the classical hypergeometric functions (Herz
(1955), Muirhead (1975), Koornwinder and Sprinkhuizen-Kuyper (1978), Gupta and
Richards (1982)). However, zonal polynomial series generally converge somewhat slowly,
while connections with the classical counterparts are only available for m 2.

In this article, we use the results of de Bruijn (1955) to show that Herz’s hypergeo-
metric function 2Fl(a,;/;rI,,), of mm scalar matrix .argument, is related to the
Pfaffian of a matrix whose entries are expressible in terms of the classical hypergeomet-
tic functions. Applications, in multivariate analysis, are made to the distributions of
random eigenvalues of two matrix statistics.

2. Preliminaries. Throughout, R>0 (or 0< R) will mean that R is a positive
definite m m symmetric matrix; R > S will mean that R S > 0.

Herz (1955) defines the hypergeometric function 2F(a, fl;7;R) through the in-

tegral formula

l foI a-p "-a-p -fl
(2.1) 2f ( ot fl "Y R )

Bm ( ot .y ot ) ISI I S I RS dS

for complex a,/3, , with Rea >p 1, Re/3 >p 1, Re (7 a) >p 1, and 0 < R < I. Here,
p=(m+l)/2, I is the mm identity matrix, and with S=(sij), dS=I-Iizj.dsj is

Lebesgue measure, f0/ denotes integration over ( S: 0 < S < I }, and the multivariate beta

*Received by the editors October 4, 1983. This work was supported by the Natural Science and
Engineering Research Council of Canada under grant A4850.

Division of Computer Science, Engineering and Mathematics, University of New Brunswick, St. John,
New Brunswick, Canada EZL 4L5.

*Departments of Statistics and Mathematics, University of North Carolina, Chapel Hill, North Carolina
27514 and Departments of Mathematics and Statistics, University of Wyoming, Laramie, Wyoming 82071.
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function B,,(., ) may be defined as

where

I’(a)=r"m-)/4F(a)F a- ...F a-(m-1) Rea>p-1,

is the multivariate gamma function.
Let/ be a Borel measure on a possibly infinite interval (a, b) of the real line, and

let ql, q2," ",qn be members of LI(/). The results of de Bruijn (1955) pertain to the
multiple integral

a<Xm< <Xl<b

I(o,(x))ldt(xl)... dt (Xm),

where I-i denotes the determinant. Introducing the signature function

E(Xl,’",Xm)=IIsgn(xj-xi), Xl,’",Xm(a,b),
i<j

into the integrand of (2.2), it follows from a symmetry argument that

(2.3) a=.. E(xl," ",x,)l(O,(xj))ldl(Xl)" dl(X,,,)

-F f E(xI,. ,Xm)*l(Xl)" *m(Xm)dl,(x1)" d]d,(Xrn ),
a .a

Expanding the signature function in the form
m m

g(xl," ,Xm)--
2nfl! .E E E(jl," ",jm)E(xj,,xA)" E(xj=._x,xj.),

j =1 jm=l

where n [m/2], the greatest integer not exceeding m/2, and integrating termwise in
(2.3), we find that f may be written as the Pfaffian of a certain skew-symmetric m m
matrix A (a;j). We recall (cf. Weyl (1946)) that for any mm skew-symmetric matrix
A (a j), the Pfaffian of A may be defined by

rn m

pf(h)_ 2nn!l . E ajlJ2"’" aj2,,_ 1,j2,E ( Jl, J2," ,Jm),
Jx =1 jm=l

where n=[m/2]. When m is even, a well-known result is that [Pf(A)]2= IAI; if m is odd,
we can use the result that Pf(A)= Pf(A /), where

0

a21

am1
-1

a12 alm 1

0 a2m 1

a2 0 1

-1 1 0

to again express [Pf(A)] 2 as a determinant.
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Consequently fl= Pf(A), with A--(aij) being mm and skew-symmetric. If m is
even, m 2n, then for 1 =< 4:j =< 2n,

(2.4) aij= -aji-- i(x)ckj(y)sgn(y-x)d(x)dl(y).

If m is odd, m 2n + 1, then in addition to (2.4) holding for 1 =< 4:j =< 2n + 1,

(2.5) ai,2n+2 -a2n+2,i hi(x)dlx(x), 1<i<2n+1,

and a2n+2,2n+ 2 --0.
All details behind (2.4) and (2.5) are given by de Bruijn (1955).

3. Hypergeometric functions of scalar matrix argument. In (2.1), we set R rI,
0 < r < 1, and make the substitutions S=HAH-1, where H is mm and orthogonal,
and A=diag(sl,.. ",Sm) contains the characteristic roots of S. We may assume that
s > s2 > > Sm, since the manifold corresponding to possible equality of any subset
of the { s )’ is of lower dimension, and is therefore of measure zero. The Jacobian of
the transformation is given in Constantine (1963) and Muirhead (1982), from which we
readily obtain

m

(3.1) nm(ot, y-ot)2Fl(Ot,fl; y’,rI)--c f f I-[ (si-sj)dt.t(Sx)" d(sm)
i<j

l>Sl> >sn>0

wheredl(x)=x-P(1-x)V--P(1-rx)-#dx, 0<x<l, and c,,=r /2/Fm(m/2). The
well-known Vandermonde formula

m

/-I
i<j

applied to (3.1) shows that (3.1) is of the form (2.2). It then follows from the results
outlined in 2 that the integral in (3.1) equals PF(A), where A =(aij.) is mm skew-
symmetric with

fo f01a ij ai x m--j sgn( y x) d(x)d (y),

for 1 _< 4:j =< m if m is even, and with the modification in (2.5) if m is odd. Writing a9
as a difference of two integrals,

(3.3) aij=(fol f0v-f01 fyl)xm-iym-Jd(x)dlx(y)
it is straightforward to verify that the sum ,of the two integrals in (3.3) equals

(3.4) Bl(aWp-i,y-a-p+ l)Bl(aWp-j, y-a-p+ 1)
:zFl(fl,a+p-i;’-i+l;r) :Fl(fl,a+p’j;y-j+ 1;r).

Therefore, it suffices to calculate the first integral in (3.3), viz.

(3.)

fa f.l’ a+p-i- -j- l-x) (1 y) (l-rx) (l-ry)-fldxdy.X Xy +p 1( y-a-p y-a-p -fl
go o
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Writing

(1-rx)-t=
k=0

where (fl)k=F(k+fl)/F(fl), k=0,1,..., and integrating termwise shows that the
inner integral in (3.5) equals

g  .fok=O

a+k+p-i-l(i X) T-a-P dx

o ( fl ) kry=Y’+P- k!(a+k+p-i)
Fl(a+k+p-i’-T++p;a+k+p-i+ 1;y).

k=O

Next, we expand this last 2F1 and again integrate termwise to deduce that the integral
in (3.5) equals

(3.6) E _, (fl)(-+a+p),F(m+2a+k+l+l-i-j)F(-a-p+l)
k=0 l=0 k!t!(a+ k+ t+p- i) F(a ++g+ l+p+ 1-i-j)

Xr k 2Fx(fl,m+2a+k+l+l-i-j;a+T+k+l+p+l-i-j;r).

Consequently, aij(1 _<i 4:j =<m) is the difference between twice the expression in (3.6)
and that in (3.4). If rn is odd, m 2n + 1, then (2.5) leads to

(3.7) ai,2n+ 2-- a2n+ 2,i=
F(a+p-i)F(V-a-p+l)

F(e-i+l)
2Fl(fl,a+p-i; y-i+ l;r),

for i=1,. .,2n+ 1.
At this point, we address some remarks to the computability of the matrix A and

its Pfaffian. First, since A is skew-symmetric, only 1/2re(m- 1) of the entries aU need to
be computed. In addition, numerical studies indicate that the series in (3.6) converge
fairly quickly for various choices of the parameters. Preliminary work seems to indicate
that for small values of m, it is more efficient to compute the generalized hypergeomet-
ric function from the formula involving Pf(A) or IAI than through the use of partitional
sums.

To conclude this section we remark that from the results obtained in (3.6) and
(3.7), we can use confluence relations to obtain similar results for the confluent hyper-
geometric and Bessel functions of.Herz (1955) and Muirhead (1970).

4. Applications to latent root distributions. In multivariate statistical theory, the
distributions of several test criteria defined in terms of the latent roots of random
matrices may be expressed in terms of hypergeometric functions of scalar matrix
argument. Let U1 and U2 be two m rn independent random matrices having Wishart
distributions W(n,Z) and W(n_,Z) respectively, where n, n>=m. The matrix U=(U
+ U)-/2UI(U + Uz)-/ is called the generalized B statistic. Sugiyama (1967) shows
that Pr(k < r), the cumulative distribution function of ,, the largest latent root of U,
is proportional to rmnl/22Fl(- 1/2n 2 +p, 1/2n2; 1/2n +p; rim) 0 < r < 1. Consequently, the
results of the previous section lead to computable representations for the distribution
function of 1. Similar applications may be made to problems discussed by Hayakawa
(1967), Muirhead (1975), Gupta and Richards (1982), among others.
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",, e also provide some explicit details for a problem discussed by James (1975). Let
S be a real m m symmetric matrix, and

SF(m) (r) exp trS 2

-oo<S<rl
dS

F(m)(r) is related to the distribution of the largest latent root of a random symmetric
matrix whose components are normally distributed. As before, we set S=HH-1 and
obtain

F(m)(r)=m f... f
r>sl>’’’ >Srn

m

I-[ (si- sj)exp
1

<j - s ds ds

Thus, de Bruijn’s results show that F m)( r ) C,, Pf(A), where A (a j) is skew-symmet-
ric m m, with

(4.1) m--iy.,--sgn(y x)explai a x 1,1)--x --y2 dxdy,

for 1 =<ij =< 2[1/2m], and with the usual modifications if m is odd. As before, we write

a./as the difference of two integrals,

(4.2) aij=(f fY _fr fy.)Xm_iym_Jexp(_ (x2-j-y2))dx.dy_ _ _ 4

The sum of the two integrals in (4.2) equals Fi(r).(r ), where

F/(r)= xm-iexp --x dx,

With the usual notation for the incomplete gamma functions (Erd61yi et al. (1953,
p. 266)), it may be shown that for i= 1, 2,...,m,

F/(r)
2 ’4

(--1)m-i+12m-i’( m-i+ l
+2m-i,((m-i+ 1) r 2) r>0.

Hence, as before, we need only compute the first integral in (4.2), viz.

(4.3) fr my ( (x2+y2))dxdy
-oo -c.

xm-iym-Jexp
4

First, we assume r =< 0. Replacing (x,y) by (- 2s1/, 2tl/2), we find that (4.3) equals

(4.4) ( 1) i+J22m-i S (m-i- 1)/2t(m-J- 1)12e -tdsdt
2/4
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The inner integral in (4.4) equals

F( m-/+l ) f02
s(m-i-1)/2e-Sds

=F(m-i+l) 2t(m-i+l)/2 (m-i+l.2 m-i+ 1 IF 2 2

Expanding the F and integrating termwise, it follows that (4.4) equals

m-i+3 ),-t

(4.5)

(_l)i+J22m-i-j

2 S ( 1)((m i+1)/2) F
m-i+ l k!((m-i+ 3)/2),

To evaluate (4.3) when r > 0, we split the region { o < x <y < r } into the disjoint
union of Rx={-o<x<y<=O},R2={-o<x<O,O<y<r } andR3={O<x<y<r }.
Letting qi(x) x "-i exp(- x/4), x R, it follows from (4.5) that

ff i(x)qj(y)dxdy=(-1)i+J22m-i-jF(m-i+l )F( m-j+l )2 2
Rx

Trivially,

ff dPi(x)dpj(y)dxdy=(__1)m_i+22m_i_ji,(m-i+1) (m-j+l r2)2
R2

while the methods used earlier will also prove that

ff 22m-i-J (-1)k((m-i+l)/2)k ( i+j r 2 )i(x)qJ(y)dxdY=m-i+----
,=o k’((+3-))- 3 k+m----+l, -R3

Summing the last three expressions evaluates (4.3) for r > 0, from which (4.2) can be
computed. These formulae lead to explicit results for the function F(m)(r). When
m 2, some numerical work indicates that the series derived here are adequate for
computations purposes; these matters will be considered more extensively elsewhere.
We should finally note that for m odd, similar expessions for the ao. are obtained
above, since then,

ai,,+2= qi(x)dx=F(r).

Acknowledgments. The suspicion that the results given here would be valid,
originated from conversations with Professor R. Askey; we are grateful to him for
drawing our attention to de Bruijn’s paper.
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AN INFINITE SERIES WITH PRODUCTS OF JACOBI
POLYNOMIALS AND JACOBI FUNCTIONS OF THE SECOND KIND*

MIZAN RAHMAN" AND MIHR J. SHAH t

Abstract. Let C,X(x) and DX(x) be the ultraspherical polynomial and ultraspherical function of
the second kind, respectively. Askey, Koornwinder and Rahman showed that the integral

f D,X,(x)C,X,(x)CX(x)(1-x2)2x-1 dx vanishes when l+ m+ n is odd and II-ml<n<l+ m. We find a dual
of this result, namely, that

r(n+!)E (n+X) r’(n;:X) GX(csB)GX(csr)DX(csa)

vanishes when Ifl- 3’1 < a < B + 3’. We evaluate this sum for a < I/3- 3’1 and a >/3 + 3’, and apply HsiYs limiting
technique to give a derivation of the Bessel function integral fo x /,, y,, (ax) J,, (bx) J,, (cx) dx that has
recently been evaluated by Askey, Koornwinder and Rahman by a different method.

1. Introduction. Integrals and sums of products of classical orthogonal polynomi-
als have been a matter of curiosity for a long time (see [20] for an impressive list of
integral formulas). Many of these formulas have also proved very useful. During the
last fifteen years or so Askey and some of his co-workers [1]-[5], [7]-[9], [11] have
pointed out some interesting applications of such integral and sum formulas. To
mention one of the many such applications, Gasper [22], [23] proved that the lineariza-
tion coefficients in

(1)

n+m

k=ln_ml 1)

where P’’t)(x) is the Jacobi polynomial defined by

(1.2) P’’)(x)=(a+l)"n’ 2F [-nn+a+fl+l, l-x]a+l 2

are nonnegative for all nonnegative (k,m,n) if and only if (a,/3) belongs to a certain
set. Gasper showed that the nonnegativity of these coefficients is all that is required to
obtain a convolution structure, a Wiener-L6vy theorem and the positivity of a gener-
alized translation operator for Jacobi polynomials. Orthogonality of the Jacobi poly-
nomials implies that the coefficient g(k,m,n; a, fl) in (1.1) is a positive multiple of the
integral

(1.3) f_l (I-x)"(1 + x)tP(’t)(x)P(m’’)(x)P(’’t)(x)dx.
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Recently Rahman [28] was able to evaluate this integral as a single series with
nonnegative terms in the case a > fl > 1 and a + fl + 1 > 0.

As a dual to the linearization problem, Gasper [24] showed that the kernel
K(x,y,z; a, fl) in

is nonnegative on the set

Orthogonality implies

(1.6)

where the normalization constant h ,,t) is given by

h(,,,t)= { f (1-x)’(l+x)a[P,,(’,a)(x)]dx}-1

(2n + a++ 1)r(n + a + B+ 1)n!
2"+t+r(n+a+ 1)F(n+fl+ 1)

-1

Rea,/3> -1.

Gasper [24], [25] used the nonnegativity of this kernel to construct a convolution
structure for Jacobi series and to prove the positivity of a generalized translation
operator.

Special functions and many of their integral and sum formulas have perhaps been
more widely used by physicists than mathematicians. To mention only one example
that is relevant to this work, the Clebsch-Gordon coefficients with zero magnetic
quantum numbers have the following representation [13], [17]

(1.8) (.o)2 2n+1
CkOmO 2 fl_lPk(X)Pm(x)Pn(x)dx

where Pn(x) p(0,0)(x) is the Legendre polynomial of degree n. Obviously, the integral
in (1.8) is the same as in (1.3) for a=fl=0. From the symmetry and orthogonality
properties of the Legendre polynomials it is clear that the integral in (1.8) vanishes if
k + m + n is odd or the triangle inequality

(1.9) In-ml<k<m+n
is not satisfied. These inequalities must also be satisfied for the nonvanishing of the
integral (1.3).

In trying to classify the various fluctuation modes in an investigation of the
stability properties of some special solutions of the O(n) nonlinear 2-dimensional
o-model Din and Zakrzewski [14] found that the classification depended crucially on
the vanishing of the sum

n+- 2k+lE CkOmO)2k(k+l)_m(m+l)( nO

k=ln-ml



INFINITE SERIES WITH JACOBI POLYNOMIALS AND FUNCTIONS 861

Din showed that this vanishing follows from

(1.10) _lOk(X)Pm(X)Pn(x)dx--O

where k + m + n is odd, In ml < k < m + n, and Qk(x) is an appropriately defined
Legendre function [19], [29] of the second kind on the cut 1 < x < 1. Then he showed
[13] that (1.10) holds. This is a very interesting and somewhat surprising result because
the integral (1.10) vanishes on the set complementary to the set where (1.8) vanishes.
Din did not compute its value when k,m,n do not satisfy (1.9). The integral (1.10)
obviously vanishes when k + m + n is even and Askey [6] evaluated it when k + m + n is
odd and either k < In ml or k > n + m.

Dougall’s [15] generalization of the integral in (1.8) to ultraspherical polynomials is
well known:

(1.11) Ck (x)C(x)C:(x)(1-x2)X-1/2dx
-1

r(+l)
(X)s-k(k)s-m(X)s-n(2)s

(s-k)!(s-m)!(s-n)!(X+ l)’

where k + m+ n= 2s is even and In-ml<k <n+ m, and zero otherwise. Here C)(x) is
the ultraspherical polynomial that can be defined by

(1.12)
n

CX(cos0) Y’. (’)k(X)"-gcos(n--2k)0
k=0 k!(n--f:)S"

Recently Askey, Koornwinder and Rahman [10] found a generalization of Din’s
integral. They showed that

(1.13) I(k m n) Dk.x.....x....x_.l-x2_2X-Xdx
-1

vanishes when (i) k + m + n is even, and (ii) k + m + n is odd and In-ml< k < n + m,
where DXk(X) is the ultraspherical function of the second kind defined, on the cut
-1 <x<l, by

(1.14) (1 -x2)a-/2D}(x) 2F()+1/2)(2)) (1-X)z(1),+cos(k+21+l)O
r()r(a+ 1)k,. ,=o l,(h+. 1),+e

x cos 0. They also showed that

(1.15)

I(m+n+l+2k,m,n)

]2r(x+ 1) m!n!(m-n+lT-ii
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k =0,1,2,. ., while

(1.16)

I(m+n+l-2k,m,n)

[ F(k q-1/2)]2(2)m(2)n(2,)m+n+l_2k (-)k_m()m+n+l_k(n-k)!F(k)
F(X+ 1) m!n!(m-n+ 1Z’fc)! (k)k(2X)m+n+l_k(kqr- 1)n_kF(k-m )

where0<m<n and k=l,2,...,m,m+l,...,[(m+n+l)/2].
The purpose of this paper is to find duals of (1.13), (1.15) and (1.16) in the same

sense as the dual to Dougall’s integral (1.11) is Dougall’s infinite sum [14]:

(1.17) E (n+h F(n+l)
2

,,=0 r(n+2X) C"X(COsa)C)(cs)CnX(cosv)

)1-2X2- 2xr (F(L) } -4(sin a sin fl sin3,

sin
a + fl + 3, sin/3 + 3,- a sin 3’ + a -/3 sin

2 2 2

if 0 < a, fl, 3’ < r, 0 < ReX, and a triangle can be drawn with sides a, fl, 3,, assuming that
the sum of any two of them is less than or equal to r; and, 0 otherwise.

We show that the dual to (1.13), (1.15) and (1.16) is

(1.18)
F(n+ 1) CnX(COSfl)CX(cos3,)DXn(COSa)E (n+X) F(n+2k)n=O

22-2X
r (x)

where 1/2 < ReX < 1 and 0 < a,/3, 3, < r and

(1.19) 16D sin a+fl+72 sin
a + fl-3,2 sin fl+3,-a2 sin fl-3,-a2

Hsi [26] showed that Sonine’s integral formula [30, p. 411]

(1.20)

fJ(ax ) J,,( bx) 4 ( cx )x-dx.o
0

2-1A-1/2

VrJ ( abc ) F ( - + 1/2)

if a, b, c are not sides of a triangle,

if a, b, c are sides of a triangle of area A1/2,
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follows as limiting cases of both (1.11) and (1.17), provided Rev>- 1/2. J,,(z) is the
Bessel function that is .related to the ultraspherical polynomials through Mehler’s
formula

( z) v17 (2z)-J,,(z).(1.21) lim n 2"C+ /2 cos
.--, n

One can show that a similar limiting formula holds for DX(z):

( z) vc#(1.22) lim n-2"D"+/2 cos-- (2z) Y,,(z)

where Y,,(z) is the Bessel function of the second kind. It is possible to use (1.21) and
(1.22) in (1.13) and obtain a formula complementary to (1.20) in the same sense as
(1.13) is complementary to (1.11), by using Hsi’s limiting procedure. However, because
of the simplicity of Bessel functions, Askey, Koornwinder and Rahman [10] preferred a
direct computation to show that

(1.23) foY.( ax) J.( bx) J( cx)x +Vdx=

if Ib-cl<a<b+c,
2-v-l(__ A)-v-1/2
v/TF(1/2 v)( abc)

2-,,- x(_ A)-"-1/2
v/F( 1/2 v )( abc)

if a < Ib- c[,

if b+c<a.

In (1.20) and (1.23) A is given by the same algebraic expression, namely,

(1.24) )2 2 2 )2)/16A=((b+c -a )(a-(b-c
However, in .(1.20) it is positive and represents the square of the area of the plane

triangle of sides a, b, c, whereas in (1.23) A is negative because a, b, c do not satisfy the
triangle inequality. The complementary nature of the two formulas is vividly displayed
by the striking similarity of the two expressions on the right hand sides of (1.20) and
(1.23).

In {}2 we first introduce a dual to the integral in (1.13) and carry out the computa-
tions in {}3 that lead to (1.18). In {}4 we give an alternative derivation of (1.23) by
applying HsiTs limiting procedure to (1.18).

2. The dual kernel. The essential ingredients of this work are contained in Rah-
man [27] where he gave a more accessible proof, and extensions of the following
formula of Feldheim [21]:

F4(o1,o2; a+ 1 /3+ 1"
O(1-x)(1-y) 0(1 + x)(1 +y) /(2.1) 4 4

-5o
m (+ 1)n(C +8+ 1)n [l+n’2+n.n{i--+"15-n-a--+---+-ifg_n (q)n(t)np 2F1 a+/8+2+2n’ O

(1)
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where the parameters a, fl, a1, a2, o are restricted by the requirement of convergence of
the infinite series involved, and F4 isan Appell function [12], [18] defined by

(2.2) F4(l,lI2; fll,fl2; u,v)= m=02 m!n!( ,-- , u
Jacobi functions of the second kind, Q,t)(z), defined for all z in the complex

plane cut along the segment (- 1,1), are given by [19], [29]

Q{.,/)(z) 2.++a r(++a)r(n+/+a)
F(2n+a+fl+2)

(z 1)-"-"-x( [n+l,n+a+l 2 ]z+l)-/2F1 2n+a+fl+2 1-z

=2.+.+ r(n+a+.!)r(n+/+l)
r(2.+a+/3+ 2)

.(z_l)-"(z+l) -n-#-I 2Fl[n+ l,n+ fl+ l 2
2n+a+fl+2 l+z

This can be used to define Q’a)(x) on the cut and to compute P"’a)(x) there
using Durand’s formulas [16]:

(2.4) p,,t)(x) _i
--,01im [ei’’Qn’,)(x + ie)-e-i’Q’’#)(x-ie)]

(2.5) Q(,l(x)=_.ollim [ei"’Q(,,’’a)(x+ie)+e-i’’Q(,,’’)(x-ie)], -1 <x<l.

In [27] Rahman put a l, O2
q- l, p--" 2/(1 + z) in (2.1) and used (2.4) to give

an alternative proof of Gasper’s result [24]

(2.6)

K(x,y,z; a,fl)
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where K(x,y,z; a, fl) is defined in (1.6), and

(2.7) f= sin q sin q, g cos q cos q, h cos 0 r

x=cos2q, y=cos2q, z=cos20, 0<0,q,q<-,

(2.8) G=
g2+h2-f2

2gh

One could have used (2.5) in (2.1) with the above choices of al and a2 to obtain a
different kernel, but it is not the right kernel because it does not vanish in the triangular
region if- gl < h <f+ g, analogous to the vanishing of the integral (1.13), unless a =/3 0.
The reason is similar to the fact that the appropriate weight factor in (1.13) is
(1-x2)2x-1 and not (1-x)x-x/2, as one might expect. As it turns out, the ap-
propriate dual to (1.13) is obtained by making the following identification of the
parameters in (2.1):

2
(2.9) a=a+fl+l, a2=a+l, P-l+z"

Thus we have, on using the obvious symmetry of Fn,

(2.10) Fa(a+fl+l,a+l;fl+l,a+l; (l+x)(l+y) (1-x)(1-y)]
2(1 +z) 2(1 +z)

(a+fl+l). 1+z

a+fl+l+n,a+n+l
"2F1 a + fl + 2 + 2n

2
1+z

p(’,a) ( x ) p,,(’,t) ( y )

Using [18, 2.1.4(23), p. 64], the second formula in (2.3), and (1.7), we get

(211). F4(a+fl+l, a+l’fl+l, a+l’, (l+x)(l+Y)2(l+z) (1-x)(1-Y))2(l+z)
.=o

where 1 < x, y < 1 and z is in the cut-plane.
Using (2.5) we then have, for 1 < x, y < 1 and 1 < z < 1,

(2.12)

L(x,Y,z;a,fl) E h(,ff ’) ’a+fl+ll"P,,(’’t) ,,t) Q(,,,,a)
.=0 +

(y) (z)

1
---(z + 1) -a-B-1 lim ei"’A ( x,y,z + ie) + e-i"’A ( x,y,z ie)

where, for abbreviation, we write

(2.13) A(x,y,z)=F4(a+fl+l,a+l’,/3+l,a+l’, (l+x)(l+Y)2(l+z)
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There are some convergence difficulties in both (2.11) and (2.12). The series on the 1.h.s.
of (2.11) may diverge if z, but neither x nor y, is close to -1. One can use an analytic
continuation [18, 5.11(9), p. 240] to remove the difficulty with the F4 function. How-
ever, the series on the r.h.s, of (2.12) definitely diverges for Rea > 1/2. So our results are
necessarily restricted to 1 < Re a < 1/2.

3. Computation of L(x,y,z;ot, fl).
convergent if

(3.1) (1 + x)(1 +y) /2

2(1+z)

The Appell function in (2.13) is absolutely

(1-x)(1-y)
2(1+z)

With 0, q, p,f, g,h defined as in (2.7) this condition implies

(3.2) f+g<h.

When this inequality is satisfied, A(x,y,z) is single-valued on the real axis of the
z-plane, so we simply have

(3.3)
1 -a-fl-1L(x,y,z;a,fl)=-cosqra(2h 2) F4(a+fl+l,a+l;fl+l,a+l; g2/h2,f2/h2).

When (3.1) is not satisfied, A(x,y,z) may not converge, but by [12, 20(v) p. 102] it
can be expressed in terms of a 2El which admits many analytic continuations. Let

(3.4) g___ s f_2=
h 2 (1-s)(1-t) h 2 (1-s)(1-t)

Solving for s and we get

f2 + g2_ h 2 +_ 4v/_ D f2 + g2_ h 2 + 4x/- D(3.5) s t=
2f 2 2g 2

where

(3.6) 2D= ((f+g -h2)(h2-(f-g)2)/16
is the same as A in (1.2) with a,b, c replaced by h,f and g, respectively, and equals the
square of the area of a plane triangle of sides f,g,h whenever D>0. However, if
h <if-g] or h >f+ g,D is negative and, by (3.5), s,t are both real. Iff, g,h are real and
positive, as they are whenever 0 < 0, q,, q < r/2, and satisfy the triangle inequality
[f-g]<h <f+ g it follows from (3.5) that Ims 4: 0, Imt 4: 0.

We could express D in terms of 0, q, q as follows:

(3.7) -64D=(z-h+)(z-h_)
where h + cos 2(q q ).

As function of z, v/- D has a branch-point at h/ and another at h_. In the
z-plane cut along the real axis from min(h _+) to max(h +_), v/Z-D is single-valued and so,
for IRe z > h

_
we may choose either of the two signs in (3.5). We choose the following

branch:

f2 + g2_h2_4v/_ D f2 + g2_h2_4V/_ D(3.8) s t=
2f2 2g2



INFINITE SERIES WITH JACOBI POLYNOMIALS AND FUNCTIONS 867

Let us introduce two auxiliary parameters F and G:

(3.9) F=f2+g2_h2 2 h 2 2

2fg
G= g + -f

2gh

Of course, G is the same as in (2.8). One can easily check the following identities

(3.10)

(3.11)

(3.12)

f2g2(F2_ 1)= -4D= g2h2(62-1),

s= (F-v/F2-1)=- 1-(G+v/G2-1)
ht=f ( )=1-(G+/G-I)"

Whenever s, are real it follows from (3.4) that

either (i) s < 0, < 0,

(3.13) or (ii) 0<s<l,t>l,
or (iii) 0<t<l,s>l.

Let us now consider two separate cases.
Case 1. D < 0. This is the case when f,g,h do not satisfy the triangle inequality,

that is, either h < L(- gl orf+ g < h. By Bailey [12, 20(v), p. 102]

(3.14) F4 a+fl+l,a+l;fl+l,a+l;
(1-s)(1-t)’ (1-s)(1-t)

(1-- t)’+B+l 2F a+fl+l,a+l, s(t-1)]
/3+1 1-s ]"

Denoting v=s(t-1)/(1-s) and using the quadratic transformation [18, 2.11(34),
p. 113]

I Or1 o + 1

(3 15) 2F1
1’ a2

al--a2q--1 v =(l+v) a12F 2 ---a1--a2+1
we have

(1+ V)2

(3.16) F4 c+fl+l,a+l;fl+l,c+l;
(1-s)(1-t)’ (1-s)(1-t)

[1-t ++ a+fl+l a+fl+2 4v
2F1 2 2

l+v
fl+l (l+v)2

Let us first assumef+ g < h for which the kernel in terms of the Appell function is
given in (3.3). Using (3.16) we shall now express it as a 2F1 function. From the
definition of F and G it follows that F< -1, G > 1 and hence s < 0, < 0, v > 0. Using
(3.9), (3.11) and (3.12) one can easily show that

(3.17)
1-t h---G-1 and 4---v G-2.
l+v 2g (1+o)2
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Thus, it follows from (3.3), (3.16) and (3.17) that

(3.18)

[ ]a+B+l
2F1 2 2 ;G-2

/3+1

1 < Rea < 1/2. For a =/3 this leads to

(3.19) t(x,y,z; fl,fl)-- 2-6O-4(-O)-(B+l/2)cosqrfl, f+g<h, -l<fl<1/2.

Let us now consider the case h <- gl. First, assume that f< g so that h < g-f. In this
case F> 1, G > 1 and consequently 0 < < 1 and s > 1 while v > 0. Hence the r.h.s, of
(3.16) is single-valued with the result that the kernel is given by the same formula
(3.18).

We finally look at the case g<f with h <f-g. Here F> 1 and G<- 1 so that
0 <s < 1, > 1 and v >0. The r.h.s, of (3.16) is double-valued in this case, so we take
arg(1- t)= -r in the upper half-plane and arg(1- t)=r in the lower half-plane. Then
from (2.12), (3.16) and (3.17) we get

(3.:20) L(x,y,z; a,fl)=2-,-#-2cosr(fl+ a)(f2-g2-h2) -’-t-I

a+fl+l a+fl+2 ]2F1 2 2 ;G-2

/3+1

1 < Re a < 1/2. In the ultraspherical case a =/3 this reduces to

(3.21) t(x,y,z; fl,fl)-- -2-6B-4(--A)-(B+l/2)cosqrfl, h<f-g, -l<Refl<1/2.

Case 2. D > 0. In this case f, g, h do form the sides of a plane triangle so that

(3.22) If- gl < h <f+ g.

As a function of z, x/-D is purely imaginary and double-valued across the cut
min(h +_)< z < max(h +__) and we take the branch iv/ in the upper half-plane and ivY-
in the lower half-plane. So, in the upper half-plane

f2 + g2_ h2_4iv/- f2 + g2_ h2_4iVc-
(3.23) s= t=

2f2 2g

while in the lower half-plane

f2 + g2_ h 2 + 4iV/-- f2 + g2_ h 2 + 4iV-(3.24) s= t=
2f 2 2g 2
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In this case 1 < F, G < 1. Also, from (3.12)

t=l
h6 h6 /i_ 6_"
g g

In order that this agrees with the choice of branches in (3.23) and (3.24) we need to
choose arg(1- G-2) r in the upper half and -,r in the lower half-plane. So

+_ r arg(1 G-2 ) arg( G-2 )

in the upper and lower half-planes, respectively. From (2.13), (3.16) and (3.17) we have,
by [18, 2.9(34), p. 1071
(3.26)

A(x,y,z)= gG
a+B+l a+B+2 ]2 ;G-2

/3+1

( h )"++IF(+I)F(1/2)(-G-) -("++1)/2

2gG r( a+B+22 F fl-a+l)2
a+B+l

2F1 2
a-fl+l

2

2

r(/ + 1) F(- 1/2)(- G-z) -(+/+ 2)/2 a+B+2

2F1 2
a-fl+2

2

2

;G2

Hence

(3.27)

lim [ei’M(x,y,z + ie)+e-i’"A(x,y,z-ie)]
O

r(B+l)r(1/2)

F( a+fl+22 r( B-a+1)2
COS

a+fl+l

2F1 2
a-fl+l

2 ;G2

h)a+fl+l r(t+ 1)r(})

r(+B+l)r2
COS

a+B+2 a-fl+2
2 ;G 2
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Thus, in the region If- gl < h <f+ g,

(3.28)

1 (4gh)-’-#-IL(x,y,z; a,fl)=-

"I r(+l)r(})

r(a+/+2)r2
-/3+1

2 ;G2

r(B+l)r(-1/2)a

F(a+fl+l -a

a-fl+2
2

2

;G 2

Using the reflection formula for the gamma function

(3.29) r(z)r(-z)=
sin

0<Rez<l

and [18, 2.11(3), p. 111], this can be further simplified to

(3.30)
1 (4gh)-"-#-tL(x,y,z; a,fl)= - =r(B+l)

r(a+)r(B-a)r(B-a+l)22

"2Fx[a+B+l’a-B+la+- 1/2(1 G)]
2-2a-3(2gh) -a-#-I r(B+l) [a+ fl+ l, a-fl+ l

r(+)r(z-) F1 +} 1/2(1 G)],
1 < Re a < 1/2, with

(3.31) L(x,y,z; fl,fl)=0 when If-gl<h <f+ g, 1 < Refl < 1/2.

In closing this section let us summarize the results on the ultraspherical poly-
nomials. Noting that

(2Xpn(X_l/2,X_l/2)(X)C2(x)=(x+
D.X(x) =2-- (2Xl Q(.,x-x/2,x-/2)(x) -1<x<1(3.32) (+__

F(n+2X)n

-l_<x<l,
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formulas (3.19), (3.21) and (3.31) can be written as

(3.33)

F(n+ 1) CX(cos2q,)CX(cos2+)DX(cos20 )Z (n+X) F(2X+n)

0

2-6X-lsin.X(_ D) -x

2-6X-lsinrX(-D) -x

if Icos(q + q )l < cos 0 < cos(q q ),
if cos(q q) < cos 0 or

0 < cos 0 < cos(, + q ),
if 0 < cos 0 < cos(q, + + ),

where D is defined in (3.6), but can be given explicitly in terms of 0, q, q as

(3.34) 16D sin( 0 + q, + + )sin( 0 + q + )sin( 0 + q)sin( q, + + 0 ).

Convergence of the series on the 1.h.s. of (3.33) requires 1/2 < Rek < 1 except for some
exceptional values of 0, q and p.

In order that we may apply Hsi’s [26] limiting procedure directly to our formulas
we now replace 0,,k by a/2, (r-fl)/2, (r-7)/2, respectively, in (3.33), use the
duplication formula for the gamma function, and the symmetry property of the ultra-
spherical polynomials, namely, CX(-x)=(-1)"CX(x). Formula (3.33) then leads to
(1.18) while (3.34) becomes (1.19).

4. Derivation of (1.23). Following Hsi) we now set

(4.1) a=ah, =bh, "y=ch

in (1.18),"where a,b, c,h are arbitrary positive numbers. If max(a, b, c)> (a + b + c)/2,
that is, a, b, c do not form the sides of a triangle then a,/3, will not form the sides of a
triangle. Obviously, this is the case that applies to (1.18). For small h

(4.2) 22-2x{ F( )} -2.2_ 2x_ 1sin r, ( 16D)-X

1/2))-2cos"lrp(-A)-’-l/2h-4’-2

where , , + 1/2, and A is the same as defined in (1.24).
Let us split the sum on the 1.h.s. of (4.1) into two ranges: O<n<[w/h] and

1 +[w/h]<n, where 0 is an arbitrary positive number independent of h. From (1.21)
and (1.22) we have, for nz= O(1),

(4.3)
 / (cosz)

n 2"D,+1/2 (cos z ) (2 nz ) Y,, nz ) + e’,,,
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0 as n--, oo Hencewhere e -- 0, e

(4.4) n-6Vc+l/2(cosfl)c+l/2(cos’y)D+l/2(cosot)

rr3/2 ( F ( , + 1/2 ) ) 3(2 nh ) -3,, ( abc) J ( bnh ) J,, ( cnh ) Y,, ( anh ) + rl,,

where ,/,--, 0 as n --, o0. Also

r(n+l)(4.5) (n++ 1/2) F( :],1) nl-2"(1 + f,)

where /’, O(n-1) as n --, oo.
Thus the summation over the first range contributes

(4.6)
t,o/hl r(n+ 1) Cff+l/2(cosfl)cj+l/2(cos,y)Dj+l/2(cosa )h4U+2 E (r/+,+1/2)F(n+2,+l)
n 0

Ion
-,/’/’3/2(F(-l- 1/2)}-3(8abc)-"h (nh)+"J,,(bnh)J(cnh)Y,,(anh)(1

n=O

+h E (nh)4’+ (l + ’).". Tn

The principal part of (4.6), namely,

Ion
h _, (nh)l+j(bnh)J(cnh)Y(anh) --+ xl+j(bx)J(cx)Y(ax)dx
nO

as h--,0, provided the integral converges which, for fixed , requires that Re, > -1/2.
Since (nh) +J(bnh)J(cnh)Y(anh)=(nh) +2O(1), the remainder part clearly ap-
proaches 0 as h -, 0 if Re , >

In order to deal with the second range of n for the sum in (1.18) we need the
following asymptotic formulas

(4.8)

C2+1/2(C0S0) r(.+}) (2 sin 0) /2n"-/2[cos((n+ , +1/2)0 1/2,r 1/2r } +R],

[Rl<C(nsinO) -
and

(4.9) D+ 1/2(COS0) (2 sinO)-"-/a[cos{ (n + v+ 1/2)O- 1/2vr + 1/4r } +R’],

IR’l<C’(nsinO) -,
where 0 < 0 < r, -1/2 < , < 1/2 and C, C’ are independent of n and 0. The first of these
formulas is due to Stieltjes [26, Equation (4.2)]; see also [29, Equation (8.21.18), p. 198].
The second formula (4.9) does not seem to. be explicitly given in the literature, but can
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be easily deduced by using the known asymptotic formula for Legendre functions of
the second kind [18, 3.9.1(1), p. 162] and its relation with the ultraspherical function.
Now

(4.10)

h4’+ 2H1- 2’(1 ..t-,Otn)ff+l/2(cos)ff+l/2(cos,)o+l/2(cosol)

4 +P2 cos Na---+- +P3

21/2_ }3f(- ) h4+2(sinasinflsiny)--X/2n-X/2

2 4
cos N 2 4

cos Na---+- +p

N=n+,+ 1/2,

where 01,02,03 and consequently p have the same type of bounds as R and R’ have in
(4.8) and (4.9). Using rl’n O(n 1) we find that p (nh)- 10(1).

Since

4cos Nfl 2 4
cos N3, 2 4

cos Na---+

2 4
+cos N(fl+,-a) ,’n’2 3"n’4
" } ( .o o}-- + - +cos U(v- fl + a)- -- + -the principal term in the summation over (4.10) on the second range reduces to an

expression of the type

(4.11 ) p, +1/2 E n 1/2COS( nq + ’r

,1=1 + [o/h]

where p and q are h and is a fixed constant. The bound for (4.11) is

(4.12) p+ 1/2( dh -1)g- 1/2q_1 o- 1/20(1).

The contribution of the remainder term is

(4.13) p,,+1/2 E n’-1/2(nh)-1=O(1) h’-l/2 -n----1 + [/h] n=l + [o/h]

n,- 3/2 o,-1/20(1)
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Therefore, as h O,

(4.14)

F(n+ 1)h4’+2 E (rt++1/2) r(n+2,,+)

r 3/2 { F(v+ 1/2)} -3(8abcl-"fO’xX +"Y,,( ax)J,,( bxlJ,,(cx) dx + o(1)+ w"- 1/20(1)
o

provided - < , < 1/2.
Using (1.18), (4.1), (4.2) and (4.14) we then have, for 0 m,

(4.15)

foX +"Y,, ( ax ) J,, ( bx J,, ( cx ) dx

0 if Ib-cl <a<b+c,
2-"-11-’(v + 1/2)cos’u (__ m)_v_l/2

,rr /2 abc)
if a> b+ c,

2-"-r(, + 1/2)cosr,
r /2 ( abc

(-A) -’-/ if a<lb-cl.

This immediately leads to (1.23) when we use F(1/2 v)F(1/2 + v)= r secrv.
Although the asymptotic formulas (4.8) and (4.9) that we had to use to derive

(4.12) and (4.13) are valid for real , and 1/2 < , < 1/2, by analytic continuation, equation
(4.15) obviously holds true also for complex u with 1/2 < Reu < 1/2.
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MULTIPLE HYPERGEOMETRIC FUNCTIONS
AND SIMPLE LIE GROUPS SL AND Sp*

JAN HRABOWSKIf

Abstract. With any multiple hypergeometric series one can associate a Lie group called its group of
symmetries. This article is devoted to those series which group of symmetries contains a subgroup isomorphic
to the special linear group SL or to the sympletic group Sp. The work owes much to the group-theoretic
analysis of the Lauricella series F/ in Miller [J. Math. Phys., 13 (1972), pp. 1393-1399], Symmetry and the
Separation of Variables, Addison-Wesley, Reading, MA, 1977.

1. Introduction. We assume that the reader is familiar with the concept of a Lie
group/algebra of symmetries of a system of differential equations (see [7] for the
general definition and [6] for the special case of linear systems in one unknown to
which we restrict ourselves here). We will also use freely a standard terminology of the
Lie theory (see e.g. [1]).

The theme of this article has its origin in the following observations:
(i) With any hypergeometric series one can associate a constant coefficient system,

termed canonical [4].
(ii) The canonical system of the Lauricella series Fz admits a Lie algebra of symme-

tries of classical type A [5], [6].
These observations led W. Miller, Jr. to conclude that "... the use of SL-symmetry (...)
will lead inevitably to the remarkable function FD." [5]. While this emphasis on
seems to us premature we agree that series with SL and other classical groups of
symmetry with their rich transformation properties and differential recurrence relations
are indeed remarkable.

The classification of these series is carried out in 2-3. Some of their elementary
properties are studied in 4-6. In 7 we present an interplay between canonical
systems and hypergeometric series which is equivalent to that in [4].

1.1. Notation. N, Z, Q, R, C denote the sets of natural, integral, rational, real and
complex numbers. (R)n is the symmetric group of an n-element set. Lie algebras are
defined over C. Functions and coordinate systems are complex valued. A family (f.ex.
(xi)it) is often denoted by the corresponding bold face character (x in this case).
Also, 1 (1,1, ). 8ij is the Kronecker delta (= 1 if i=j and 0 otherwise). The family
(6g.i)./is denoted by I i"

If H is a group acting on a group N then H< N denotes their semidirect product.

2. Canonical systems. Our approach to canonical systems, while equivalent to,
differs from that in [4]. Let be a finite set of generators of a free abelian group F. Let
(x,),oa be a local coordinate system indexed by 2 and be the corresponding
partial derivatives. A monomial 1-],) will be abbreviated to Oxn.

DEFINITION. The canonical system of f (or of f, F) is the system

(2.1)

*Received by the editors March 8, 1983, and in final revised form October 9, 1984.
*385 Grand Street, New York, New York 10002...... is called hypergeometric if a(n1, .,ni+ 1 ",nm)/an=Pi(n1A formal power series F. anz’l z,,

where Pi is a rational function in m variables, 1 < < m.

876
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where n=n+-n-, n+>=0, runs through the group O()=(nZa; E,n,0=0} of
Z-linear dependence relations in .

Open problem. Find a finite set of generators of the ideal generated by (2.1).

3. Canonical systems with symmetry Lie algebra of classical type. Any linear,
constant coefficient system, in particular (2.1), is invariant under the abelian Lie
algebra spanned by Ox: 0 , and the trivial symmetry 1. Let b denote the abelian Lie
algebra of those symmetries of (2.1) which have the form

(3.1) n= Y’ a,oxoOx, aoC.

It is easy to check thatH b if and only if Z,oaon,o=O for all n 0(). Note that

(3.2) b*-=C(R)zF.

The canonical systems (2.1) which interest us here have the following property (S)"
(Sx) The system is invariant under a simple Lie algebra .
($2) b @ C.1 is a Cartan subalgebra of C.1.

(It follows that =(bC)ng is a Cartan subalgebra of g). In view of (3.2) we may
identify with a set of generators of b* (or *). Let R c * be the root system of g, ).
Since Ox is an 0-root vector we have c R.

LEMMn. If (S) holds then
(a) (a + a)n(u {0))= ,
(b) (0 + C)nR c 0.
Proof. If A c R then A will denote the vector space spanned by the a-root vectors,

a A. The condition (a) means that a= spanc(Ox.) is an abelian subalgebra [1, Ch. 7,
no. 1.3, Prop. 10]. Let n be the isotropy subalgebra of relative to the point x=0.
(X6g is in n if its first order term vanishes at x=0.) Since ben we have n=, (( + ()nRc (], [1, Ch. 8, no. 3.1, Prop. 1]. On the other hand rta=g hence
=G. Q.E.D.

Conditions (a), (b) imply that (3 is a parabolic subset of R [1, Ch. 8, no. 3.4].
Parabolic subsets of classical type (A, B, C or D) have been listed in [1, Ch. 8, 13(III)].
Those which satisfy (a), (b) are listed in Table 1. We use standard realizations of
classical root systems R in a vector space with basis (ei) [1, Ch. 6, {}4 or Ch. 8, 13].

TABLE 1
Sets of classical type.

Type R card()

A/2

B

O
l>3

ei-ej; i,je{1,...,p, -q,...,-1}
i*j,p+q=l+l, l <=p<__q

+el, -t-ej+_e," <=i,j,k_<l,j4=k

+__2ei, +ej+_ ek; <i,j, k <=l,
jCk

4-e+ej; <=i4=j<l

AI,p ij ei _.j;
1 <_i <_p, 1 <=j <= q

a/B={ .,0 __+i=81 8i+ 1"
1 <i<_l- 1}U{oo=et}

a= ,%.= o. ; + .;
l<i,j<l}

/,1----{ 0 +_ i-- el _____ei+

l__<igl--1}

a] ij ei + ej; i=/=j

Pq

2l-1

l(l+l)/2
2/-2

l(l-1)/2

2There are [//2] distinct subsets in the root system of type A/. It is convenient to use a different

indexing of R in each case.
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Between these sets we have the following isomorphisms:

af, af= a _= a, a a a4 a(3.3) a,l a 3,1 3,2 3,1, 4,1.

Note that O(ft,1)- {0 } which means that the canonical systems are trivial in this case.
Table 2 lists canonical systems of the sets f in Table 1. Only second order

elements of (2.1), which suffice to generate the ideal, are given. If a { 0a }z then the
coordinate system (x,,,) will be abbreviated to (x).

TABLE 2
Canonical systems of classical type

f Canonical system

’A[, P )X )xb )xb l < a, b <=p, l < r, S <

2 Same as 2A/,p but with 1 =< a, b, r, s < l. Note that xij xji

’O x,. --3xj3. ,; 1 <i,jNl--11,1

2] Same as 2 but with a 4: r, s and b 4: r, s

Examples. Sets fA lead to functions named (unfortunately) FD by Lauricella [6].1,2
In the particular case 3 FD is the ordinary hypergeometric function 2 F1 with canoni-
cal equation

(3.4) Oxlx22-OXxX21.
A leads to the quadruple function K16 of Exton [3]. 2c leads to the Gogenbauer

function [2] with canonical equation

2

Sets a lead to functions named (unfortunately) Fc by Lauricella.1,1

It remains to determine wNch systems in Table 2 satisfy (S). One can easily show
that any transformation which leaves invariant the system of aft or ao has to permute1,1
the lines C.3x, . This implies that these systems have no symmetries other than
those mentioned at the beginning of this section. In view of the last isomorphism in
(3.3) the system of has to be excluded as well. It is known that and satisfy1,2

(S) [51, [6]. It turns out that all systems of type A and C satisfy (S).

3.1. Verification that systems of pe A and C satisfy (S). The verification will
consist of 3 steps:

(I) Choosing a basis of the (abstract) Lie algebra
(II) Finding all Lie algebras of first order differential operators isomorphic to

such that g is spanned by 3x and g ca is isotropic at x 0. These algebras depend on a
complex parameter c (c.f. 6.1-2).

(III) Determining the parameter c for which g is an algebra of symmetries. (The
straightforward calculations of this step are omitted and only the result is stated).

Type A. (I) Let () be the canonical basis of g f(l + 1) and (E) be its projection
on g (1 + 1). Thus, E E, 0. The nonzero brackets are

(3.1..1) [Ei,E =Ei

[Eij,Eji] =Eii-Ejj.
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(II) We use (1,. .,p, 1,. ., -q) to index the canonical basis of Ct+ 1.

(3.1.2)

(3.1.3)

(III) c 1.
Type C. (I) -= g(21) has a basis { X+ i,+ j; 1 =< i,j =< }. The nonzero brackets are

gij,g_j,_k =(1 +8i,)(1 +Sjk)Xi,_k if i4k,

[Xij,X-,,-,]
Xi,-j, X, (1 + 3j.,) X,,,
X_i,_,,Xj,_, (1 + 8i, ) X_i,_,,

X,_S combine as Eo. in (3.1.1).

(II)

(3.1.4)

Xij xij
x,,_; (1 +

k

X-i,-= E (1 + 3i)(1 + 6jr)XikXjrOXkr-]- 2c(1 + 6ij)Xij.
k,r

(III) c 2.

4. Hypergeometric system. Let us recall the concept of separation of variables
relative to an abelian Lie algebra [6]. Let 5abe a system of linear differential operators
on C" and b be an abelian Lie algebra of symmetries of 5a(1 b). The separation of 5a
relative to b is the following system of operators on the product space b * C":

(4.1) (a) 1

(b) I(R)H-hH(R)I,

where h H is the (linear) function on b* defined by h H(a) (H, a). Note that the system
(4.1) is linear not only over constants but also over functions defined on b*.

DEFINITION. A hypergeometric system of is the separation of the canonical
system (2.1) relative to an algebra { H+ (H, a0); H b }, where b is defined by (3.1)
and ao b*.

Open problem. Find the dimension of the space of solutions of a hypergeometric
system.

Remark. There is no essential loss of generality in setting a0 0. Let %0; b* b*
be the translation a a + a0. If a function f on b* C satisfies the separation of 5a
relative to b then f*-o satisfies the separation relative to . However for the canonical
systems of fA and f we choose to be a Cartan subalgebra of the simple Lie algebral,p
of symmetries.
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5. Recurrence relations. Consider the separation (4.1) of a system 5relative to b.
If tob* then %: b*--’b* will denote the translation %(a)=a+to. % transforms
functions on b * and, in particular,

(5.1) ’r,,,’hn=ht4+ <,H>,

LEMMA. Let to b * and X be a symmetry ofwhich is also an to-root vector. Then
r] (R) X, leaves invariant the separated system (4.1).

Proof. Since Xo is a symmetry of , r] 1(R) X is a symmetry of 1 (R)S. If f is a
function on b * then

(hto r_,o-’r_,oo hn).f=hn.(f-’)-(hl4-(to,H>)f’-,=<to,H>f-,o.

Hence,

[l(R)H-ht_t(R)l,r_,,,(R)X,,,]=(to,H)r_,,,(R)X,,,-[hi4,r_](R)X,,,=O. Q.E.D.

Let fi be a Lie algebra of symmetries of 5awhich admits the root decomposition
D,o, .q relative to b. Then the map

(5.2) EXo E7.-1(R) Xo, xo,
is a homomorphism of fi into the Lie algebra of C-linear endomorphisms on the space
of functions defined on * C’. The endomorphisms r- (R) X are called recurrences of
the separated system. Note that a recurrence r- (R) X, is z- 1-semilinear.

Example Consider the system Fc (2 o in Table 2). A basis of b is given by1,1

(5.3) H=x,O-x_,0 i=1 l-1 Ht=Ex+,0x
_i

+i

If R + is the recurrence corresponding to O: and h denotes h

(5.4) R +i’f(h x) O f(... h + 1 h t+ 1 x)

6. Transformations. Let 5be a linear system in the variables (xi) and b be an
abelian Lie algebra of symmetries (1 b). Let o be a transformation of C" which
preserves 5and b. Let o be the corresponding transformation of b *. It is clear that the
transformation (o, Ox) of b* C" is a symmetry of the separated system5.

Let be a set of generators of a free Z-module. Let A(2) be the group of
automorphisms of fl, i.e., the group of permutations of fl induced by Z-linear transfor-
mations. If o A() then

(6.1) Ox(X,)=xo{,
is an b-preserving symmetry of the canonical system of 2.

Example. Consider the canonical system of the Example in 5. Let SO be the group
{1, 1 } (the 0-sphere). A(11) (R) 1-1 S0-1, where

O’to +_i--to +_o(i)
(6.2)

,’to++_i=to+___eii E--" (Ei) S0/-1
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The corresponding transformation of the hypergeometric system are

(6.3)
o .f(h, x) =f( h o(1),..- ,ho(’_ 1), h ,, Iv(l),... ,x_o(‘_

g.f(h,x) =f(exhx,... ,e _1hi_x, hl,xex,’’’,x-e.,_x(1-1)).
Let f 2A or 2c and R be the root system containing f.1, p
PROPOSITION. Let o A(R). It is possible to find a transformation ox of C which

induces o on R if and only if the Lie algebra acts transitively in the x-space, o is then
an -preserving symmetry of the canonical system.

Let G be the group of transformation obtained by exponentiating (3.1.2) or (3.1.4).
If o is induced by the adjoint action of g G on b *, i.e., if o is in the Weyl group W(R)
then we may take g= ox. Since W(R) is equal to A(R) for type C and is of index 2 in
A(R) for type A the Proposition is of interest only in connection with the system l,p
and the permutation o(o)= -0. In this case o exists if and only ifp=(l+ 1)/2.

In the following we confine ourselves to selected examples of ox. We take ad-
vantage of the well-known homogeneous spaces of the classical groups in question.

6.1. Transformations oI fl’t,v" Let Lp, t+ 1, be the space of (p, + 1)-matrices of rank
p. Let (i) be the canonical coordinates of Lp,l+ 1" The group GL(p, C) acts on Lp, l+

by the left matrix multiplication. For c C let (9 (’) be the space of functions f on Lp,/+
which satisfy

(6.1.1) f(u.a)=det(u)"f(a), u GL(p,C).

In particular, (9 () is the field of functions on GL(p, C)\Lp, l+X, i.e., on the set of
p-dimensional subspaces of Ct+t. (9 (c) is a 1-dimensional space over (9 (. We use
(1,..-,p,-1,..-,-q) to index the columns in Lp, z+ 1. Let X=(/) and X_+ be the
submatrix consisting of columns with indices > 0 (resp. < 0). Then det(X/) (9 (’) and
the entries of x=(X/)-Ix_ form a coordinate system of (9 (). The group GL(/+ 1,C)
acts on L_ z+ by the right matrix multiplication which induces an action on (9 (’). Using
(9 (’)= o((Jet(X/) we obtain a 1-parameter family of multiplier representations on the
x-space. Passing to the Lie algebra (l+ 1, C) we obtain the family (3.1.2). Thus the
canonical system of 2 should be viewed as a system of operators on (9(-1)

l,p
A(R) SO W(R), W(R) (R) t+ 1- Let h i-- h Eii The action of A(R) on is given

by

(6.1.2) ( e, o ) h eho(i.
We may identify W(R) with the group of permutation matrices in GL(l+ 1, C). This
group acts on Lp, z+ by permuting the columns of X= (;j.). We identify (R)ex (R)

q with
the subgroup of W(R) which permutes the columns in X+ and X_.

Let us apply W(R) to det(X+). If o (o’, o ") (R)
p x (R) q then

(6. a .3) o (det( X+ ))/det( X+ ) sgn(o’).

Any o (R) t+ is (R)e X (R) q-COnjugated to a permutation o such that

(6.1.4) Or(i)=i l <_i<__r, Or(r+k)= -k, l <=k<=p-r.

Then

(6.1.5) .Xr+l,p_r]or(det(X+))/det(X+)-det(X-tor(X+)) -det Xp,x,’’’,Xp,p_
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Let us apply (R)t+l to (9(0). For o=(o’,o")(R)p (R) q

(6.1.6) Ox’Xij--Xo,(i)o-(j

Let now o be the permutation defined by (6.1.4) and

(6.1.7) Or(-k)=r+k l<_k<_p-r; Or(-k)= -k,p-r+l<_k<__9.

Then

(6.1.8) ()x’X= V X(I’p-r) X(p-r+l’q)

where 1 is the (k,k)-identity matrix and X(,b is the submatrix of x consisting of
columns in theinterval (a, b). For example,

--Xll

(6.1.9) (Op_l)x’X=(XX’lp) Xil

--Xp-l,1
1

Xij Xpj

Xil Xpl

Xp2 Xpj Xpq

(6.1.10) (OO)x’X= X(l,p)’X(l,p)(p+l,q

Now let p=q. The action of SO is determined by the action of the element
(- 1,o0)A(fA, p) given by

(6.1.11) (-1,Oo).det(X+)=det(X+), (- 1,OO)x.X= ’x,

where tx is the transpose matrix of x.

6.2. Transformations of fitc. Let be the antisymmetric bilinear form

(6.2.1) (x, y) E
i=1

Xi Yi
X-i Y-i

on C 21 (we use +_ 1,. ., +_ for the index set). Let N2z be the subset of Lz,2t consisting of
matrices which rows are pairwise tI)-orthogonal. We define 60(,t, ij and xij by restrict-
ing to N_z the functions defined in 6.1. The -orthogonality implies

(6.2.2) Xij’--Xji.

(9 (0t is the field of functions on the set GL(I, C)\N_z of/-dimensional isotropic subspaces
of C 2z. The symplectic group Sp() acts on Nzt by the right matrix multiplication.
Passing to the action of its Lie algebra gl() on (9(") we obtain a 1-parameter family of
multiplier representations on (9 (/given by (3.1.4). The canonical system of fc should
be viewed as a set of operators on (9(-1/2t.

A (R ) W(R (R)/ So Let h= h x,,_.,. The action of A(R) on is given by

(6.2.3) o’hi=ho(i), Op, e.hi=eih i, eS/.
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There exists a subgroup of Sp() isomorphic to/ (1, i, 1, )t which induces
W(R) on . Let M: C --+ End(C2) be the R-algebra homomorphism defined by M(i)=
[o-]. Then

(6.2.4) e
j.,_ a’,-k

e{1,i,--1,--i}t, k=l,’.’,l,

o. , +_; , +_ o(j, o (R) .
In particular, the action of (R)on (.0 .9 is the restriction to the diagonal subgroup of the
action of (R) (R) described in Sec. 6.1. Thus,

(6.2.5) o (det( X+ ))/det( X+ ) sgn( o ),

(6.2.6) Ox’Xij=Xo(i)o(j).

Consider now the action of S0. Any element of S0 is (R)/-conjugated to the element e
defined by

(6.2.7) (e,)j=l, l<=j<=r, (e,)j=-l, r+l<=j<=l.

Arguing as in (6.1.5)-(6.1.8) we obtain

(6.2 .8) (l/2.det(X+))/det(X+)=det[ Xl, r+

(6.2 9) (-1/2)x X X XEr T (r+ 1,1) (1, r)

For example,

(6.2.10) (’l/2)x’X--(xl"l’)’-1
xij Xil
xU xtt

Xlj

Xil

(6.2.11) (e/2),,. x -x-.
7. Hypergeometric series. Let be a set of generators of a free Z-module, b be the

Lie algebra defined by (3.1) and %" b * - b * be the translation a a + o.
LEMMA 1. If a function F on b * Ca satisfies the recurrences

(7.1) r2 (R) Ox F= F, o a,

then F satisfies the canonical system of f.
Proof. Let n= n+- n- 0(f). If F satisfies (7.1) then

7" (R) Ox)n+/- .F=rt+/- (R)O"x+/-.F=F.

Since E n +0 E n ,o-0 we obtain 0/. F= Oxn-. F. Q.E.D.
Let (1 o) be the canonical basis of Ca and r: Ca * be defined by r(l)= o.
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a’ satisfiesLEMMA 2. Let a (a,o) be a map of * into Ca The function xa I-[,x,o
the separation equations

(7.2) (H- h,)’xa=0, H9,

if and only if

(7.3) rr oa= -id.

Proof. Let H E h ,ox,Ox 9. Thus, h h H(). We have

H’xa=-(h’a’)xa=hn(-a) Q.E.D.

Let A=%-- 1 o, b *. Thus A is an operator defined on functions of b * into
Ca by A o" q(a) q(a ) 1 o. A is invertible and A S % + 1 ,o. We write A instead
of I-[A, n=(n,)Za. It is easy to see that A,o permutes the set of functions a

satisfying (7.3). Let F be the gamma function [2], F(x) be IoF(x,o ) and z! be F(x + 1).
DEFINITION. Let a: 9"-->Ca satisfy (7.3) and A=(An.a; nZa). The hypergeo-

metric series of f, a is the formal expression

(7.4) F= E xb/F(1 +b).
bA

PROPOSITION. F? satisfies the hypergeometric system of f, . Furthermore it satisfies
the recurrences (7.1).

Proof. In view of Lemmas 1-2 it is enough to prove the second assertion. Let 7(x)
denote 1/F(I + x). 7 satisfies the functional equations

v(x- x v(x).

Applying the recurrence to each term of the series we have

"r] (R) )x" 7(b)xb= b-7 b- )XAb= 7(Aob)xab. Q.E.D.

In particular, let B c f] be a basis of D* and a B’b * Ca be the linear function
defined by aB(B)=-1, BB. We write Fa instead of Faa.- Let (eCho) be the matrix
over Q defined by

(7.6) o e/ fl o CB
flB

Let a Y"t htfl *. Then

(An-a)() a(a-Y’n.,o)-nol., a(a)-n (a()+
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Let us introduce new variables

(7.7) ul=xi, B, zo,=x,oI-Ix, ooCB.

Then

(7.8) FB=u-h E GBzn/n!F(l-h-en)
nN

(u-h/F(1 h)) zn/n!(l h; e" n),
n

where (x; n) is the Pochhammer symbol F(x + n)/F(x).

7.1. Example.

2C; ooll + oo22 2oo12-
We are separating the wave equation (3.5) with the Lie algebra spanned by

(7.1.1)

1
Xl,- 2x110xll- x120x12-,

1
X2,- 2 2X22Ox22 X12x12 ’"

There are 2 nonequivalent bases B in fl2c:
(7.1.2) a-- { OOll, OO22 } and b { o)11 ool2 }.

The affine functions of the variable a * which appear in the series are related by

(7.1.3) allooll -+- a 22oo22 --blloo11 + bl2ool2.
Hence,

1
(7.1.4) all=bxl + bx2, a22= 1/2b12

The relations between these functions and the functions hi defined in {}6.2 are obtained
from (7.1.1) by replacing Xi,_ by h and xjOx, by -bj if ooijB and by 0 otherwise.
For example,

1 1
(7.1.5) ai=-h +

We have

(7.1.6)

( 1)Ff2=(x-a/F(l-a))z,/n! l-a;--n,--n, Za=X12(XllX22) -1/2

FC==(x-b/F(l-b))Ez/n!(l--b; n,--2n), z=z= 2.
rl

The transformation xi x, x12 ’+ --X12 is a symmetry of the hypergeometric system.
Hence F,c2(-z,,) and therefore the even component pFc of Fc also satisfy the
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hypergeometric system (but not the recurrences of 5). We have

(7.1.7) pFf2=(x-a/F(l-a))Ez"/(2n)!(l-a; -n, -n).

Using the well-known identities [2]

(x; -n)=(-1)"(1-x;n) -,
(x; (x; x + 7;

(1 t(2n)!=(1;2n)=22" -;n n!,

in particular,

we may express these functions in terms of 2F1:

(7.1.9)

1 ,z2.,/4)pff,= (x-"/r(1-a)) :1 all,a22,

(1 1 1FbC2=(x-b/F(l-b)) 2F1 ’b12, -bl2q-, 1-bll,4:b
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SOME EXPLICIT PAD[ APPROXIMANTS FOR
THE FUNCTION ’/ AND A RELATED QUADRATURE

FORMULA INVOLVING BESSEL FUNCTIONS*

JET WIMP"
Abstract. In this paper we determined in closed form the [n n] Pad6 approximant for the logarithmic

derivative of the confluent hypergeometric function of the first kind, and also an explicit formula for the
error.

We next show how the recurrence defining the numerators and denominators of the approximants can
be used to deduce a certain discrete orthogonality relationship. A consequence of this is a discrete orthogonal-
ity relation for the Bessel function of the first kind and an exact quadrature formula involving this function.

1. Introduction. In [3], W. A. Fair applied the ,r-method to the differential equa-
tion,

zy’( z) + ( c- z) y( z) + zy:( z)-a=O,

y(0)" a/c,

satisfied by

(1.2) y(z)’= u’(z)/u(z), u(z)’= dp(a,c;z),

to determine the [n In] Pad6 approximant to y(z). (Here is the usual notation for the
confluent hypergeometric function. In this, as well as all other functions, we will follow
the notation of [2]. For an account of Fair’s work, see [5, v. 2, 10.4].)

Let An(z ), Bn(z ) denote the numerator and denominator approximants respec-
tively. It was found that both A n, B satisfy the three-term recurrence

(1.3) yn+z(Z)+(anz+bn)Yn+ "JI-CnZ2yn=O, n=O,1,2,. .,

(1.4)
an= (2a c)/(2n + c + 2)(2n + c + 4),

Cn= -(n+a+ 1)(n+c-a+ 1)/(2n+c+ 1)3(2n+c+2).

The initial conditions were

a a a(a+ 1)zAo =-, A =-+
C C (C)3

(1.5) (2a-c)z
Bo=l, B1=1 + c(c+ 2)

Only in the case c=2a=2v+l (the Bessel function case) could closed form
expressions be determined for A n, Bn.
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In the first part of this paper, we derived closed form expressions for A n, B for all
a, c as well as an explicit formula for the error, y A,/Bn.

In the second part, we show how the recurrence (1.3) leads naturally to a certain
orthogonality relation which contains a discrete orthogonality relation for the Bessel
function J2n+,(x) as a special case.

Our approach is, roughly, that used by Askey and Wimp in [1] to derive closed
form Pad6 approximants to q(a+l,c;z)/qz(a,c;z) and depends on a study of the
recurrence associated with (1.3), i.e., the equation obtained when an, bn, c arereplaced
by a + 8, bn + 8, cn + s respectively.

2. The Pad6 approximants. We start off with a specialization of a recurrence for a
generalized hypergeometric function given by the present author, which can be found
in [5, v. 2, 12.2]. We let r=0, s-1, make an obvious identification of parameters, an
equally obvious change of dependent variable, and replace n by n + 6. The recurrence
becomes

(2.1) gn+2--gn+l(Z+ (2a- c)
(2n + 28 + c + 2)(2n + 28 + c + 4)

(n+B+a+ 1)(n+8+c-a+ 1)
-gn (2n+28+c+l)3(2n+28+c+2)

Note this is the associated equation for the equation satisfied by znAn(1/z),
znBn(1/z). As shown in the cited reference, the equation, under appropriate conditions,
has a basis of solutions

r(n++a+ 1)r(n++c+ l-a)gz=gZ(z,8)’= (-z) F(2n+2-S-ii--{d---)

(n+3+c+l-a 2n+28+c+2" 1)
(In what follows, we assume that a,n,c,d are such that these functions exist and

are linearly independent. If this is not the case, straightforward redefinitions and/or
limit processes may always be invoked to assure the existence and linear independence
of the functions. The volumes [5] contain many examples of these procedures.)

We wish to develop a polynomial basis of solutions of the recurrence (2.1). As is
common, we shall use the recurrence for n 1 as well as n =0,1,2,-..,. Our first
polynomial solution will be denoted pn=--pn(z, ) and satisfies the conditions

(2.3) p_=0, po=l.

Note that pn_l(z,8 + 1) is also a solution of the recurrence and satisfies

p_2(z,8+ l)’= (28+c-1)3(2+c)
(a+8)(8+c-a)

p_l(Z,8+ 1) =0.
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A little algebra shows we may write

=, An=An(z,8)’= gng-l--g,g-1)"(2.5) p, Ao
We next wish to determine A o explicitly. Here, and in what follows, three contigu-

ous relations for (a, fl; x) will be useful (see [2, v. 1, 6.4]).

(2.6)

(2.8)

(a+l,fl+l;x)=.’(a,fl;x),
O(a+l fl+2"x)=-fl(fl+l)
(a, fl-1;x)=(fl_l) a,fl;x)+O(a,fl;x).

Through the use of (2.6) and (2.8), A 0 may be written in terms of cross products of
confluent functions with parameters (-a-3,1-c-2) and (8+c-a,28+c+l).
These functions are a basis of solutions of the confluent hypergeometric differential
equation, and thus A

0 is nothing more than a known Wronskian, (see [2, v. 1, 6.7(6)]).
Evaluating the Wronskian gives

(2.9) h o
ze-1/ZF(8 + a) F(8 + c- a)
r(2a+c- 1)r(2a+ c)

Referring back to (2.5) we see that p, may be written in two parts

(2 10) 2 1/Ao lg2_l/Aog,,g_ -g,,

and, after using Kummer’s transformation on g 1, g-1, that the first consists of a term
O(z-"-2) as z . Thus p, must be the polynomial part of the second part. To find
this, we use on gl,,g2_ 1/Ao the formula

(2.11) ( I)(a c’x)O(b d’-x)= E (a)’x"
,=0 (c)kk! 3F2 -k,l-k-c,b 1

1-k-a,d

The result is

(2.12)

p,,(z,8)= ( a n 8)k(-1)
,=o (-c-2n-23)k!

3F2[ -k,2n+ 23+ c+ l-k,8+ a
n+8+a+l-k,28+c

This construction can be made to yield a rational approximant (see [2, v. 2, 10.5])
which is the [n- 1 In] Pad6 approximant to a certain function. This is not quite the
Pad6 element we seek, but what we want is easily obtainable from the analysis to
follow.

Observe that the expressions (2.2) reveal that

(2.13) gn_l(Z,8 + 1) 2 1) zg2(zg._(z + ,),
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and from the recurrence (2.1) we get

(2a- c) (3+a)(3+c-a)
(23+c)(23+c+2)

g(z’3)+g-1(z’3)
(23+c-1)3(23+c)’

j=1,2.

Using these and performing a lot of algebra gives

(2.15) Pn_l(Z,8+l) M( 21__ 21g,,go gog,,
pn(Z ) 21 lg2__ )g,, g- g.

O(c+l-a,c+2; -l/z)
z(c-a,c; -l/z)

MrnA o

g2_.l(rng1-1-g2-1)

where

(2.16) M:= -(23+c-1)(23+c)
(3+a)(3+c-a) Fn Fn(Z,).._ 2g,,/g,o

We now write z"A,(1/z), z"B,(1/z) as linear combinations of p,(z,O), pn_(z, 1).
We have

(2.17)
znA, ( _1 a

z 7p"(z’)+

(1)z"B,
z

=p,(z O)

a(c-a)p,_l(Z,1)
c(c+l)

Employing generously the properties of the functions and (2.15), (2.16) shows

(2.18) f
An(z) a (c-a)p._(z -1 1)=-+ =y(z)+R.(z),
B.(z) c c2(c+l)p.(z-,0)

y(z)=O’(a,_c_i z)
O(a,c;z)

(2.19) R.
zeZF2(c)r(z-l,0)

F(a) r( c- a)2( a, c; z)( r.( z-1,O)/r_ (z-1,0)- 1)"
This demonstrates the incredibly rapid convergence of the approximations, since

r,(z,O)=O((z/2)2"n2a-t/-+/(2n)!), noe. Also, R,=O(z 2"+1) as z0, demon-
strating the claimed Pad6 character of the approximants. (Of course, as pointed out in
[5], we must stay away from the zeros of O(a,c; z).)

3. An orthogonality relation and a quadrature formula involving Bessel functions. It
is a well-known fact that if a sequence of polynomials { p,(z)} satisfies a three-term
recurrence

(3.1) Yn+2+(an+zbn)Yn+l + Gy 0, n= 1,0,1,2,. .,
p_l--0, P0=l,
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and

(3.2) X cn/bnbn_ >’0, n 1,2,...,

then there is a distribution function + ,I,* such that (p,) is an orthogonal set on

(-,) with respect to dk. (Here, q,* is the class of bounded nondecreasing func-
tions on (- ,) with an infinite number of points of increase whose moments exist.)

Obviously the recurrence (2.1) doesn’t qualify as it stands, but some minor changes
produce a recurrence that does generate a system of orthogonal polynomials (with
respect to a discrete distribution).

Let

C
(3.3) z--+ iz, a "= -+ ix, g,, "= inwn.

We have

"z 2x
(3.4) w"+2-w"+l +(2n+28+c+2)(2n+28+c+4)

n++-+l +r
+w, (2n+28+c+ 1)3(2n+28+c+2)

=0.

As long as > 1, this recurrence satisfies (3.2).
It is further known (see [6]) that if , is bounded, then a ratio of appropriately

defined polynomials generated from the recurrence will converge to the Stieltjes trans-
form of the distribution function. What this means in our case is that

(3.5) lim
ip_(iz,+ 1) h(z)= zSupp.

n+m p.(iz,8)
_ z-t’

Also, has, in this case, compact support. The computations in the previous section
give h(z). Without loss of generality, we may put 8 0, and we find

e

g-i ,c;

Note that Kummer’s transformation shows that h (z) h (z) for z real; hence h (z)
is real for z real, as it should be. Also, the only singularities of h(1/z) in the finite plane
are poles. These are real and occur at the zero of the denominator. Denote the zeros of
dO/z) by z in increasing order, k= 1, 2, 3,. .,z denoting the smallest positive
zero.

The relation (3.5) may be inverted to find by using a complex inversion formula
given in Stone, [8, p. 163]. Without loss of generality we take (- )=0. Then

1 f,(a.7)

where F is the rectangle [- m ie, t- ie, + ie, + ie].
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The integral is easily evaluated by using known contiguous relations for , see [2,
v. 1, p. 253 (8), (9); p. 252 (1)], and the argument theorem. We find

+(t)=/c E z;,
z-1 interior to F

O, <t<z -1
--1

(3,.8) ’()= K z-; ’, K=c’-(c+ 1)/
oo <z-I </

i.e., q has a jump of z- 2 at z- .
q is bounded. This follows on considering the differential equation

1 x c(2-c)](3.9) Y"+ -+-+z4z y=0,

satisfied by

(3.10) (c )y=z"/2e-iZ/2 --- ix,c; iz

and applying a result of Tricomi (see [9,.p. 104 and the subsequence analysis of Bessel
functions]). We find that

(3.11) lak_l- Zkl 2rr + O(1), k + m.

Thus the series E_z-2 converges. The polynomials

(3.12) Wn(Z)’= i-"p,,(iz,O)

i-kzn-k(--C--ix--rl )_- z F
,=0 (--2n--c)kk!

C
-k,2n+c+ l-k,ix+-ff.

n++ix+l-k,c
1

are orthogonal with respect to this distribution, i.e.,

(3.13) E’ Z2Wn( ZI)Wm(Z Onmn.

(The prime means the term k 0 is to be deleted.)
% can be determined from the formula %= b,,%+ 1/bn_ 1On Thus

%1(1 + c/2 + ix ) nl 2(3.14) %= (c+1)2,(c+2)2,
To determine o0 we use the representation (3.5), i.e.,

-2 Z

.z) - (_;)
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Letting z shows

I=K ’z-;=Oo

It is not obvious that w, as given by (3.12) is a polynomial with real coefficients.
When x 0, a representation may be found which does not have this defect. Then the

3F2 in (3.12) can be summed by Watson’s formula [2, v. 1, 4.4(6)]. This corresponds to
the Bessel function case, which we will next investigate. Since for x 0 Bessel functions
are functions (3.6) with double the argument, we replace z everywhere it occurs by
x/2 and let c 1 + 2v, v > 1/2. Making the substitution

(3.15) Un’=Z2n(t’+1)nWn,

gives the difference equation

(3.16) u,,+2-2(n+v+2)xu,,+ + u,=0,

whose solutions we recognize to be J+, + (x- 1), Yv + + l(X 1). The corresponding
polynomial solutions, q,(x), with initial values q_ =0, qo 1, are, as determined from
(3.12), Lommel polynomials,

n/2

(1)= y, (-1)(n-k)’F(v+n+l-k)(2x)-2,(3.17) q.(x)=R.,.+l
=0 /!(n-2/)!I’(v+k+l)

see [2, v. 2, 5.2(26)]. (Empty sums are to be interpreted as 0.)
Formula (3.13) shows that Lommel polynomials are orthogonal with respect to a

discrete distribution, i.e.,

(3.19)

_’ x-R l(X )R (Xk)’-’’intmnn, + k m,v+
k= - ’in’= 1/2(n + v+ 1),

xk denoting the zeros of x-"J,,(x). Since q,(-x)= (- 1)nqn(x) we can write

(3.20) [1 +(-1) ’’+hI Z x;2Rn,v+l(Xk)Rm,v+l(Xk)--’inmn
k=l

The relation (3.18) was obtained in a different way by Schwartz [7], and gener-
alized to basic Bessel functions by Ismail [4].

Of course (3.19) implies that when a function has a formal expansion in Lommel
polynomials,

(3.21) f(x)= E A,,Rzn,,,+l(X)"
n=0

The coefficients A, can be determined by applying the orthogonality relationship
(3.19). However the surprising implications of the orthogonality are for functions on
[0, oo) possessing a Neumann series,

(3.22) f(x)= BnJ2,,+,,+l(X ).
n----0
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We know

(3.23) R","+l(X)= 2 [Y"+"+l(x)J"(x)-J"+"+l(x)Y"(x)]"

Substituting this in (3.18) gives a discrete orthogonality relation for the functions
(J2n+v+l},

OO m(3.24) E  (2n+k=l

and this provides a closed form expression for the coefficients

(3.25) B,=2(Zn+v+a) f(x)J=,++(xk)U(x).
k=l

However, it is known [2, v. 2, 7.10.1(8)] that these same coefficients possess an
integral representation and equating the two gives a quadrature formula:

2

E(3.26) f(t)J2,+,+(t)dt=
k=l

Note when f is bounded, the series on the right converges since *. At first
glance this formula seems very surprising, since the quadrature formula is exact. It
must be borne in mind, though, that the formula is true only for functions possessing a
convergent Neumann series of the form (3.22), and that class of functions is, unhappily,
rather small.

Using a result for v=0 given in Watson [10, p. 533] allows us to deduce the
following representation theorem.

THeORem. Let v O, n O, 1, 2,.... Let f LI[0, m) C1[0, m) and satisfy the
integral equation

(3.27) 2/,(t)=( J(u)[f(u+t)-f(u-t)ldt, t>0.
a0 u

Then the quadrature formula (3.26) is valid when the right-hand side converges.
The condition (3.27) on F is necessary and sufficient for the existence and conver-

gence of the series (3.22), so the class of functions for wch (3.26) holds cannot be
enlarged in any substantial way. That class, however, does include a number of
commonly occurring transcendental functions, see the tables in [5, v. 2, 9.4]. For
arbitrary v, a more complicated set of conditions has been given by Wilkins, [11].

It is not clear whether the same sort of analysis can be applied to the more general
orthogonal system (3.13). The major stumbling block is that when k 0 the differential
equation (3.9) cannot be transformed into a differential equation of Sturm-Liouville
type in a way that allows an integral representation analogous to the left-hand side of
(3.26) to be derived.
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ASYMPTOTIC EXPANSIONS OF MELLIN TRANSFORMS
AND ANALOGUES OF WATSON’S LEMMA*

AVRAM SIDIf

Abstract. In this paper the asymptotic behavior of the Mellin transformf(x)=f if(t) dt of f(t), for
x--, + , is analyzed. In particular, it is shown for certain classes of functions uk(t), k=0,1,. -, that form
asymptotic sequences for t +o, that if f(t)---Ek=oA,uk(t) as t +o, then f(x)-E=oA(x) as
x---, + o. In this sense the results of this paper are analogues of Watson’s lemma for Laplace integrals.
Several illustrative examples involving summation of everywhere divergent moment series and special func-
tions are appended.

1. Introduction. Let f(t) be a function that is locally integrable for 0 < < +
such that, for some real constant o, t-lf(t) is absolutely integrable in any finite
interval of the form [0,a], and

(1.1) f(t)=O(t-’) ast +, any/>0.

Then the Mellin transform/(x) off(t), defined by

(1.2) f(x)=fotX-lf(t)dt,
exists for all sufficiently large x.

The purpose of this work is to give an asymptotic analysis of f(x) for x + .
Surprisingly, this problem does not seem to have received much attention. Doetsch [2,
Vol. 2, Chap. 5] has considered the problem of analytic continuation of the Mellin
transform beyond the strip in which its integral representation converges, and has
obtained results on the singularity structure of it. Riekstin [8] has considered the
asymptotic expansion of the inverse Mellin transform. Wagner [11] has obtained some
Tauberian theorems for Mellin transforms. Handlesman and Lew [3], [4], [5] have used
techniques involving the Mellin transform for obtaining asymptotic expansions for
other integral transforms.

The results of this work can be summarized in an informal way as follows.
Consider the sequence of functions { Uo(t),u(t),... } and the sequence of the corre-
sponding Mellin transforms { ft0(x), ftl(X), }. Assume that

Uq(t)(1.3) lim -0 q>k k=0 1

and

(1.4) lim q
=0 q>k k=0 1
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i.e., that (Uo(t),ul(t),... } and (/0(X),/I(X),""") are asymptotic sequences as t
+ and x --* + oe respectively. If the function f(t) has an asymptotic expansion of the
form

(1.5) f(t)--, E Akuk(t) as t- +m,
k=0

then, for some choices of the u(t),f(x) has the asymptotic expansion

(1.6) f(x)-- E A,ft,(x) asx + ,
k=0

i.e., the asymptotic expansion of f(x) is that obtained by taking the Mellin transform
of the right-hand side of (1.5) term by term.

In the sense of (1.5) and (1.6) the results of the present work are analogues of
Watson’s lemma for Laplace transforms. Recall that essentially Watson’s lemma con-
cerns sequences (Wo(t),w(t),... }, where w(t)=t k, k=0,1,..., and -1 <Re3,0<
Re3,1 <’", and states that if the function g(t) has an asymptotic expansion of the
form g(t)-- Ek__oBkwk(t) as --+ 0 +, then the Laplace transform g(s)= f e-Stg(t)dt of
g(t) has the asymptotic expansion g,(s)--E__oBk(s) as s--, +m. For Watson’s
lemma and its generalizations see Olver [7].

The use of the asymptotic expansion of f(t) as --, + oo to obtain that of f(x) as
x --, + oo can be heuristically justified as follows. Consider the integral

(1.7) I(b;x)=fo’tx-lf(t)dt, 0<b< + o.

Making the change of variable of integration = log(b/t), (1.7) becomes

(1.8) I( b; x)= bXfoe-Xf(be-) d.
Now the asymptotic expansion of I(b;x) for x---, + oo can be obtained by expanding
f(be-f) asymptotically for ---, 0 + and applying Watson’s lemma or its generalizations.
But expandingf(be-) for ---, 0 + is equivalent to expandingf(t) for t---, b-. This and
the fact that f(x) I( + m; x) suggest that one should consider expanding f(t) for
--+ + m in order to analyze the asymptotic behavior off(x) for x --, + m.

Finally note that by making the change of variable of integration t=e -n, (1.2)
becomes

(1.9) f(x)= e-Xnf(e-n)dn,

which is a two-sided Laplace transform. Hence, our results carry over to such trans-
forms naturally. This point has been noted by various authors.

The main results of this work are given in the next section. These results are
illustrated in {}3 with examples that involve the summation of everywhere divergent
moment series and some special functions.

2. Main results. Let the function f(t) be as in the first paragraph of {}1., In
Theorems 2.1 and 2.2 of the present section we show that for some choices of the
functions u(t), k=0,1,..., the sequences {uo(t),u(t),... } and {ft0(x),ftl(X), }
are asymptotic sequences as + oe and x + oe respectively, and that (1.5) implies
(1.6). In the proofs of our results we make use of the following simple observations.
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LEMMA 2.1. For any fixed T> 0

(2.1) t-tf(t)dt=O(T) asx +m.

Proof. (2.1) is a consequence of the assumption that, for some real constant ,
if(t) is absolutely integrable in any finite interval of the form [0, a]. c3

LEMMA 2.2. Assume (Uo(t),u(t),... ) is an asymptotic sequence as t + z and
f ) has the asymptotic expansion in (1.5). Set

n-1

(2.2) r,(t)=f(t)- Y’ AkUk(t ), n= 1,2,’’’.
k=0

Then for each positive integer n, there exist positive constants K and T that depend only on
n, such that

(2.3) Ir,(t)[<K[u,(t)[, t> Z.

Proof. (2.3) follows from the fact that limt__, +[r,(t)/Un(t)]=A, which in turn is
a consequenceofr(t)=A,u,(t)+O(u,+(t))ast + and (1.3). rq

TI-IF.OM 2.1. Let

(2.4) uk(t)=t-Xexp(--akt#), k=0,1,.-.,

where

(2.5) ,kreal, Reak>O, k=O,1,..., 0<0<__1<__2<__

when k < q, flk flq implies either one of the four combinations (a and c),
(a and d), (b and c), and (b and d), with

(2.6) a) Reak< Reaq, b) Reak=Reaq and Xk <,q,
c) Ictgl<lCql, d) lakl--laql and Xg <q,

and no restrictions are imposed on h k and ak when flk < flq" Then ( Uo (t), Ul(t), } and
( ho(X),(x),... } are asymptotic sequences as + and x + respectively. If,
for any nonnegative integer n, there exists an integer N> n, such that

either a) fin < fin
(2.7) or b) ft,=fiN and la,l< ReaN,

or c) n=N Ia,l=ReaNandX,ZXu

then (1.5) implies (1.6).
Proof. The first part of the theorem is a direct consequence of (2.4)-(2.6),

(2.8) k(x)=fla(x-X)/Br( X--k )
and Stirling’s formula for the gamma function.

For the second part of the theorem it is sufficient to show that, for each positive
integer n,

(2.9) ,(x)=O(,(x)) asx +,

where r,(t) has been defined in (2.2). For a given positive integer n, let N be as in the
statement of the theorem. Then by Lemma 2.2 there exist positive constants K and T
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that depend only on N, hence only on n, for which IrN(t)l<_KlUN(t)l when t> T. Now
for sufficiently large x

N-1

(2.10) N(X) x-lf(t)dt- , A/ tx-lu/(t)dt+ tX-lru(t)dt.
k=0

Each one of the integrals ftx-f(t)dt and ftX-uk(t)dt, k=0,1,...,N- 1, is O(T)
as x + , by Lemma 2.1. Furthermore,

(2.11) f:tx-’r(t)dtf:tx-’lr(t)]dtKf:t-’]u(t)ldt
<r t-lus(t)ldt=Kfl(Reas)-(x-x)/aF X--XN

N
Invoking now (2.7), (2.11) can be replaced by

(2.a2) f:t-ru(t)t o(.(x)) as x + .
Thus (2.10) becomes

+

by (2.8) and Stirling’s formula. But

N-1

(2.14) ,(X)=N(X)+ A(x),
kn

and (x)=O(,(x)) as x+ for each kn since (o(X),(x),...) is an
asymptotic sequence as x + . Combining this and (2.13) in (2.14), (2.9) follows.
This completes the proof of the theorem.

The special case of (1.5) with u(t) as given by (2.4) in Theorem 2.1, such that
ak= ak+ and k +a for all k =0,1,. ., is of importance, and we turn to this case
in Theorems 2.2 and 2.3 below. We first note that for this special case u(t) is of the
form

(2.15) uk(t)=t-Xkexp(-ata), k=0,1,...,

and, consequently

-X)(2.16) a(x)=B-l-(-x)/aF fl
k-0,1,..-

THEOREM 2.2. Let u,(t) and ft,(x) be as in (2.15) and (2.16), where a, fl and are
all real, and

(2.17) a>0,fl>0, 0<x<?2<....
Then (Uo(t),ul(t),... ) and ( fto(X),f(x),... } are asymptotic sequences as t + c
and x + respectively, and (1.5) implies (1.6).

Proof. We observe that, with the present u(t), all the conditions of Theorem 2.1
are satisfied with ak =a, flk =/3, k =0,1,. ., and with N= n + 1 for each nonnegative
integer n. Therefore, Theorem 2.1 holds. This proves the theorem. D
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If a in Theorem 2.2 is not real, then the proof of this theorem is no longer valid
since (2.7) is not satisfied for any N> n. However, different arguments establish
essentially the same result when a is complex with positive real part if f(t) satisfies
further conditions in the complex t-plane. This is given in Theorem 2.3 below.

THEOREM 2.3. Let Uk(t ) and k(x) be as in (2.15) and (2.16), where is now
complex, and

(2.18) Rea > 0, >0, Xo<X <X2<....
Then (Uo(t),Ux(t),... } and (0(x),x(x),... } are asymptotic sequences as too
(along any path in the complex t-plane possibly cut along the negative real axis) and
x + oo respectively. Denote 0 arg t, 0 arg a, 01 min(0, o/fl), and 02 max(0,
w/fl). Assume that for some To> 0 and > 0 the function f(t) is analytic in the set
D { :It[ > To, 0 S }, where S (01 , 02 + ), and that

(2.19) f(t)-- AkUk(t ) as toO, OS.
k--0

If, in addition, for sufficiently large x

(2.20) lim [ tx-lf(t)dt=O,
R- aL(R)

where L(O)- { oe i, 0 goes from 0 to o/fl }, then (1.6) holds.
Proof. As in Theorem 2.1, the first part of the present theorem is a direct conse-

quence of (2.15), (2.16), (2.18), and Stirling’s formula.
To prove that (1.6) holds we proceed as follows. Since f(t) is analytic in D and

satisfies (2.20), we can write

(2.21) f(x) (for+ fL(ro fc))+ tx-Xf(t) dt,

where C= { t: oe-0/t, O goes from To to + oe ). By Lemma 2.1

(2.22) frtx-Xf(t)dt=O(r) asx + oo.
a0

Similarly, by analyticity properties of f(t),

(2.23) fg
(To)tx-lf(t)dt]---( 01max_<0_<02 If(Tei)[) T"

Now the integral along C can be reexpressed as

(2.24) tx- Xf ) dt= e-i’x/B ox- Xf ( oe-i’o/B ) do,
ro

and the function F(o)=f(pe-/) satisfies

(2.25) F(p)---exp(-[alO) , Akexp,
k=0

as p oe
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by (2.19). Thus the function FI(p)=H(p- To)F(p ), where H(y) is the Heaviside unit
function, satisfies all the requirements of Theorem 2.2. Consequently

(2.26)

asx

where

(2.27) bk(X)=g_llal-(x-X,)/tF(X_--X,)g k=01"",

Combining (2.22)-(2.27) in (2.21), (1.6) follows. D
Remark. In Theorem 2.3, if we assume that (2.19) holds uniformly for 0 S, then

(2.20) is automatically satisfied. To see this observe that, under this condition, there
exist positive constants K and T> To independent of t, such that

(2.28) If(t)l<Kluo(t)l, t> T, OS.

Thus, for R > T,

(2.29) fL tx-lf(t)dt
(R)

KRX-xofexp[- lalRcos(o + BO)] dO.
’01

But for 0[01,02] we have Ito+flOl<lol<r/2, thus cos(o+fl0)>cosco>0. Conse-
quently

(2.30) ft.(R)tX-f(t)dtl<-K Rx-xexp(- la[Rcs)’

and (2.20) follows by letting R ---, oe.
The corollary below gives a reformulation or rearrangement of the asymptotic

expansion in (1.6) when uk(t ) are as in Theorem 2.2 or Theorem 2.3 and (Xk+ 1--Xk)/fl
is a fixed rational number for all k= 0,1,.-.. The form of the asymptotic expansion
that is given by this corollary is more familiar and revealing than (1.6) itself, and we
make extensive use of it in Examples 2-5.

COROLLARY. Let p and q be two positive relatively prime integers, and let

P(2.31) tk+ )tk -/ k=0,1,.-.,

in Theorem 2.2 or Theorem 2.3. Then there exist constants Bj, j=0,1,..-, such that, for
any positive integer n,

fl j=o
x--q + 0 asx-+oe,

with Bo Aofl- laXlB.
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Proof. Starting with (2.9), we have, for any positive integer n,

(2.33) f(x)=fo(X) Ak fo(X------ Uo(X)
asx + m.

Making use of (2.31) and the formula (see [1, formula 6.1.47, p. 257])

(2.34) zb-a F(z+a)"l+ E c asz--*o,
r(z+b) j= z

where cj are constants independent of z, we have from (2.16)

(2.35) r((x-
 o(X)

X kp/q E dk___
j=0

xg
as x ---) +00,

where dkj are constants independent of x. From (2.35) it also follows that

(2.36) lo(X) O(x-np/q) as x

Combining (2.35) and (2.36) in (2.33), (2.32) follows, t
Finally we can introduce integral powers of logt in the functions u(t) and still

retain Theorems 2.1-2.3. The only additional results that one needs for proving this are

(2.37) tx-(lgt)mexp(-at#)dt= -x
and the asymptotic behavior of the psi function and its derivatives (see [1, formulas
6.3.18, 6.4.11, pp. 259-260]). We shall not pursue this further, as the results and the
techniques for proving them are now obvious.

Note also that all the results of this section hold true if the integral f tx-lf(t)dt
is replaced by fa tx-lf(t)dt for any a>0, as the proofs depend solely on the asymp-
totic behavior of f(t) for + or 0 in a sector in the complex t-plane. We have
already used this in the proof of Theorem 2.3, and shall use it in some of the examples
in the next section.

3. Examples. We shall illustrate the results of the previous section by several
examples. The first example is a straightforward application of Theorem 2.1. The
second example arises in applying the T-transformation of Levin [6] to the partial sums
of the everywhere divergent moment series

(3.1) H(z).-- _, .__! aszo,
i=1 z

where

(3.2) H(z)= fo w(t)
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and

(3.3) li w( t)ti- dt, i=1,2,....

Ultimately, one is interested in the asymptotic behavior of the partial sum r-i/zii-- as
r . It is easy to show that

r-lX/;=H(z)-lfoW(t)tr-1(3.4) - -f/- d
i= Zt zr

The integral on the right is simply a Mellin transform, and the problem is to find its
asymptotic expansion as r--, m. This integral is actually related to the converging factor
for the series in (3.1). In [10] the cases w(t)= tVe -t, 7 > 1, and w(t)= tVEm(t), T > 1,
7 + rn >0, where Em(t is the exponential integral, were considered. The results of [10]
were used in [9] in the derivation of new numerical quadrature formulas for infinite
range integrals with w(x) above as the weight functions. For further details see [9], [10].
Finally, the rest of the examples deal with some special functions when their orders
tend to infinity.

Example 1.

le- ct

dt, Rec>0.(3.5) I(X)-- -1- ze_
Here f(t)= e-Ct/(l ze -t) satisfies all the requirements of Theorem 2.1 with Ak= z k,
k=0, ak=c+k, ilk =1, k=0,1,.... Hence

zk
(3.6) I(x)-- r(x)

=o

It is worth noting that for Iz[ < 1 this series converges and can be replaced by =. For
Izl> 1, however, the series diverges, but by Theorem 2.1, it represents I(x) asymptoti-
cally as x . A special case of this example is I(x)= F(x)’(x), where ’(x) is the
Riemann Zeta function, and is obtained by setting c 1, z 1.

Example 2.

(3.7) I(x)=f0 tX-lw(t)
dt zi [0 )

z-t

We assume that

Ck(3.8) w(t)--e-’ E k+o
ast+.

k=O

Therefore,
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where Ak(z) are polynomials in z. Thus f(t) satisfies all the conditions of Theorem 2.2
and the corollary, with a 1, fl 1, X k k + o + 1, k 0,1, . Hence

(3.10) I(x) F(x o 1)E
Bj(z)

asx +,
j=o xJ

where Bj(z) are polynomials in z, and are independent of x. The B(z) can be
determined in terms of the ck and z, but we shall not go into this. Furthermore, this
expansion is valid for all z ff [0, m).

For the cases (a) w(t)= tVe -t, and (b) w(t)= tVEm(t), where Era(t)= f e-ty/ymdy
is the exponential integral, (3.8) holds. For (a) (3.8) holds with o=-7 and Co= 1,
c,=0, k>l. For (b) (3.8) holds with o=-7+1 and Ck--(--1)k(m)k, k=0,1,.-.,
where (m)k is the Pochhamer symbol, see [1, formula 5.1.51, p. 231]. Using entirely
different techniques, in [10], (3.10) was shown to be valid for all z ff [0, m) for case (a)
and for z with Rez <0 for case (b). It is now obvious that (3.10) is valid for all
z [0, m) as long as w(t) satisfies (3.8).

Example 3. Asymptotic expansion of K(z) as , + m.
Here Rez>0 and K(z) is the modified Bessel function of the second kind of

order , and has the integral representation, see [1, formula 9.6.23, p. 376],

(3.11) 7/’1/2(Z/2)" fm -zt 2

?(;;-1-- e (t 1) -1/2dt.

Making the change of variable or integration 2-1 2, we have

(3.12) G(z) e-Zt(t 2-1)"-l/2dt

=Lexp[-z(1 +a)l/21

Now

(3.13)
exp[-z(l+2)1/2]

(lq-2)1/2

It is not difficult to see that the term inside the curly brackets has a convergent
expansion of the form

exp(z [f- (1 + f2)1/2]) A(_iz)(3.14) q(f; z)
(1 + 1/2)1/2

k=0
f> 1

with A(z) being polynomials in z and A0(z)= 1. Therefore, the integrand of (3.12)
satisfies all the conditions of Theorem 2.3 and the corollary, with x 2u, a= z,/3 1,
k k, k 0,1, . Consequently

(3.15) q,(z) z-Z:’F(2,) B(z)
as p + m,

,j=O PJ
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where the Bj(z) are polynomials in z and B0(z)=l. By (3.15) and the duplication
formula for the gamma function, see [1, formula 6.1.18, p. 256], we obtain

1 2 r(,) 1 +
B.(z)(3.16) K,(z)..--

j=x 9J
as 9 + ,

which, for integer 9, has also been derived in [12] by analyzing the power series of

K(z) for small z.
Example 4. Asymptotic expansion of Y,(z) as u + .
Here Re z > 0 and Y(z) is the Bessel function of the second kind of order 9 and

has the integral representation, see [1, formula 9.1.22, p. 360],

1 sin(zsinO_vO)do_l (eVt+e_Vtcos(v)}e_zsinhtdt"(3.17) Y(z) =g r

Integrating by parts once, we see that the first integral is 0(9 -1) as 9 + m. In the
second integral we have two contributions:

(3.18)
11 --rl forete sinh dt

-vt-z sinht12
1 cos( 9r ) e dt

Using Watson’s lemma, we can show that I2-..cos(9qr)Ej__lbj(z)/9j as 9 + m, with

hi(z) being independent of 9. In I we make the change of variable of integration et=,
and obtain

(3.19) it 1,,
We can now apply Theorem 2.3 and the corollary, and obtain

g - 9) 1+ as9+m

where the cj(z) are independent of 9. Consequently

(3.21) Y.(z).-- 1__ 2 F(v)[a + O(u-1)l as 9-, + m.

Example 5. Asymptotic expansion of H,(z)- Y,(z) as v + m.
Here Re z > 0 and H,(z) is the Struve function of order 9. We have, see [1, formula

12.1.18, p. 496],

2(z/2)" fo zt(1 2(3.22) H,(z)- Y,(z)=r/ZF-(;--l-/2)
e- +t ) /2dt.

Making the change of variable of integration 1 + 2.._ 2, we have

(3.23) q(z)=foe-Zt(1 + t2)-l/2dt= flmexp[-z(2-1)1/:z]
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As in Example 3,

(3.24)
exp[-z(2 1)1/2] -’

(2__ 1)1/2 f k=0

where the Ak(z ) are polynomials in z and A0(z)= 1. Following Example 3, we obtain

(3.25) H,(z)-Y,(z) --1 2 F(u)[l+O(b,-1)] as , +
’/7" Z
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THE EXISTENCE OF HOMOCLINIC ORBITS AND
THE METHOD OF MELNIKOV FOR SYSTEMS IN Rn*

JOSEPH GRUENDLER"
Abstract. We consider a periodically forced dynamical system possessing a small parameter, in arbitrary

dimension. When the parameter is zero the system is autonomous with an explicitly known homoclinic orbit;
we develop a criterion for this homoclinic orbit to persist for small, nonzero values of the parameter. The
theory is applied to an example arising from a magnetized spherical pendulum.

The theory is a generalization to arbitrary dimension of the method of Melnikov. The example is a
generalization to R4 of a system in R considered by Holmes.

1. Introduction. There has been considerable recent interest in the problem of
chaotic solutions to deterministic systems. Some basic references to this subject are [1],
[10] and [17]. One approach to predicting the onset of chaos is the use of perturbation
theory and the method of Melnikov to detect transverse homoclinic orbits.

In his original work, [13], Melnikov considered the case of an analytic system in
R 2. Recently, Holmes [9] and Sanders [18] have reduced the differentiability require-
ments to C2 and made the proof more geometric. See also [5] and [4]. In [11], Holmes
and Marsden consider the case of integrable Hamiltonian systems in higher dimension.
The purpose of this work is to extend Melnikov’s method to the non-Hamiltonian case
of C2 and arbitrary (finite) dimension. We also provide a pair of examples in R4.

To motivate the general definitions in this section, consider a movable block with a
smooth, curved surface as shown in Fig. 1 and a mass sliding on this surface. For our
unperturbed system we assume that the block is at rest and that the mass slides with no
damping. If the mass starts with a small velocity in the vicinity of point A, the motion
will be periodic without passing through point B, and similarly for motions near point
At"

If the mass starts at a point higher than point B, the motion will be periodic with
each cycle passing twice through point B.

Thus, in the phase portrait, points A and A’ with zero velocity are centers while
point B with zero velocity is an unstable equilibrium. Passing through this unstable
equilibrium is a separatrix in the shape of a figure eight separating the two types of
motion.

If S represents the horizontal displacement measured from point B, the differential
equation has the form =F(S). In phase space, x (S, S:), this takes the form =f(x)
where the origin is a saddle equilibrium and where there exists a homoclinic orbit.

We now add two perturbations. The first is viscous damping. In addition, we move
the block with a sinusoidal motion. If the coordinate S moves with the block, we
experience a sinusoidal inertial force. The differential equation becomes

F(S ) el -F e2 cos o)t.

In phase space this takes the form

*Received by the editors May 4, 1984.
Department of Mathematics, North Carolina A & T State University, Greensboro, North Carolina

27411.
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smooth

movable
block

FIG. 1

X2=
velocity

Xl

position

FIG. 2

0 0] and u=(1.1) Jc=f(x)-e.lAX+e2u cos0t, whereA
0 1 o]

In this work, 0 will denote angular frequency (radians per second). The circular
frequency (cycles per second) will then be 0/2rr and the period 2

Numerical examples show that for certain values of e=(el, e2) the solutions to
equations like (1.1) exhibit a chaotic nature. See [10], [14], [15] and [16]. There is a way
to see why such behavior should be expected. Fix the damping coefficient, e1, and vary
e2, the amplitude of the applied force. When e2 is small the mass will oscillate with
frequency o near A or A’. When e2 is large the mass will again oscillate with frequency
0 but now with large anaplitude so that each cycle passes through point B twice.

For certain intermediate values of e2 the motion will alternate between a few cycles
near A and a few cycles near A’ with the numbers of each set of cycles apparently
random.

Numerical experiments suggest that the onset of this chaotic behavior involves the
appearance of homoclinic orbits in the perturbed system. This is reasonable since the
existence of transverse homoclinic orbits is known to produce exotic dynamics (e.g., the
existence of horseshoes). One approach, then, to studying the chaotic solutions to (1.1)
is to study the homoclinic orbits of the perturbed system. The first step in this,
determining the values e=(el, e) for which such orbits exist, is the problem to be
considered here. We first state the problem precisely.
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We introduce the notation B to denote an open ball of radius 8 centered at the
origin in some Euclidean space. For future reference we now describe the dynamical
system which we will study.

DEFINITIOY 1.1. A perturbed homoclinic system (PHS) is a dynamical system

(1.2) ( ) f(x( )) + h ( x( ), t, e),
where f is a C2 vector field on R" and h is a C 2 function h: RnR B R for some
BcRN.

The function h is periodic in with frequency 0 and satisfies h (0, t, e) h (x, t, 0) 0.
The unperturbed system, c =f(x), has a saddle equilibrium at the origin and possesses
at least one homoclinic orbit.

We could consider f,h to be defined on some open set UcR containing the
origin. We use all of R" for convenience and because this covers the applications.

Notice that (1.1) does not satisfy h(O,t,e)=O. This can always be fixed up. Since
x 0 is an equilibrium for the unperturbed system, for sufficiently small lie[I, (1.1) has a
periodic orbit which goes to zero as e 0. We can then subtract this orbit from x.

Let us denote by Ws, WUc R" the stable and unstable manifolds, respectively, of
the origin for the unperturbed system x=f() obtained by setting e=0 in (1.2) and
write ds= dim(WS), du= dim(W"). The perturbed system is nonautonomous but as it is
periodic in we can consider the flow of (1.2) as autonomous on R’Sx. Let
q,(t, x, , e) be the solution to (1.2) satisfying q(, x, , e) x and let --* [ be the projec-
tion RS obtained by reducing mod2rr/0. Then q, induces an orbit in RnS
given by t-(ck(t,x,l,e),t ).

The fixed point x- 0 in R now becomes a periodic orbit t- (0, ). We denote the
stable and unstable manifolds of this orbit by

I,_.+ lim q(t,x,,e)--O),
leu= ((x’)Rnxsil tlim-o q(t,x,,,t)=O).

We will find it convenient to look at sections of these manifolds. We define

Notice that making the identification R" R { } we can think of the above as

WeS()-- leSN(Rn ($}),
With this notation we get

Ws= W0() for all ,
WeU()-- lV’eU(Rn (}).

Wu= W() for all .
By hypothesis, W and W" intersect. The question becomes: when do lfl and 1

do so?
DEFIYTIOY 1.2. A Melnikoo function for a PHS is a C map A. $1B Ra for

some Bnc RN given by (,e) A(,e) with db=dim(TeW TeWU)=codim(TeW +
TeWU), where Pc WN Wu. The function A has the property that A(*,e*)=0 if and
only if the PHS has a homoclinic orbit when e e*.
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We give a brief description of the Melnikov function to be developed. Let ,
2 _,--. ,, denote the eigenvalues of Df(O) and assume for convenience that these are
distinct. Let 3’(t) be a homoclinic orbit for the unperturbed system and consider the
variational equation i(t)=Df(/(t))u(t). We show in {}2 that this equation has a
fundamental solution { kl, -,k } with the property that each (i) is asymptotic tO
some distinct e )bt as --+ and each (i) is asymptotic to some distinct e xkt as .
Define an index set I by I if and only if limt__, (t)= limto (i)(t) oo. It
follows from stable manifold theory that the order of I is db (see [6]).

Now form the function D(t)=det((t),...,p(t))exp(-fd (V "f)(3,(s))) and
let K(t,) denote the result of replacing k(t) in D by h(7(t),t+) where
h(J)(x,t)= Oh/Oej(x,t, 0). Next, define

Aij()= f? Kij(t,)dt, iI.

When a mild restriction on the Kij is satisfied (Definition 3.1) the conditions for a
homoclinic clinic become (Theorem 3.2)"

N

E mij().j=O, iI.
j=l

In {}4 we provide a condition for the homoclinic orbit to be transverse (Theorem
4.1). When db= 1 this condition becomes

N OAikE -7-(*)ek =/=0, I= {i}.
k=lo

The reader who wishes to see an example of these formulas before their derivation
can begin with {}6.

We conclude this section by stating some standard results used later. For proofs of
the next two theorems see [6].

THEOREM 1.3. Let J =f(x)+ h(x, t, e) be a PHS. Let P1 WS, fix and let II + be a

plane of dimension d in R transverse to W at P1. Then, for sufficiently small [[el[, II +

meets W,S() in apoint q+(,e), where q+ is C in (,e) and q+(,e)--O as e-+O.
Similarly, a point P2 W and a plane 1-[- of dimension d and transverse to W at

P2 define a point q-(, e).
The general idea, now, is to find q- and q+ from a common point P WN W

and construct a function, A, using the requirement that A 0 when q+= q-. The trick is
to do this in such a way that A is easily obtainable from the perturbation h. The first
step toward this end is to show that the orbits through q+ and q- stay near the orbit
through P. Thus, in the following theorem one can think of v(,e) as q- (,e). The
reason for the slightly more abstract statement is to allow for some additional applica-
tions of the result.

In this next theorem we introduce some notation to be used throughout the work.
We use M or M to denote a continuous, positive function on some Bc RN satisfying
m(0)= 0.

THEOREM 1.4. Let

(1.3) 3c=f(x)+h(x,t,e)
--+ R be a C function denoted (, e)--+ v(, e) withbe a PHS. Let B=cRN, v: SIB=

v(,e) W(). Let Dv represent the derivative of v with respect to e and let t-+(t,,e)
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denote the solution to (1.3) satisfying y(l, , e) v(, e). Then
a) , is C in e at e= O.
b) Let D, denote the derivative of / with respect to e. Then t--, D,/(t,, O) satisfies

the nonhomogeneous variational equation

t)= (t,g, o))vt)+ o),,, o),,, o),
U(j) D,(, 0).

c) Define R v by

Then there exist a constant a>0 and a function M such that IIR(t,,e)ll
IlellM(e)e-(t-) for all t>_ .

2. The variational equation. To motivate this section, we give a brief outline of
Melnikov’s original construction. Let 2=f(x)+h(x,t,e) be a PHS with n=2. Then
W n W consists of one, or possibly two, homoclinic orbits say 3’(t). Let P 7(0).

Now 5,(0) is a vector tangent to the orbit 7 at P and t--* 5,(t) is a solution to the
variational equation i(t)=Df(7(t))u(t). If tq(t) is any solution to the variational
equation independent from ,, then + (0) is a vector transverse to the orbit 3’ at P.

By Theorem 1.3 the line through P and along q(0) determines q/(, e) and q-(, e).
Melnikov now defines A(, e)= f(q+(, e)- q-(, e), ,(0)) for some nondegenerate two
form f. The fact that "i’ satisfies the variational equation is used in a nice way to get an
expression in terms of D h (x, t, 0) for the part of A linear in e.

The purpose of this section is to generalize the fundamental solution ( q, j, }.
We consider the system

(2.1) 2(t)=f(x(t)),
where f is a C vector field on Rn, the origin is a saddle equilibrium, and there exists a
homoclinic orbit.

Let W, W denote, respectively, the stable and unstable manifolds of the
origin and let PWCWu. We denote d=dim(W), du=dim(WU), and db--
dim(TWC TpWU). Let 3,(t) be the solution to (2.1) satisfying ,(0)= P.

The variational equation along ,/is

,:,(,) u(,).
We seek a fundamental solution, (1(1), .,(n)}, to (2.2) possessing a number of

properties. First, we require q(")(t)= ,(t).
We next require that the initial vectors, q(i)(0), span certain vector spaces. This

requirement is summarized in Fig. 3. Note that the first d of these span a plane
transverse to W while another d of them span a plane transverse to Wu.

The next requirement involves the exponential behavior of (i)(t) as _+ z. Let
us write q(;)(t)-- taebtv as + m to mean lim/ d/(i)(t)t-ae -bt= V Rn. Similarly for- o. We now require that there exist a numbering, { ,...,X }, according to
algebraic multiplicity of the eigenvalues of Df(O) such that +i)(t)--- tkieXitv (i) as ---> -4- :
for some positive integers ki and some vectors i). We also require that.there be a
permutation, o, on n symbols and vectors () such that (i)(t)"-tk(i)eXoi)t(i) as
t

Our final requirement involves the signs of Re(X) and Re(Xo(i)). These require-
ments are summarized in Fig. 4.
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FIG. 4

and

Notice that for any n-form f we have

((1)(t),’’’,t(n)(t)) ( 0(1), ,0( n) ) tkx + + k.etr( Df(O))t ast-o +

(p(t)(t),’" ",q(n)(t))’((t),"" ",(n))tk’+’"k"etr(Df(O))t as t -o.

To prove the existence of the desired solutions to (2.2) begin with standard results
concerning the asymp.totic behavior of linear systems e.g. [2, Chap. 3, [}8]. First apply
these results at + and separately and then splice them together. The fact that db
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solutions must decay in both directions follows from a standard fact in stable manifold
theory. A detailed proof of the following result can be found in [6].

THEOREM 2.1. Equation (2.2) has a fundamental set of solutions (q(1),...,(n))
satisfying the conditions summarized in Figs. 3 and 4.

3. Definition of A. We are now prepared to construct our Melnikov function. The
original idea is due to Melnikov [13]. For a modernized treatment of the two dimen-
sional case see Holmes [9], Sanders [18], Greenspan [4] and Greenspan and Holmes [5].
The essential new feature in the present, higher dimensional case is the use of the
special solutions, given in 2, for the variational equation. We begin with some defini-
tions and a statement of the main result.

Let

(3.1) 5c=f(x)+h(x,t,e)
be a PHS with xR, eRs and denote h2)(x,t)=()h/)e2)(x,t,O),j=l,2,...,N. Let
P W c3 W and let - 3’(t) be the solution to 5c =f(x) satisfying 3,(0)= P.

The variational equation along , is

(3.2) /(t) Df(v(t))u(t).
Let { q),-..,q)) be solutions to (3.2) as described in 2. We can assume that
det((1)(O), .,(’)(0))= 1. Note that the vectors(q(x)(t),...,(d")(t)} are transverse
to W at 3,(t) while the vectors (q(d"-d+l)(t),.. ",q("-d)(t)) are transverse to W" as
v(t).

We now define Kij(t,) for l<i<n-db, I<__j<=N to be the function ob-
tained by substituting h(J)(V(t),t+ ) for q(i)(t) in the expression
2(q(1)(t), .,q()(t))exp(- f (V f)( y(s )) ds ). The function Kij(t,) represents the
projection onto the direction of ((t) of the ej-linear part of the vector field h
evaluated along

DEFINITION 3.1. The equation (3.1) will be said to have a transverse perturbation if,
given R and e Rv, e 4: 0, there exists a R and integers p, q with 1 __<p __< d and
d db "+" 1 q <__ n db such that

N N

E Kpj(t,f;)ejO. and ., Kqj(t,)ej4:O.
j----1 j=l

The derivation later in this section provides criteria for (3.1) to have a homoclinic
orbit without the assumption that the perturbation is transverse. However, because this
assumption is not too restrictive and is satisfied by the examples to follow it will be
made throughout.

To measure the separation of W() and WU() we define

_o
Kij(t,) dt

for au-db+l<=i<_du and I<=j<=N. Note that the range of is such that in the
integrand, Kj, the k() omitted (and replaced by h (j)) is one which exhibits exponential
growth at both + o and -o. We will show that Ao._( ) is the coefficient of ej in the
e-linear part of the distance between W() and Wu(l) along (i)(0).

We now assume that N>=db, define a dbN matrix A()= [aij] by aij=Ai+a_d,j
and let A() denote the first db columns of A(). Note that, after a possible renumber-
ing of the ej, when the rank of A() is db we have det(A()) 0.
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The main result of this section is given in Theorem 3.2. This result is a corollary of
Theorem 3.3.

THEOREM 3.2. Suppose that N>= db, that (3.1) has a transverse perturbation, that *,
e* satisfy =xAij(*)e=0 and that det(A(*))4:0. Then there exist an open interval
Jc R, containing zero and a C map a: J---Rdb with a(0)=(e’,. .,e,b) such that (3.1)
has a homoclinic orbit when e=s(al(s),...,adb(s), e+l,...,ev ).

The rest of this section consists of a proof of the preceding result. We begin by
stating two standard facts for future reference. First, if A is any linear transformation
on R" and 0(1), .,v(’) any n vectors in R" then

(3.3) E (0(1), ",(i-1),A(i),(i+l), ",(n))=Yr(A)Q((1), ",o(n))
i=1

Second, since each qi)is a solution to/t= Df(y(t))u and (lp(1)(O), ",lp(n)(o)) 1,

(3.4) (1(1) (t), l(n)(t)) exp fot (v’f)(y(s))ds).
To follow the stable manifold under the perturbation we need a general plane (i.e.,

affine linear subspace) transverse to W at an arbitrary point, say 3’(t0), on 3’. To get a
general set of vectors transverse to W at 3,(t0) we define

(3.5) ui)+=i)(to)+

_
a-i+k)(to), l <i<d

k=du+l

+ We now let II +(to a +) denote the plane through ,/(to) spannedfor arbitrary scalars aki.

by the u (i)+. Similarly, we define

(3.6) u(i)- aki (to), du-db+l<=i<=n-db,

where Iu= (1,2, .,du-db}k3(n-db+l,...,n} and let II-(to, a-) denote the plane,
transverse to W at 3’(to), spanned by the u)-.

From Theorem 1.3 the planes H +(to) and II-(to) determine, respectively, points

q+(to,,e,a+)l-I+(to,a+)W([o+), q-(to,,e,a-)l-I-(to,a-)OWU([o,).

Then (3.1) has a homoclinic solution t--, 3’(t,e) with 7(t,0)= 3’(t) if and only if q+=q-
for some o,

, a -+

We now define A + and A- by

d

(3.7) q+(to,,e,a+)--3,(to) E A-(to,,e,a+) u(i)+
i=1

n d

(3.8) q-(to,,e,a-)-3,(to)= _, As, (to,,e,a-)u (i)-.
du db +
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If we define A= A;- A- for du- de + 1 < < du, the condition q+- q-=0 becomes

(3.9) F(to,,e,a+,a-)=A(to,,e,a,+)
n d

_
aA-(to,,e,a-)=O, l<=i<_du-db,

k=du-db +

(3.10) Fi(to,,e,a+,a-)=Ai(to,,e,a+,a-)=O, du-db+l <i<du,

(3.11) F(to,,e,a+,a-) -A, (to,,e,a- )
du

+ + ++ _, aikAk(to,,e,a )=0, du+l<__i<=n-db,

k=l

d d
+ + +(3.12)

_
aikAg(to,,e,a )-

_
aA-(to,,e,a )=0,

k=l k=du-db+l

n--db+l<_i<_n.

Notice that (3.12) can be satisfied by taking a a. =0 whenever n- db -+- 1 <i < n.
From Theorem 1.3 the A are C functions of e so that we can write

N

(3.13) Af(to,,e,a+-) E A(to,)e2+Rf(to,,e,a+-),
j=l

where we use + for 1 <=i <__du and for d-db+ l<=i<=n-db and []R:(to,,e,a+-)][<
IlellMi+-(e,a +-). In a similar way we write

N

Ai(to,,e,a+,a-) E Aij(()ej+Ri(to,,e,a+, a-)
i=1

for d db + 1 <= <= du. We will obtain explicit formulas for the A and then, from the
/definiton of A_(obtain A j., A ij

+--( +--)Let --> 3’ t, o,
, e, a -) denote the solutions to (3.1) satisfying 3’ o + , o,

, e, a
=q +(to, , e, a +). Then, from Theorem 1.4, we have

N

(3.14 v+-(t,to,g,,a+-)=v(t-+ E o()+-(t,to,g,a+-)+R+-(’,o,,,a+-),

where IIR +(t, to,,e,a +)ll =< IIllM -+(,a -+)e (,-to-) and the v(J)-+ satisfy

(3.a o()+-(t,to,,a+-)=zy(v(t-)o()+-(t,to,g,+-)+h((v(t-),t).
Substituting o + in (3.14), we get

N

(3.16) q+(to,,e,a+)=’r(to)+

_
v(J)+-(to+l,to,,a+-)ej+R+-(to+l,to,,e,a+- ).

j=l

Using (3.4)-(3.8) we see that

a,.+-(,o,,,a -+)
( (1)( to),..., (,-1)(to), q -+ (to, ,,a -+ )-( to)., (’+ 1( to,""" +(n)(to))

exp(- fot(xT’f)(/(t))dt ),
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where the ranges of + and are as in (3.13)..Substituting (3.16) into this result and
comparing with (3.13) we see that

A. (to,) f ((1) (t0 ),""", (i-)(to), v(:)+ (t + j, to , a + ), (g+ X)(t0)," ", (n)(t0 ))

exp(-f0t (V .f)((t))dt),
where, again, the ranges of + and are as in (3.13).

We now define

(3.17) dPi-(t)=((D(t),’’’,d/(-D(t),v(J)+(t+,to,,a+),b(+D(t),’’’,d/(n)(t))
so that

(3.18) Ai3 (/o,’) +(/o)exp(- fot (7 .f)(’,/(t)) dr).
Differentiating (3.17), substituting (3.15), and using (3.3), we get

(t) (V "f)(’/(t))di-(t)+Kij(t,)exp(fo (V .f)(/(s))ds).
This is a first order, linear, ordinary differential equation for . Using an integrating
factor we get

(3.19) gli (t)exp(-So’ (V .f)(’/(s))ds)
-i2(to)eXp (v.f)(y(s))ds + Kij(s,)ds.

to

We wish to let o in this equation. We claim that the left-hand side goes to
zero. This follows from the following observations:

i) In (3.19) 1 <i<duso that Re(,i)> 0.
ii) From (3.14), v(J)(t, to,,a +/-)0 as t---, o.
iii) Using (ii) and (3.12) as t o the asymptotic behavior of q,(t) is a factor

which goes to zero multiplied by exp((X + + i-1 + Xg+l + + ,)t).
iv) As to, the asymptotic behavior of exp(-fd(v.f)(y(s))ds) is

exp(-() + + X,)t).
A similar argument shows that K?(t,) is dominated by e -x’’ as -+ m so that this

function is integrable from o to m.
Now, letting o0 in (3.19) and using (3.18), we get

A,,+ (to g)= f l <i<du.

By a similar argument we get

A(to,)=ft Kij(t,)dt, du-db+ l <i<n-db.

Finally, combining these formulas yields

Kij(t,)dt, du-db+l<=i<=du.
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We see now that the e-linear part of the equation F(t0, , e, a +, a-)= 0 becomes

N [ n--db

2(3.20t ff.(to,,e,a )= ’ Aij
j=l k=du-db+l ai-kA-j(to,)]ej=O,

l <i <du-db,

N

(3.21) ff/(,e) E Aij()ej=0, du-db+l<i<du,
j=l

(3.22) ffi(to,,e,a+) E -Aih(t0,)+ E ai+kA-j(to’) ej=0,
j=l k--1

du+ l <=i <_n-db.

Suppose now that we have a solution for (3.21) i.e., we have a * and e* such that
Z=Aij(*)ej* =0. Assuming that (3.1) has a transverse pertrubation we can find, for

* and e*, o, p and q such that E/=lKpj(to,*)e 4=0. If we let (t)=E=lAp+j(t,*)e,
we have +(to)=FjN=Kej(to,*)ej4:O so q,(t)4:0 for all t4: o sufficiently near o. Using
this argument again we see that there exists a t’ at or near o such that
=lApj(to,*)+. eOand,.=lAj(t,*)eO. Now, fordu+l<__i<=n-dbdefine

+and let bip--X_d. b =0 for all other 1 <=j<-du.
Similarly, for 1 < < d -db define

.=1Ai+j ( t, +* ) I7
j.N___ 1m q--j ( t, +* ) E7

and let b/ z*, b 0 for all other d db + l_<=j <= n db. Then F(t_, *, e*, b +, b-)= 0.
The following result shows that if rank(A(*))=db, then F(t,*,e,a+,a-)=O for
nearby values.

THEOREM 3.3. Use the notation above, assume that (3.1) has a transverse perturba-
tion, and that rank(A(*))= db. Then there exist an open interval Jc R containing zero
and C maps a" J-+ Rdb, a+: J--* Rds-db X Rd", or-" JRd"-db X Ras such that a(0)=
(e*,.-.,e,b) a+(0)=b +, a-(0)=b- and F(t,*, s(a(s),...,adb(s),e+l,...,ev ),
a+(s),a-(s))=O.

Proof. Let A(*) denote the first db columns of A(*). By renumbering the e if
necessary we can assume that det(A(*)) 0. For a sufficiently small interval Jc R
containing zero and BcRd" containing (e’,. .,e) we define a C map if: JRd‘-d

xB x Rd.-db R"-d as follows: first, for (s,x,y,z)J x R<-d xB Rdu-d intro-
duce the notation

e(s,Y)=(sYl," ",sYab, setb+l," ",Sev);
for d + 1 __< __< n -db let

fli+ ( x ) x fl(x)=O forl<=j<_du;
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for 1 <_ <= d- db let

for d db -t- 1 <=j <__ n db

Now define

q(s x,y,z)=lF(t * e(s,y) fl+(x) fl-(z)).
This is valid for s 4: O. We extend in a C way to s 0 by defining

+

Then +(O,x*,(e,...,e+),z*)=O. Furthermore, the derivative of + with respect to
(x,y,z) at (O,x*,(e,...,e),z*) has a matrix representation of the form

E ;j(t,+*)87 E qj(tS,+*)87 X 0 X(+*) 0_
[__=1 =1 01 I

The result now follows from the implicit function theorem, fi

4. Transversali condition. The construction in +3 is sufficient for locating a
homoclinic point of the perturbed system. An additional construction is required to
determne when ts point is one of transverse intersection of the stable and unstable
manifolds.

Let

(4.1) Jc=fC x) + h (x,t,e)
be a PHS with t3"(t) a homoclinic orbit for 2 =f(x) and let (+(t),...,+(,)} be as in
Theorem 2.1 and u ()+/- as in 3. Now let U+ be a coordinate neighborhood on W
centered at 3,(to), denote coordinates in U+ by s+=(s+), i (du+ 1,---,n}, and let
P(s +) denote the point with coordinates s +. We can assume that P(0)=3’(t0) and
(aP/Os)(O) (i)(tO).

Let II+(to, S /) be the plane through P(s /) generated by {u(1)+, .,u(au+}. By
choosing U/ small enough we can assume that H+(t0,s +) is transverse to W at P(s /)
so, for sufficiently small e, we have a uniquely defined point q/(to,,e,a/,s+)
II +(to, S+)N W(t) with q+ P(s +) as e 0.

We define A{ by

du
(4.2) q+(to,+,+,a+,s+)=P(s+) + E A-(to,+,+,a+,s+) uCi)+.

i=I

Following the development in the preceding section we let + 3"+(t,s +) denote the
solution to +/- =f(x) with 3’+(to, S+)=P(s+), write

(4.3)

and derive

N

A-]-(to,{,e,a+,s+)

_
A(to,+,s+)ej+R-(to,+,e,a+,s+),

j=l

mij
to

K(t,+,s+)dt,
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where the expression for K. is obtained from Kij of the preceding section by replacing
"(t) by y+(t,s+).

In a similar way we define a neighborhood, U-, of ,(t0) on Wu, establish
coordinates s-=(_s), iIu=(1,...,du-db}U(n-d_b+l,...,n} and define P(s-),
II -(to, s-), q-(to, , e, a -, s -), A- (t0, , e, a -, s-), A (t0, , s -) in an analogous way.

We now define a dbXdb matrix B(to,,e)=[bij], by

N omi+du_d6, k
bix E (t0,, 0) ek

k=

and

bij --k=lE Sf+n_db_l (to,,O)-- SST-n-- (to,,O) Ek

for 2 <=j<_db, 1 <=i<=db. Suppose, now, that (4.1) has a homoclinic orbit for e=e*.
Then, if e* is sufficiently small, there exist to, *, b +, b- such that q_+(t,*,e*,b+,O)
q-(t,*,e*,b-,O) by the previous section. Let q Wi.(*)n W.U( *) denote the com-
mon value q+ q- and let (q, * ) R" S so that I. n W..

THEOREM 4.1. With the notation of the preceding paragraph, is a point of transverse
intersection of e*W. and W. if and only if det(B(t,*,e*))4:0 when 11 is sufficiently
small.

Proof. Since (q+(t,*,e*,b+,s+),*) IfV, for all s +,

(4.4)

and

)q+
* * O) O) TOI.,s (t, ,e b+,

+
,*, 0),1) ToI;V,.--(t e*,b +,

j(du+l,...,n-1 },

Similarly,

q-
* b-, O) I j 4 n(4.6) 0-](t, ,e*, 0), ToI?VU, j

and

In the notation of the previous section the solution to (4.1) for e= e* passing through q
at t=t +* is tV+(t,t,*,e*,b+-). Then t(y+(t,t,*,e*,b+-),t) is a homoclinic
orbit in R S passing through at t’ + * so that

(4.8) ( " +( t* + li *, ,*, e*, b + ) 1) TOI)** n TOIPV,u.

Recall that, as e ---> 0, +(t, to,, e,a +)(t-) q")(t- ).



920 JOSEPH GRUENDLER

Combining (4.2) and (4.3) we get

(4.9)
bq+
oV

and

n d

r--d.+

n d

r=d.+l
b/7/(r)(t )]eZ +o(llll)

br-t(r)(t8 )let + (It,ll).

The formulas are valid forj { d,+ 1,...,n-1}. Similar formulas can be obtained for
Oq-/Osj valid forj Iu, j 4: n and for

From (4.9) we see that the d + 1 vectors in (4.4), (4.5) and (4.8) are, for sufficiently
small e, linearly independent in ToWI.. Similarly, the d + 1 vectors in (4.6), (4.7) and
(4.8) are, for sufficiently small e, linearly independent in ToW.. Thus, 0 is a point of
transverse intersection of these manifolds if and only if the vectors in (4.4)-(4.8) are
linearly independent, i.e., if and only if the following determinant is nonzero:

D(t,*,e*)
jIu,j4=n

=det-.. -_,0 ,...,---,1 ,-.., Osf,O ,...,--,1 ,(,-,1)

du+l<__j<n-1

We expand this determinant by minors of the last row using (4.9) and the analogous
results. We find that the minor for the (n + 1), (n + 1) entry is zero. The two nonzero
minors yield:

I’, 010
D(t,**,e*)=- det((1)(,),... ,(n)(’))

0’, 0’, I

-det(B(t3,*,e*))exp ,o
Note that when db 1 the condition for transversality reduces to

U AdukE
k=l

5. The special case of a manifold of homodinic orbits. We wish to consider the
case where WsN W has a connected component which is a manifold. This will occur,
for example, if one of Ws, Wu contains the other. Let

(5.1) 2=f(x)+h(x,t,e)



EXISTENCE OF HOMOCLINIC ORBITS 921

be a PHS. Let Ws, W denote respectively the stable and unstable manifolds of the
origin for the unperturbed system +/-=f(x) and denote ds=dim(WS), du=dim(W").
Assume Wcq W" has a connected component, WB, with a manifold structure. Let
dim(WB)= db We assume db > 2.

We establish a coordinate system on Ws. Let (U, q) be a local chart on Ws with
O U, rk: URab a homeomorphism onto its image with q(0)=0. We can assume
Sdb-1 C. Im(q). Define Edb-l=t-l(sdb-1). If q Ws we define (sl(q),’’’,Sdb_l(q)) as
follows:

Let tflq(t) be the solution to +/-=f(x) with flq(O)--q and choose q SO that

flq(tq), n-1. Using Hartman’s theorem, we can assume that U is small enough that tq
is unique and that the orbit flq meets Edb-1 transversely. Now let (sl(q),.’’,Sd_l(q))
be the spherical coordinates of (flq(tq))Sdb-1. We will refer to (Sl(q),’’’,Sdb_l(q))
as the B-coordinates of q.

Notice that it is now possible to check the perturbation of every orbit in W for
homoclinic points by checking the orbit through an arbitrary point on Ed-l. It is also
possible to combine the constructions in 2 and {}4.

Let P yd- be arbitrary and denote the B-coordinates of P by O=(Ol,’’’,Odb_l).
Let t7(t,s) be the solution to 2=f(x) such that /(O,s)Y.db- and has B-coordi-
nates S=(Sx,’’’,Sdb_l). Then ,(0, 0)= P.

We now consider the variational equation

Let tq(J)(t,O), 1 <=j<=n, be the solutions to (5.2) as in Theorem 2.1. Then
/(")(t,O)=4l(t,O).

In the present special case it is sometimes possible to specify q(J) other than
Notice that from Theorem 1.4 -/is C in s and that the functions t(3,//Osi)(t,O ),
1 <= <_ db- 1 are solutions to (5.2). Also, from stable manifold theory (see [6])

lim
) "/ lim "/

t + -si ( t’ O )
t_, -si ( t’ O t O"

Some or all of O7/s can be used for (J), n-db d-1 __<j__< n-1 according to the
following theorem. The proof of this theorem follows from slight modification of the
proof of Theorem 2.1.

THORE 5.1. Let { X1,"" ,X, } be a numbering of the eigenvalues of Dr(O) according
to algebraic multiplicity. Let

lim ’ (t, 0)exp( X a(j)t)t-PJ v(j),
O

and

tlirn -s ( t, O )exp( X/(j)’ ) t-qj= (j)

with v(j), (J) nonzero vectors in R" and )t
(j) < 0 < (j), 1 <=j db- 1. If the pairs

(a(j),pj) are all distinct and the pairs (fl(j), qj) are all distinct, then we can take

0"/ (t,O), n-db+l<=j<_n-1(J)( t, O )
)Sj_n+d

in Theorem 2.1.
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We now carry out, at P, the construction of {}3. Computationally, one replaces 3’(t)
with "/(t,O) to get, in particular, Kij(t,,O ), Aj.(, 0) and Aij(, 0)= Ai+j.(,O)-A(,O).
Definition 3.1 must now be replaced by the following:

DEVINITION 5.2. Equation (5.1) will be said to have a uniformly transverse perturba-
tion if, given R and eRN there exists a R and integers p, q with 1 <=p <=d and
d db + 1 <= q <= n db such that

N N

E Kp(t,,O)e4=O and E Kq(t,,O)e4=O for all OSd-.
j=l j=l

The linearized conditions for a homoclinic orbit become
N

(5.3) _, Aij(,O)ej=O, du-db <=i <=du
j----1

We showed in Theorem 3.3 via the implicit function theorem that when (5.3) is satisfied
the exact conditions for a homoclinic orbit can be satisfied with a slight change in db of
the ej’s. In the present situation, if we can solve (5.3) for , 0 and e it is possible to
satisfy the exact conditions for a homoclinic orbit by a slight modification of and 0
without changing e.

We define a new dbdb matrix C(,O,e)=[ci by

N OAi+du_dt,,k N OAi_d,+d,,k
Cil= E O

(,0)Ek, Cij-- E 0-- (,O)ek, 2<=j<=db
k=l k=l

for 1 <_ =< db. After proving the appropriate modification of Theorem 3.3 one gets the
following version of Theorem 3.2.

THEOmM 5.3. Suppose that (5.1) has a uniformly transoerse perturbation, that *, O*
and * satisfy (5.3), and det(C(*,0*,e*))4=0. Then there exists an open interval JcR
containing the origin such that (5.1) has a homoclinic orbit when e=se* for all sJ.

Let us now assume that we are able to take

(5.4) q(a
Sj-n+db n--db+ 1 <=j <=n-- 1.

This provides a nice unification of the results in the two preceding sections for we can
replace the coordinates S+n_db and s-+n_ab in {}4 with the common value 0 as intro-
duced in this section. This leads to the following version of Theorem 4.1.

THEOmM 5.4. Suppose that (5.1) has a uniformly transverse perturbation, that (5.4)
holds, and that *, 0", e* satisfy (5.3). Then the homoclinic orbit predicted by these alues
is transoerse if and only if det(C(*, 0", e*))4= 0.

A further specialization occurs when Ws= Wu. In this case ds= du=db n/2, the
planes II / and H- agree and the a. do not appear. The condition of a transverse
intersection is not needed and the conditions for a homoclinic orbit are always

N nE ai(,O)e=o, l <i <-.
j=l

6. Application to a damped, magnetized spherical pendulum. As an application of
our theory we consider a spherical pendulum. We assume that the pendulum bob is
magnetized, that we have a second magnet fixed vertically below the pendulum sup-
port, and that these magnets are arranged to repel each other. Further, we allow for a
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fixed amount of damping, with damping constant c, along one direction of motion. The
preceding constitutes our unperturbed system.

We incorporate three perturbation terms. The first perturbation is to replace the
single fixed magnet with two magnets separated by a distance e1. The second perturba-
tion is radially symmetric damping with damping coefficient e2. The third perturbation
is an externally applied force of the form e costot applied along an arbitrary horizontal
direction. This force appears as two components with independent amplitudes e and
84

The equations for this system can be derived by standard means. For details see
[6]. The resulting equations are:

2 x- 2x(x 2 +y2) 3elX_ e2. q_/3 cos ot,

j)=y_ 2y(x 2 +y2 -cj;- ety- e2P + e4 cos tot.

An equation of this type with slightly different coefficients has been studied numeri-
cally by Moon [14]. When y=p=0 we get the equation studied by Holmes in [10].

Now the unperturbed equations have an equilibrium at (x,2,y,p)=O but the
perturbed equations do not. Accordingly we seek a periodic solution of the form

4 4

xs(t,e)-- E eiw(i(t)-t-o(llell), G(t,e) E eiw(i(t)-t-o(llell)
i=1 i=1

By substituting into the differential equations we get

g3 E4x(t, e)
tO2d 1

cos,0t + o([lell), Ys(t’e)=o2+ 1

We now replace x by x-(e3/o2+ 1)cosot+o(llell), y by y--(e4/tO2+ 1)cos0t+
o(lldll), to get

(6.1)

2 x 2x(x 2 +y2) 3elX e2j

2e3 (3x 2 4e4+
to2 + 1

+y2)cos 0t +
to2 + i xy cos ot + o (Itell)

p y 2y(x +y- ) cp ely-- ep
2e4+

1 1
3  lcos , + o(11 !1 .

These equations take the first order form

(6.2)

/;/1--’-- U2

4e42e3 (3Ul + u32)costot + *02 + 1
Ul3COSt + o(1111)+

2+1
h3=U4
4=U3--2U3(R?+U)--CU4--ElU3--ElU4

4e 2e4+ ,= uu3cost+ (u?+3u)cost+o(llell).
+1 +1
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(6.3)

The unperturbed equations are

ilx=fx(U)=U 2,

//2 =f2 (U) U 2U ( Ul2 + U32 ),
il3=f3(u)=u4,

//4"-f4(u) U3- 2U3(u?’+" U)--2CU4,
from which we can compute

0 1 0 0
1 6u2- 2u32 0 --4UxU 0

Df(u)=
0 0 0 1

0 1-2u1-6u -2c

and

O 1 0 0
1 0 0 0nee,.,jO=
0 0 0 1
0 0 1 -2c

The eigenvalues of this matrix are + 1 and -c+ et where et= v/ca+ 1. Thus
ds= du= 2. Since one direction of motion is damped, we expect db= 1. A homoclinic
solution for (6.3) is given by {(t)=(r(t),i’(t),O,O) where r( )= sech t; see [10]. As a
point on 3’, we have P= 7(0)= (1, 0, 0, 0) WSc3 Wu. The variational equation along this
solution, Df(3,(t)) q, becomes

(6.4) 1--12, 2=(1--6r2)1, +34, 4=(1--2r2)3--2cb4-
These uncouple into a pair of second order equations

(6.5)
(6.6)

1=(1--6r2)1,

{3=(1-2r2)3-2c3.

We seek four solutions to (6.4) as described in 2. We first take

(6.7) l(4)(t) t(t) (’(t),}:(t), 0, 0).
We find that, as t + o, i(4) is asymptotic to e -t. Thus we set k4--1. Since, as

OO, 1(4) is asymptotic to e l, o(4)- 1.
From (6.7) we get a solution to (6.5), namely ql(t)=?(t). By the method of

variation of parameters we can get a second solution to (6.5). Substituting l(t)
Q(t)i’(t) into (6.5) we find

Q (t) 1/2 sinh cosh + coth t.

The arbitrary constant multiplying Q has been chosen so that

Q/"
"-1

(Q/’)

We find that Q(t)i’(t) is asymptotic to e at + o and e-t at -0. Thus we set
,2 1, Xo2)= -1 and 2)(t)=((Qi’)(t), (Q/*) "(t), 0, 0).
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We now must find (1) asymptotic to e (-c+a)t at +_ o and (3) asymptotic to
e (- -a)t at

_
m. These solutions will come from (6.6).

We seek a solution to (6.6) of the form q (t)= e-Ctw(t). Substituting we get

(6.8) f+-(a2-2rZ)w=O.

Note that if w(t) is one solution to this equation, w(- t) will be another.
We seek a solution to (6.8) of the form w(t) q(t) sech t. Substituting yields

; (2a tanh t) + [(az + a 2)sech2 t] q, 0.

We now make a change in the independent variable by letting x sech2 t. This
produces

x(1-x)d2q+[(a+l)-(a+3) ]dq (a)(a 1)dx---S -i x Tx- 2+1 - ,=0.

This is a hypergeometric equation. Using the second form of the solution given in [7,
15.5.3], we get

aa 3 )q=(tanht)F ,--+-;a+l;x
Using formula [7, 15.2.24], substituting a a/2, b a/2 + 1/2, c a + 1, z x sech t,
and combining with [7, 15.1.13] and [7, 15.1.14], we get

q (t) tanh
2 a + tanh

a + 1 (1 + tanh t) atanh
2 a + tanh
a+l (l+tanht)a"

Dropping the constant we can take

w(t)= ( a + tanh )sech ( a + tanh )(1 tanh )
(1 + tanh ) sech

Note that w(t) is asymptotic to e at as o. We now take as our two solutions to
(6.6)

ol(t)=e-Ctw(--t), o2(t)=e-Ctw(t).

For another method of solving (6.6) see [19]. We now define

1 (0 0 ol(t) t)l(t))"(t)=c2 (3)(t)= 1 (O,O, v2(t),b2(t)).
c-The arbitrary constant has been chosen so that det( (1) (0), (2) (0), ap (3) (0), (4)(0)) 1.

From stable manifold theory we have (see [6])

(’(o) Tw, vwu,
()(o) T,W, TWu,

+o) (o) vw, vw
(4) (0) TpW () VpWu.

This confirms that db 1.
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At this point we can compute the Ko.. For details see [6]. The results are

Kll --K12 --K13 --0,

2
g14 (l, ) c/ ( 2 -+- 1)

eCt(a + tanh t)secha+ 2

(1 + tanh )"
g21 ( t,) 3 sechz tanh t,

K22 ( t,) sech2 tanh2 t,

6
sech tanh cos 0 (t + (),K23 (t, ’) +-----

K24(t,) 0,

K31 K32 K33 0,

-2g34(t’)=c 2g(6o2+1)
eel( a tanht)sech+ 2

(1 tanh )

cos,.o(t+ ),

cos,,(t+).

From these results one can easily verify that the system has a transverse perturba-
tion. Thus, we need only calculate A2() for 1 <j__< 4. For details see [6]. The results
are

2
A21-- A24--0, A22-- 3’ cos(,,,/2)

The condition for a homoclinic orbit now becomes

4 2E a,;()= g+
j=l

rr0 sin0
cosh(rrto/2)

e =0.

This is the same result as obtained by Holmes in [10]. The analysis here shows that the
effect of the damping is to project the problem onto the x-2 plane when e is small.
However, in the next example we will see that new homoclinic orbits will appear when e

is large enough (compared to the damping coefficient c). A weakness of the present
method is that it cannot detect homoclinic orbits which appear in this way.

7. Application to an undamped, magnetized spherical pendulum. The results of {}6
are not valid when c 0, which case we consider here. This case will utilize the theory
of {}5.

The case c=0 represents a pendulum in which the unperturbed system is un-
damped and radially symmetric. The viscous damping perturbation is also radially
symmetric but the e term, representing the separation of the fixed magnets, destroys
the radial symmetry and leaves two planes of symmetry. The two forcing terms can be
thought of as components of a single force applied at some arbitrary angle.

The equations of motion become

2 x- 2x(x 2 +y2) 3exX_ e22

2e3 (3xE +y2 )costot ++
o2+1

=r-r(x +r)-r-

4E4 xycos,ot + o([lel[),
o2+1

4e 2e4

,d +i xy cos 0t +
+

(x 2 + 3Y -)cos 0t + o (1111).
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The unperturbed equations are

(7.2) )= x- 2x(x- +y2 ), p=y- 2y( x- +y2 ).
From the previous section we see that the eigenvalues for the equilibrium at

(x,,y,p)= 0 consist of double eigenvalues at ,= + 1. Thus ds=du 2. Because of the
symmetry we expect db 2.

We now transform (7.2) to polar coordinates by introducing x= r cos0, y= r sin
to get

(7.3)
(7.4) J- rO2= r- 2r 3.

Equation (7.3) can be integrated to yield

r20 constant,

which expresses conservation of angular momentum.
In polar coordinates the saddle equilibrium at the origin is located at r-/.= 0.

Thus, any orbit on W or Wu must satisfy r0 which requires, by conservation of
angular momentum, 0 0. Hence, W and Ware each a subset of S {(r,/., 0, 0)10 0).

Furthermore, suppose t--,(r(t),/.(t),O(t),O(t)) is any orbit with 0(0)=0, r(0): 0.
Then r(t)20(t) r(0)20(0)= 0 so that O(t)=O. Hence, S is invariant.

It is easily verified that a Hamiltonian for (7.2) is given by

1 1 2 1 (x 2 2H(x,+/-,y,j)=_(,2+j;2)__(x +y2)+_ +Y )2
In polar coordinates this becomes

1 22 .__(r,/.,O,t)=-(/.2+r )-r2 lr4.
Notice that H--(0, 0, O, 0)=0. This means that W and W are subsets of the level

surface $2= (( r, /., O, O ) (r /., o, O ) o}
Now let ---,(r(t),/.(t),O(t),O(t)) be any orbit lying on $1 (S2. Then/(t)= 0 and

1/. 2 1 2 1 4-r +r =0.

Note that this requires r =< 1.
Integrating (7.5) we get

r(t) sgn( r (0))sech[ + sech-1 (]r (0) I)]
Since lim/__, / r(t)= limt_ r( t)=0,

WS= WU---Sx(")S2 {(r,/.,O,O)l/.2=r2(1-r2),O<=O<=2r,O=O}.
This verifies that db= 2.

We now utilize the formulation of 5. To establish B-coordinates on W W n W
we choose 0<8<1 and define U={(r,/.,O,O) W*llrl>}. We can then establish a
coordinate chart (U, ), where : U--, R2 is given by

1( r,/., O, 0 ) cos0 sgn( r)exp[- sgn(/-)sech-lrl],
2(r,#, 0,/ ) sin sgn(r )exp[- sgn(/- )sech-llr{ ].
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Since Xl=q-X(S1)={(r,i’,O,O)lr=l,i’=O,O<=O<=2r,O=O} and since 0 is con-
stant on homoclinic orbits, s(r,i’,O,O)=sl(r,i’,O,O)=O. Let PN be arbitrary and
denote the B-coordinates of P by 0.

We now introduce rotated coordinates

Y x cos 0 +y sin 0, fi x sin 0 +y cos 0.

We substitute these relations into (7.1) and then define Ul=ff, u2=, u3=, u4 =3. The
result is

(7.6)

//1 U2

it2=Ul--2Ul(U?+ U)
e u(3 cos2 0 + sin2 0 ) 2 u3 sin 0 cos 0 e2u2

2,e3 [3u2cosO_2uxu3sinO+ucosO]cosot+
6o2+1
2e4 [3u2sinO+ 2UlU3COSO+ usinO]cos,ot+o(llell)+
o2+1

//3 U4,

I4=U3--2U3(U?+U)
e 2u sin 0 cos 0 + u (3 sin2 0 + cos 0 )] e2u 4

2,e3 u2 sin 0 + 2UlU cos 0 3u 2 sin O]cos,+6o2+1
2e4 [u12cosO+ 2uu3sinO+ 3u cosO]cos,ot/o(ll ll).+

oa2+l

The unperturbed equations are

ill---fl(U)=U2,
/t2--f2 (U) U 2U ( U? + U),

//3 --k(U) U4,

//4---f4 (U)--U 2u3( Ul
2 + u),

and we have

0 1 0 0
1- 6u2- 2u32 0 --4UlU 0

0 0 0 1

-4UBU 0 1-2u2-6u 0

Notice that the unperturbed equations are invariant under this coordinate change
but that in the u coordinate system P has coordinates (1, 0, 0, 0) so that the B-coordinate
of P is 0.

A solution t(t,s) to the unperturbed system with ,/(O,s)=(coss, O, sins, O) is
given by 7(t,s)=(r(t)coss, i’(t)coss, r(t)sins, i’(t)sins), where r(t)=secht.

The variational equation ( t, 0)= Df(v( t, 0)) + ( t, 0) takes the form

(7.7) 2= (1_6r2)1 4= (1_2r2)3"
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(7.8)
(7.9)

One solution to (7.7) is

These uncouple into a pair of second order equations:

(1- 6r2)q,
)3 (1- 2r2) q3.

(4)( t, 0) =4/( t, 0) (/" (t), }(t), 0,0).
This proves a solution to (7.8)

l(t,0) =/’(t).
As in 6 we set h 4 -1 and q4)(t, 0)= (?(t), i(t), 0, 0) and we get a second solution to
(7.8)" t--. Q(t)i’(t) where Q(t)= -t- 1/2 sinhtcosht + cotht. Since Q(t)i’(t) is asymp-
totic to e at + z and e -t at we set )2 1 and

(2)(t, 0) (O(t)(t), (Qi,)’(t), 0,0).
We get another solution to (7.7) from

q (t) -s(t,O)=(O,O,r(t),i’(t)).
This gives the solution 3(t)--r(t) to (7.9). We get another solution to (7.9) of the form
P(t)r(t) by the use of the method of variation of parameters. We find P(t)=
1/2 t + 1/2 sinh cosh t, where the arbitrary constant has been chosen so that

r(t) (Pr)(t)
"--1.

?(t) (Pr)’(t)

Since r(t) and k(t) are asymptotic to e -t at + and e at -z, set ;k3=l and
+o)(t,O)=(O,O,r(t),i’(t)). Similarly, )kx= -1 and /)(t,O)=(O,O,(Pr)(t),(Pr)’(t)).

We now have a fundamental solution as described in Theorem 5.1 for the varia-
tional equation. This solution also satisfies

det( 1(1) (0), 1(2) (0), lp (3) (0), (4)(0)) 1.

At this point the Aij’s can be computed (for details see [6]). When this has been
done the equations Ej4.=xAj(,0)= 0 become

(4sin0cos0)e1- rsin0cososech---e+ rcos0cososech--- e4=O
(7.10)

e2- rrocos0sin0sech- e3- rr0sin0sintosech- e4=0.

As a special case, consider el=e4=0 which represents radial symmetry and
forcing in the x- direction only. By taking 0= 0, (7.10) becomes

e- r,0sinosech-- e-0.

Given e, e and o we can satisfy this equation by solving for :
2e_______L_2 r0

sin0 3e3r
cosh
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Thus, for a fixed w, we have the existence of a homoclinic orbit for e S where

S e el e4= 0, e2 4= 0, e3 4: 0,
3e3crt

<1

This result was obtained in [10].
To check for transversality, we compute the matrix C as used in Theorem 5.3.

c((,o [0 4cos20
0 0 e

[ 0
"F

02 COS 0 COS 60

to cos 0 sin t0
"+-

O)
2 sin 0 cos w6

We see that when el e4 --’-0 and 0 0

-cos0cosw]( rw)r sech e
w sin 0 sin w, --

det(C(, 0, e)) -rw2 cos2wsech -%.
Hence, for each eS the perturbed system has a transverse homoclinic orbit by
Theorem 5.4.

By the openness of the transverse intersection condition we now have the existence
of an open set Uc R4 with S c U such that the perturbed system has a transverse
homoclinic orbit for each e U.
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its original form as a Ph. D. thesis. Thanks also to Richard McGehee and the other
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TRANSCENDENTAL ESTIMATES FOR THE ADIABATIC
VARIATION OF LINEAR HAMILTONIAN SYSTEMS*

GILBERT STENGLE"
Abstract. We consider a slowly varying linear Hamiltonian system of dimension 2n, eit=A(t)u, where

A(t) is a real valued matrix with distinct pure imaginary eigenvalues for each t[-o, ] and (d/dt)NA
LI(-, o) for each N>0. Leung and Meyer (J. Differential Equations, 17 (1973), pp. 32-43) have found n
independent adiabatic invariants in involution for this system and have shown that the increment in each
from to + 0 is O(ev) for each N> 0 as 0+. We obtain an upper estimate for the rate at which
these asymptotically negligible increments tend to 0 in terms of the asymptotic growth of the L norms of the
elements of (d/dt)NA as N o.

1. Introduction. The central problem of this paper is the estimation of certain
asymptotically negligible quantities arising from the slow modulation of dynamical
systems. These are functions depending on a small parameter which occur in a context
where methods of asymptotic expansion

f(e).-.fo+fle+Ae2+

normally yield powerful results. However, these methods can exceptionally fail because
all coefficients fk vanish, even though f:g 0. In this circumstance the asymptotic power
series yields only a qualitative result: f tends to 0 rapidly as e0 but cannot be
described quantitatively by the series. Problems of this kind are not uncommon in
applications and present a notable challenge to the science of asymptotics. The survey
article [M1] of R. E. Meyer and its bibliography contain many references to asymptoti-
cally negligible quantities arising in physical science. We consider one such problem,
cases of which have been the object of many previous investigations, and which,
although quite special, requires methods which we believe can be applied to many other
problems of this kind.

Specifically, we consider the linear Hamiltonian system u’=A(e)u with slowly
varying matrix A(e). On bounded time intervals or even intervals of length o(1/e),
this problem can be regarded as a small perturbation of a system with constant
coefficients. Even for longer durations the limiting behavior of this problem as e 0 / is
simpler in many ways than the behavior of the full problem u’=A()u, although the
simplest perturbation arguments no longer apply. In 1963, J. E. Littlewood [L] consid-
ered the problem u" + a2(e)u=O and the associated functional o= u2a + (u’)2/a. A
simple calculation shows o’= O(e), a property which is often expressed by callingoan
approximate or adiabatic invariant. However, Littlewood showed much more. He proved
that ()-o(-o) is asymptotically negligible as a function of e under the hypothe-
ses that a > 0 for c < < + 0 and that a is gentle in the sense that aU)LI(- ,)
for all N>0. In 1966 Knorr and Pfirsch [KP] showed that o(+)-o(-c)=
O(exp(-c/e}) for analytic a. Simultaneously and independently in 1973, R. E. Meyer
[M2] and Wasow [W] obtained actual asymptotic formulas for this increment under
more specific hypotheses on a.

*Received by the editors July 7, 1983, and in revised form July 2, 1984.
Department of Mathematics, Lehigh University, Bethlehem, Pennsylvania 18015.
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In contrast to these two highly concrete investigations, the present paper is con-
cerned with obtaining asymptotically negligible upper bounds for such increments under
weaker, more genetic hypotheses.

In 1977, Stengle [S], using methods which are further developed in this paper,
obtained estimates precisely under Littlewood’s hypotheses. In 1973 Leung and K.
Meyer [LM] discovered the natural generalization of Littlewood’s result to linear
systems. For a Hamiltonian system of order 2n, they found n adiabatic invariants in
involution, each with an increment A(e) from to which is O(eN) for each N> 0.
In this paper we obtain an upper estimate for the rate at which these asymptotically
negligible increments tend to 0 as e 0 /. Our main result, Theorem 6.1 below, gives an
estimate of the form

where q, is a function determined by the asymptotic growth of the L norms of the
elements of dNA/dtN as N and a is a constant depending on the spectral proper-
ties of A.

In {}2 we describe the adiabatic invariants of Leung and K. Meyer. In {}3 we define
an associated isospectral flow which, for reasons which appear in {}6, is the basic object
of our investigation. In {}4 we give a quantified notion of gentleness by identifying
certain algebras of gentle functions. These permit efficient description of a chain of
estimates leading from the matrix A to the adiabatic invariants. Section 5 establishes
smoothness properties of the associated isospectral flow from which, in {}6, we derive
estimates for the adiabatic invariants.

2. Basic hypotheses. The adiabatic invariants of Leung and Meyer. Assume that
the real 2n-dimensional system

(2.1) ei=A ( ) u
satisfies the following conditions.

1. The system is Hamiltonian, that is, JAr(t) A(t) J, where J ( _,0 ).
2. The entries of A are gentle functions. (This implies that limiting values A ( _+ m)

exist.)
3. For each t, m __< __< m, the eigenvalues of A(t) are distinct and purely imagin-

ary.
We say that a matrix S is symplectic with multiplier or, more briefly, symplectic if

SJSr= iJ. The adiabatic invariants of Leung and Meyer [LM] can be described in the
following way.

TI-IOmM 2.1 (Leung and Meyer). There is a diagonalizing similarity A SAS-1

such that S is symplectic-oalued with gentle entries. For any constant diagonal matrix D,
the function =uT"SrJDSu is an adiabatic invariant of system (2.1) satisfying o( + )-
(-- otz)= O(eN) for each N>0.

We remark that the quadratic form depends only on the symmetric part of the
matrix JD. This contains exactly n independent parameters and gives us an n-parameter
family of adiabatic invariants. We find that considering these forms collectively leads to
considerable algebraic simplification of our problem.

3. A related isospectral flow. Suppose that the quadratic functional urCu is a true
invariant of system (2.1). Then it is both necessary and sufficient that the matrix C
satisfy the equation

e+ CA +ArC O.
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Since JAr= AJ, this is equivalent to

(3.1) e( J(S ) + JC,A O,

where [X, Y]= XY- YX. An equation of this form defines an isospectral matrix flow;
that is, the eigenvalues of the matrix JC(t) are independent of t. In our analysis, this
flow is the underlying primary phenomenon from which properties of the adiabatic
invariants will be derived without much difficulty. The central analytic problem of this
paper is to show that if A satisfies our previous hypotheses, then (3.1) possesses a
solution C which is uniformly differentiable in the sense that [IC<N)[[o has a bound
independent of e for each N. It is clear that most solutions of (3.1) cannot satisfy such
estimates and that, because of the parameter e multiplying t, such estimates cannot be
directly derived recursively from the differential equation. We require a quantified
version of such a result. This, in turn, requires a quantified description of gentle data.

4. Gentle and uniformly differentiable data. If f is a gentle function, we can give a
measure of its gentleness in the following way. Let : [0, ) - (- ,) be a convex
monotonic increasing function such that

(4.1) Ilf (N+ 1)111 __< N! exp( q(N)+aN+ fl }
for some constants a and fl (depending on f). It is evident that each gentle function
satisfies such an estimate, even with a fl 0. For convenience we define q(x)= + o if
x < 0. Roughly speaking, a larger q, corresponds to a less gentle f, while the constants

fl represent finer shades of gentleness for which we account only qualitatively. (The
occurrence of N+ 1 in (4.1) can be explained by noting that under our hypotheses,
I[f(N+l)]] is actually the variation of f(u).) We will say that a function or vector or
matrix function with components satisfying estimates (4.1) is -gentle. We also require
a notion of q-differentiability for functions satisfying similar uniform estimates

(4.2) IlfU)ll <=u! exp(q(N)+aU+ fl }.

DEFINITION. Let G and M be the spaces of smooth real-valued functions satisfy-
ing estimates (4.1) and (4.2) respectively.

We will also write u G or M, to indicate that a vector or matrix function has
components in G or M,.

The following proposition gives some properties of these classes.
PROPOSITION 4.1.
i)
ii) G andM are algebras.
iii) Iff G,(M,) andf>= a > O, then 1/f and
iv) If o G and d >= a > O, then f o -1 G,(M,) if and only iff G,(Mq,).
v) Iff M,, g Gq,, then f t oof, ds G,.
Proof. i) This is obvious.
ii) It is obvious that G, a.nd M, are real vector spaces. Suppose f,g Go. Let

Uk (1/k !) u k). Then ()k (fg +f, ) k E=O ( fjgk_j +fk_jj }.

II( g)  lll E { I1 .111 Ilg - .ll + II jl[ IIA- .II )
k

<__2 E exp{q(j)+q,(k-j)+(af+ag)k+ flf+ flg}.
j=0
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Since ff is convex, k(j)+(k-j)<=,h(k)+,(O) and

[[(g) kill =<2(k+ 1)exp((k)+(O)+ak+ fl} =<exp( (k)+a’k+ fl’}.
The proof for Mq, is similar.

iii) Suppose ]’ Mq,, f>__ a > 0. Then IIfll =< exp{ (k)+k+ B }. Let g= 1If. Then
(fg) 0 gives

k-1

Let=IIgll exp{ (k)-(to + 1)k }. Then

lk-1
39, < --a j0 3’j exp(.__ -(k)-(a+ 1)k+(k-j)+a(k-j)+fl+(j)+(a+ 1)j)

<- 5.exp{ (k-j) +,(O) +B } < max,exp’.a
j----0 j<k

This implies k exp( a’k + fl }, which is equivalent to g M.
Now suppose f G. Since GcM, we know gM. Again by the chain rule,

(fg) k + 0 gives

k

fgk+l-- +l-jgj
j=O

or

1 k 1

j--O

Using Ll-norms forf_ and Lo-norms for the g gives

I111, =< (k + 1)2exp { ,(0) +,(k) + ka + fl } __< exp((k) + ka’ + ’).
Hence g G.

The proof that V/ G is similar.
iv) We show thatfMe implies f o- Me. The estimates for the latter inclusion

can be expressed in the form

(4.3) k---(, g - f <=exp(d(k)+ak+ fl),

where g= 1/# GcM by iii). Increasing , by a linear function if necessary, we can
suppose that [/kl, Igkl<=exp’1’(k) It will suffice to show that (4.3) is a consequence of
these estimates.

Induction shows that (gd/dt)kf is a sum of terms of the form gCrl...
rt= k-j. Each such term has an absolute bound

_r/]o + rlexp{_,q(rt)+ck(j)}=exp{Y’ck([1- k) +([l--]O+k)}
_<exp{ kff(O) +if(k)}.
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Moreover, the number of such terms is the integer obtained by choosing f= g= e and
setting t 0. This is precisely k !. Hence

(f o zk!exp((k)+k(O));

that is, f o- M.
G = l/6 G,. ByConversely, suppose f o- G. Then by (iii), 6o_- the above

argument, (1/#)oa-=(o-)" G. Hence f oa-o( =fG. The proof for

M is silar.
(v) The proof is silar to that of (ii).
We note that each element of G0 is holomowhic in some strip containing the real

axis (Cauchy’s estimate for the Taylor coefficients of an analytic function). The follow-
ing lemma shows that any gentle function has a certain nd of majorant in G0.

LEMMA 4.2. Given f G, there exists h Go such that h.
Proof. Let

h(t)=Z 1 Ii( )1+ li(r)ldr ds.- l+(t-s s-1

The integrability off and fimplies that h G0. Moreover,

I/(t)l
t-1 I+(t--S)2

=- l+(t-s) ]/(s)lds+- - l +(t-s)
2 [ 1 2 t+ 1 c+-J )2

[f(s)lds+- [
)2

If(r)ldr- -l+(t-s t- l+(t-s

5. Existence of uniformly differentiable isospectrai flows. The main technical diffi-
culties of our analysis are contained in the following propositions.

PROPOSITION 5.1. If the matrix A of system (2.1) is -gentle, then the diagonalizing
matrix S of Theorem 2.1 is also -gentle.

Proof. The proof of Leung and Meyer in [LM] that A has a gentle diagonalizing
transformation is based on the closure of the class of gentle scalar-valued functions
under rational operations with denominators bounded away from 0 and under the
formation of square roots of strictly uniformly positive elements. Proposition 4.1
implies that our more restricted classes also enjoy these closure properties. It is then
easy to check that under our hypotheses the explicit construction of the symplectic
diagonalizing transformation S given by Leung and Meyer also takes place within this
more restricted class of data.

PROPOSITION 5.2. Let A A + e, where A,B G and A is real diagonal with
diagonal elements distinct on [-o, o]. Then for each constant diagonal matrix D, the
initial value problem e’+ [X,A]= 0, X(-)=D has a solution contained in Mq,+ Ulog N"

Proof. Our method will be to derive estimates from the infinite recursive set of
differential equations obtained by repeated differentiation of the system. However,
some care is required to select a system which leads to simple estimates from among the
many equivalent systems obtainable in this way. To accomplish this we use two devices.
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The first is to choose advantageously between considering y(k) as the k th derivative or
as the first derivative of the (k-1)th derivative. The second is to apply powers of a
differential operator (1/g)d/dt rather than d/dt for a suitably chosen unit g of Go.

We determine g in the following way. It follows from Lemma 4.2 that we
can choose hGo so that max[,j.[=<h. We can also suppose, adding a constant
to h if necessary, that h>=a>O. It then follows that for M sufficiently large,
maxj.,kl()j-)t)/(j-)l__< Mh/h. Let g=h M. Then maxj](X.-X)/(Xj-Xk)]__<

We now assemble the off-diagonal elements of X into a vector y, the diagonal
elements into a vector z. Then, using Proposition 4.1, it can be seen that the system can
be expressed in the form

ej igwy gw( gty + bz), g( 6y + dz),
where w is real diagonal with nonzero elements bounded away from 0, and where a, b,
c, d belong to Go. Let ( ) denote the differential operator (k!) -(g-(d/dt)). Then
applying (.)g-w- to the first equation and k-l(.)k_lg- to the second yields

e(y)- (i-ekw-)(y) k

e{a()k+1 ([(a)k-J -j(w-1) k-j- 1] (Y) j

j=l

+ (b)k-y(Z)j)+ (a)ky+ (b)kz},
k-1

(Z)k=k-1 ((C)k-l-j(y)j+(d)k-l-j(Z)j).
j=O

A favorable property of ts system for joint asymptotics in e and k appears in the
matrix w-. Each diagonal element of ts has the form

-1 d -1

which, because of our choice of g, is nonnegative. These equations are equivalent to a
system of integral equations of the form

exp(i t tw ) { (y)k )

k-1

E
j=0

k-1

zk=6k0D+ E {d(y)+e(z)}.
j=0

Since ((1/g)d/dt)kf(t)=(d/d$)kf(o-l($)), where o(t)=f g(s)ds, by Proposi-
tion 4.1(iv) we find that elements of all matrix functions subscripted kj satisfy a
common estimate
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We use the maximum absolute element norm [u[ for vectors and the subordinate
maximum absolute row sum for matrices, and we introduce scalar bounds

/(t) sup [(y)(s)lexp( -ch(k)-ak },
s<=t

’(t) sup I(z) , (s) lexp { -ch(k )-ak }.
s_t

Then the integral equations imply the integral inequalities

n,(t)-f’ la(s)ln,()ds

k

__< C E [(1 +j)rtj(t)+j(t)]
j=O

.exp{-(k)-ak+(j)+a(j)+(k-j)+a(k-j)+fl)

and a similar simpler inequality for k(t). Convexity of (1 + u) implies -(k+ 1)+
q(k + 1-j)+(j/ 1)__< if(l). This implies, for a possibly larger C, that

k-1

n,(t)-f la(s)ln,(s)ds<=C E [(l+j)lj(t)+i(t)]

and similarly

k-1

k(t)<=C Y’ [/j.(t)+’j.(t)].
j=O

Gronwall’s inequality applied to the first inequality implies

k-1

n,(t)<__C E ((l+J)n(t)+f(t))f la(s)lexp )lds ds.

Since [a[ L1, this implies, increasing C if necessary, that k, ’ are bounded by pe,
where

k-1

Pk=C (j+ 1)eJ-pj.
j=O

This easily implies Pk <= exp{ klogk + etlk + fll }, which in turn implies

[(y)k[, [(z)kl<_exp{ klogk+a2k+ fl2}.

Again let o(t)= fd g(s)ds. Then these estimates imply X 0-1 Mq+Nlog N. Hence by
Proposition 4.1(iv), XM,+NlogN-

6. Estimates for adiabatic invariants. The following theorem, our main result, is a
direct consequence of the preceding propositions.

THEOREM 6.1. Suppose the matrix function A is Hamiltonian, rk-gentle, with purely
imaginary eigenvaluesfor oe, oe ]. Let q(x) SUpy(xy rk( y) 2y logy ). Then there
is a rk-gentle diagonalizing transformation A SAS- and a constant a such that for any
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constant diagonal matrix D, the function = urSrJDSu is an adiabatic inoariant of the
system ep A( t )y satisfying

as e--.O +.
Proof. By Proposition 5.1, S G,. Proposition 4.1 implies that A i-1SAS- G,

and B=ft SS-tds belong to G,. By Proposition 5.2 there is an X in .Mff+Nlog N
satisfying e(+ X, iA + e]=0, X(- o)= D. Since S is symplectic, iA + eB is again
Hamiltonian and the quadratic functional vrJXo is an actual invariant of the system
eb=(iA+e)o; that is, urSrJXSu is an actual invariant of eit=Au. Thus
exists since it is the constant value of this invariant. For the same reason, o(-o)=
limt_.+o urSrJXSu. r(+ ) also exists since our hypotheses amply ensure that all
solutions v are bounded, and a simple calculation shows (d/dt) vrJDv or[,JD]o L.

The differential equation for X implies that each off-diagonal element Xk/of X,
k : 1 satisfies

(6.1) Xk,= Xk_X,( Xg,+ [B,X],).

Hence, since X, " and are bounded independently of e, we have

Xkt= O( e), c <= < .
Thus for small e, the diagonal elements Xg are uniformly dose to the eigenvalues of X,
which are, since X(t) is isospectral, just the eigenvalues of X(- )=D. This shows that
all increments of "are o(1). But near + o we can show more. N-fold self-substitu-
tion of the relations (6.1) gives

N

as t . This implies

lim IXktlZ eNexp( +(N +2NlogN+ aN+ fl }.

Thus all off-diagonal elements of X satisfy a common estimate

exp(, / / +

Now suppose for the moment that the diagonal elements dk of D are distinct. Then the
characteristic equation of X, whose roots are precisely the d, has the form r/(X-X)
=O(exp-(log(1/e)-a)) as t. The implicit function theorem, which applied
directly when the dk are distinct, then implies that

----0 -" Ot (1)Xkk dk+O exp-k loge
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Thus X=D+ O{exp- q(log(1/e)-a)} +o/(1) as t--> + m. Finally

de( O0)=uTSTJXSu( 00)= lim uTsTjXSu(t)

--a +Or(1) Sum urSrJ D+ exp6 log
et+

Since our conclusion depends linearly on D (Nthough, curiously, our intermediate steps
do not), and any D is the sum of two matrices with distinct diagonN entries, our
conclusion follows in general.

eMegem. The author is grateful to the Department of Mathematics of
Wuhan University for support during the writing of this paper.
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ANALYSIS OF A MODEL OF PERCOLATION
IN A GENTLY SLOPING SAND-BANK*

CHARLES M. ELLIOTT AND AVNER FRIEDMAN:

Abstract. A free boundary problem associated with the percolation of sea-water in a "nearly" flat
sand-bank is considered. The wet and dry zones of the beach are studied.

1. Introduction. Consider the problem of finding a function u=u(x,y,t) which at
any time >= 0 is harmonic in the rectangle

a= ((x,y)’O<x<l, -b<y<O},

satisfies homogeneous Neumann conditions on

r ((x,y)’x=O, -b<y<0},
F2={(x,y)’O<x<l,y=-b },
F3={(x,y)’x=l, -b<y<0},

and the evolutionary unilateral conditions

Ou Ou ( Ou Ou
(1.1) u__<G, --+-3-y__<O, (u-G),--7-+-y =0 on r,

where G is a given function and

r={(x,y).O<x<l,y=O}.

Such a problem arises from a model of sea-water seepage in a periodic array of
symmetrical sand-banks. The domain of half a typical sand-bank is

{(x,y)’O<x < l, -b<y<G(x)},

where << 1. The model of [1] uses the fact that is a small parameter in order to obtain
the approximations,

y=:u(x,O,t)

for the equation of the surface separating the dry portion of the bank from the wet
portion and

p(x,y,t)= -y+u(x,y,t)

for the pressurep of the sea-water in the sand-bank. F is an approximation to the upper
surface of the sand-bank. Let F Fa(t) to F (t), where

Fa(t) ((x,O)’u(x,O,t)<G(x)}

*Received by the editors April 24, 1984. This work is partially supported by National Science Founda-
tion under Grant MCS 7915171.

Department of Mathematics, Imperial College, London SW7, England.
*Department of Mathematics, Northwestern University, Evanston, Illinois 60201.
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approximates the dry portion of the upper surface of the bank and

rw(t) ((x,O):u(x,O,t)=a(x))
approximates the wet portion of the upper surface of the bank across which sea-water is
seeping out of the bank. It is assumed in the model that at time 0 the sand-bank has
a wet region which is known, i.e., u(x, 0, 0) is prescribed, and that as the sea-water seeps
out of the bank it instantaneously drains away. We refer to [1] and [2] for details
concerning the derivation and justification of the model and for applications.

It is the purpose of this paper to obtain results regarding the regularity of u and
the shape of Fd(t ). In {}2 we prove that u Hi(0, T; Hl(f)) and also establish an
asymptotic limit for u as t- . Under certain conditions on the data in 3 we obtain
regularity results of the form u L2(0, T; H2(f)) and 8u/StL( (0, T)). In {}4 we
prove, under suitable conditions on G and u(x, 0, 0), that

i) Fd (t) is monotone increasing in t.

ii) I’d(t ) consists of a single interval.

The method of proof is based on finite differencing in time and penalisation. Results of
the type (i) and (ii) for the nonstationary dam problem were proved in [4] using a finite
difference scheme.

We shall use in 2 the notation:

( v w) frvw dx ( v w ) fuvw dx dy

The boundary values (or trace) of a function v on F are denoted by v r for v C()
(or H()). The following trace inequalities hold: there exist constants C and C2 such
that for all vH()

(1.2) Ivrlr
We shall use Young’s inequality: given p > 1, a and b nonnegative numbers, then

a brX-l)(p- 1)(1.3) abe--+
-p p

2. Existence, uniqueness, regularity and asymptotic limit. It is straightforward to
verify that the function u introduced in {}1, if sufficiently regular, solves the evolution-
ary unilateral inequality ():

OUr L(0, T; L2(2.1) uL2(O,T; n(a)), o--T (r)),
(2.2) uD=- ( v L2(O, T; HI(a)), vr <= G )
(2.3) Ur(0) Ur,

-i-’ Vr-Ur +(Vu, Vv-Vu dt>=O /vr,

where Ur is given. We shall therefore consider (2.1)-(2.4) as a weak formulation of the
original problem for u.
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We assume that

(2.5) (i) UrHX/2(F), GHX(I’),
(ii) Ur =< G.

Then there exists an extension UHI(2) of Ur. The natural choice for U in the
harmonic function defined by

(2.6) (VV, Vv)=0 vnl(), vF=0.
By taking a finite difference in time, () may be approximated by a sequence of

elliptic variational inequalities () of Signorini type. Let N be a positive integer and
8 =T/N. Problem () is to find a sequence ( u}n=IN such that for all n [1, N ]"

(2.7) uK(vHX(),vrZG},
u= u,

(2.9) (u-u-X,vr-U)+(Vun, Vv- Vun)O VvK.

THEOREM 2.1. There exists a unique solution to () and the solution is the limit as
0 of the unique solution to ().
The proof will ebit the precise nature of how the solution of () is approxi-

mated by the solutions of ().
Proof. To prove uniqueness, suppose u and u 2 are two solutions of (). Let

0 < z < T. Taking

U 2 if <
0201=

U if t>z, u if t>

in the appropriate inequalities (2.4) and adding yields

  lu - lr+lu -u
Uniqueness follows immediately upon integrating and applying inequalities (1.2).

Existence and uniqueness of the sequence (u}ff=l follows from the standard
theory of variational inequaties [3], [5], since the bilinear form

1

is coercive on H(fl) by virtue of (1.2) and since K is a closed convex set of H(). In
order to establish the convergence of the sequence (un) as 8 0 we need to derive
some estimates. Tang v u in (2.9) yields

+21U"ll+2lun--u I Z lun- l "
Sumng over n, the inequality

j=l
6 + luJ uj-I[ + lunl < gl2

j=l

is obtained.
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Similarly taking v G K in (2.9), we obtain

1 lu GI2 1 2 }2 r -lu- Glr+3lu"l =<( VUn, VG)=< lun[21_]_..lGill2
and summing over n, results in the inequality

(2.11) lu_Gi2 .2 2

r+8 lu’ll_-< Igr- GIr+ rIGId.
j=l

Let un(t) and fin(t) be defined by

(2.12)
u(t)=u

tn--t"()=u"+ n-lmu )

for t(tn-1 n]
for (t"-1, n],

where n--- nS. The estimates (2.10), (2.11) which hold for all n [1,N] imply that un(t)
and fin(t) are uniformly bounded, independently of , in L(0, T; H1(2)). Also fi(t) is
uniformly bounded, independently of 8, in Hi(0, T; L2(F)). It follows by weak com-
pactness in a Hilbert space that there exist subsequences (still denoted by 8) such that,
as 8--+0,

(2.13)
un-u in L2(0, T; HX(f)),
n._.. in L2(0, T; H(fl)),
r--.rc inH(O,T; L"(r)),

and by a compactness theorem [6; p. 58]

(2.14) fifir inL2(0, T; L2(F))
We wish to show that u

(2.15)

Since

N.xffjJ

(lJ--t) {(uJF--U (t))’-}-(7(uJ--uj-l) 7(/))} at
"=

-i

N

=< c(q,) Z (81uf-u lit+ lu’-U’-II1)
j=l

N

< C(,)1/2T1/2 E (lug- u#ll= )+ lu-u-ll
j=l

the estimate (2.10) implies that as 8 0 we obtain (2.15).
Since )Kis closed in L2(O, T; H(f)) and unrwe have, by (2.13), that uff.

Note next that (0)= Ur implies that ur(0)= Ur. Thus it remains to show that u
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satisfies the variational inequality (2.4). It is sufficient to establish the inequality for all
v ([0, T]; Hl(f))NoOf’which is dense in. For such a v the sequence o(t) defined by

(2.16) o(t)=v(t n) fort(tn-X,t n]
converges strongly to v in L2(0, T; Hl(f)). Taking t t(t n) in (2.9) implies the inequal-
ity

---(t),vr(t)-u(t) +(Vu,Vv-Vu) dt>=O.

Passing to the limit as 30 and recalling (2.13), (2.14) and the lower semicontinuity of
the semi-norm for 1. ]1, (2.4) follows.

THEOREM 2.2. If (OU/8Y)r L2(F) then Ou/Ot belongs to L2(O, T; H1(2)); conse-
quently u C([0, T]; Hx()) with u(0)= U.

Proof. The inequalities (2.9) imply that

1
-(U--U-I,u--U+1)’+’(7u n, Un- Un+l)z0,
1 + un+l un+l(U+1 U U --U)+(V V VU )Z0

and adding, yields

From this we easily obtain

uk+l k

where zk
U

(2.19)
Thus setting

G inf G (x), G. sup G (x),
X X

we have that w is any constant less than or equal to Gm.

1 2
n

02(2.17) IZlr + E 8[zJl =< Izrlr
j=l

Taking n 1 and v u in (2.9) gives

IZrl l
lzrlr+ 3[z[2__< -(VU, Vz) -(Zr,z) <__ r+

where Zr=(OU/Oy)r. Thus 3Fs(t)/3t is uniformly bounded in La(0, T; H(fl)), and as
3-o 0 we have that

2.1S)
t)-u i (0, r; (a)),
s(t)u inL:(0, T;HI()).

The assertion of the theorem now follows.
Since Theorems 2.1, 2.2 hold for all T> 0, the solution exists for all > 0. Denote

by w a solution of the Signorini problem

w: (Vw, Vv- Vw) R0, v.
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THEOREM 2.3. If ()U/OY)r L2(F) then

(2.20) foC u ( ) dt < o
(2.21) lim lu(/)ll=0.

t--- oO

Proof. Taking v=w in (2.4), then taking v=u(t) in (2.19) and integrating over
(0, T), and adding, results in

Since

-, Ur-W dt=-lur(T)ir-iur(O)[ r- -, w dt

(2.20) follows.
To prove (2.21) we suppose, that

u (,)[1 c > 0 for a sequence o, .
Then, for o, < s < %+ 1,

(fs )2 f%+1 2{u(s)-u(o.)l-- lu,(t)lxdt <= lutldt=e..

Since by (2.17) and (2.18),

it follows that e, 0 if n m and consequently
CI,()1 a 7 if o < s < o+1, n large enough,

wNch contradicts (2.20).
Let u and U be defined by

inf Ur.u limu() and U xer

By Theorem 2.3 we have that u is a constant.
Coogg 2.4. Any solution 4 () satisfies

g(OU/Oy)r L(F) then the constant u satiNes

(2.23) USU S Gm
and, in particular, when U G we have that u G.

Proof. Taking v= u-(u- U)-K in (2.4) results in

L t T ldyzI(UF- Um)I(u() v )I 1
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and this implies (2.22). Inequality (2.23) in an immediate consequence of the fact that

uoo <= G.
3. Further regularity. It is convenient to use the penalty method for approximat-

ing the problems () and (). Let fl(.)C be a family of smooth functions
depending on the positive parameter e such that

(3.1) fl>=O, fl’>__O, fl">=O, andfl(s)=Oifs__<O, limfl(s)= ifs>O.
e--- 0

Consider the two problems"
() Find u(t) such that

(3.2)

U
Au=0 in , 0--- 0 on I,.JF

Ou Ou
at -y+&(u-a)=0 on r,

() Find ( u }= such that for all n >= 1

(3.3)
au=O in f] Ou---z =0 on (.JF

1 Ou 1 nt--u2+-y+fl(u2-G)=-u on r,

Standard arguments establish the existence and uniqueness of solutions to ()
and ()with the following convergence properties. Defining u(t) and (t) by

( ) tn-l<t<tu =ue,(3.4) n-xn+(t-t)(u -u)/8 tn-l<t<t

where t n= n3, we have that as 3--, 0, using the arguments of 2,

s in L2(O, T; H(2)),Ue--U(3.5)
U,U,- in L2(0, T; HI()), (*)r(U,)r, inH(O,T;L(F))

and as e 0, (see [3] or [6]),

(3.6) uu in Hl(f),
u---u inL2(0, T; HI()), Ue) F-"UF in H(0, T; L(r)).

For the remainder of this section we make the assumptions

(3.7)
a) UH2(2),

b) (Ou) eL(r),

on the data Ur. It follows that u is in H2(f) for each n and so is continuous.
THEOREM 3.1. If (3.7) holds then OUr/Or L(O, T; L(F)).
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n-1)/8. It follows from (3.3) and that fact that uProof. Consider w (u u.
H2(f), that for any positive integerp, and n>= 2

0--’ f(-mwn)(wn)Pdxdy--fvwn. v(wn)Pdxdy

(3.8) 1 fr( .- n n--1-[" " wn w "[" e ) ( W ) Pdx,

where fl fl(u G). For p odd,

pl xzwlwp- >= 0
and, by the monotonicity of fl,

Hence (3.8) implies the inequality

fr( wn-- wn-1)( wn)Pdx O,

which can be rewritten as

lfr,(n)2 n--l) 2 wn-1)2(3.9) (W --(W +(W )(wn)p-ldx <=O.

From (3.9) we deduce that

fF(wn)p+ldx fr,(Wn-1)2(wn)p-ldx
and applying Young’s inequality to the right-hand side, we obtain, for n >= 2,

wn) p+laX S p"[-"i (W )P+ +p-1 1}p+ 1 (wn)P+ dx,

so that,

(3.10) fi,(wn)p+ldx <_ fF(wn-1)p+ldx <_ fF(w1)p+ldx.
In order to bound W1, we note that on F

Owl G) Uywl-ll-t’y d- e( U "-’--,

which implies, for any odd integer p,

Ifr 1G)) dX.0"-" VW1" v(wl)Pdxdy--[- (w1)P(wI+ Uy’+’e(U

Noting that U=< G on F and fl(s)= 0 for s<_O, we obtain

(w1)p+ldxq--- (w1)p-lwl(e(ue-g)-fle(U-G))dxZ- (w1)PUydx
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which implies by the monotonicity of fl and Young’s inequality that

It follows from (3.10) and (3.11) that for all n >__ 1 and odd positive integers p,

(3.12) ir(W")’+’dx <=ir(Uy)’+’dx.
Taking the limit asp + o in (3.12) and recalling that (Uy)r L(F) we obtain

(3.13)

The convergence properties (3.5) and (3.6) of the sequence ( u ) imply the result of
the theorem.

PROPOSITION 3.2. If (3.7) holds and G C2[0,1] with G’(0)= G’(1)= 0 then for any
t>0

(3.14) fr(aU)dx fotfe OU12x +2 V-x dxdydt<__C,

where C depends on U and G; consequently u L9-(O, T; HE(f)).
Proof. Setting wn= Ou/Ox, it follows from (9) that

So f. frO=-Aw".w"dxdy= Ivw"12dxdy+ W
--W +-a-;x (u;- a) dx.

Rearranging this equation we obtain

(3.15) S.lvw"l=dxdy+ k{(wn)2--(wn--l)2+(wn--wn--1)2} dx

_[.k(wn__a,2 n k) (u-a)dx=- a’
o
(u-a)dx.

(3.16)

By (3.3),

f. fr u fr( u u -1}0= Au dx dy ---y dX fl( u G ) + 8
dx

and since the estimate (3.13) holds, we obtain

(3.17) frfl(u- G) dx <= C

for a constant C independent of e and n. Recalling (3.7a), the boundedness of G" and
the nonnegativity of fl, it follows from (3.17) that the left-hand side of (3.16) is
bounded independently of e, n and 8. Passing to the limit as e and 8-0 we obtain
(3.14).

Summing (3.15) over n, noting the monotonicity of fl and using G’(0)= G’(1)=0, we
obtain
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In this section we have established that if

(3.18)
UH(2), (u) r e L(r),
GC[0,1], G’(O) G’(1) O,

then

(3.19)

u L2(O, T; H2(fl))C[O, T; H(fl)] L(O, T; L(2)),
3u Lg(O, T; H L(O, T; L0-7 (a))n (at)

urLO(o,r; Ht(r)) OUr L(0 T; L(r))

It follows from the Sobolev imbedding theorems that

(3.20)
uL2(O,T; C’X()) forallX,

UrL(0, T; C’1/2(r)),
O=<h<l,

Set FT= 1" )< (0, T) and

(3.21) Fd ((x,t)’XFd(t), 0<t<T}, rw =- ((x,t)’xFw(t), 0<t<T).
The variational inequality (2.4) and the regularity results (3.19) imply

(3.22) forfr( 3ur----+ -Yr(3U))(Vr_Ur)dxdt>O_ for all v )g’.

In particular, the solution of the variational inequality satisfies the linear com-
plementarity system

OUr !_( Ou ) <=0, Ur<=G,)t Y r(3.23)

( 0ur---+ -Yr()u))(ur_G)=0,
a’e’inFr"

and

(3.24) OUr (Ou)=0 a.e. inFd.

4. Some properties of Fa(t).
PROPOSITION 4.1. If either Ur=G or (OU/Oy)r>=O then (Ou/Ot)<=O; consequently

Fd(t)C Fd(t’) for < t’.
Proof. Noting the convergence properties of the sequences (u"}= of Theorem

2.1, we see that it is sufficient to show

(4.1) un<un-1 in , U<=U-1.

We proceed by induction. Taking n 1 and v u-(u- U) / in (2.9) and noting that

vu. vv dx dy -Ufy v x,
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we obtain

(u V)+2dx+ Ix7(u U)12 0V

Hence either Ur= Gr or (OU/Oy)r>_ 0 results in

(4.2)
n+lTaking v u + (u

ties of (2.9) results in

(4.3)

f (u +l

U1- U__< 0 on f u =< Ur.

u n) / and v Un+ ( un+ U n) + in the appropriate inequali-

n+l_ U ) +12dxdy z fi(Un un-1)(un+ 1_ U ) + dx.

Thus (4.2) and (4.3) imply by induction that (4.1) holds.
Proposition 4.1 gives a sufficient condition for the dry portion Fd(t) to monotoni-

cally increase in size. The next theorem gives sufficient conditions for Fd(t ) to have at
most one component.

THEOREM 4.2. Assume that G C3[0,1], Ur CI[0, l] and

(4.4) G’(0)_<0, G’(1)_<0, G’"(x)>=O
(Ur- G)x>=0 for all x (O,1).

and

Then (u-G)x>=O; consequently, for each t, Fd(t ) is an interval (O,s(t)) for some s(t)
[0,11.

Proof. It is sufficient to prove that

n--1 G)x>__ 0 implies (u:-G)x>=O.(4.5) (u,
Setting w ( u G)x, we have

(4.6)

-Aw=G’">=O inf], w=-G’ onF1uF3,

Ow
0y=0 on 1"2,

0_w_ 1 1 1 n-1

Oy V-w+fl,(u-G)w=-(u-G)w=-(u, -g)x onF.

We claim that w is continuous at the vertices of ft. Indeed suppose that X is the vertex

(1, 0). We define

z(x,y)=z(2-x,y) forz=u
n-1 and G by reflection across { x 1}. Then the reflected uand similarly extend u, r

satisfies (3.2) in

f]*= ((x,y)’O<x<2, -b<y<0}

with the same Neumann condition on (y=0}; however there is a jump in the first
derivative of G across { x 1 }. Representing u in an f*-neighborhood of X (denote it
by0) in terms of the local Neumann_ function, we easily find that Xzu is continuous
at X. Thus w is continuous in f at the vertices of ft.
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If the assertion (4.5) is not true then by the maximum principle w takes a negative
minimum at a point X Off, and

(4.7)
Ow--- ( X0) < 0 ( , the outward normal)

if Xo is not a vertex of ft. By the continuity of w at the vertices and the conditions
w G’ _> 0 on I11,3 I3 it is clear that X0 cannot be a vertex. Since Ow/3y 0 on F2, X0

must belong to F and then

(4.8)
Ow 1 n-x G) 1
ay(X)=g (u x--w-fl’(u2-G)w>O

by the induction hypothesis and the nonnegativity of fl[; this contradicts (4.7). Thus
(4.5) is proved.

Remark 4.1. Numerical calculations reported in [1] in the case

coshr ( y + b)G cos rx, U(x,y) cos rx
coshrb

illustrate the results of Proposition 4.1 and Theorem 4.2.
We now show that, under certain conditions, ur is H61der continuous.
PROPOSITION 4.3. Assume that (3.7) holds, Ur C1[0,1], GC3[0,1], G ’"(x)>_0,

(Ur-G)’(x)>_O 0<x<l, G’(0)__<0 and G’(1)__<0. Then (Ur/x)L(O,T; La(F))
and ur C2/3(r).

Proof. Setting wn= Ou/Ox-G’ whih is continuous and nonnegative by the proof
of Theorem 4.2 we find that

(4.9)

fuG ( wn )-dx dy.

Since w > 0 and fl’ > 0,

G)_>_0

and we obtain from (4.9) the inequality

aft )2 )2 n-X)2 f,,,n2-- wn{(wn--(wn--1 +(wn--w }dx G (w)dxdy,

which implies the inequality

fl" n)3 fI" n-1)2dx _[_ 2fG (wn)2dxdy.(4.10) (w =< w (w

Young’s inequality implies

frw"(w"-)2dx<= +-(w"-) dx



PERCOLATION MODEL FOR A GENTLY SLOPING SAND-BANK 953

and (4.10) yields, upon summing over n,

(4.11)

The convergence of (u’} as e--,0 and t0, together with the boundedness
of derivatives of Ur and G and the nonnegativity of w imply that OUr/OX
L(0, T; L3(F)). Since UrL(Fr), the Sobolev imbedding theorem implies that ur
L(0, T; C2/3(F)). By Theorem 3.1 we also have OUr/Ot L(O, T; L(F))=L(Fr).
Hence

lur(x,t)-Ur(X’,t’)lz lu(,t)-u(’, t)l+ lu(x’,t)-u(x’,t’)l

12/3<_ + c lt-
so that Ur C2/3(r).

A related problem of interest, [2], is the steady state free boundary problem.

Au=0 inf,,
Ou

U 3’1 on F1, u 3’3 on F3 0
(4.12) Oy

Ou Ouu__<o, on F,

on F,

where 3’1 -< G(0) and 3’3 =< G(1). The following theorem can be proved by the method of
proof of Theorem 4.2.

THEOREM 4.4. Assume that G"(0)>_ 0, G"(1)>_ 0 and G(iV)(x)<=Ofor 0<x < 1. Then
(u-G)xx <_ 0 and thus the set (x=u(x, 0)< G(x)) consists of at most one interval.

Indeed, working with o (u-G)xx, the only point which requires clarification is
that v cannot take a positive maximum at a vertex. However, since

t- .(ux-Gy
v
i)y
=0 onF2,

v=-G" on FlU F3,

on F,

we have, by reflecting across (x 0} and (x L ), that v is continuous at the vertices.
The assumptions on G" at the end points imply the result.

Remark 4.2. Results of numerical calculations which illustrate Theorem 4.4 are
given in [2].
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A NONLINEAR EVOLUTION PROBLEMASSOCIATED
WITH AN ELECTROPAINT PROCESS*

LUIS A. CAFFARELLIf AND AVNER FRIEDMANg

Abstract. A model for an electropaint process can be described by a time-dependent family of harmonic
functions q(x,t) satisfying on the surface which is being painted: hq,=q where h is the thickness of the
paint coat and q,, is the inward normal derivative of q; h is a suitable nonlinear function of the history of q.
We prove that the time-discretized version of the problem has a unique solution q(x, i) and lim
exists and coincides with the solution I4/(x) of an appropriate Signorini problem.

1. Introduction. A common method for painting a metal surface is electropainting.
The metal workpiece is immersed in a bath of electrolyte solution containing negative
ions and is made the anode, as a potential difference is applied on the outside
boundary of the bath. The workpiece is then being painted by disposition from the
resulting transport process.

In a recent paper [1] Aitchison, Lacy and Shillor developed a model describing the
above process. They further derived a simplified model which we shall now describe.

Let F be the surface of the workpiece and S the (outside) boundary of the bath,
and denote by f the domain occupied by the electrolyte solution, i.e., 3f S u F with F
the inner boundary of 2 and S the outside boundary of f; is a domain in R N, for any
N>2.

Denote by the electric potential, by h the thickness of the paint coat on F, and
by e the dissolution current (a positive dimensionless constant). Then

(1.1) a,p=0 in

(1.2) q= 1 on S,

(1.3) h-n q onr,

(1.4) Oh
t n-e ifxF,

3 -e ifx F,

(1.6) h ( x, 0) 0 if x F

h(x,t)>O,

h(x,t) =0,

where /n is the normal derivative into 2. The condition (1.4) means that, where
h>0,

(1.4’) if 3q/3n> e then the thickness h increases, whereas if Oq,/On <e then h
decreases.

Notice that (1.4), (1.5) imply that

(1.7) h>0.
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It is of special interest to find the thickness distribution h(x, t) of the paint coat
after a sufficiently long time. Assuming that the process stabilizes as and taking
Oh/Or=O, the problem (1.1)-(1.6) formally stabilizes to the solution W(x) of the
variational inequality"

AW=0 inf,, W=I onS,

ow (ow)W>_O, On <0, W=O on F.

This is precisely the Signorini problem (for details and references on this problem, see
[4]).

No existence, uniqueness or regularity results are known for (1.1)-(1.6). It was
conjectured in [1] that

(1.9) the solution of (1.8) is a global attractor of solutions (1.1)-(1.6).

In this paper we study the problem (1.1)-(1.6) and establish (1.9) for the time-dis-
cretized version of (1.1)-(1.6). We also establish the important fact that

(1.10) there is no paint dissolution in the process (1.1)-(1.6).

Thus, although (1.4) (or (1.4’)) allows for the possibility that h(x,t) may decrease in
some time intervals, where h > 0, what actually happens is that

(1.10’) h (x, t) is a nondecreasing function of t, for all > 0.

In {}2 we establish (1.10) (or (1.10’)) and (1.9) for smooth solutions of (1.1)-(1.6).
In {}4 we introduce the time-discretized version of (1.1)-(1.6) and prove that it has a
unique solution {q(x, ti) }. To accomplish this, we introduce in {}3 a "regularized"
version of the discretized system, involving a small parameter o > 0, whereby h(x, i) is
replaced by h(x, ti)+o. We derive (in {}3)existence, uniqueness and a priori estimates
for the "o-problem". In 4 we let o --+0 to obtain the solution { (x, t)}.

In {}5 we prove that q(x,t) W(x) as ti---, oe, where W(x) is the solution of (1.8).

2. No paint dissolution; convergence to W. Denote by w the solution of

(2.1) Aw=0inf, w=lonS, w=0onF,

that is, w(x)= q(x, O) if q is a solution of (1.1)-(1.6).
Denote by W the solution of the Signorini problem (1.8); more precisely, if

(2.2) K= {’Hl(f), ’= 1 on S, >_0 on I’}
then W is the solution of

(2.3)

We assume for simplicity that 0f Cl’fl for any 0 < fl < 1.
It was proved by Frehse [3] that W C1() and by Caffarelli [2] (under some mild

conditions) that W C1’() for some 0 < a < 1; for further details, see [4].
Remark 2.1. If

(2.4) w < e along F,
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then rk(x,t)=w(x) together with h(x,t)=O for a solution of (1.1)-(1.6). Here the
potential difference is too weak to cause any accumulation of paint anywhere on the
workpiece F.

Remark 2.2. Suppose, for some T> 0,

W(x)
Then ht(x, T)=0 (by (1.4), (1.5) and (1.8)) and

h(x,T)W,,(x)=W(x) on F.

Set

(2.6)
(x,t)-- {rh(x’t) if t>_ T,

W(x) ift>T,

h(x t)=(h(x’t) ift<T,

h(x,r) if t> T.

Then (,h) forms a solution of (1.1)-(1.6) for all t>0, with h continuous across
(t=T).

In the next theorem we wish to exclude the trivial case (2.4); i.e., we shall assume
that

(2.7) , (x, 0) > e for some points x F.

DEFINITION 2.1. Denote by o the supremum of all numbers s such that

h (x, t) is nondecreasing for all x F, 0 < < s.

DEFINITION 2.2. By a smooth solution of (1.1)-(1.6) we mean a solution (q,,h) such
that , qt, Dxq are continuous in f x [0, m) and h, h are continuous in F [0, ).

THEOREM 2.1. Let (rk, h ) be a smooth solution of (1.1)-(1.6) and let (2.7) hold. Then
either (i) to=m, or (ii) to< o and there exists a t, (0,t0] such that q)(x,t)< W(x) if
xf, 0<t<t, and rk (x, ,) =- W(x ).

By Remark 2.2, if (ii) occurs then q(x,t) and h(x,t) can be modified (for t> t,)
into another smooth solution for which h is nondecreasing for all > 0.

Proof. Denote by /, the exterior normal derivative along F. Then, by (1.3),

(2.8) h--+=0 on F.

Since h > 0, we can use the strong maximum principle to deduce that q cannot take
positive maximum or negative minimum on F; therefore

(2.9) 0<,<1 ina.

By the strong maximum principle we also deduce that

(2.10) ir q, ( x, ) 0 for some x F, > 0, then q,, ( x, ) > 0.

Thus, by (1.3), for any x F, > 0,

(x,t) =0 implies h(x,t)=O, rk,(x,t) >0;
q(x,t) > 0 implies h(x,t) > O, rk(x,t) > O.
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We conclude that

(2.11) cn(x,t )>0 on F.

LEMMA 2.2. If h(x, tl)> h(x, t2) and h(x, tl)h(x, t2) on [’, then qs(x,t)>@(x, t2)
in .

Proof. The function /(x)=dp(X, tl)-dp(x, t2) is harmonic in 2, vanishes on S and
satisfies

h(x,t)-u += -(h(x,t)-h(x,t2))

and 0 on F

(by (2.11)). Applying the strong maximum principle, we deduce that b > 0 in .
If o oo, then the assertion (i) follows. We may therefore assume that o

Then there exists a sequence (Xi, ti) with xi F, t> o such that

and

ti /0, Xi-’)Xo if i OO

h (xi, ’i) < 0; consequently also h (xi, i) > O.

Clearly h t(xo, o) 0.
LEMMA 2.3. There holds h,(Xo, to) < O.
Proof. If n(xi, to)> e then, since (xi, ti)<e,

(2.12) ,,t(xi,[i)<O forsome to<[i<ti.

If, on the other hand, ,(x,to)<e, then h(xi, to)=O (for h(xi, to)>O implies ht(x,to)
q,(x, t0)-e <0, a contradiction to the definition of to). Since further h(x,t)>O, we

conclude that h,(x, )> 0 for some 0 < < t and thus ,(x,)> e, which yields (since
@,(xi, ti)<e)

(2.13) ,(xi,i)<O forsomei<t<ti.

The lemma now follows from (2.12), (2.13) upon taking
From Lena 2.2 we have

(2.14) ,0 if0<tt0.

LEM 2.4. There holds: h,(x, to)O.
Proof. Suppose ht(x, to)O. Then from the proof of Lemma 2.2 we have that

(2.15) t(X, to) >0 in

(note that, for t=to, h(,)+ (,)= -h,0 and 0 on F).
Differentiating (1.3) with respect to t, we have

(2.16)

Now, at (Xo, to) h,=0 and ,,0 (by Lena 2.3). Since also ,0, (2.16) implies that

=0.

Thus applying the strong mafimum principle to the harmonic function ,(X, to) (using
(2.15), (2.17)), we deduce that ,t(Xo, to)>O, a contradiction to Lemma 2.3.
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LEMMA 2.5. There exists a ’(0,to) such that q(x,t)< W(x) if x, t<r and
,(x, )-- W(x).

Proof. Observe that q(x, 0)--w(x)<_ W(x) on F and, by (2.7), w, > e >_ W, at some
points of I’. It follows that w W and, in fact,

(2.18) b(x,O)< W(x) in f.

Set A(t)={x’,tk(x,t)= W(x)}, for any t<_to. We claim:

(2.19) if q(x, t) < W(x) in f] and if A(t), then h(, t) 0 (and consequently
q(, t)= W() 0).

Indeed, q(, t) < W(,t)<e so that if h(, t)> 0, then

ht(,,t)=dpn(,t)-e<O,

which contradicts the definition of o
On A(0), n < W (by (2.18) and the strong maximum principle) and W_< e by

(1.8). Thus < e on A(0) and, by continuity, , < e in some F [0, o)-neighborhood N
of A(0). This implies that h t_< 0, or h 0 on N, so that 0 _< W in N. Since < W in
F\A(0), it follows that _< W on Fx[0,tl] for some >0. Hence ,h(x,t)< W(x) if
O<_t<_tl, x.

Let - be the supremum of all t(O, to) such that (x, t)< W(x) in .
Consider first the case < o. We claim that

(2.20) q(x,,r)=- W(x).
Indeed, if (2.20) is not true, then q(x,r)< W(x) in f. We can now use (2.19) to
conclude that h 0, h 0 in some F (0, o)-neighborhood N, of A(-) and, therefore,
q < W in F (0, r + 8) for some 8 > 0 (and q W if x f], r < < + 8). It follows that
q(x, t) < IV(x) if x f, 0 < < + 8, a contradiction to the definition of r.

We have thus completed the proof of (2.20), assuming r < o. It remains to consider
the case o and to prove that (2.20) holds also in this case.

If q,(X, to) W(x), then W(x)>q,(X, to) in and

(W-q)n>0 onSandonA(t0).
On I’\A(to) we have

W(x) > (x, o) >_ 0 and consequently W e.

By Lemma 2.4 we also have q,(x, to) < e on F. Therefore

(W-q),>_0 on r\A(to)-.
We deduce that

(w-,t,).> o.
a contradiction.

Remark 2.3. One can immediately check that for any (0, ),

q(x,t) W(x) in f] if and only if ht(x,t)--O on 1’.

COROLLARY 2.6. Suppose d(x, t) IV(x) in f, for any > O. If h(, s) > 0 for some
17’, s>0, then ht(Y.,t)>O for all t>s.
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Thus, once h(ff, t) becomes strictly positive, it continues to grow at a strictly
positive rate.

To prove the corollary, we proceed by contradiction and consider the number
such that ht(,t)>O if s<t <t and ht(.,tl)--O. Applying the argument of Lemma 2.4,
we deduce that ht(X, tl)=O and q(x, tl) W(x).

COROLLARY 2.7. If Wn(X,O)>e for all xF, then to= and ht(x,t)>O for all
xF, t>0.

Proof. Otherwise, there is a r>0 such that ht(x,t)>O if xF, 0<t<- and
ht(xo,)=O for some xoF. By Lemma 2.4, ht(x,r)=-O. For any 0<tl<t<-, set
qi(x)=q,(x, ti), hi(x)=h(x, ti). Then

(2.21) (h2-hl)+(-Ckn)h=dp2-dpl along I’.

By standard estimates for harmonic functions

Also,

(c>0).

fg ( flk2 flkl ) fi, f])2 f]kl )

Hence

Integrating (2.21) over F and using the last inequality, we find that

(c>o),

or

Recalling that h (4n e)= (qn e) + > 0 if < ’, and setting

/(t)= fr, ht(x,t),
we arrive at the inequality

t

or p+ Cp > 0. Thus qect is monotone nondecreasing for 0 < < ’. Since q(0)> 0, it
follows that q(r)> 0, a contradiction to ht(x, )=0.

Theorem 2.1 suggests that in the model (1.1)-(1.6) we should replace (1.4), (1.5) by

Oh (Oq) +

0-; -ffn- 
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(2.22) h(x,t)= fot (dpn(X,S)-e) +
ds.

We next prove (1.9) for smooth solutions satisfying:

(2.23) sup IV,(x,t)[2dx < o,
t>0

(2.24) sup I,,(x,t)[< o.
xF,t>0

THEOREM 2.8. If the assertion (i) of Theorem 2.1 holds and if (2.33), (2.24) are

satsified, then q(x,t)$ W(x) pointwise in f] and weakly in H1(2) and h(x,t)$ h(x)
pointwise in F as $ o where h (x ) < 1/e.

Proof. Suppose h(x,t)>l/e for some xF, t>0. Then (qn(x,s)-e)+>O and
h (x, s) > 0 for some 0 < s < and, by Corollary 2.6, q,n (x, t) > e. But then

eh<hq,=q<l at(x,t),
so that h (x, t) < 1/e, a contradiction.

By (2.23), O(x,t)? (x) pointwise in fl and weakly in Hx(), as ’ :. For any

" K (K as in (2.21))

(2.25) f, v,(x,t).

where F F N ( q(x, t) > e }; F ’ Fo if $ z. For any small ,/> 0 and large M> 0 there
is a (depending only on r/; z o if/ 0) such that

(2.26)
+ t

iq, el
+ t

(q,- e) +< (qn-- e) + + /M

C
<_ h(x,’r+M)+rlM<_--+lM;

here we used (2.24), the fact that meas(Fo\F) 0 if - o, and estimate h < 1/e.
Integrating (2.25) with respect to t, < < +M and dividing by M, then using

(2.26) and letting M o, /0, we find that q is the solution of the variational
inequality (2.3).

From Theorems 2.1, 2.8 we obtain:
COROLLARY 2.9. Let (q,h) be a smooth solution of (1.1)-(1.6) satisfying (2.23),

(2.24) and let (2.7) hold. Then there exists a t, (0, such that

for all x f, 0<t<t,,

weakly in Hl(f) as $ t,.

If w, (x, 0) > e for all x F, then t, o (by Corollary 2.7). We suspect that t, o
in all cases.
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3. A discretized-regularized approximation. We wish to study a time-discretized
version of the evolutionary process

(3.1) a=0 in f,
(3.2) =1 onS,
(3.3) hn= on F,

(3.4) h= fot (kn(x,s)-e) +dx on F,

where =ff(x,t), h=h(x,t). In this section we study a regularized approximation of
the discretized system. This approximation is defined as follows.

Let 8 and o be any small positive numbers with

1

and set tm=m8 (m= 1,2,.-. ). If we replace (x,t,) in (3.1)-(3.4) by lm(x), we get

(3.5) A"=0 in ,
(3.6) ’=1 onS,

(3.7) hm---n on F

where h is defined by

(3.8) hm(x) =0-t- E ’n -e
i-1

with o 0; in this section we take o > 0 in order to avoid degeneracy in (3.7). In {}4 we
shall let --* 0.

As in [}2 we assume, for simplicity, that

(3.9) gf C’ for any 0 < fl < 1.

LMMA 3.1. There exists a unique solution of (3.5)-(3.8) with km cx’a()for any
O<fl<l.

Proof. Proceeding by induction on m, it suffices to show that the elliptic problem

(3.10) hq=O in f,
(3.11) q=l on S,
(3.12) on F

has a unique solution q in CI’B(), provided 7 >- o, 3’ C().
The function f(t) (, + 8(t- e) +)t satisfies

f,(t)= (y if t<e,

y+8(t-e)+St>y if t>e.

Therefore (3.12) can be rewritten in the form

(3.13)
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with g(s,t) piecewise in C and gt>O. The solution of (3.10)-(3.12) must a priori
satisfy 0 < k < 1 (by the maximum principle). Hence we may truncate g(s, t) for < 0
and > 1 so that, for the new function g, g(,/(x), t) is uniformly bounded.

Let

XM (vCa(), M>O.

For any q XM we solve (3.10), (3.11) with

n=g(7,) on r.

Since g(3’, q)l < C, we deduce that

M0 for any fl < 7 < fl’
where fl’ is any number in (fl, 1) and M0 is a constant depending only on C and fl’.
Choosing M=Mo, we see that the mapping T, defined by q Tq, maps XM into itself.
It is easily seen that T is continuous and its range lies in a compact subset of XM.
Hence, by Schauder’s fixed point theorem, T has a fixed point q, which is clearly a
solution of (3.10)-(3.12).

To prove uniqueness, we take the difference of two solutions and apply to it the
maximum principle.

Having established Lemma 3.1, we note that since hi>hi-1, the proof of Lemma
2.2 gives

(3.14) ki>_ki- in ft.

Recall also that

(3.15) 0 < i < 1 in fl,

by the maximum principle.
For any xo I’ denote byjo =j(x0) the first integerjo (if existing) such that

(3.16) ,(x0) <e if i<jo- 1, ,(x0) >e.

Notice that hi(xo)=O if <Jo and hJo(xo)> hJ-l(xo).
LEMMA 3.2. (i) hi(xo) is strictly increasing with ifor all i>jo (and consequently

/,,(x0)> e for all i>jo) (ii) d/(x) is strictly increasing in ifor all xfl and for all i>j,
wherej, rnin xo rj(xo).

Proof. Suppose the first assertion is not true. Then there exists a smallest integer
m, m >Jo, such that

(3.17) hm(xo)>hm-l(xo),
hm+l(xo)=hm(xo).

Then

(3.19) ,’(x0)

Since

(h,,,+l- h,,,),m+l +hm(dpmn+l-dpr)=m+l--dpm
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we deduce from (3.18) and (3.19) that, at x0, m+l--l#m<0, which contradicts (3.14).
This completes the proof of (i). The assertion (ii) follows from (i) and the proof of
Lemma 2.2.

Remark 3.1. Lemma 3.2 (i) reflects the fact (established in a different setting in
Theorem 2.1 and Corollary 2.6) that once h starts strictly growing in t, it continues to
strictly grow for all subsequent times.

LFMMA 3.3. There holds:

1
(3.20) O <__ h ( x ) <_ for all x r, m > 1.

Proof. Suppose hm(xo)> 1/e. Since o< l/e, it follows that q/(x0)>e for some
< m and, by Lemma 3.2, also for i= m. From (3.7) we thus get hm(xo)<_ dpm/e <_ l/e, a

contradiction.
LFMMA 3.4. There exist a(0,1) and C>0 such that for any 0<o< l/e, 0<15< 1,

m>l,

Proof. Let " be a C function with support in the interior of the domain bounded
by S. Multiplying the equation Aqi= 0 by "2(q/_ k) / (k > 0) and integrating over f, we
get

Now we can proceed as in [5, pp. 196-198] to deduce the C estimate on q/, indepen-
dently of o, 8, i.

LEMMA 3.5. There exists a constant C independent of o, m (but possibly depending on

15) such that for all 0 < o < 1/e, m > 1,

q,m
(3.22) 0 < -n < C on F.

Proof. It suffices to consider points where qbm/)tt > 2e. At such points hm>_ (qbmn
e)> 6e, and since hmdpmn=dpm _< 1, we get n < 1/(Be).

4. The time-discretized system. In this section we consider the time-discretized
version of (3.1)-(3.4), namely,

(4.1)
(4.2) q’= 1 on S,

(4.3) hm-- on I’,

with

’ (0(4.4) h o ---- e.
i=

on F.

This system is obtained from (3.5)-(3.8) by taking ---, 0.
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DEFINITION 4.1. A sequence (Ore(x)) is said to be a solution of (4.1)-(4.4) if:
(i) om satisfies (4.1), (4.2) and

for some 0 < a < 1;
(ii) setting F ( x F, Ore(X) > 0}, F F\F,, there holds

oi_<oi+ in2, for alli>_O,

and, consequently, F c Fi+ 1.

(iii) there exist L(F) functions q such that

’=0 on S

(thus q, may be interpreted as the generalized normal derivative of );
(iv) (q.- e)+ C(I’) and it vanishes on I’’i, consequently hm C(F), where h

is defined by (4.4);
(v)
(vi) there holds"

hicki= ck on r;

(note that on F\Fi this relation holds in the sense that hi=0, q,i=0 and q"n is an L
function);

(vii) O<hi(x)< l/e.
THEOREM 4.1. There exists a unique solution of (4.1)-(4.4).
Proof. Denote by q," the solution of (3.5)-(3.8), where 0 < o < 1/e. By Lemma 3.5

qbm,(4.5) 0<-n "_<c ont.

By elliptic estimates, IVqm’ < C on S. Hence

V@m v@m’-- fI" tD S
tn cl.) . C

From this and from Lemma 3.4 it follows that, for a sequence o --* 0,

(4.6) O,,,,o_om weakly in Hl(f) and strongly in C’(), for any m>0

where a is independent of m.
In view of (4.5) we may also assume that

(/)nm’ 1/ L (F)-weakly star.

Since

vfl)m’" V-- fF ’’HX(f]), ’=0 on S,
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the assertion (iii) in Definition 4.1 follows. Clearly qf satisfies (4.1), (4.2), and the C
estimate in (i) follows (with C independent of m, o) as in the proof of Lemma 3.4,
since the inequality

holds for q ’ and, by tang O, also for . Clearly (ii) also holds.
To prove (iv)-(vii) we begin with i= 1. We have

(4.8) (o+(,’,’-e)+),in’O=,,’ on F.

On F z is positive and hence (’-e)+ remains positive as o 0. We can therefore
rewrite (4.8), in eve compact subset l of Fx, in the form

for o small enou. We then solve for ’: ’o=L(’) and thus deduce that

’ (ff) unifory in eve compact subset of F, with in C(t), i.e.,

(4.9) C(F);
ts is the assertion (v).

Let x F, x x F1. Then
+ 1 ’(x) e)(O.-e) +(xj)= lim (O.’(x)-e) - lira (0 O’ (x)

o0 e o0-- lim 4’(xj) =-14(x) _< Cx-xo0

since x C(F) and (x)= 0. From ts and from (4.9) it follows that

on

On F\F

(4.11) q,o LOO_weakly star

and

(4.12) (1,,’ e) + q,,,’ ,#l’ 0 pointwise.

It follows that, pointwise, either (,l,’"(x)-e) +0 or q,’(x) 0. In both cases we have
that (q,, (x) e) + 0 pointwise in F\F1. Hence, for any r/> 0,

meas { x F\1’1, @1n’ o( X ) >g q- ’/) "-’) 0

and together with (4.11) we see that

qln<e+7 a.e. on F\.
It follows that (q,-e)+=0 on I’\1. Recalling (4.10) we see that

(4.13) (q,1, e) + C(F) with (q,, e) + 0 on r\r ,

which is the assertion (iv).
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Next on F @ was defined by taking o 0 in (4.8). This means that

(@,, ) +4.- ,t,.,

or h@l, @, on F1. Since h 0 and 1 0 on rr, the same relation h@, n holds a.e.
on FkF1, thereby proving (vi).

Since (’-e)+(-e)+, say weakly in L2(F), the assertion (vii) follows from
Lemma 3.3. We have thus proved (iv)-(vii) for i= 1. Since (-e)+ is in C(F) and
F2 3 F, the above proof extends to the case 2 and silarly we can extend it for all i.

We shall now prove uniqueness (wch in particular implies that the full faly
( i,, } is convergent to { i } as o 0).

Suppose (i) is another solution and set A=(xF,+i(x)>O). We proceed by
induction. Assung that + for all 1 j < i, we shall prove that + (the proof
works also for 1).

Set

Then, by (iii),

(4.14)

Set

On r,

and on A

i-1

b= E (,,,-) +

j=l

(i=(b--(in-E)+)i

Hence on 1-’ h A

= [(+ t,’.-t+),’.-(+ t+’.-t+)o] [’,-+n] >_0.

On Ai\Fi @i 0, @/, < e and q/ > e. Hence

/= (,- )(,,,- +,,) -i(’n--/n)>_0.
Similarly, on Fi\A

=’(;-;) >_0.

Finally on F\(AiUFi) i=k=0 so that H=0. It follows that H>0 on F and (4.14)
then yields

f. Iv(’-’)l>-o,
which gives @i= i.
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From the above proof of existence we easily deduce:
COROLLARY 4.2. The solution ( qi } satisfies" 0 < qi, < C1 on F and

c

where CI, C are positive constants independent of i.
Remark 4.1. The assertions of Lemma 3.2 are valid also for the solution of

(4.1)-(4.4).

5. Convergence to the stationary solution.
THEOREM 5.1. The solution ( q; } of (4.1)-(4.4) satisfies" q,i W as -- c, uniformly

in f, where W is the solution of the Signorini problem (2.3).
Proof. From the properties of the solution q and Corollary 4.2 it follows that

(5.1) l)m/, in C() (for some a > 0),
(5.2) m weakly in Hi(a),

for some function q,. For any " K (K as in (2.2)) we have

f. 7,m. V(._4,m)+efr (__m)

On F\F we have qm= 0 and m < e. Hence

(*nm--E)(--(/)m) >-o
\Fm \Fm

It follows that

(5.3) fe vqm’(v’-q,m)+efr (-qm)>_ fr (l)n--E)(--cl)m).

Recall that F $ if m ’ and set Fo= limm__, F,. For any > 0 there exists a measurable
set E c Fo such that meas(F0\E)<! and Fm3 E if m is sufficiently large, say m> m 0.

Since hi(x) < 1/e, we have

(5.4) E (q(x)-e)+<-e if xE,
m=k

Hence for any k > m0 and for any positive integer M,
k+M-1 k+M-1

(5.5) Z fr I’-el= frm (:-e)+=m=k m=k

1
gWCIM,

with C as in Corolla 4.2.

k>mo.

k+M-1
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Summing in (5.3) over m, k<m <k+M-1 and using (5.5), we obtain (since
I’- q,ml < C)

M =
Taking m and using (5.1), (5.2), we obtain

Since and 1/M can be taken arbitrarily small, it follows that is the solution W of
problem (2.3).

COROLlaRY 5.2. The limiting thickness h(x)=lim__,h(x) of the paint coat is
determined by

W(x)

0 ifW(x)=O,

and O<h(x)<l/e.
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A FREE-BOUNDARY PROBLEM ARISING
FROM A GALVANIZING PROCESS*

THOMAS I. VOGEL"
Abstract. A free-boundary problem which arises from a galvanizing process is studied. The physical

problem is that of an infinite cylinder f’ R withdrawn from a fluid bath. Formally, this is a gravity-driven
unidirectional viscous fluid flow on the exterior of the cylinder f’ R. The mathematical problem is to find a
function u with compact support in the exterior of f’ satisfying:

hu=x{.>o} in R"- f’,

u= c on Off’

where Xt is the characteristic function of U. The existence of a unique classical solution is shown under
certain conditions on f’, and asymptotic results for the thickness of the coat are obtained for large and small
withdrawal speeds. If f’ is a convex set, then the region bounded by the free surface of the fluid is shown to
be convex, using level curve techniques. Finally, level curve techniques are used to bound the curvature of the
free boundary in terms of that of the fixed boundary.

1. Introduction. Many industrial processes involve applying a thin coat of liquid
to some material. To coat an infinitely long cylinder, a common method is to pull it out
of a liquid bath so that the gravity vector points parallel to the generators of the
cylinder. This is typically used for galvanizing, where the cylinder (not necessarily
circular) is a wire or sheet of steel, and the liquid is molten zinc. As the cylinder moves
up, it carries with it a coat of liquid, which gradually solidifies. Over a substantial
length of the cylinder, the flow of the liquid is steady and straight down, with the outer
boundary of the region of flow a free surface. The driving forces are gravity and
viscosity.

Tuck, Bentwich and van der Hoek [7] (hereafter referred to as TBH) have recently
given a formulation of this problem. Let f’c R 2 be the cross section of the cylinder,
and let E be its boundary. Let f c R 2 be the cross section of the region of flow plus the
cylinder, and let F be the boundary of f (which is free). The region of flow is exterior
to the given f’. Then they show that under certain assumptions, the upward velocity
w(x,y ) must satisfy

Aw =g- in f- ’,
P

w= WB onE,

on F,w=
2

Ow
=0 on F.

Here g is the downward acceleration due to gravity, , is the kinematic viscosity of the
liquid, and WB is the withdrawal speed of the cylinder. It is important to keep in mind
that f’ is given, but f is not. The free boundary F is determined by the condition that
the above system has a solution. The fact that we impose both Dirichlet and Neumann

*Received by the editors July 19, 1983, and in revised form May 24, 1984. This research was sponsored
by the U. S. Army under contract DAAG29-80-C-0041. This material is based upon work supported by the
National Science Foundation under grant MCS-7927062, Mod. 2.

Department of Mathematics, Texas A & M University, College Station, Texas 77843.
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boundary conditions on I" will prevent a solution w from existing for a general . This
situation is typical of free boundary problems, where the fact that the boundary
conditions are overdetermined is compensated for by the freeness of the boundary.

The model of TBH neglects surface tension and assumes that the net rate of
transport

Q= ff w(x,y)dxdy_,
is maximized. More precisely, they show that if w(x,y; U) satisfies

Aw =--g in -’,

w= WB one,

On -0 on OU,

then if Q(U)= ffu-’ w(x,y; U)dxdy is maximized over all admissible U, the maxi-
mum will be obtained when w(x,y; U) WB/2 on Of.

In this paper, we will work with the normalization

u=v w---- g and c=
2g

so that the equations become

Au=l

U-’C

u=0

u

in -’,
on Y,

on F,

on F.

This is an example of an obstacle problem (see Friedman [2, Chap. 1]). Notice that the
last condition is equivalent to xTul=0 on F, since F is a level surface of u. If the
dependence on c is to be emphasized, we will write F,. and u c.

The main purpose of this paper is to determine as much about the shape of the
free boundary as possible. In 2, we show the existence of a classical solution of (1.1) in
n dimensions if f’ is starshaped with respect to a ball. That section consists mainly of
arguments in TBH placed on firmer theoretical grounds. In 3, we obtain asymptotic
results in two dimensions for c large and c small, and also some useful comparison
results. In particular, as c tends to infinity, the free surfaces F tend to circles of radius
2V//lg2c. In 4, we prove the convexity of the set ( u > ) for c > > 0 if f’ is convex,
and in 5, we show that for n 2, if f’ is convex, then each point of the ridge of is
closer to than to F.

2. Existence and regularity. Let f’ c R be a bounded open set which is starshaped
with respect to all points contained in some ball, and let c be a positive constant.
Suppose that Off’ is sufficiently smooth. We will prove in this section that then
there exists a set f containing fl’ with F Of analytic and a nonnegative function u
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which satisfies (1.1). This will be done variationally by using the functional

(2.1) J (o)

where B is an open ball containing fa’ of some sufficiently large radius R centered in
’. J will be nized over the set K, { L(R ), Vo L2( n), v c in ’, v 0
in R" B, g 0 everhere}.
THOM 2.1. If ’ is a boun&d set in n and (= ’) is in C2+, then there

exists a unique u K, such that

4(u)= inf
Kc, R

Moreover, u W2’P(BR ’)W(BR ’) for allp < , where W2’P(B ’)= { v
LP(BR-’), vvL2(BR-’)). As a consequence, u is C in BR--’ (see Gilbarg and
Trudinger [5]). Moreover, u is analytic in ’ and Au 1 there, where ( u > 0).

Proof. Ts follows from standard theorems (Friedman [2, 1.3 and 1.4]).
As is well own, once we have proven ts much smoothness, u must satisfy (1.1),

where F BR. In 3, we will see that for R 0 sufficiently large, OBRo= . It is
clear that for any R, R>R0, the nizers URx and UR will be identical. We will
assume from now on that R is larger than ts Ro, thus elinating the dependence of u
on R.

Note. The nimizer obtained in Theorem 2.1 satisfies 0 u c.

Proof. One easily checks that

JR(UAC)JR(u),
where uAc=n(u(X),c). Moreover, uAcK,, so that the uniqueness part of
Theorem 2.1 applies.

DEFINITION 2.1. A region U is almost starlike with respect to a point P U if the
characteristic function Xv is nonincreasing along rays from P. The difference between
an almost starlike region and a starlike region is that an almost starlike region may
contain a portion of a ray through P in its boundary.

LEMMA 2.2. If ’ is C2+ and ’ is almost starlike with respect to the origin, then
Ou/Or<O in -’ and is almost starlike with respect to the origin. (Here r

x+ +X

Proof. This is proven in TBH [7] for n 2 by showing that rOu/Or is subharmonic
in -’ with nonpositive boundary values. The proof is the same in n dimensions. The
almost starlikeness of follows, since u and hence Xu is nonincreasing along rays.

THEOM 2.3. If’ iS starlike with respect to each point contained in a ball B,, then F
is analytic, and u satisfies

hu 1 in -u=c on ,
u=0 on F,
0u
=0 on F.On

Y, need not be C2 + a, although it is clearly Lipschitz continuous.

Proof. First we assume that 02’ is in C2+a. Since F is almost starlike with respect
to each point in B,, it is therefore Lipschitz continuous. This is enough to apply a
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theorem of Caffarelli (Friedman [2, p. 162]) to show that F is C and hence analytic.
Once we have the smoothness of F, the boundary conditions on u will necessarily be
satisfied.

If 5: is not C2+, then we may approximate f’ by an increasing nested series of
sets f with 0f smooth and 2 starlike with respect to each point in B. By standard
arguments, the free boundaries F increase out to F, the boundary of ( u > 0). Since each

Fi is starlike with respect to B, so is F. But then we apply the same argument as before
to say that I" is analytic and u satisfies the correct boundary conditions on F.

THEOREM 2.4 (uniqueness). If f’ is starlike, then there exists at most one solution
(u, 1-’) to (1.1).

Proof. Suppose there are two solutions, (u,F) and (u*,F*), to (1.1). We assume
that f’ is starlike with respect to the origin. Define

1
2’

1 1
r r r r

Since f’ is starlike, fl’cfa’ for r<l. Let s=sup{rl(fa*)’c2’}. We may assume,
without loss of generality, that s <_ 1, for we could exchange the role of u and u* if this
were not so. Then F, and F* are tangent at some point Y.

The boundary of f*c(f,-2’,) consists of I’*n(,-’,) and ,. On both of
these surfaces, u,>= u*, so that u,>= u* everywhere in f* n (f,-f’,). However, at Y we
have auJan=au*/an=O, so that u,=u* on f*n(f,-f’,) by the strong maximum
principle. Hence s 1 and we have the desired uniqueness.

Combining Theorems 2.3 and 2.4, we see that there exists a unique solution to (1.1)
if f’ is starlike with respect to all the points in some B. If f’ is starlike with respect to
only one point, then there is at most one solution to (1.1).

3. Asymptotic results. The following comparison lemma is basic to our work, and
is needed in the proof of Theorem 2.3.

LEMMA 3.1. Let ’ and ’ satisfy the hypotheses of Theorem 2.1 with ’1 c ’, and let
c <= c. Let u and u minimize JR with boundary values c on Y and c on 1 respectively.
Then u >= u everywhere.

Proof. We have

J(u A Ux) +JR(U /Ux) =Ja(u) +Ja(Ul)

by a simple computation (here uA Ul--min(u, ul) and u v ul=max(u, ua)). But u/xua
(K1)q, R and u v u Kc, a, so the uniqueness result of Theorem 2.1 applies.

Note. We may use the same technique of proof to give an interesting characteriza-
be as above, and let oA minimizetion of u. Let u ’, -1

where A c BR, over the set {vLI(A), VoL2(A), U--C on 1, u-0 on 3A} (here we
are not requiring v to be nonnegative). Then u >__ oA everywhere. This is proven by the
same argument as in the proof of Theorem 3.1.

We may therefore characterize u(X) when Z is C2+ and fl’ is starlike with respect
to a ball as

u(X)= sup oa(X),
A Df’

3A smooth
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where vA(X) solves the Dirichlet problem

v,=c on Y,
v 0 on OA,

hv 1 in A

vA(X) will not in general be nonnegative.
We now deal exclusively with the case n 2.
To determine the asymptotic behavior of F as c oe and c 0, it is necessary to

look at radial solutions. That is, given p, the radius of the circular fixed boundary, and
c > 0, we seek a vo, c(r) to solve

v;’,c(r)+ 1-rV,c(r) =1,

(3.11 Vo,c(O)=c’
=0,

O ,c(V) =0,

where 3’, to be determined, is the radius of the free boundary. One can calculate that 3’
is given by the implicit relation

i02--3’2 2

(7)(3.2t c=T+T-log ;
where c > 0, O > 0, 3’ > O, and log is log e.

LEMMA 3.2. For Ro Ro(c, f’) sufficiently large, )BRo= where c is fixed and
BRo is centered in f’.

Proof. Since f is contained in some ball Bo, the result will follow if it is proven for
symmetric solutions. But 3’ in (3.2) will be bounded if O and c are bounded, since the
highest order term in 3’ on the right-hand side, 3’2 log 3’, must be bounded.

This lemma was already used extensively in 2.
From the radial solutions we may investigate the behavior as c m for a larger

class of f"s.
THEOREM 3.3. Let ’ be a bounded set containing a ball B,(O) around the origin. Then

both d(Fc, 0)= infxr,.IX and dl(Fc, 0)= SUpxLIX are equal to

2
log2c

+o

as c . (Here F is subscripted to emphasize the dependence on c.) Less formally, F is
asymptotic to a circle of radius 2X//log2c as c tends to infinity.

Proof. From Lemma 3.1, we know that F is contained in the annulus centered at
the origin with inner radius 3’(e,c) and outer radius 3"(p,c), where Bo contains
Therefore, we must show that if 3’(p, c) satisfies (3.2), then as c

(;C
+03’=2 i82c

where dependence on O will only appear in the second term.
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First, it is clear from (3.1) that 7 cannot stay bounded as c tends to infinity, and
that 3"/c > 0. Dividing by c we obtain

/)2 .y2
1 ’

2log__ log___p
4c 4c 2c 2c

For the largest order term on the fight-hand side, we must have

lim ’ 2log 3’ 1,
c 2c

and the other terms must go to zero.
If we write

Cy=2f(c)
log2c

then

(3.3) li_,m2f 2(c)[ lg2 +(1/2)lgc-(1/2)lg(lg2c)+lgf(c) ]=1log 2 + log c

We can observe from the above expression that f(c) is bounded. The largest order
term on the left of (3.3) is

log cf2(c) logc + log2

which must approach 1 as c--, oo. The other terms in (3.2) will go to zero. We .then
conclude that

lim
3’(10, c)

=1
--, oo 2/c/log 2c

so that 3’(10, c)= 2V/c/log2c + o(v/--/log2c ), as desired.
We now estimate the thickness of the coat f- ’ as c tends to zero if Z C2+.

Fix a point P on Y, and let 10 and 01 be two radii so that a ball of radius 10 is contained
in f’ and tangent to Z at P, and a ball of radius 01 is exterior to ’ and tangent to Y, at
P. One choice for 10 is 1/x(Z), where x(Z) is the maximum curvature of Z. If f’ is
convex, then 101 can be chosen to be infinity. From Lemma 3.1, we have

For an upper bound on d(F,P), we must look at interior radially symmetric solutions.
That is, for the fixed radius Px, we seek a function vpx solving (3.1) for a value "Y1 < 11
The same calculation as before yields that 3’1 solves the implicit relation (3.2). Here,
now, we seek a root 3’1 less than 01- We conclude

(3.4) 101- 1(101, C)__ d(r,P). "y(10,c)-10.

A straightforward calculation using (3.2) yields that

c c 1
lim lim
c-0 (10_,y)2 c--*0 (101---t1)2 2’

for 101 4: q- OO. If 101 q- 00, then the upper bound for the thickness of the coat is 2.



976 THOMAS I. VOGEL

To sharpen the asymptotics in (3.4), we must analyze p- 3’ and 01- 3’1 more closely
for small c. One can calculate that

( 1) 1
(3.5) lim

1 c

)2 2 60’0 0--3’ (p--3’

by substituting (3.2) in for c, and taking the limit as 3’ approaches O-
Now, letting p-3, -f(c), where limc_.of(c)=- 1, and substituting into (3.5)

one obtains

1 +f(c) 1
lim

/7

after some manipulation. Therefore,

c
p-v=- +o(c).

Similarly, for the interior radially symmetric solution,

c
iOl--3’1-- 2-q--3--llOlq-O(C).

We have proven the following theorem:
THOM 3.4. Let ft’ be a set with C2+a boundary Z satisfying the hypothesis of

Theorem 2.3. Let P be a point of Y and let O and Pl be the radii of disks tangent to Y, at P
which are interior and exterior to ’, respectively. Then 7Cc c/3p + o( c) <= d(P, F)
<__ + c/301 + o(c). If ft’ is convex, then the right-hand side is simply

Note. This is similar to a result obtained by Friedman and Phillips [3] for an
interior free boundary problem for a more general equation.

Remark. If has an angle at P, then the free boundaries for the scaled functions
uc=(1/c)u(v/-X) will approach the free boundary corresponding to a wedge as fixed
boundary. Thus, to investigate the asymptotic thickness for small c when Y has corners,
one must look at wedge solutions (see TBH [7] for some numerical results).

4. Convexity. In this section we investigate what happens if f’ is assumed to be
convex.

TI-IEORM 4.1. If f’ is convex, then the sets { u> r }, r>=O are convex, including
f ( u > 0}. (This is true in n dimensions.)

Proof. (This approach was suggested by Daniel Phillips.) Assume first that ’ is
smooth. From Caffarelli and Spruck [1], we know that if up satisfies the free boundary
problem

Auv uff on fe- f’,

u/,=l on E,

Up’-’O on

IVuei=0 onFe,
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then fp and all the sets (Up > r }, r > 0 are convex. We deal with the particular Up which
minimizes

jp(v)__ fB Ivvl 2 1
_-T -1- up+

p+l

These functions have been studied by Phillips [6]. It is not difficult to show that the
functions Up are uniformly bounded in WI’2(BR) as p tends to zero. Therefore a
subsequence converges weakly in W1’2 to some function u, which must be the unique
minimizer to our original functional (2.1). Using the Rellich lemma, Up(X)u(x)
pointwise almost everywhere in BR, by going to another subsequence. (This is a
standard technique: see Friedman [2].) Let A c BR be the set on which Up converges
pointwise to u. If the level sets of u are not convex, then there are three colinear points
X, Y, Z in BR with u(Y)<min(u(X),u(Z)), and Y between X and Z. Since/(A)=
I(BR), where/ is Lebesgue measure, we may assume that X, Y and Z are contained in
A. But this, combined with the pointwise convergence of ( Up ) contradicts the convexity
of the level sets of Up. I now present an independent proof of the convexity of the free
surface in 2 dimensions which is more elementary.

LEMMA 4.2. Let (x(s),y(s)), 0 <=s <= be a parametrization of the free boundary curve
F. Suppose at Xo=(X(So),y(so)), x(s) has a local extremum. Then there is a level curve
( Uy--0} extending into f from Xo.

Proof. Let ek0 be a decreasing sequence such that (u= ek } is a C curve. We
have that (u= ek } will contain a point Xk near X0 with a locally extreme x value for
small enough eg, with limk_.oo X=X0. Since (u=e } has a vertical tangent at X,
Uy(Xk)= 0. But Uy is harmonic in f- f’, so that the properties of its level curves are
well known. In particular, the set (Uy=0} must consist of piecewise analytic curves
with a finite number of branch points. Therefore, some analytic curve along which
Uy 0 must start at X0 and extend into 2.

Alternate proof of convexity of f for n= 2. Suppose that f is not convex. Assume
first that 3f’ is smooth. We can then rotate the coordinate system so that the x
coordinate has a local extremum no F for at least four points X1, X2, X and x4. At
each point X there is a level curve Vi, on which Uy= O, extending into f. Since Uy is
identically zero on F and Uy is harmonic, it follows that no -/ can both start and end on
F, nor can any two 7g’s meet at a branch point or a point of Z. Since cannot
terminate in the region f-2’, it follows that these curves must terminate at four
distinct points Y Y. However, the normal derivative of u is nonzero on , so that Uy
can equal zero only at the two points of Y where the normal is horizontal, since E is
smooth. This contradicts the fact that the Y are distinct. If Y is not smooth, we can
approximate it from within by smooth sets 2,.

Note. The method of the alternate proof generalizes to elliptic operators with
constant coefficients

aiJuij + biku + cu =f(u), i,j=l,2

with c _< 0 and f’(u)>= 0, and with the same boundary conditions on Z and F as before.

5. The ridge of fL In this section we prove that each point of the ridge (defined
later) of f must be closer to 2’ than F if f’ is convex. This shows that our intuition is
correct" going from f’ to f smooths out corners. This result is then used to bound the
curvature of F. We first need another level curve lemma.
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LEMMA 5.]. Let %cf-’ be a smooth curve along which b(r,O)=-r2/2-rUr is a

constant b. Then uo is strictly monotone along 3,b. Specifically, if 3,b is traversed so that
( d > b } lies to the right and ( b < b ) lies to the left, then u o is strictly increasing. This does
not depend on where the origin for polar coordinates is placed.

Proof. The functions p and uo are harmonic conjugates, so that this follows from a
well-known result. See Friedman and Vogel [4] for a proof.

LEMMA 5.2. At every point P F, there begins at least one level curve of. If P is a
local extremum of p restricted to I" (we will write this as d It), then there are at least two
level curves ofd beginning at P and going into f.

Proof. Since uo and q0 are harmonic conjugates, the normal derivative of p at P
equals the tangential derivative of uo at P which is zero (since uo=O on F). By the
boundary point lemma, + cannot attain a local extremum on F, hence every point of F
is the start of a level curve of

To prove the second assertion of the lemma, assume that +(P) is a strict local
minimum of qlr- Since q(P) cannot be a local minimum of p in any BR(P)f, it
follows that there is a region Q= { q < q(P)) which contains P in its closure. But OQ
contains no points of F except for P in some neighborhood of P; so we conclude that
there are at least two curves { q q (P)} beginning at P and going into f, as desired.

Now suppose that the origin 0 for polar coordinates is placed outside of ’.
Introduce the following notation:

In addition, Y,i Zi-, etc., are intersections of the appropriate sets above.
LEMMA 5.3. There is precisely one point on Y, at which uo O, and this is the closest

point of Y, to O.
Proof. Suppose YY satisfies uo(Y)=O, Ur(Y)>O. Then the tangent to Y at Y is

perpendicular to the line OY, and f’ lies to one side of l. Since ur(Y)> 0, f’ lies on the
far side of l from 0. It is clear then, that Y is the unique closest point of Y’, to 0.

Hence we know that E is divided into two segments, Z- and Zi-, and a point Z,
where u0 0.

DEFINITION 5.1. The ridge R of 2 is the set of all points X02 such that
d(X) dist(X, Of) is not in C’I(v) for any neighborhood V of X.

Let R0= { Xofld(Xo)=lXo YI=[Xo-Z] for two distinct Y,ZF}, and R=
{Xo2 there exists precisely one point YF with d(Xo)=lXo- YI and X0 is the
center of the osculating circle at Y }. Then R R0 WR and, since f is convex, R R 0

(Friedman [2, Chap. 2, 7]).
THEOREM 5.4. If Xo R o and f’ is convex, then dist(X0, F)> dist(Xo, Y. ). In conse-

quence, ifXo R, then dist(X0, F) >= dist( X0, Y).
Proof. Suppose this is not the case, and let X0 be the polar origin. Let P1 and P be

points of F such that d(So)--lSo-Pxl--lSo-P2l--t. Since Ur=O on F, qlr has a local
minimum at P1 and P. Therefore, from Lemma 5.2, there are level curves 3,1+, 3’l-
starting at P1, and 3,-, 3,- starting at P, on which q t/2. As 3,+ and 3,2

+ are traversed
in the direction away from F, uo increases, and as 3,a- and 3,- are traversed in this
direction, u o decreases. Since by assumption, the distance from Xo to each point of Y. is
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greater than t, all of the level curves 3’, 3’2-+ must terminate on Z1. Indeed, 3’x
+ and 3’-

must end on Y,-, and 3’{ and 3’- must end on
Let Uc 2- f’ be the open set whose boundary consists of 3’1

+ the segment of
between the endpoints of 3’+ and 3’f, 3’+, and F from P1 to P2. Here the condition that
Uc f- fl’ forces the direction that F is traversed from P to P2 for OU. Let U+=
{XUIq(X)>t2/2} and U-=(XUIq(X)<t2/2}. Then neither U+ nor U-is
empty, and either 3’+ c OU+ and 3’2

+ c OU- or vice versa. For if this were not the case,
then Lemma 5.1 would be violated, since 3’1 and 3’2 both have a region lying to their
right as they are traversed from F to Z, where q > 2/2.

We are now led to a contradiction, since there must then be a curve 3’* U on
which /--t/2 which goes from Z + to F to separate U+ and U-. Then uo will be
increasing along 3’* from Y + to F, violating the free boundary condition.

As a corollary, we get a rough bound on the curvature of F.
COROLLARY 5.5. Assume that ’ is convex, and Z is C2+, and let x(Fc) be the

maximum of the curvature of Fc, and x(E) be the maximum of the curvature of Y. Then

2

3"(c,1/x(E))-l/x(E)
>__ (F).

Proof. At each point X of R we may place a circle of radius 1/r(Z) contained in
2’ and tangent to Y at X. From the proof of Theorem 3.6, we know that at each point
X R the distance from X to F is at least 3’(c, 1/x(Z))-1/r(Z). Now consider the ball
B/(r) of radius 1/r(F) osculating at the point of greatest curvature of F. From
Theorem 5.4, B/(r) must contain a point of Z, hence

>-- v c,

yielding the desired result.
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A NONLINEAR PSEUDOPARABOLIC DIFFUSION EQUATION*

MICHAEL BOHM AND R. E. SHOWALTER?

Abstract. Diffusion in a fissured medium with absorption or partial saturation effects leads to a
pseudoparabolic equation nonlinear in both the enthalpy and the permeability. The corresponding initial-
boundary value problem is shown to have a solution in various Sobolev-Besov spaces, and sufficient
conditions are given for the problem to be well-posed.

Introduction. This is the second of two papers dealing with a certain pseudo-
parabolic diffusion equation. It was shown in [6] (see also [2]) that diffusion processes
in fissured media lead to the following problem:

Let G c R N be a bounded domain (the place where the diffusion process takes
place), and denote by S:= [0, T] a finite time interval. We are looking for functions
u u(x, t) (concentration) and v v(x, t) (a flow potential), such that

=/1,

-div(k(u) Vv) +1( v- a(u)) =f2,

u(x,Ol=uo(x),

Here u’:-Ou/Ot, "div" denotes the usual divergence operator, "V" stands for the
gradient with respect to X=(Xl,...,Xu)Z[ N, and tS. The functions fi=fi(x,t),
i--1,2, and u0 are given and k-k(u), a=a(u) are specified by properties of the field
or medium. For each uLI(G) define Au:= -div(k(u)V) and consider this elliptic
operator subject to Dirichlet boundary conditions. By eliminating o in (0.1) we obtain
the following equivalent ordinary differential equation involving only the single varia-
ble u

(0.2)
1 -1)u’(t)+-(I-(I+eA ) a(u)=f+(I+eAu)-f2

u(0)=Uo.

Applying I+A,(t to both sides of the equation in (0.2), one formally obtains the
pseudo-parabolic problem

(0.3)
u’ + eAu( u’) +A,( a( u)) I + eAu)(fl) +f2,
u(0)=,o,
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We note that problems of the type (0.3) also arise in the quite different contexts of heat
conduction modelled by two-temperature systems [8], certain weak formulations of
two-phase Stefan problems [6], [15] and in the description of some non-Newtonian
fluids [9], [17]. Further references can be found in [7].

In [6] we considered the case k=k(x,t), a=a(u) monotone, Lipschitz. There we
showed existence and uniqueness of solutions under fairly weak assumptions on the
data. Furthermore, for this case comparison and maximum principles were shown.
Here we are concerned with the additional nonlinearity k=k(u) which arises in the
diffusion model [6] due to saturation or absorption effects on the permeability. Specific
properties of k and a, as they are used later are listed below under (H1)-(H6).

We prove the existence of solutions to (0.2) or (0.3) in various spaces. Theorems
2.1, 2.3 and Corollary 2.2 contain existence results for solutions u= u(t) taking their
values in BV(G), W’’(G) and H)(G), respectively. As the formulation of Theorem 2.1
shows, there remains a "gap". If p[1,N/2), s(0,1], then there are solutions in
W)’P(G) (provided, uo, f(t) W)’P(G)). If p > N/2, we only have some (sufficiently
small) s>0, such that u(t) W)’’(G). Theorem 2.6 deals with wZ’’-existence of the
solutions in the two-dimensional case. By interpolation methods we obtain results for

Wol+’p-existence for (0,1) (Corollary 2.4). As a consequence we get some sufficient
conditions on the data which imply that u(t) W’’(G) for N= 2 and for certain p > 2
(Corollary 2.5). These seem not to be optimal since the assumed regularity of the data is
higher than that of the solutions obtained. We continue by proving a uniqueness- and
continuous-dependence result, the assumptions of which can be met at least in the one-
and two-dimensional cases. The final theorem states some useful pointwise estimates,
which in particular imply a weak maximum principle for (0.2).

The paper is organized as follows. Section 1 contains notations and lists some
function spaces which we use. Section 2 contains the precise formulation of the results.
Section 3 is concerned with the proofs. We conclude with a short appendix which
presents some facts on interpolation.

1. Notation and spaces. Let G c u be a smooth and bounded domain, F:= G
the boundary,

S:= [0, T]ma finite (time) interval, St:= [0,t] for t S,
Q,:= (0, t)G, Q:= (0, T)G
D := D’D... D’ for a multiindex a =(oh,..-,aN), D: O/ixi,

X’-(Xl," ",XN)G
s [0, 2], pc[l, o], r[1, o], o := Ns+p if s (0,1),
[0,1], k N,

spW (G)mthe usual Sobolev space, if s is an integer,
Ws’p (G)’= B,p (G)--the usual Besov space, if s is not an integer,

the norm in WS,e(G) is denoted by II’ll,e,
LP(G) :-- the usual space of p-integrable real-valued functions, LP(G) normed by

the usual LP-norm I’lp- Special case. Ifp= 2 and s= 1, then I1:= I1=, I111 := I1111,=.
"(., .)" denotes the usual scalar product in L2(G) and the dual pairing between

H-I(G) and H(G), "((-, .))" stands for the scalar product in Ho(G).
By W)’P(G) we denote the SobolevBesov space of those functions in VV’S’p(G)

having zero-trace on 3G. W’P(G) is assumed to be normed by IIllx,p "=

1m complete reference for these spaces may be found in Adams [1].
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This norm is on Wol’p(G) equivalent to the usual wl’p(G)-norm, so that we do not
introduce extra notation.

Furthermore:
Ck() "= { v" R,k times continuously differentiable), equipped with the usual

max-norm [[" [[c*(),
C’’() denotes the space of all H61der continuous functions with H61der expo-

nent/ (0,1], [[ [[cO,,()-norm of this space.
BV(G)’= (vL’(G): [[V[[sVG)< o}-the set of all LX-functions with finite total

variation,

[IVI[BV(G) IVlLI(G)"- V

sup(f vdivdx, C()u
for all x)[] BV(G)"

C(G)’= (vCI(G) suppvc
Generally, we do not distinguish in our notation between the norms in the space

(V,[.[) and the norm in VV ..- V, e.g., "[yTg[p means [Vg[1p(G)N. The same
applies for scalar products.

If (V,[-[) is a normed space, then:
Lr(s, V)’-- Lr(0, T; V)--the usual space of V-valued, to the power r Bochner-in-

tegrable functions on S and equipped with the norm [[[[L’(s,v) (sometimes we also write

[[i’(s,v) for the same standard norm).
wl’r(s, g)’-- { o Lr(s, V)" v’ Lr(s, V)).The norm in wI’r(s, V) is

IlVllw,,r(s,v
C(S, V)’ C(O, T; V)--the space of all continuous functions mapping S in V.

Ilvllc(s, := max{ Iv(s)l: s S },
C (S, V):- {vC(S, V)" v’ C(S, V)}, Ilvllcl(s,v
C’(S, V)’- {vC(S, V): Ilvllco,,s,v<

Ilvllco..(s.v)’-- [,vllc(s.w)/sup( [v(s)-v(t)[
t4:s t,sS)]t_s]’

By "" we denote (beside set theoretic inclusion) continuous imbeddings, and

" denotes compact imbeddings.
"c" always stands for a nonnegative constant. Sometimes, we indicate on what

quantities c might depend.

" denotes strong convergence, "---"-weak convergence, *- "-weak-star conver-
gence.

2. Results. We will use the following hypotheses on the coefficients k and a,
respectively.

(H1)

(H2)
(H3)
(H4)

(H6)

k: R ---)R-continuous, and there are constants k0, kl such that
O<ko<k(u)<=k for

a: R R-Lipschitz continuous with Lipschitz constant L,
a is monotone and a(O)= O,

k WI’(R), Ik’l =: L,

y := k-a’-Lipschitz continuous with Lipschitz constant Lv.
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Now we are going to formulate what we understand by a solution of (0.2) and (0.3),
respectively. Assume k and a are sufficiently regular so that all the appearing terms
make sense. For the sake of (purely technical) simplicity we set fl=f and f:=0
hereafter.

Formulation of (0.2) as an ordinary differential equation. Let us assume for a
moment, we are given a sufficiently regular solution u,v of (0.1). If u(t)L(G), then
:(t)’= k(u(t))L(G) (k as in (HI)). Set A(t)=-div(:(t)V(-)). By the existence
theory for elliptic operators which are subject to Dirichlet boundary conditions, we can
define

B(t)’= (I+eA(t)) - (/=identity)

and we have a continuous linear operator

B(t):LP(G)Le(G) forallp[1,]

(see Lemma 3.1 below). Now, set Ao:= -div(k(v)V(.)) for vL(G). By the preced-
ing remarks,

Bo’= (I+eAo) -1" LP(G)LP(G) for allp[1, o].
Set for abbreviation

A
1
(i_Bo)

Thus, (0.2) is equivalent to

(2.a) u’(t)+A(t)(a(u(t)))=f(t ) for tS.

This leads to the formulation of (0.2) as an ordinary differential equation in Lp(G): Let

r[1,], p[a,], fU(S,LP(G)), uoLP(G).
We call u w’r(S, LP(G)) a solution, if (2.1) holds for a.a. t S as an equation in

LP(G) and

(2.2) u(0)=u0 in LP(G).
Formulation in variationalform. Formally applying I + eAu(t) on both sides of (2.1),

we obtain (0.3). Given r [1, ], p [1, ], 1/p + 1/p’ 1, uo Wo’P(G), f
Lr(S, W’P(G)), we call u W’r(S, W’P(G)) a solution of (0.3) if

(2.3) (u’(t),v)+e(k(u(t))Vu’(t), Vo)+(k(u(t))Va(u(t)), Vv)
-(f(t),v)+e(k(u)vf Vv) for all v W’P’(G), a.a. tS,

(2.4) u(0) u0

Notice that under appropriate regularity assumptions on u, the fact that u satisfies
(2.1), (2.2) implies that it also satisfies (2.3), (2.4) and vice versa.

Our results are as follows.
THEOREM 2.1. Assume (H1), (H2),

UO W)’P(G), fC(S, W)’P(G))
and one of the following conditions is satisfied:

(a) N>__2, p[1,min{2N/(N+2),N/2}],s(O, 1],
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(b) 2 __<N=< 6, p[2N/(N+ 2), N/2), s(O,(2-N)/2 + N/p),
(c) p > max( 1, N/2), s (0,1 sufficiently small,
(d) U=l,p=l,s(0,1].

Then (2.1), (2.2) has a solution u CI(S, W)’P(G)).
Remark 2.1. Let k and a be as in Theorem 2.1. If Uo BV(G), f C(S, BV(G)),

then (2.1), (2.2) is solvable by a uCI(S, BV(G)). For merely integrable right-hand
sides f we have

COROLLARY 2.2. Let k,a,p and s be as in Theorem 2.1, r[1,]. If f
Lr(s, W)’P(G)), Uo W)’P(G), then there is a solution u W’r(S, W’P(G)) satisfying
(2.1), (2.2). The corresponding remark holds forf Lr(S, BV(G)), uo BV(G).

THEOmM 2.3. Let N >= 1, r [1, oo].
(a) If fLr(S,H(G)), uo H(G), then (2.3), (2.4) has a solution u

wI’r(S,H(G)).
(b) Iff C(S,H(G)), then u CI(S,H(G)).
We remark that the proofs also yield several estimates for norms of u in terms of

the data.
Looking at (2.1), (2.2), one should expect u to be exactly as regular as u 0 and f,

since Bu(t) is for many function spaces at least a regularity-preserving operator. But the
nonlinearity of the problem causes some problems. With respect to a higher than
square integrability of the first derivatives we get only a partial result which will be a
consequence of Theorem 2.6 formulated below and the following corollary, the formu-
lation of which seems to be rather technical.

COROLLARY 2.4. Let N= 2, and assume (H1), (H2), (H4), (HS) and (H6). Further-
more, let 0, r (0,1), p* >__ 2, a, a’ > 1, p > 2 be such that

1 1 a’p-2 1 (l-r) r 2 2-+ =1 O+r<l, O=
,(_ p--=+--, r>=p,a --a7 2a p 1)’ 2 p ap

If u0 w+r’p*(G), fC(S, Wd+r’p*(G)), then (2.3) (2.4) has a solution u
CX( S, WO + "P*( G)). Furthermore, u C(S, wO’ap(G)).

To illustrate the assumptions under which this corollary is valid, we formulate
COROLLARY 2.5.
(a) Let a > 1, p > 2 and set

ap-2 2ap(p-1) a(p-2)+2
r"

2a(p 1)’ P*’= 0"=
p(a+l)-2’ 2a(p-2)

These numbers satisfy the conditions imposed in Corollary 2.4.
(b) Vice versa--let N= 2, k and a as in Corollary 2.4, q > 2 a given number. We have

for a solution u CI(s, Woa’q(G)), provided the data satisfy

uo W+r,p*(a), f=:C(S, W+r,p*(G)),

where for a p [2, q)

p.=2q(p-1)
q+p-2

O= q(1-1/p + 2
r=

q- 2

2q(1- 2/p ) 2q(1-1/p )
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Concerning W2’p-regularity, we have
THEOREM 2.6. Let N 2, k and a as in Corollary 2.4, r 1, o ], andp [2, o ].
(a) If fLr(S, wz’P(G)Cq W’P(G)), Uo wz’P(G)A Wol’p(G), then we have for a

solution of (2.1), (2.2),

U wl’r(s, W2’p(G)("I W’P(G)).

(b) Iff C(S, W2’p(G)O Wol’p(G)), then u CI(S, W2’p(G) W’P(G)).
The next theorem reflects some sufficient conditions, which ensure unique solvabil-

ity and continuous dependence of the solution on the data for problem (2.3), (2.4). In
particular, these conditions are automatically fulfilled if N= 1. For N 2, Corollary 2.5
provides information about such properties of u0 and f giving at least one sufficiently
regular solution which meets these conditions.

THEOREM 2.7. Let N>= 1, and k satisfying (H1), (H4), (H6). Set p > 2 if N= 2,
otherwise, p "= N.

(a) /f u0 H(G), fLI(S, W’P(G)) and if there is at least one solution of (2.3),
(2.4) with u W’I(s, W’P(G)), then (2.1), (2.2) is uniquely solvable.

(b) The map

( Uo,f} H(G)XLr(S, WI’p(G)) --)u wl’r(S,H(a))

is locally Lipschitz for all r [1, ].
Finally, we obtain some pointwise estimates on solutions and briefly indicate their

usefulness.
THEOREM 2.8. Let k and a satisfy (H1)-(H3) and let u WIA(S,L(G)) be a

solution of (2.1), (2.2). Then, for a.a. S we have

lu+(t)l zlu l + [f+(s)l ds,

lu-(t)lo <luGl / If-(s)lo ds.

In particular, if Uo(X)> 0 a.e. f(s,x)>= 0 a.e., then u(t,x)>__ 0 a.e. If., in addition, there is
a number c0>0 with a(c0)= 0 and Uo(X)> co a.e. in G, then u(t,x)>= co a.e. in O.

The preceding is particularly relevant in the diffusion model of [6] where there is
some interval [0,L] on which a is identically zero. (This occurs because of partial
saturation or absorption in the model.) To illustrate the usefulness of Theorem 2.8,
suppose in this situation we know only that k(u) is defined and continuous at each
u > 0. With u0 and f as given in Theorem 2.8, we choose k0 to be the minimum and k
the maximum of k(-) on the interval [c0,[lu0ll / fllf(s)lleds]. Then extend k outside
this interval so as to satisfy (HI). By Theorem 2.8 it follows the solution is independent
of the extension, so we may assume without loss of generality that the original k
satisfies (H1). These remarks are useful in the diffusion model [6] where possibly
k(u) + o as u0+or k(u)O as u + .

3. Proofs. The formulation of (0.2) as an operator equation (2.1) involves the
resolvent B (I + eA,)- 1. We have to justify that B, exists. The point which has to be
observed is that for fixed v the operator Ao has a coefficient k=k(v), which is due to
the lack of regularity of k not too smooth. The following lemma lists some properties of
the resolvent B of a related operator A.
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LEMMA 3.1. Let k: g"R be measureable, O<ko<=k(x)<=k for a.a. xg

(ko, kl as in the definition of k(.)). Set A" div(k(x)7(.)), B" (I + eA)- 1, and
consider the elliptic operator A as subject to Dirichlet boundary conditions. In each of the
following cases B is defined and we have

(i) If l <p<=2N/(N+ 2), 1/p*= l/p-1/N, then B" LP(G) Wo’P*(G).
(ii) Ifp > N/2, then there is a (0,1)such that B: LP(G)H(G)fqC’X().
(iii) Ifp= 1, q [1,N(N- 1)), then B" LI(G) w’q(G).
(iv) If 2N/(N+ 2)<p<=min(N/2,2}, then B" LP(G) W0’2(G).
(v) If 2 <=p < N, I/p* l/p- l/N, then B: LP(G) Wol’2(G)OLe*(G).

In each of these cases, B is a linear and continuous map and its norm depends at most on
G, p*, p, N, ,, eko, kl. depends at most on G,p, N, eko, kl.

Proof. (i), (iii) are part of [16, Thm. 4.5], for (ii) see [12, Chap. III], (iv) and (v)
follows from (i). rq

The next lemma list some known imbedding properties.
LEMMA 3.2. Consider the situation in Lemma 3.1 and let p, p*, k,N be as in (i)-(v).

Take in (i)-(iv) s (0,1), in (v) s (0(2 N)/2 + N/p). Then
(i) 2 WI’p*(G)C C Ws,p*(G)c WS,pc cLP(G)
(ii) W’P(G)c c LP(G), C,X()cL(G)
(iii) WI’p*(G)C c Ws’p*(G)C ws’l(G)c c LI(G)
(iv) WI’p*(G)C c Ws,p(G)c c LP(G)
(v) WI’2(G)c c I/Vs,p(G)c c LP(G), ifN <= 6.

Proof. See [1], [3]. The compactness results from WI’p L p for any p _>_ 1, and
the fact, that Ws’p [L P, WI’P]s and general interpolation theory, if]

COROLLARY 3.3. Let oLI(G), set, as before, Av’= -div(k(v(x))7(.)), Bv’=
(1+ eAo) -1. B has exactly the same properties as B in Lemma 3.1. Furthermore,
A’=(1/e)(1-Bo)" LP(G)--,LP(G) is Lipschitz. Thus, Aoa" LP(G)LP(G) is

Lipschitz.
It follows that (2.1) can be considered as an ordinary differential equation in

L P(G). Moreover, we have the following.
LEMMA 3.4. Let vLI(S, LI(G)) be given. Then
(i) For each w Lp(G)

(3.1) t S "-)aev(t)(W) LP(G)

is measureable.
(ii) Ifv C(S, LI(G)), then the map in (3.1) is continuous.

Proof. (i) see [14].
(ii) Let tn in S, set gn’-- (Iq-eAo(t,))-l(w). By definition gn satisfies

(3.2) (I+eAv(t,))(gn) =w"

Consider case (i) in Lemma 3.1. We have Ilglll,p, clWlp. Therefore, for a subsequence
g. in LP*(G) andgin Wol’p*(G). By the continuity of k, satisfies

(3.2’) (I+ehv(t)),--w.

2,, c" denotes algebraic and topological imbedding, c c" the compact imbedding.

3,,[.,. ],, is the complex interpolation space generator (see appendix).
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But, (3.2’) is uniquely solvable, so that g,,-- in LP(G), which proves the assertion. The
other cases in Lemma 3.1 can be dealt with in a similar manner. q

Proof of Theorem 2.1. Fix fig C(S, LI(G)). By Corollary 3.3 and Lemma 3.4, there
is exactly one solution

(3.3) uCI(S, LP(G))
satisfying

e
a(u(t))-f(t) u(0)-u0.(3.4) u’( l +A-We employ Schauder’s theorem to show that the map

-: C(S, LP(G))-,C(S, LP(G))
defined by (3.3), (3.4) has a fixed point. Obviously, a fixed point of Y-solves (2.3), (2.4).
The next lemma summarizes some properties of Y-. In particular, the proof yields
several estimates of the solutions of (2.1), (2.2).

LEMMA 3.5. (i)..q’maps C(S, LI(G)) into a bounded subset of CI(S, LP(G)).
(ii) Let s,N be as in Lemma 3.2, tS, C(S,LI(G)). Then (Y’fi)(t) is in a

bounded subset of Ws’I"(G).
(iii).Y-: C(S, LI(G))---> C(S, LP(G)) is continuous.

Proof. (i). Integrate (3.4) over (0, t), and take the LP(G)-norm on both sides. Then,
by Lemmas 3.1, 3.2 and a’s Lipschitz continuity

hence, by Gronwall’s inequality

(3.5)

where c=c(eko, ki, IGl, N,p,L,X,s T). By (3.4) and (3.5)

(3.6)

To obtain further estimates, we notice that u as a solution of an ordinary differential
equation is the C(S, LP(G))-limit of the sequence (u ) defined by

(3.7) /,/1 := U0,

(3.8) u,+l(t)=Uo+ f(s)ds- A(,,ya(u,(s))ds, ,S.

We have
LEMMA 3.6. Let u, C(S, Ws’p(G)), where s,p are taken as in Lemma 3.1, 3.2,

s (0, ifp > N/2 ( arises in Lemma 3.1, (ii)). Then
a) u,+ C1(S, Ws’p(G)) and
b)

(3.9)

with c as in (3.5).
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Proof. By assumption Un(t)WS’p(G); hence a(Un)WS’p(G)cLP(G). By
Lemma 3.1, 3.2 A,(t)(a(u,(t))) Ws’P(G) if p N/2, and

1 c(3.10)

C-Ilun(t)ll ,p (c as in (3.5))

Therefore, by (3.8), U+l(t) W’P(G). The t-continuity properties follow as in Lemma
3.4. Equations (3.8) and (3.10) yield (3.9) by an iteration argument (cf. [4]). To show
(3.9) for p > N/2, take the WS’p-norm on both sides of (3.8). Thus

(3.11)

We have II(u.)lls,p Lllu,ll,p and for

g(t,x)" (I+eAr(t))-x( a(ttn(t)) )
by Lemma 3.1, 3.2.

(ii)

ff Ig(t’x)-g(t’Y)lP[]g( ) l[P,p dx dy l=N+ sp
Ix -yl

<= ff C" IX _y[Xp-dx dy <= const.
GG

Therefore (3.11) and Gronwall’s inequality imply (3.9). l
To complete the proof of Lemma 3.5(ii), we note that (3.9) and (3.6) imply

(3.12) I[UnI[CI(S,WS,p(G))Z C { llUoIl,p / IIfIIc(,W’"())/ 1 },
where c is as in (3.5). By weak-star compactness, u WI’(S, Ws’p(G)) and by (3.4),
u CI(s, W’P(G)), where (3.12)implies

(3.13) Ilullc(s,ws.,(a)) <= C { llUolls,p -1-IIfIIc(s,w,P(G))-I- 1 }.
This proves (ii) of Lemma 3.5. To see the continuity of Y" let fi---, fi in C(S, LI(G)), set
gk’= B(a(uk)),u’= Y-(fik), so that g and u, resp. satisfy

(3.14) eAn(gk) -gk + a(u),
1 1

(3.15) u,(t)+-a(uk(t))=-g,()+f(t), uk(0) uo

By estimates (3.6), (3.13) and a’s Lipschitz continuity there is a subsequence

(3.16)
uLu in wx’(S, W’P(G)),

a(u) a(u) in L(S, Ws’P(G)).
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Using the estimates for uk from (3.15) (cf. estimates (3.6), (3.13)) to estimate gk in (3.14)
((3.14) is an elliptic problem for gk, various norms of g can be estimated in terms of
a(uk) by Lemma 3.1, and a(uk) can be estimated by (3.13), (3.6)), we arrive for
p <= (N/2) at

c (1-4-lUolp +
and for p > N/2, at

Therefore, we have for a subsequence

(3.17) g,j g in L(S, W)’P(G)).

Equations (3.16), (3.17) and relation (3.14) imply that g satisfies

(3.18)

(To pass to the limit j in (3.14), use the strong convergence properties of
k(fi,.)--remember, fi, Ft in C(S, LI(G)) and k is continuous.) Since (3.18) is uniquely
solvable, we have uLu in WI’(S, Ws’P(G)), i.e., the whole sequence converges, in
particular u=Y-(fi)u=7-(fi) in C(S, LP(G)), i.e., Y-is continuous, which finishes
the proof of Lemma 3.5. []

COROLLARY 3.7. Lemma 3.5 implies that Y’has a fixed point u. u solves problem
(2.3), (2.4) and satisfies the estimates given by (3.6), (3.9). Moreover, u ismaccording to
(3.7), (3.8)rathe limit of the sequence ( u } defined by

(3.19)
U U0

and

(3.20) u,u in C(S, LP(G)), u,=u in W’(S,LP(G)).

This finishes the proof of Theorem 2.1. []

Proof ofRemark 2.1. Construct as in (3.3), (3.4) an operator

,." C(S, LI(G))--->CI(S,LI(G)).

One has already estimate (3.6), so that Lemma 3.5(i) follows. The third statement of
this lemma has already been proved and the second has to be changed to

LEMMA 3.5’. (ii’) If Ft C(S, LI(G)), then (-u)(t) is in a bounded subset of BV(G),
which does not depend either on or on Ft.
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To see this, look at the iteration procedure (3.7), (3.8) which yields u as the
C(S, Ll(G))--limit of (u,). By Lemma 3.1(iii) we have
W’*(G)c BV(G) so that by the same 1emma

1

1

Tang the BV(G)-norm on both sides of (3.8) yields

Since BV(G)c cL;*(G)cLI(G) for p* +(1,N/(N- 1)), Arzela-Ascoli’s theorem
yields for a subsquence

Bcause of the reflexivity of BV(G) we have by weak-star compactness

i w,:(s,v(g))

Since u satisfies (3.4), we obtain after a short calculation

,’ + C(S,())

Thereforhas a fixed point u CI(S, BV(G)) wch solves (2.3), (2.4).
Proof of Corolla 2.2. We modify estimates (3.6), (5.13). One has

c (1 + I(t) } + If(t) I
from arguments wch led to estimate (3.5). Taking (3.5) into account, one gets for
r[1, ]

(3.22) lU’IL’(S,L(6))C (1 + ]Uo]p+

Similarly, (3.11) implies

and (2.3) yields

Therefore,

Ilu’(t)ll,,z IIAL(t)(,(u()))II,,+

(3.23) lU’ILr(S,.’(G))<_C {1 + }lUol[s,p + [fIL’(S,W"e(G))}.
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Proof of Theorem 2.3. We employ the Galerkin method. Let ( w } c H(G)H2(G)
be an orthonormal eigenvalue basis of the Laplacian subject to Dirichlet boundary
conditions, i.e,.

(3.24) -Awi=Xiwi, (wi,ws.)=3o., wi+/- wj inH(G).

Set Vn’= span(wi,..-,w ), denote by P, the orthogonal projection in H(G) onto V,.
We are looking for an absolutely continuous

n

(3.25’) u,(t)’= E h,j(t)wj,
j=l

wch satisfies

(3.25) (u;(t),v)+e(k(u.)Vu;,
=e(k(u,)vf vv)+(f,v) Vv V, a.a. tS,

(3.26) u(0) u0 "= P,uo.

By using a fixed point argument and applying the results of [6] or a reduction of (3.25),
(3.26) to an ordinary differential equation (cf. [5, Lemma 1]) to obtain the standard
form for an application of Caratheodory’s theorem, one shows, that (3.25’)-(3.26) is (at
least) locally solvable. The following lemma implies that these solutions are globally
defined. One has

LEMMA 3.8. There is a constant c=c(eko, k,L, T,

(3.27) IlUnll
Proof ofLemma 3.8. Choose in (3.25) v’= u’,(t), use the boundedness properties of

k(-) and a(-) and apply H61der’s and Young’s inequalities

(3.28) ]u (t)[
2 2; +ekolVU’,(t)[

klta[

(3.29) z Ifl +lvf+lvuo,I + [vu;(,)l d,

If r < oo, then := r; if r oo, then := 1.
Gronwall’s inequality in connection with (3.26) yields

U’,,ll,.,r,:s,,_,,,::,:>__<C { Ilfll ’,:,’-",,::,:, + IlUoII }
and therefore (3.27). The usual compactness argument completes the proof and shows
that (2.1), (2.2) has a solution, which satisfies

(3.30) Ilullw’"(",’o(Z c { Ilu011+ Ilfll’(s,.(e) r

Before proving Corollaries 2.4, 2.5, we prove Theorem 2.6.
Proof of Theorem 2.6(a). We use the Galerkin method and continue at (3.25),

(3.26). We have already estimate (3.27) and will show that

(3.31) u.II wl,r s,W2’p G)N W’p a)) const.
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To see this, note that due to (3.24)

’= -Au’(T)V.

is an admissible function in (3.25). Integration by parts and reordering yield

+((u.)aU’n,a.;)

=e(k’(u.)Vu’., Vu.v)+(f,v)-e(k’(u.)Vu.,

-e(k(u.)A,f,o)+(k’(un)Au." VUn,Off(Un) O )

+ k( u.)a"( Un) VUnl2, U)-Jl- ( k( Un)Off( Un) AUn, U).

By (H1), (H2), (H4), (H5), H61der’s, Young’s and one of Sobolev’s inequalities we
obtain

Ivu.t)l + ekolAu.(t)[

2q- Ek11mfl21ol2 -t- tkol IV Unl]IUI2 -I- klO IV Un]41UI2 -I- klO11mu.12lo]2

ek
2

2
_-< --!,! +c(I vu;,I=IAu’.,121 vu,,! + ,f!.

2 12 2 2}+ VU,,I lau,,llvfl]+ IA/I2 + vu,, Iau,,I + lau,,I

(This is the only place where the restriction N= 2 is essential. The case N--3 allows
2/3 which finally would require some re-only estimates like Ivu’n14<=clxTu.112/31Au.12

strictions on Ix7f4 and Ilu0112,2, to obtain (3.31).)
From now on we use again our convention concerning the notation of L-norms.

Using again Young’s inequality, we arrive at

{au. (t)12 ,2 z{ 2 2

-<- <{I v..I v.,,I Au,,I + Ifl + la/I

+ Iv u,,I IA.I viii + Ivu.llau.l+ Iau.I)
2Iau’o(t)l<=<{Ivu’.llvu.llau.l+ II1+ Ivuol+ Iau,,ll vSl4

+ IASI+ vu,,llau.l+ Ivu.,llvfl]+

By (3.27),
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so that

If r= , then estimate (3.30) and Gronwall’s inequality yield IAU’nIc(o,t;L2(G)) const.,
where the const, depends on

(3.33) eko, kl, tk, T,N= 2, Ial, IflLr(s,wl.’(a)), Imu0[2.

If r [1, ), take on both sides of (3.32) the rth power and integrate over (0, t)c [0, T],
which yields by Gronwall’s inequality

]mU?nltr(o,t;t2(a)) const.

Because of Un/OG-- Au’n/OG=O, this implies

(3.34’)

as in (3.33). The usual compactness argument finishes the proof and yields an
estimate

(3.34)

for the solution u of (2.1), (2.2).
Proof ofpart (b). (Sketch, a similar argument is used in the proof of Corollary 2.4.)

Under the conditions of part (b) we set that (2.1), (2.2) holds in LI(G) a.e. Therefore,
we can multiply equation (2.2) on both sides by v := --IAu’(t)lP-2Au’(t) and arrive,
using similar arguments as in (a) and estimate (3.34), at

(3.35) Ilull wI’r(s,w2’p(G)) . C { 1 + IA/ILr(S,LP(G)) + IAu01 }
which is sufficient to complete the proof, c depends via (3.34) on the data. []

Proof of Corollary 2.4. We approximatef and u0 respectively by regular f, u0, and
obtain by Theorem 2.6 regular solutions u for which we show the estimate (3.39). The
basic tool to obtain (3.39) are the estimates (3.42), (3.43) for a related linear problem
(3.40). Let

(3.36) c(s, n Wo1’ (6)

such that

(3.37) f--->f in C(S, Wo+"P*(G)), UoUo n W+"P*(G).

By Theorem 2.6, there are solutions

(3.38) u el(s, W’(G) n W’(G)),
satisfying (2.1), (2.2) with u0, f as data. Set k(t,x)’= k(u(t,x)), (t,x)"= c(t,x).
a’(u(t,x)). By our hypotheses, O<ko<=:(t,x)<=k VtS, xG and [’1 < . It is
our goal to show the following estimate. There is a constant c merely depending on the
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bounds of the coefficients k, a and their derivatives as appearing in (H1)-(H6) and on

such that

(3.39)

To this end consider for given g, v0 the linear problem

v’- ediv(Vv’)-div(Vo) g- ediv(TcV )
(3.40) v(O)=oo.

We note that choosing g’= f, v0"= u0, v’= u satisfies this equation.
Denote by St’= [0, l, S, a subinterval of S. As in Theorems 2.3 and 2.5 one

shows the existence of solution operators Pi,t, 0,1,

Po,t" H(G) C(St,H(G))" C(St,H(G)),
Pl,t" (W2’p(G)( Wd’P(G))xC(St, W2’p(G))->C(St, W2’p(G)("I Wd’P(G))
Pi,t" (vo,g} v’,vo, g,v,v’ asin(3.40).

(The numbers p and p* are related by the hypotheses of this corollary.) These operators
are linear and bounded in the given spaces and we denote by M, their respective
norms. By interpolation it follows that Pl,t can be restricted to w+r’p*(G)
C(St, W +"P*(G)) (see Lemma A5, appendix) and, denoting the restriction by Pr,t,

Pr,t: Wd+r’P*(G)(G)C(St, Wol+r’P*(G))-C(St
P.r,t is linear and bounded and its norm M, can be estimated by

(3.41) Mr,t<= cM,-rM?,t
with some numerical constant depending on r, but independent of t. We prove the
following

LEMMA 3.9. There exists a constant c, depending at most on , G, T,p* the several
bounds of the coefficients as appearing in the hypotheses of this corollary, such that

(3.42) (a) Mo,t<=c,
(3.43) (b) MI,tZc ] + IlUsllc(s,,wl+,,V’(G))

Proof ofLemma 3.9. First we notice that due to the rather technical assumptions of
this corollary we have

(3.44)
(3.45)

(see the appendix, Lemmas A4, A6). The proof of (a) is at the beginning almost
identical to that of estimate (3.27) in Lemma 3.8. To show (3.43) we begin with the case
p 2. Computing the div-terms in (3.40), multiplying by w’= -Av’(t) and integrating



A NONLINEAR PSEUDOPARABOLIC DIFFUSION EQUATION 995

over G by parts, one obtains for s S

Ivy’( )1s +(&av’,av’)
(&ag+a,a’)+ (g, a’)+ (vk. v’ + v. v, a’) + (vk. vg, a’).

To obtain (3.43), it is sufficient to assume that

(3.46) [IVolla,p q-IIglIc(st,w2,P(a))<_ 1.

Using the boundedness properties of k and and Hlder’s inequality, we obtain with
c=c(eko, kl, L)

tvo,()l

By u’/G=O, there is a constant c=c(G),

(3.47)

by interpolation, Io’l]c(G)lo’l=llo’ll=,=. This and (3.46) imply by using Young’s
inequality and (3.42),

II’()ll=,=sc Ilgll=,=+llo011=,=+ II’(r)llu,zdr

Gc{I+ 1]:+ *l]+ v’(r)l,dr }
Because of

Ivkl4+ IVlaZcllunll,4 (cf. def. of

<= Ilunll3/,:z (cf. (3.44)),

this and Gronwall’s inequality imply (3.43) for p= 2, = 1/2. To deal with the general
case p 2, (0,1) as in the assumptions of this corollary, we compute in (3.40) the
div-terms, multiply by w’=-I&o’(s)lP-&v’(s), integrate over G parts, use the
boundedness of k and as implied by (H1), (H2) and apply HOlder’s inequality to
arrive at

By (3.42),

so that by (3.46) and the embedding theorems

I,’(s)l,,zc.
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Furthermore, ]7gla,p<=C[Igll2,p (we have N=2, p>=2!), so that by (3.46)[K7g[a,p<=C
< Ot -01 0(indep. of g). By Sobolev’s lnequahtles [Vo I,,p=c(G,a ,P,P)IV [ Io’[[2,p (0 defined

in the assumptions)Iolo,p < c(G,a’,p,P)lVo’]12-l[o’[[ 2,p,

[vo’(s)12/ Ivo(s)[=<__c(llool[/ by (3.42)

=<c by (3.46).

Finally, by (3.44), Ivkl],p + ]v’l,p_-< cllulll,ap<__ cllulll+,,p,. Therefore, (3.47), (3.48’)
and Young’s inequality imply

1/(1-0Ilo’(s)ll2,p__<c{1 + Ilua,,l+,e, + Ilo(s)ll2,p}

{ 1/(1-0) SO }<=c 1 + [[Usl[l+r,p, + Ilooll=, / [v’(r)12,pdr

Set for abbreviation V’= W0 +"’*(G). Gronwall’s inequality and (3.46) show that

(3.48)
1/(1-0),Iv’lc(s,,w,p(a))<c 1 + Ilual[c(st,v).exp(cT),

where c= c( eko,kl,L., [G[, T,p, O, r,p*, Ik’[, [a"] ),
which implies (3.43). Lemma 3.9 is proved. 1

To show (3.9), we first notice, that by (3.37), (3.41)-(3.43) and by 0 + r __< 1,4

Gronwall’s inequality and (3.37) yield (3.39). Therefore, problem (3.40) with Uoa, fa as
data has u as a solution, which by (3.39) satisfies

Ilu, ll const.

The usual compactness argument yields a.(sub-) sequence

ua--.u in wl’(S, V).

By means of the approximate equation (3.40) one easily shows that u satisfies (2.1),
(2.2). This completes the proof of Corollary 2.4. O

Proof of Corollary 2.5. (a) follows directly from Corollary 2.4.
(b) set a:= q/p and apply (a). Then, uCI(S, Wol+r’p*(G)) and by (3.44), u

CI(s, Wol,q(G)). r]

Proof of Theorem 2.7. Let u be a solution of (2.1), (2.2) with respect to the initial
value Uo; and the right-hand sidefi, i= 1,2. Set for abbreviationf: fl -f2, w := u u 2,

4V’-- WOI+’r’P*(G), II’llv II’lh+-,p*.
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W0 N 01 N 02 and assume

u2 WI’I(s, w’P(G)),
f2LI(S, WI’p(G)),

UlWI’I(S,H(G)),
fl LI(S,H(G)).

Subtract (2.2) for u 2 from that for Ul, choose w’ as a test-function in the variational
formulation, integrate over G and make some rearrangements. Thus, for S

Iw,(t)l

By using the Lipschitz continuity of k and 3’ and applying H61der’s inequality, we
obtain

By the imbedding theorems, IWlp,c(G)llwll Also, Ilw(t)ll rllwoll r+cff)llw(r)llrdr, if
rE[l, o), with c=c(r,T). This and Young’s inequality imply for ?’= r if r< o, ?= 1
if r=o,

[[Wt(t)[]rEkl[[f(t)l[r=cl(t){[[W0[lr-[-f0 [[wt(s)[[rds}.
Integration and Gronwall’s inequality yield

For r’= we obtain

This proves (b) of the theorem, and (a) follows by setting u01- U02 fl =f2" I-’]

Proof of Theorem 2.8. First of all, notice that 7(t)" (u(t, .)) L(G), 7(t,x)>= ko
> 0 for a.a. S, x G. Thus, A(t)" div(k(t)v(-)) is an m-accretive operator on
LI(G). Now, [6, Thm. 1] yields the desired estimates. If Uo> O, f(T)_> O, then obviously,
lu(t)l(m= O, i.e., u(t,s)>=O a.e. []

Appendix. We list some facts on complex interpolation of B-spaces and, in partic-
ular, Sobolev spaces. Basic references are Bergy-L6fstrom [3], Lions-Magenes [13],
and Triebel [18].
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Let -[0,1] be a parameter, A "= (A0,A1) B’= (Bo, B1)mtwo couples of com-
patible B-spaces "[.,- ]," denotes the interpolation functor for the complex interpola-
tion method (cf. [3], [13], [18]), .,’= [A0,A1] . We have

LEMMA A1. [AoBo,AIB],=[Ao,A1],[Bo, B1] (algebraically and topologi-
cally).

LEMMA A2. Let .L’(Ai, Bi) with norm Mi, i=0,1. Then (A,,B,) and

LEMMA A3. C(S, Ao), C(S, A1)],= C(S,A,) (algebraically and topologically).
LEMMA A4. (a) Let s

1 1-

P* Po Pl

So s, Gc a (bounded) domain. Then [WSo’P(G), WSl’p(G)]z Ws*’p*(G).
(b) Let

1 1-r
p 2 p

Then [W’(G), W’P(G) W’P(G)] W+’(G).
LMM A5. Let z,p and be as in Lemma A4(b), S" [0, T] an interval of any finite

length,
wd,p(  )x c(s, c(s,

a linear and bounded operator with norm Mx,
o a linear and bounded extension of1, such that

c(s, c(s,
Then

" restriction of o to W+’(G)x C(S, W +’(G)) maps continuously into

c(s,
Let Mo denote the norm ofo, M that of. Then

Note that this estimate does not depend on S.
References/proofs. Lemma A1 follows from [3, Thm. 4.1.2]. Lemma A2 is a special

case of a theorem in [11]. Lemma A3 can be found in [13], if AI, Ao are Hilbert spaces,
otheise cf. [10]. Lemma A4(a)cf. [3, Thm. 6.4.5], (b)cf. [18, Thm. 4.3.3]. Lemma
A5 follows from Lemmas A1-A4.

Lemma A6. [3, Thm. 6.5.1]. Let sR, p>l, i=1,2. If s-N/PxS-N/p,
then Ws’p(G)C Ws’p(G).
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ON THE SCHRODINGER SINGULAR PERTURBATION PROBLEM*
H. O. FATTORINI

Abstract. The SchriSdinger singular perturbation problem arises in quantum mechanics and consists of
approximating certain solutions of the Klein-Gordon equations by solutions of the SchrOdinger equation in

functions of a small parameter. We consider here an abstract version for operator equations in Banach
spaces.

Key words, singular perturbation, operator equations, SchriSdinger equation

1. Introduction. Let A be a densely defined linear operator in a Banach space E.
We consider the abstract Cauchy problems

(1.1) e2u"(t; e)-iu’(t; e)=Au(t; e)+f(t; e) (- <t< ),
(1.2) u(0; E)--U0(E), U’(0; E) Ul(E),
and

(1.3) u’(t)=iAu(t)+if(t) (-c <t< ),
(1.4) u(0) u0

The SchrOdinger singular perturbation problem is that of showing that

(1.5) u( t; e) --) u( )
as e---) 0, where convergence in (1.5) can be understood in various senses. This type of
problem arises in relativistic quantum mechanics (see [11] for details), where one
considers functions of the form

u(x, t) v(x, t)exp(imct/h ),
where v is a solution of the Klein-Gordon equation for a free particle

h2ott h2c2Av + rrt 2c40

(here m is the mass of the particle, h Planck’s constant and c the speed of light). It
follows that u(x, t) satisfies the equation

h h
2
u tt u --- Au2mc

and thus an abstract differential equation of the form (1.1) (with f(t; e)=O) is ob-
tained; since h/2mc2 << 1 we expect u to be an approximation of the solution of the
Schr/Sdinger equation

h 2

ihut= -m Au.

The SchriSdinger singular perturbation problem for the abstract initial value problem
(1.1)-(1.2) was considered by Veseli6 (see [16], [17] and references therein) and by

*Received by the editors September 27, 1983, and in revised form July 5, 1984. This work was supported
in part by the National Science Foundation under grant MCS 82-00645.

Department of Mathematics, University of California, Los Angeles, California 90024.
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Schoene [11]. Schoene considers the case where A is a self-adjoint negative definite
operator in a Hilbert space H. In this situation the solutions of (1.1) and (1.3) can be
explicitly computed by means of the functional calculus for self-adjoint operators, and
the proof of (1.5) can thus be essentially reduced to that for the scalar case H C, A
( < 0). Using the author’s results in [4], Schoene’s theory can be extended to the case
where A generates a strongly continuous cosine function cg(t) uniformly bounded in

oo < < o (see {}3). However, no results for general A exist. We develop here a theory
that is sufficiently inclusive to handle the second order partial differential operator

m

(1.6) Au= Y’ Y’ aj,(x)D9D’u+ _. bg(x)Du+c(x)u.
j=l k=l j=l

To gain insight into the Schr/Sdinger singular perturbation problem it is useful to
compare it with the parabolic singular perturbation problem

(1.7) e2u"(t; e) + u’(t; e) =Au(t; e) +f(t; e) (t >= 0),
(1.8) u(0; 8) U0(g), ut(t; 8)-- Ul(I),

where the limiting initial value problem is

(1.9) u’(t)=Au(t) (t>=O),
(1.10) u(0) u0

A solution of (1.1) or (1.7) is a twice continuously differentiable E-valued function such
that u(t) D(A) and the equation is satisfied; solutions of (1.3) and (1.9) are accord-
ingly defined. The natural assumption on both initial value problems (1.1)-(1.2) and
(1.7)-(1.8) is that solutions should exist for arbitrary Uo(e), Ul(e) in a dense subspace
D _c E. Moreover, arbitrary solutions should depend continuously on their initial values
in the sense that

(1.11) Ilu(t;  )(llu(O;  )ll/llu’(0; (O<=t<=T).

It is easy to see by means of a change of variable that this assumption, for any of the
two initial value problems, holds if and only if it holds for the second order initial value
problem

(1.12) u"(t)=Au(t),
(1.13) u (0) u 0 u’(0) u

The propagators or solution operators of (1.12), (1.13) are defined in the subspace D of
initial data by cg(t)Uo=U(t), 5*’(t)Ul=V(t ), where u(.) (resp. v(.)) is the solution of
(1.12), (1.13) with u(0)=u0, u’(0)=0 (resp. v(0)=0, v’(0)=Ul), and extended by con-
tinuity to all of E; both are strongly continuous in m < < m with

(1.14) 5(t)U= fotCg(s)uds.
Moreover, there exist constants C0, o: such that

(1.15) ( ) <__ Coe’’’
For additional details see [2, p. 86]; we note that all the properties asked of the second
order initial value problem (1.12)-(1.13) are equivalent to the requirement that A
should generate a strongly continuous cosine function cg(t) (see [2, p. 91]).
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The change of variable o(t; e)-et/2eu(et; e) (see [6, p. 531]) produces the (unique)
solution of (1.7)-(1.8) in terms of the propagator cg(t) of (1.12)-(1.13):

u(t; e) e t/22( )
q-te-t/2e2ft/ell(((t/e2)-S2)l/2/2E) (S)(1 U (e))dse2 0 ((t/e)2_s2)l/2 0

(1.16)

e-t/2e2fot/elo(((t/e)2--s2)l/2) ( )+ g() luo(e)+ea
e 2e - Ul (I) ds

q_e_t/2e2ft/e ft/e- Io
((t/e--s --o

 (o)do

e_t/2e(t ) (1)Uo(e)+(t;e) Uo(e)
1 uo(e)+eu(e) + e)f(s e)ds

(see [18, p. 771 for the definition of the Bessel functions I0, I). Formula (1.16), wNch
defines the operator functions , and provides a solution of (1.7)-(1.8 if uo(e),
u(e) D(A); in general, u(t; e) will only be a weak or generalized solution (see [6, p.
533]). A solution (with the same reservations) of (1.1)-(1.2) can be obtained taking
u(it; i), where u(t; e) is the function given by (1.16). Noting that Io(-ix)=Io(ix)=
Jo(x) and that I(-ix)= -I(ix)= -Ul(X) (see [18, pp. 15, 77]), we obtain the follow-
ing expression for the solution of (1.1)-(1.2), where the operators , and are
defined:

(1.17)

ie it/2e2 t/% ((t/e)2 2)1/2
, 2. (9() _Uo(.)_jr_iE2Ul(.) ds

o "o 2e (o)do ei*/2f(es; e)ds

Uo(e)+i(t; e) Uo(e) -ii(t; e) 7Uo(e)+ie2ul(e)

=i(t; e) Uo(e)Wi(t e)(e2Ul(e))+ (1--" e)f(s" e)ds.
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The obvious difference between the representation (1.16) for (generalized) solutions of
the initial value problem (1.7)-(1.8) and the analogous representation (1.17) for the
initial value problem (1.1)-(1.2) lies in the different asymptotic behavior of the in-
tegrands. In formula (1.16) we can combine the asymptotic estimate II(x)l--
O(x-1/2eX) as x o0 ([18, p. 203]) with the decreasing factor e -t/2e2 and the bound
(1.15) for I1(-)11 to show that we can take limits directly as e- 0 using the dominated
convergence theorem: the results are uniform for bounded Ilu0(e)l,l, IleEul(e)ll and can
be expressed as follows:

(t; ,)--,s(t), e(t;

where S(t) is the semigroup generated by A. This semigroup is given by the abstract
Weierstrass formula

(1.19) S(t)u=1
(,//.t)l/2

e /4 ( S ) u dS

which shows, among other things, that S(t) can be extended to a semigroup S(’)
analytic in Re’>0. Convergence in (1.18) is in the uniform topology of operators,
uniformly on compacts of >= 0 outside of an "initial layer" of order t(e) with t(e)/e2
---, o (see [6, p. 539]). In contrast, the asymptotic estimate IJ(x)l O(x -1/2) combined
with the indifferent factor eit and (1.15) do not allow direct passage to the limit; in
fact, doing so formally, one can only hope for a relation of the type of (1.18) for 6 , i
with limit

(1.20) Si( ) u S( it ) u 1 fo is2/4tC(s)udS
(.it)x/2

e

which does not make sense even in the most favorable case where II(t)ll is uniformly
bounded in c < < o. Hence, computation of the limit (1.5) will have to be carried
out by indirect means. In particular, and in contrast with the parabolic singular
perturbation problem, the existence of the group S(t)=exp(iAt)= S(it) is not assured
by the existence-uniqueness assumption for (1.1)-(1.2) above but will follow from the
stronger assumptions in 2. (Note that Si(t ) is the "boundary value" of the analytic
semigroup S(’).) As may be expected, the convergence results for the operators (i(t; e)
and (t; e), which will be called in what follows the propagators or solution operators
of (1.1)-(1.2), are different in character from those for (t; e), (R)(t; e); in particular,
there is no analogue of (1.18) and (R) (t; e) is not even strongly convergent. Differences
will be pointed out below as they arise.

2. Assumptions on the initial value problem. We shall require that (1.1)-(1,2) (or,
equivalently, the initial value problem (1.12)-(1.13)) satisfy the existence--uniqueness
assumptions of 1, or, equivalently, that A generate a strongly continuous cosine
function. An additional assumption will be needed:

Assumption 2.1. Let i(t; e), i(t; e) be the propagators of (1.1), (1.2) (see 1).
Then there exist constants Co, C1, 0 independent of and e such that

(2.1) II ,(t;  )llz Coe’ltl, II ,(t;  )llz Cleltl (-c <t< c, 0__<e=< e0).

Assumption 2.1 can be given a simpler form as follows. Let u(t) be a solution of
(1.1)-(1.2) with f(t; e)=0. Set v(t)=e-it/2*u(et) or, equivalently, u(t)=eit/2*2v(t/e).
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Then v (t) satisfies

(2.3)

v"(t)=(A-1---I)v(t) (-<t<c)
4e2

(0) u0(), ’(0) u0()+,().

Accordingly, u(t) can be written in terms of the propagators W(t; A-(2e)-2I),
5(t; A- (2e)-2I) of the initial value problem (2.2)-(2.3):

(2.4) u(t)=ei’/2( t-" A-(2e)-2I)

(We note, incidentally, that formula (1.17) for solving (1.1)-(1.2) in terms of the
propagators of (1.12)-(1.13) can be obtained from (2.4) using the "numerical perturba-
tion" formulas in [14], although this will play no role in what follows.) Using (2.4), we
deduce that

or

(2.7)

(2.8)

i(t; ,)--e-leit/2e2._5( l--" A-(2e)-2I)

Accordingly, Assumption 2.1 will hold if and only if

(2.9) ]l(t; A--(2)-/)]I__< C)e ’ltl, Clee ’ltl

(-<t<m,O<e<=eo).

We shall examine in 4 a class of operators satisfying Assumption 2.1; as seen in
[}5, these operators include the partial differential operator (1.6) under adequate as-
sumptions on the coefficients.

We point out below a consequence of Assumption 2.1.
THEOREM 2.2. Let the operator A satisfy Assumption 2.1. Then iA generates a

strongly continuous group Si(. such that

(2.10) [ISi (t)l[<= Coelt’ ( oo < < ),

with Co and o the constants in (2.1).
Proof. If u D(A2) then it follows from formula (1.17) (or from the considerations

at the beginning of this section) that i(t; e)u is four times continuously differentiable,
’( t; e) u D(A) and

(2.11) t2(;’t’(t; e)u-iG;’(t; e)u=AG;’(t; e)u (-m <t< m).
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On the other hand, we have

;’(0; e)u=e-2(Ai(O; e)u+if$;(O; e)u)=e-2Au,
i’"’(O’, e)u=e-2(A;(O e)u+i;’(O’, e)u)=ie-4Au,

thus it follows from (1.17) that

;’(t; )u=-,(t; )A.+-(t; )a.

Accordingly, it follows from Assumption 2.2 that

We take now a sequence { e, }, 1 > e > e > > 0 to be specified later. For u D(A)
we have

n2(it’(t; en)u it’(t; gn + 1) U ) i(i(t gn)U i(t En+ 1) U )
), (t. . 1).=A(i(t; En)U-i(t; En+l)U)+(En--En+ +

Using (1.17) again, - ) i(t-, n), (s’, ,).

In view of (2.12) and Assumption 2.1, if uD(A) we have

(2.13) Ilei(t. En)U-ei(t" n+l)U[l< Clt[e’ 1- En+l IIAull2
En

Selecting now a sequence (e,} that tends to zero sufficiently slowly (say, e,=n-1/2),
we show that ((t; e,)u} is a Cauchy sequence, uniformly with respect to on
compact subsets of - < < . Using the uniform bound (2.1) and the denseness of
D(A2), we deduce that (i(t; e,)} converges strongly, uniformly on compacts of- <t < to a strongly continuous operator valued function S(s) satisfying the
estimate (2.10).

Denote by (; e)u the Laplace transform of (t; e)u. Writing (1.1) for i(t; u)
(uD(A)) and taking into account that i(0; e)u=u, (0; e)u=0, we obtain, after
integrating from 0 to two times,

t (S.E)U_u)ds=t(t_s)Ai(S.E)udse2(i(t;e)u-u) -i (i

Taking Laplace transforms, we obtain

e2(2i(;e)u--u)--i(i( e)u-u)=Ai( e)u,

where the introduction of A under the integral sign is easily justified. It follows that

i(k; e)u=(e2X-i)R(e2X2-i; A)u

for ) > a. Putting e e, with { e, } a sequence as above and taking limits, we obtain

/(,)u= -iR(-i;k; A)u=R(; iA)u
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for uD(A), and thus for all u E. It follows then that Si(t ) is a strongly continuous
group with infinitesimal generator iA, which ends the proof of Theorem 2.2.

We note that our proof of Theorem 2.2 includes a result on the convergence of
i(t; e) to Si(t). However, this will be considerably improved in 3.

3. Convergence results. Let uD(A2). The function u(t; e)=(t; e)u is a
solution of the homogeneous equation (1.1) with u(0; e)=0, u’(0; e)=’(0; e)u=
e-2A(0; e)u+ ie-2(0; e)u=e-2Au. It follows that

(3.1) (:(t; e)u=(R)i(t; e)Au.

On the other hand, v(t; e))=(R)’(t, e)u is also a solution of the homogeneous
equation (1.1) with v(0; e)= (R)’ -2 v’(0" e)= (R)"(0, )u= u, (0, )u -A(R)(0; )u

o+ ie 2(R)i( e)u= ie-4U, SO that

(3.2) ;(t; e)u=e-2i(t; e)u+ ie-2(R)i(t; e)u.

Since all operators in (3.2) are bounded, the equality can be extended to all u E. We
combine (3.1) and (3.2), the latter inequality written for an element of the form Au. The
result is

(3.3) )Au.e) iA$i(t, u (t e)u ie2i(t e

Accordingly,

i(t; e)u-Si(t)u=-ie2fotSi(t-s);(s; e)Auds= -ieg-fot;(t-s; e)Si(s)Auds.

If u D(A2), we can integrate by parts. The result is

(3.4) i(t; e)u-Si(t)U= -ie2(R)i(t; e)Au-ie2fti(t-s; e)Si(s)A2uds.
"0

A similar expression was used by Kisyhski [8] for the parabolic singular perturbation
problem. As an immediate consequence of (3.4) we obtain:

THEOREM 3.1. Let A be an operator satisfying Assumption 2.1 and let u( t; e) be a
solution of the homogeneous problem (1.1)-(1.2), u(t) a solution of the homogeneous
problem (1.3)-(1.4) with uo D(A2). Then we have

(3.5) ]lu(t; e)-u(t)l]=<fleel’l(llAu011/flltl]lhZu0[[)
/CoeltlllUo(e)-Uoll+Gel’le=llu(e)l (-c <t< o).

Theorem 3.1 implies that when uD(Az) we have Ilu(t; e)-u(t)l] O(e2) uniformly on
compacts of o < < o if Ilu0()-u011 O(), IlUl()ll-- O(1) as -o0,

Estimates of the same sort can be easily obtained for the derivative u’(t; e) if
uoD(A3) and Uo(e)D(A). In fact, v(t; e)=u’(t; e) is the generalized solution of
the homogeneous equation (1.1) satisfying v(0; e)= u’(0; e)=ul(e), v’(0; e)= u"(0; e)=
e-2(Auo(e)+ iul(e)). On the other hand, v(t)=u’(t) is the solution of the homogeneous
equation (1.3) with v(O)=u’(O)=iAuo. Applying Theorem 3.1 to v(t; e), v(t), we
obtain:

THEOREM 3.2. Let A be as in Theorem 3.1 and let u(t; e) be a solution of the
homogeneous problem (1.1)-(1.2) with Uo(e) D(A), u(t) a solution of the homogeneous
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problem (1.3)-(1.4) with uo D(A3). Then we have

(3.6) Ilu’(t; Cx=el’l(llauoll/ CxltlllaUoll)
/ eltl ( Collu ( e) iauol[/ Cllux ( e) iauo ( e) )

It follows from this result that if u0 D(A3) and Uo(e)D(A) then
Ilu’(t; e)-u’(t)ll--- O(e) uniformly on compact subsets of oe < < oe if Ilu(e)-iAuol[
=O(e2) and IlUl(e)-iauo(e)ll--O(e2) or, equivalently, if Ilul(e)-iAuoll=O(e2) and
Ilhuo(e)-auoll O(E2).

Theorems 3.1 and 3.2 allow us to deduce convergence results for arbitrary initial
conditions.

THEOREM 3.3. Let u(t; e) be a generalized solution of the homogeneous system
(1.1)-(1.2) with Uo(e), u(e)E, u(t) a generalized solution of the homogeneous system
(1.3)-(1.4) with uo E. Assume that

E2(3.7) Uo(e)--,Uo, u(e)-oO as e-oO.

Then

(3.8) u(t; e)u(t) as eO

uniformly on compacts of
Proof. Pick 15>0 and choose fiD(A2) such that II-u011<8. Let fi(t) be the

solution of the initial value problem (1.3)-(1.4) with (0)= ft. Applying Theorem 3.1,
we deduce that

(3.9) [[u(t; e)-u(t)ll< [[u(t; e)-(t)[[/ I[(t)-u(t)[[/ CleZeltl(l[AVt[[+ CltlllAll)
/ CoeltlllUo()- all/ CxeOltle2llux()ll/ c1te’l’l

z Cle2eltl(llAll+ ClltlIIA2II) + Coel’lllUo(e)- uol[

+ Cle’ltle2llUl() I1/ 2Cote’ltl"

Taking e>0 sufficiently small, we can obviously make the right-hand side of (3.9)
<_ 3Coeoa in Itl _-< a > 0. This ends the proof.

THEOREM 3.4. Let u(t; e), u(t) be as in Theorem 3.3. Assume that Uo(e), UoD(A)
and that

(3.10) Auo(e)--*Au, Ul(/)--- iAu0 as e--*O.

Then

u’(t; e)-ou’(t) as eO,

uniformly on compacts of oe < < oe.

Proof. Given 5 > 0 choose D(A3) such that IIA Aoll _-< B so that
IIr’(t)-u’(t)Jl=llSi’(t)(r-uo)ll---llSi(t)(art-auo)ll <_ CoBe 1‘1. This time we use (3.6)
with instead of Uo; the details are omitted.

It is natural to ask whether a result of the type of Theorem 3.3 exists where the
convergence of u(t; e) to u(t) is uniform with respect to u0 for bounded Iluoll. To decide
this and other related questions we examine the case where E is the Hilbert space 2 of
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all complex valued sequences ( Un; I ____< n < oe ) such that Ilull (Elu.l)/ < o and A is
the (self-adjoint) operator

(3.11) A ( u, ) ( lu, },
where ( } is a sequence of real numbers bounded above (the domain of A consists of
all { Un} such that the right-hand side of (3.11) belongs to/2). We shall also use the
space E =12 with its ordinary Euclidean norm and an operator A of the form (3.11).
We check easily that the solution operators of (1.1)-(1.2) corresponding to the operator
A are

(3.12)

eX(e)t--eX()t
(3.13) (t;e)(u}=

e2(X(e)_XS(e))u.
where X (e), X (e) are the roots of the characteristic polynoal

(3.14) e22-- iX--n O,

(3.15) X+(e) =(1 + (1--4e2)1/2 X-(e)=(1-(1-4e:n)1/
2e2 2e2

(note that, since the sequence {,} is bounded above, the roots X(e), X2(e) will be
different for e sufficiently small).

Example 3.5. Convergence in Theorem 3.3 is not uniform with respect to uo even if
Iluoll is bounded. We take E= , n n:, en=2 3/4n. Then

-2n2iXX( n)= 3

and, since Si ( ) ( u, } ( e ’: u },
3 _i(2n2/3)t 1 _i(2n2)t _in2tIle,(t; e.)(u.}-s,(t)(u.)lia xe +xe -e lUnl.

In contrast, in the abstract parabolic case (see 1), (t; e)S(t) in the uniform
topology of operators uniformly on compacts of t>=0 except in an "initial layer"
0 =< t _< t(e) where t(e)/e2 o (see [6, Thm. 3.2]).

Example 3.6. The condition e2Ul(e)O in Theorem 3.3 for convergence of u(t; e)
cannot be weakened. We take E C and rewrite formula (3.13) as follows.

which does not have a limit as e-0 unless e2Ul(E)’-0. In contrast, in the abstract
parabolic case, (R)(t; e)---, S(t) in the uniform operator topology under the same condi-
tions as 6 (t; e) S(t) (see Example 3.5).

Example 3.7. The rate of convergence in Theorem 3.1 is best possible. We use the
space E 12 and the operator A in (3.11). Write

,(t; } { o (t; }.



ON THE SCHRODINGER SINGULAR PERTURBATION PROBLEM 1009

After some computation with Taylor series, we see that

(3.17) O,(t; e)-eit’tq- ie2lj.2neit"t-e2tj.neit"t-e2p.neir"(e)t+ O(e4)

where rn(e) is a real number. Assume that { u ) 2 is such that

II ,(t; u )ll< =
as e 0. Rewrite this inequality as

Ee-41pn(t e) e’tl2lul C2.

Taking (3.17) into account and keeping in mind that/n---> , we obtain that

so that u D(A-). We recall that in the abstract parabolic case, convergence of order E
2

can be obtained under the weaker assumption that uD(A) (see [6, Thm. 5.2]).
Example 3.8. Convergence in Theorem 3.3 is not uniform in >= O, even if =0 in

Assumption 2.1. We take here E=C 1, Au=lu with/<0, Uo(e)=u, ul(e)=0; the fact
that ;(t; e)u does not converge uniformly to Si(t)=e i"t is an obvious consequence of
the fact that e x+(e)t does not converge uniformly to e it in >= 0.

4. Verification of Assumption 2.1. We examine in this section operators that satisfy
Assumption 2.1, beginning with the case where E H is a Hilbert space and A a normal
operator. It follows from the general theory ([14], [2], [3]) or directly that A generates a
strongly continuous cosine function cg(t) satisfying

(4.1) c(t)<_ Ce ’ltl (-<t<c)

if and only if o(A), the spectrum of A, is contained in the region

(4.2) r() (" Re)<2- (Im))2)42

(r() is the region to the left of the parabola passing through 2, .3r_ 2iw.) We note in
passing that c(t) can be computed using the functional calculus for normal operators"

A)u= f. c(t;
(A)

where P(dt) is the resolution of the identity for A and c(t;/x)= cosht/x1/2= 1 + t2/2!
+ t42/4! + .... Moreover, the constant C in (4.1) can be taken equal to 1. (In fact the
estimate can be improved to IIP(t)l _< cosh 0t.)

THEOREM 4.1. The operator A satisfies Assumption 2.1 if and only if o(A) is
contained in a half-strip.

(4.3) Re/__< a, [Imtl-<b.

Proof. We have seen (Theorem 2.2) that Assumption 2.1 implies that iA generates
a strongly continuous group. Since, on the other hand, A generates a cosine function it
follows that o(A) is contained in the intersection of a horizontal strip with a region
r(). This intersection is itself contained in a half-strip of the form (4.3).
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Conversely, assume that o(A) is contained in a region of the form (4.3). Then
o(A- (2e)-2I)_ r(0(e)) if and only if b<_o(e), where

1 b2

4e2 40(e)2

so that, if e =< 1/2a 1/2 we have

o() 2- 4

2

a +b2
1/2 1 }

1/2

4e--S + a __< (1-4ae2)-l/2be

and the first inequality (2.1) is verified. We note next that

5g(t; A-(2e)-2I)=s(t; A-(2e)-2I),
where s(t; 1)=t-I/2sinhtlx/2=t-t31x2/3!+tst3/5! Accordingly, the norm
11 5a(t; A-(2e)-2I)[[ does not surpass the supremum of [l-/2sinhtl/21 in the half
strip defined by

1(4.4) Re/z < a Jiml < b
4e2

If belongs to the region defined by (4.3), then

1 )1/2 (1_4ae2)1/2
4e 2e

Hence

(,; 2(1 4ae ) 1/2ee l’l

_< 2e(1 4ae2) 1/2exp((1 4ae2) -1/2belt[),
which is the second inequality (2.9). This ends the proof of Theorem 4.1.

We note the important particular case where A is self-adjoint with -A >= 0, in
which case we can take 0=0 in (2.9). Another case that can be reduced to this is
covered by the following result:

THEOREM 4.2. Let A generate a uniformly bounded cosine function c(t), i.e.,

(4.6) II’(t)ll_-< C (- o <t< o),
in a Hilbert space H. Then A satisfies Assumption 2.1 with o O.

Proof. It was proved in [4] that if A is an operator that satisfies the assumptions in
Theorem 4.2 then there exists a (self-adjoint) bounded, invertible operator Q and a
self-adjoint operator B with B =< 0 such that

(4.7) A Q-BQ.

Using an obvious notation, cg(t; A)= Q-leg(t; B)Q and 5a(t; A)= Q-Sa(t; B)Q, thus
it follows from Theorem 4.1 that A satisfies Assumption 2.1 as claimed. To compute
explicitly the constants Co, C1 in (2.1) or the constants Cd, Cx in (2.9), explicit estimates
for the norms IlOll, [[Q-XI[ are needed. These are given in [4], but it is not clear they are
best possible.
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Another class of operators satisfying Assumption 2.1 is described in the next
theorem.

THEOREM 4.3. Let E be an arbitrary Banach space, Ao an operator satisfying,
Assumption 2.1, B a bounded operator. Then A Ao + B also satisfies Assumption 2.1.

Proof. If Ao generates a strongly continuous cosine function (t; A) and B is a
bounded operator, then ([5, Thm. 2.1]) A =A0 + B also generates a strongly continuous
cosine function (t; A0 + B). This cosine function can be expressed by the formula

(4.8) c(t;A)u=Cg(t;Ao+B)u=Cg(t;Ao)u+ (t; A0). BSt’(t;Ao)u

+ (t; Ao), se(; Ao)* S(t; Ao)U+ "",

where, for each u E the series is uniformly convergent on compact subsets of e <
< . The corresponding formula for 5ais

(4.9) Sf(t; A)=5(t; Ao+B)=Sf(t; Ao)+Sf(t; Ao), BSf(t; Ao)
+so(t; Ao), s(t; a0), so(t; Ao)"

the series being uniformly convergent in the uniform topology of operators, for oo <
< ao. In both formulas, the convolution (F. G)(t) of two strongly continuous opera-
tor-valued functions F(t) and G(t) is defined by

(F*G)(t)u= fotF(t-s)G(s)uds.
In fact, [5, Thm. 2.1] is considerably more general; for results in the same vein see [12]
and [15].

Let Ao satisfy Assumption 2.1. Using (4.8) to express cg(t; Ao+B-(2e)-I)
cd’(t; Ao-(2e)-2I+ B)and estimating the convolutions in an obvious way, we obtain

(4.10)

(,; / < Co’eeltl-f- CCIIIB[[ [tleeeltl-t- CC21[B119 [t[2 e2e eltl -t-

--Ce (a+Callnll)e[t[ (--(E) <t< , 0__<e=<e0).

A similar estimation of 5(t; Ao + B-(2e)-2I) written using (4.9) yields

(4.11)
2Itl ,o1/i i)ll- Cxee’ltl+ cllllltle’t’+ Co31JBIlsi-.e +""

=Clee (+ClllBII)eltl (-c <t< oo, 0=<e=<eo).

This ends the proof of Theorem 4.3.
In the rest of this section we examine an extension of Theorems 3.1 and 3.2

obtained by means of interpolation theory. We assume A =A0 + B where B is bounded
and Ao is self-adjoint and bounded above (that A satisfies Assumption 2.1 has been
proved in Theorem 4.3). To simplify, we also assume that o(Ao)C__ (-oo, 0), which can
always be achieved by an obvious decomposition of Ao. Finally, we assume that B
maps the domain of A0 into itself, that is,

(4.12) BD(Ao) c__ D(Ao).
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We recall (see [10, Chap. IX]) that if " o + i’r is an arbitrary complex number the
fractional powers (-A0) can be defined using the functional calculus for Ao,

(-a0)u= .:e(-d.)u,

where P(dt.t) is the resolution of the identity for A 0. We have

(4.13) I[(- A0)ul[
2

II( A0) +’"u,,211 =f0l2[IP(-dg)u[12

Let Q" H H be a linear operator such that

(4.14) I[aullgollu[I (un), [[aullzg2llA20ull
and consider the H-valued holomorphic function

q(o+ir)=(-Ao)--’Ou

(4.16) IlaullzgCo2-)/2g;/=ll(-o)Ull (uO((-Ao)U), 0=<0=<2).
We apply this argument to the operator i(t; e)-Si(t). Using (2.1), we obtain

(4.17) [l,(t; )u- S,(t)ull
The second estimate is less trivial, since (3.4) provides bounds in terms of IIAull and of
IIA2ull rather than in terms of IIAII as needed. To perform the conversion, we note that

(4.18) AZA= (Ao + B)2A-= (Ao +AoB + BAo + BZ ) Ag
I+AoBA2 +BA + BZA 2,

where the first, third and fourth operators are trivially bounded (in fact, even AoBA
is bounded because of (4.12) and of the closed graph theorem). On the other hand, we
have

(4.19) AA2=(Ao+B)A2=AX+BA.
It follows from (4.18) and (4.19) that

(4.20) [li(t; e)u-Si(t)ull<=c;ez(l+ltl)e’ltl[lA)u][ (uD(A)).
Combining (4.17) and (4.18) with the preceding remarks, we deduce that if u

)o), 0 < o < 2, we haveD((-Ao

(4.21) IIi(t; e)u-Si(t)ull<=C(o)e(l+ltl)/e’ltll[(-Ao)U[I

hence

(4.15) IIw(o+i)ll<_Ko-)/K/ (0__< o_< 2);

for u H fixed. Making use of (4.14) and applying Hadamard’s three-lines theorem [9]
to p, we deduce that
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THEOREM 4.4. Let E=H be a Hilbert space, A =A0 + B with B bounded and A
self-adjoint and bounded above, and let u(t; e) be a solution of the homogeneous problem
(1.1)-(1.2), u(t) a solution of the homogeneous problem (1.3)-(1.4) with u H D((-Ao)),
0 < o <= 2. Then, if (4.12) holds, there exists a constant C(o) such that

(4.22) Ilu(t; )-u(t)ll_-< c(o)e(l + Itl)/2e  ’ ll(-A)u011
+Coe l’llluo( )-uoll/Cle l’l =llux( )ll <t<

The proof follows that of Theorem 3.1. Equation (4.17) implies that when u H

D((-Ao)), 1 <0__<2, we have Ilu(t; e)-u(t)ll-O(e) uniformly on compacts of t_>_0
if Ilu0(e)- u011 O(e), Ilux(e)ll O(e-=) as e 0.

THEOREM 4.5. Let E, A be as in Theorem 4.3, and let u(t; e) be a solution of the
homogeneous problem (1.1)-(1.2) with Uo(e)H D(A), u(t) a solution of the homogeneous

I+oproblem (1.3)-(1.4) with uo H D((-Ao ). Then there exists a constant C(o) such that

(4.23) Ilu’(t; e) u’(t)I =< C(o)e(1 + Itl) /2e oltlll(_A) l+ru0[I
/ eltl( follU(e)-iAuoll / qllUx( )-iAuo(e)]l).

As a consequence, we deduce that Ilu’(t; e)-u’(t)ll--O(e) if u0H D(A3), Uo(e)H
D(A) and Ilu(e)-iAuoll-O(e), Ilux(e)-iauo(e)ll--O(e) or, equivalently, if
Ilux()- iauoll O(e) and Ilauo(O-auoll 0().

5. Elliptic di||erential operators. We examine the operator (1.6) written in diver-
gence or variational form,

m m m

(5.1) A= _, _, D(as(x)Du)+ E ])s(x)DSu+c(x) u
j=l k=l j=l

in an arbitrary domain f of m-dimensional Euclidean space R m; here Dj= O/Oxj and
x=(xl,.- ",Xm). (Note that (5.1) and (1.6) are equivalent entities only if the coefficients

aij(x ) are differentiable.) The symbol A(fl) will denote the restriction of (5.1) obtained
by imposition of a boundary condition fl, either the Dirichlet boundary condition

(.2) u(x)=0 (xr)
or the variational boundary condition

(5.3) Du(x)=_, ,,aj,(x),jDku(x)=y(x)u(x)

where F is the boundary of f and P--(Pl,"" ",Pro) is the exterior normal (unit) vector at
x; Du is called the conormal derivative of u at x. The hypotheses on the coefficients of
A are as follows. We assume that the a.k and c are measurable and bounded in f.
Complex values for c are allowed; the ajk are real and satisfy the uniform ellipticity
condition

(5.4)

for some x > 0. Finally, we assume that the first order coefficients .(x) are imaginary,
that is

(5.5) )j ( x ) bj ( x )
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with bj real (we shall see later that this requirement cannot be eliminated) and that each
bj belongs to WI’() (i.e., it has first order partials in L(f)).

We begin with the case of the Dirichlet boundary condition (5.2). Let H01(f)
Wo1’2(2) be the closure of (f), the space of all Schwartz test functions with support
contained in 2, in Hl(f) W’2(f). For u,v Ho(f) define

(5.6) )(u,v)= E Ea:,D+rD’v-- Eb:(D:v--Dc) +arv dx,

where a > 0 is a parameter to be fixed below. Obviously, (u, v) is linear in v, conjugate
linear in u, and we check easily that (v,u)=(u,v). Using the uniform ellipticity
assumption (5.4), the inequality [(DJu)v[<= (e/2)IDJI + (1/2e)lv[ - and its counterpart
for [DJoI we easily show that if a is large enough, the first inequality

(5.7) c (u,u)z(u,u)ozC (u,u) (u H0 (U))
holds for some c>0, where (u,o) is the original scalar product of H(12); the second
inequality (5.7) is a consequence of the assumptions on the coefficients. From now on
we shall assume H0(f) is endowed with the scalar product (5.6) and its associated norm
Ilull,-- ( u, u)l,/2.

We define an operator A0(fl) as follows: uD(Ao(fl)) if and only if uHo(f)
and the functional w(u,w) is continuous in the norm of L2(f); if v is the element
of L2(2) such that (u, w)=(v, w) then we set Ao()u=au-o. This definition can be
abbreviated as follows:

(5.8) ((od-Ao(fl))u,w)=(u,w), (wH(f)).
It is routine to check Ao(fl) is symmetric and densely defined, and that its construction
does not depend on a.

Let o be an arbitrary element of L2(f). The functional w--.(v,w) is continuous in
L2(f), thus in H(f), hence there exists uH(12) with (u, w)=(v, w); this means
that uD(Ao(fl)) and au-Ao(fl)u=v. Since the same argument works for any >= a,
we have shown that

(5.9) (XI-Ao())D(Ao())=E (A>=a).

Moreover, ((AI-Ao(fl))u,u)=(u,u)x>O so that ,I-Ao(fl) is one-to-one for
We also obtain as a byproduct of (5.9) that (hl-Ao(fl)) -1 is bounded, so that
h p(Ao(fl)) if h>= a. This implies that Ao(fl) is self-adjoint (see [10, p. 322]).

The full operator A(fl) is constructed by perturbation. Let

,u 2 ( ) ) / cu- 2 ( ) u / cu.

Obviously, B is a bounded operator. We define

(5.11) A ( fl ) =Ao( fl ) +B

and it follows from Theorem (4.3) that A(fl) satisfies Assumption 2.1.
The case of boundary conditions (5.3) is slightly different. Here the basic space is

H(12) instead of H01() and we assume to be bounded and of class C() (see [1]) so
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that the following particular case of Sobolev’s imbedding theorem holds"
THEOREM 5.1. There exists a constant C such that

where

(5.13) l <=p<m, l <=q<=
m-p

F is the boundary of and do is the hyperarea differential on F.
For proofs of considerably more general facts see [1].
Theorem 5.1 will be used as follows. Let 3’ be measurable and bounded on F and

let ,q. Then, due to (5.12) for p q= 1 we have

But

(5.14)

where we check easily that C(a) 0 as a o.
We introduce a functional in

___
Hx() as follows"

)
Obviously, (u,v)’ has all the properties of a scalar product, both inequalities (5.7)
being valid for (u,u)’ for a sufficiently large in view of (5.12) and subsequent com-
ments. Since by Theorem 5.1, is dense in HI() we can extend (u,v)’ to Hl(f)
preserving in particular (5.7). From then on construction of the operator Ao(fl) pro-
ceeds in the same way as for the Dirichlet boundary conditions: we can condense the
diverse steps in the equation

(5.15) ((aI-Ao(fl))u,w)=(u,w)’ (wH()).
The operator Ao(fl) is again self-adjoint" the full operator A(fl) is obtained by formula
(5.11), where B is the bounded operator defined by (5.10). It follows again from
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Theorem 4.2 that A(fl) satisfies Assumption 2.1. Summarizing:
THEOREM 5.2. Let f be a domain in R m, A the operator (5.1) with ajk, cL(f),

j Wl’(fl). Assume, moreover that the ajk are real and satisfy the uniform ellipticity
assumption (5.4) and that the j are purely imaginary. If is the Dirichlet boundary
condition (5.2), the operator A() defined by (5.8) and (5.11) satisfies Assumption 2.1. If
f is bounded and of class C (1) and is the boundary condition (5.3) with measurable and
bounded in F, then the operator A() defined by (5.15) and (5.11) satisfies Assumption
2.1.

Obvious generalizations of this result are possible: for instance, we may only
assume that F (but not necessarily f) is bounded, or we may relax (5.4) to

aj(x)Jk>=O fora
and only require Re c to be bounded above, at least when no first order terms are
present. On the other hand, the requirement that the ajk be real and the bj be
imaginary, cannot be omitted, as the following example shows. Let m 1, 2 , A the
constant coefficient operator

Au au" + bu’ + cu.

Using the Fourier-Plancherel transform, we show that

o(A)= {-ao2-ibo+c o <o< o)

so that: a) o(A) will not be contained in a region of the form (4.2) if a is not real; b) if
b is not imaginary, o(A) will not be contained in a half-strip of the form (4.3).

Remark 5.3. Theorem 4.4 has an interesting application here. Although
D((-Ao(fl))) is not easily identifiable even for o= 1, one can show, using the argu-
ments in [7], that

n((-io())l/2)--U(a),
when/3 is the Dirichlet boundary condition (5.2), or

n( ( -io( ))l/2) ul(" ),

when fl is the variational boundary condition (5.3). We shall use this for f ’, in
which case the boundary condition is irrelevant and H01(f) HI(). Condition (4.12)
will hold if ,DJb,, ce W’() so that Ilu(t; e)-u(t)ll--O(e1/2) if uoeH(f and
Ilu0()-u0ll O(t2), Ilux()ll O(e-3/=).

6. The inhomogeneous equation. As pointed out in 3, the explicit solution of (1.1)
with null initial conditions Uo(e), Ul(e) is

(6.1) u(t; e)--foti(t--s; e)f(s; e)ds.

We have already noted (in Example 3.6) that (R) ;(t; e) is not even strongly convergent as
e 0. However (and somewhat surprisingly) (6.1) turns out to translate convergence of
f(t; e) into convergence of u(t; e) at least for a class of operators containing the
differential operators in 5.
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THEOREM 6.1. Let E H be a Hilbert space, A =Ao + B, where Ao is a self-adjoint
operator bounded above, B a bounded operator, T> 0 and (f(s; e); 0 < e <_ eo ) a family of
functions in LI(- T, T; H) such that

(6.2) f(s; e)f(s) as e-O

in LI( T, T; H). Finally, let u(t; e) be the (weak) solution of the initial value problem

(6.3) e2u"(t; e)-iu’(t; e)=Au(t; e)+f(t; e) (Itl<=T),
(6.4) u(0; e)=0, u’(0; e)=0.
Then

(6.5) u( t; e) u( )
uniformly in It[ < T, where u( t; e) is the weak solution of

(6.6) u’(t) iAu( ) + if(t),
(6.7) u(0) =0.

Proof. We can obviously assume that o(Ao)_ (0, c) (if not we incorporate into B
the "part" of Ao with spectrum in/ >__ 0). We shall first show Theorem 6.1 for Ao and
then add the "perturbation" B, considering first the case f(t; e)=f(t) independent of e.
Let P(dl) be the resolution of the identity for Ao and (R);(t; e; A0) the (second)
propagator of (6.3) with B= 0. The same argument used in {}3 shows that

fo(6.8) (R)i(t; e; A0)u= (t; e; I)P(dl)u

for u E, where

(6.9) (t; e;/)
eX+(t*;e)t_

and X +(/; e) i(2e2) 1(1 + (1 4e2p,)l/2), k-(/x; e)-- i(2e2) 1(1 (1 4e/)1/2) are the
roots of the characteristic polynomial e,2- iX-/=0 (- c < #__< 0). Let 0 __< __< T. We
can write

(6.10) fo f fo’u(t; e)= ’i(t-s; e; Ao)f(s)ds=
o

P(dlx) (t-s; e; Ix)f(s)ds

after an easily justified interchange in the order of integration. We note next that

(6.11) ford(t-s; e; t)f(s)ds

On the other hand,

(6.12) fot*(t-s; e; I)f(s)ds=
eX+(t*;e)t

fo -x+(t*;e)sf(s ) ds
i(1 4e2p,) 1/2

e

eX-(t*;*)t fotei(1 4e2//,) 1/2
e)Sf(s) ds

=Ii(t; ; e)+I2(t; I; e)=I(t; t; e).
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Since X-(/; e) i/ as e 0 we deduce that, for/x fixed,

(6.13) I2(t;/; e)ieitfote-if(s)ds
uniformly in 0 T. To handle the first integral we note that X +(g; e)i and use
the following uniform version of the emann-Lebesgue lemma" if g(t) is a (scalar or
vector-valued) function in Lt(0, T) then

(6.14) lira e )ds=0

uniformly in 0 N N T; the proof is acNeved by appromating g in the L norm by
smooth functions. Applying (6.14) to the first integral in (6.11), we obtain

(6.15) Ii(t;;e)0 ase0

uniformly in 0 T.
Assume that u(t; e) u(t) unifory in 0 T. Then there exists a sequence

{t,), Ot,T and a sequence {e,), e,0 such that Ilu(t; e)-u(t)ll>0 for all
n. However, using (6.15) and convergence of I(t; ; e) we obtain, using a variant of
Lebesgue’s donated convergence theorem, that IlU(tn; e,)- u(t)ll o, a contradic-
tion. A silar argument takes care of the range T 0. The case where f depends
on e is handled by writing

(6.16) u(t; e)= ti(t-s; e; Ao)f(s; e)ds

and mang use of the uniform bound (2.1).
The general case is disposed of as follows. From (2.6) and the perturbation

formula (4.9), we have

hence

(6.18) u(t; e)=(R)i(t; e; Ao)* f(t; e)+(R)i(t; e; Ao)* B(R)i(t; e; Ao)* f(t; e)

+i(t; e; Ao)* Bi(t; e; Ao), Bi(t; e; Ao), f(t; e)+

Now, using (2.1) we show that the nth term of the series (6.18) is bounded in norm by

e’llf(t;
On the other hand, repeatedly using the previously proved result on convergence
of (t; e; Ao),f(t; e) in each term of (6.18), we deduce that (t; e; A0)
B(t; e; Ao),f(t; e), (t; e; Ao),B(t; e; Ao),B(t; e; Ao),f(t; e),.., all

converge uniformly in lt[ T; the lit of the nth term of (6.17) is

Si(t; Ao)* BSi(t; Ao)* * BSi(t; Ao)* f(t),
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thus the sum of the series converges uniformly, as e---, 0, to

Si(t; 40)* f(t)+Si(t; Ao)* BSi(t; A0)* f(t)

+S(t;Ao)* BS(t;Ao)* BSi(t;Ao)* f(t)+ S(t;Ao+B), f(t),
where Si(t; Ao) (resp. S(t; Ao+ B)) is the group generated by iA o (resp. by i(A o + B)).
This completes the proof of Theorem 6.1.
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ORDER STARS, APPROXIMATIONS AND FINITE DIFFERENCES
III. FINITE DIFFERENCES FOR ut= tOUxx*

A. ISERLESt

Abstract. Given the finite difference discretization

Oj()//n+l i tgmt
"m+j j Ur+j -’-

j=--r j=--r (AX)

of the differential equation ut---oUxx oC, Re0a>__0, we prove that a unique choice of coefficients gives
order 4 r + 1 and that no higher order method exists. Furthermore, we show that this highest order method is
stable for every r > 1. Our analysis uses order stars of first and second kind, in conjunction with Pad6 theory
and computational complex analysis.

1. Introduction. An extensive effort has been devoted in the last few decades to
the determination of the highest possible order of a "stable" scheme. The results to
date are of interest in several branches of numerical analysis of differential equations:

(a) The order of a k-step one-derivative zero-stable method for ODE’s may not
exceed 2[(k + 2)/2] [4], [11];

(b) The order of a multistep n-derivative A-stable method for ODE’s may not
exceed 2n [5], [16];

(c) The order of a stable semi-discretization or a stable full discretization of ut u
may not exceed min{2r + 2,2s, r + s } (for an explicit scheme) or min(4r + 2, 4s,2r + 2s )
(for an implicit scheme), where r and s denote the number of points to the left and to
the right, respectively, along the x-axis [8], [12], [13];

(d) The order of a monotone method for ut= ux may not exceed 1 [6] (monotonic-
ity is important here to ensure that no spurious oscillations occur in the numerical
solution [15]);

(e) The order of a monotone method for ut=ux may not exceed 1 [2] (the
importance of monotonicity in this case is in the conservation of positive initial data).

In the present paper we investigate the relationship between order and stability of
full discretizations of the equation

(1) Ut=fodUxx oC, Rea>=0.

Note that 0 R, 0 > 0, gives the parabolic heat-conduction equation, whilst 0 iR
results in the hyperbolic linearized SchrSdinger equation. It turns out that, unlike in
examples (a)-(e), the order does not compete With stability, that is to say the
highest-order method is stable. Perhaps surprisingly, it turns out that the order of that
optimal method exceeds the number of available degrees of freedom.

Let

*Received by the editors June 14, 1983, and in revised form October 24, 1983.
tKing’s College, University of Cambridge, Cambridge CB2 1ST, England.
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be a full discretization of the equation (1), where U denotes an approximation to

u(nAt, mAx). We set

R(z;/z)"
-rOOj_r()zJ

It can be easily shown (cf. [9, Chaps. 7 and 9]) that the scheme (2) is of order p in Ax
(At being linked to Ax via the Courant number/) if and only if

(3) R(z ) e(z)+c(z 1)P+I+O([z 1[P+2), c4:0,

and it is stable if and only if both

(4) [R(ei;l)l<=l, 0<__0<_2r

for a range of values 0 </ =</ 0, say, and

R has r poles inside and r poles outside the complex unit circle.

The inequality (4) is the familiar oon Neumann condition for stability and it is sufficient
in the case of a Cauchy problem, i.e. when the initial data is given along the whole
x-axis. It is augmented by (5), the Wiener-Hopf condition, to cater for equations (1)
with initial conditions along a semi-finite or compact interval (strictly speaking, (4) and
(5) are together equivalent to stability only if either zero boundary conditions are given
or if r 1. If r >= 2 and boundary conditions are nonzero, then extra conditions must be
imposed on the special schemes which need be applied in the vicinity of the boundary
[7]).

The simplest case, r 1, is already surprising enough: the popular Crank-Nicolson
scheme with

R(z;/)=z +/(z- 1)2/2
z- l( z-1)2/2

is of order 3 and it is stable. However, a less known method, the Crandall scheme [3]
with

z + (1/12 +//2)(z 1)2

R(z;)=
z + (1/12-//2)(z 1)2,

is stable and of order 5. The main result of this paper is that for every r_> 1 there exists
a unique method of order 4r + 1, that this method is stable and that no other method
with the same r can exceed this order.

It follows from (3) that the order analysis is equivalent to the determination of the
block structure along the diagonals of the Pad6 tableau off(x)=exp(l(lnz) 2) at z0= 1.
Note that the Taylor expansion of this function is unknown. Luckily, the desired
information can be obtained by indirect means. This will be done in two stages: first, in
2, we prove that the order of the Pad6 approximation is at least 4r + 1 by using the
classical Pad6 theory. In fact, we prove a more general statement, pertaining to Pad6
approximations at z0 1 of arbitrary analytic functions F such that F(z)= F(1/z ). In
[}3 we use the order star theory to deduce that the order is at most 4r + 1. Finally, in 4
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we apply standard complex analysis in conjunction with order stars to prove that the
method of order 4r + 1 is stable for every to C, Re to => 0. Note that Re to >= 0 is also the
condition for the asymptotic boundedness of the analytic solution of (1).

This is the place to mention that methods for (1) can be generalized for the
equation

Ut= 7
2u u=u(t,x), N

The simplest approach is by using product methods. In this case Crandall’s scheme
for N 2 yields

25 5 2) n+l

5 1 1 2+ /’[n+l + un+l l].n+l + rl-n+l )"’m+l,k m-l,k + m,k+l "’m,k-1

1
+ 144

1 1 2 un+l lln+l /l-n+12+-/ ]( U’+ + + + )m+l,k+l m-l,k+l "m+ 1,k- "m-l,k-1

25 5 2)5-g-5 +

5 1 l/x2) U" +U" +Um’, +U..’,_)+ - "+" /I - ( m+l,k m-l,k +

1 1 1 2) v.n .91-- U .-JI- U -- g2_l,k_l)+ (

Uf,, u( nAt; mAx,kAx),

a stable fifth order method. However, a much neater and more useful scheme can be
obtained with small effort, namely

-+2 rrn+l un+l un+l"m,k 21- -’ "] (]rn+lm+l,k + m-l,k + m,k+ + )m,k-1

1)"-’- (Ure+l, k-Ji U "Jr" V2,k+m-l,k 1-[- U2,k-1)

1
U" + u.n + U2+l,k-l-[- U2-1,k 1)"[- /( m+l,k+l m-l,k+l

Also this method is stable and of order five. However, it leads to a more sparse matrix
which can be solved more economically.

2. On diagonal Pad4 approximations to F, F(z)=F(I/z). Let F be a complex
function, analytic about z0 1 and satisfying the functional equation

(6) F(z)=F( 1-"
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for every z in an open neighbourhood of that point. Further, let R P/Q, degP=
deg Q n, be a rational approximation to F at z0 1.

R(z)=F(z)+c(z-1)P+ + O(la-llP+2),(7)
Given that

it follows from (6) that

(8)

Thus

R(1_.) P*(z) =F(z)+c(l_z)p+l+ O([z-1]p+2)z Q*(z)

(9) P(z)Q*(z)--P*(z)Q(z)--O(Iz--I[P+I).
Let R be the [n/n] diagonal Pad6 approximation to F. Then p >=2n [1] and (9) implies
that

It now follows from (7) and (8) that p must be odd.
THEOREM 1. The diagonal of the Pad tableau of F is composed out of nontrivial

blocks (i.e. q-by-q blocks with q > 1).
Proof. Follows at once from our analysis by the standard Pad6 theory [1]: given

that the [n/n] Pad6 approximation exists p > 2n implies that it must coincide with the
[n/n + 1] and [n + l/n] approximations. Hence it necessarily belongs to a nontriival
block. El

The importance of Theorem 1 is clear; if we can prove that the order of the
[2n/2n] Pad6 approximation to F cannot exceed 4n + 1 then it must be exactly 4n + 1
and the approximation must belong to 2-by-2 block. This will be done in the next
section for the function

F(z)=eg(lnz)2,
which is central to our analysis of numerical methods for ut= tOUxx.

As an aside we note that the set of all functions F that satisfy the functional
equation (6) and are sufficiently smooth can be readily characterized. Let F be analytic
in C/(- ,0) and entire in the covering Riemann surface, such that

holds for every 12/(- o, 0). We set

e(e=),  eC.

Since F is entire in the covering Riemann surface,/> is entire in t2. Furthermore, by (6).
/> is even and so its Taylor expansion is of the form

k=0
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Let

Then g is an entire function and

z) E *.
k=0

F(z)=g((lnz)2).
Therefore every function F is merely an entire function acting on (ln z) 2. Moreover,
unless g is constant, f has a branch cut along (-, 0). Thus, if f is entire then it must
be constant.

The results of the present section can be generalized to cater for functions F that
satisfy the functional equation

z

where L is an arbitrary integer. Such functions are obtained when noncentred schemes
are used to solve the differential equation (1). However, as there is no apparent
advantage to be gained from such schemes, we do not explore this topic further.

3. The maximal order of approximations to f(Z)-e(lnz)2. In the present section
we use the theory of order stars [10] to bound the order of rational approximation to

f(z)--e t(lnz), IZC

at z0= 1. Indeed, one of the purposes of the present paper is to demonstrate the
usefulness of order stars in solving problems in numerical analysis.

Firstly we will show, by applying order stars of the second kind that the order of a
rational [2n/2n] approximation to (lnz) 2 at z0= 1 may not exceed 4n + 1. This will
lead, by a simple argument, to the proof that h > 0 exists such that, subject to I/l__< h,
rational [2n/2n] approximations to f have at most order 4n + 1. Secondly we will use
order stars of the first kind to prove that no [2n/2n] approximation to f with pure
imaginary/ may exceed order 4n + 1. This result will be subsequently applied in {}4 to
stability analysis.

The theory of order stars was extensively explained in [10]. In the present paper we
follow the notation and the terminology of [10]. In particular, the phrases "Proposition
1" etc. refer to that paper.

Let/) be a rational In/n] function with real cofficients that approximates (ln z) at

/(z) (lnz): + d(z- 1)P+1+ O([Z-- liP+:), d4:0.

We form the order star of the second kind with respect to

(10) o(z)’= ]R(eZ)-z 2

(cf. Fig. 1). The following facts, that can be eaisly derived from (10), are important to
our analysis:

(a) If Imz _>_ r, then

Reo(z + 2ri) Reo(z)+4r 2 + 4r Imz _> Reo(z).
Therefore, if Imz>=0 and zA, then also z + 2riA.
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FIG. 1. Order star of the second kindfor
(z-l) =(lnz)Z+O(iz_ll6)k (z)

1/12 + 5z/6 + z2/12

in the rectangle 0<[Rez[, [Imzl<2r. Poles of k are denoted by P.

(b) The order star is symmetric with respect to the real axis. Therefore it follows
from (a) that Imz __< r and zA imply that z- 2ri

LEMMA 2. Let x + (r 8 ) A, where x, R and 0 <= <= r. Then necessarily
x + (r + )iA.

Proof. We set z=x+(r-8)i. It follows from (b) that 5A. Moreover, ImS>= -r
and (a) imply that 5+ 2riA. This completes the proof, since 5+ 2ri=x +(r +8)i.

(c) Let us suppose that/ is of the form

h(z) 2M,[tkzk

.,l2NbkZk M M2, bN bN2 4: 0,

where max{ M2,N2 } n, min{ M1,N } 0. Therefore k(z) has (N M1) + poles at
and (M2 -N2)+ poles at the origin. We denote

I0 "= {zC" IImzl__<r), I+’= {zC’Imz>rr), I_’= {zC’Imz<-r).

It follows from [10] that o has at most (M2- N2)+ + 1 sectors of D in I0 that approach
+ and at most (N -M1)++ 1 sectors of D there that approach o.

(d) If a sector of D that approaches _+ in I+ o I_ belongs to a D-region that
adjoins the origin then, by Lemma 2, that D-region must also contain a sector of D that
approaches _+ in I0.

(e) All the finite essential singularities of the order star (which, of course, corre-
spond to transformed poles of k), are repeated with a period of 2rri. By Proposition 8
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every bounded D-region and every bounded A-region must contain an essential singu-
larity on its boundary. Let us assume that a D-region that adjoins the origin has an
essential singularity from I/ at Xo+(rr+)i, 8>0 say, on its boundary. By Lemma 2
also the essential singularity at

must belong to the boundary of the region.
LNN 3. The order p of () as an approximation to (ln) at z0 1 may not

exceed 2n + 1.
Proof. We count the sectors of D that adjoin the origin in the order star of o. Let

S ( Nx M) ++ (M-N) +

denote the number of poles of k(z) at 0 and . It follows by (c) that at most S + 2
D-regions approach in I0 and, by (d), only these sectors need be considered in our
count of sectors of D that approach the orion. In other words, at most S + 2 sectors of
D at the orion belong to unbounded D-regions.

Since all the remaining sectors of D necessarily belong to bounded D reons, their
number is restricted, according to (e), by the number of finite essential singularities in
Io. Since (z) has at most n- S poles in C/{0}, there are in I0 at most 2(n- S) finite
essential singularities (because eve essential singularity z0 with Imz0 w is counted
twice).

Thus the number of sectors of D at the origin is at most

{S+2}+ {2(n-S)}=2n-S+2Z2n+2.
According to Proposition 7 ts number equals p + 1, yielding the desired result.

It follows at once from our method of proof that if p 2n + 1, then N M 0,
N=M:=n, S=0 and all the poles of h(z) are negative. Ts is an interesting point,
since the negative ray is a branch cut of (lnz):.

We note in passing an interesting consequence of Lemma 3. Let

(11) yjU+j(I) jUm+j(’ )
j= (ax)-r j= -r

be an implicit se-discretization of the differential equation (1), U(t) u(t, m(bx)),
m g. Then, if

k(z).

it follows easily from [9, Chap. 7] that the method is of order p if and only if R is an
order p appromation to (lnz) at z0= 1. Since f(z)=(lnz) satisfies f(z)=f(1/z), we
can use the theow of 2 in conjunction with the last theorem to prove that for every r
there ests a uque impficit se-discretization of (1) that attains order 4r + 1 and that
no other such method may exceed this order. Ts, however, is of only marginal
interest, since the solution of the linear ordinary differential system (11) by a numerical
method of order 4r + 1 will necessarily increase the bandwidth, offsetting the benefits
of gh order. Apparently, it pays to discretize both space and time variables in (1)
simultaneously.
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Let R(z; )=P(z; l)/Q(z; t) be an approximation to f(z)=e t(lnz)2 at z0= 1. We
assume that degP, deg Q _< n (as polynomials in z) and that both functions are analytic
in/ in the neighbourhood of/ 0.

THEOREM 4. There exists hn> 0 such that, subject to 0 < [/1 < h n, the order p of the
approximation R(z; #) may not exceed 2n + 1.

Proof. We differentiate the expression

(12) R( z; tt) e’(ln z)= + c (/*)(z- 1) p+I + O( Iz- 11
p+ 2)

with respect to tt and set tt 0. Since R(z; 0)= 1, we obtain

Pk(z)=(lnz)2+c’(O)(z-1)P+l+O(lz-l[P+2), k=-, deg/5,degQ__<n.

Therefore/) is an approximation to (ln z) 2 at least of order p. The statement of the
theorem follows at once by Lemma 3. El

COROLLARY 5. The order of the [2n/2n] Padb approximation to exp((lnz) 2) at
zo 1 is exactly 4n + I for every 0 < Itx] < h.

Proof. The coefficients of the approximation are analytic in/, as can be seen at
once from Lemma 7 and the Pad6 theory [1]. It has been proved in {}2 that the order is
at least 4n + 1. This, together with the last theorem, furnishes the desired result. El

Corollary 5 does not prevent an existence of a complex / that gives higher
order--it merely shows that this may not happen in a punctured neighbourhood of the
origin. However, we will need in {}4 a stronger result for the special case/ it, R,
namely that the order is 4n + 1 regardless of the size of t. This is proved by order stars
of the first kind:

We consider the order star with respect to

o(z)’= e-itz2R(eZ;it)
where R(z; it) is a [2n/2n] approximation to exp(it(lnz)2), tR/(O), of order p =>4n
+ 1. Let

R(z;it)=

The order condition (12) implies that

P(z;it)
Q(z;it)

Ip(e’ it)l" IQ(e, it)l = =O,,OP+I,=o\,I--cosO,[p/21+I,.
Therefore, since both IP(ei; it)l 2 and IQ(ei; it)l 2 are polynomials in 1 -cos0 of degree
2n- 1 < [p/2]+ 1 it follows that

IP(e;it)l IQ(e’;it)l
2
----0

and

IR(ei;it)l=-l,
Similarly, given x N, (12) implies that

Ip(ex; it)l2- IQ(eX; it)l2= o(xp+l) O((ex- 1) p+ 1)
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and, since both IP(eX; it)l 2 and IQ(eX; it)l are polynomials in ex- 1 of degree 4n <p + 1,
it is true that

IR(e;it)l=-l, x.

In other words, both the real and the pure imaginary axes in the order star belong to
(cf. Fig. 2).

Fro. 2. Order star of the first kindfor

R(z 2i)
z+(1/12+i)(z-1)2 --e2iO, z)2+O(lz_ll6),
z+(1/12-i)(z-1)

in the rectangle 0 <= IRe z IIm zl <- r/2. P and Z denote poles and zeros ofR respectively.

Proceeding as before, we show that

Io(x/2ri)l--Io(x)le 4=x, xff.

Hence, since Io(x)l 1, x+2rriA if x>0 and x+2rriD if x<0.
It follows from Proposition 5 that ind()= 2 and is a regular point of 3. Let us

assume that > 0. Then it is obvious from

]O(Z)l=e2tRe)Omz)(1 + o(1)) ({zl>> 0),

that A tends to infinity in tl / { z C: (Rez)(Imz) > 0}, D approaches infinity in
f_ { z C: (Rez)(Imz) < 0} and , i c . Thus, all the D-regions in 2 + are
bounded and, since o is meromorphic, it follows from Proposition 2 that the sum of the
multiplicities of these regions cannot exceed 2n, the number of zeros of o in I0 (since
x + 2ri belongs to A for x > 0 and to D if x < 0). It follows that at most 2n sectors of D
reach the origin in II /. Thus, since , i c and the origin is a regular point of , at
most 2n + 2 sectors of D reach the origin in 12_. It now follows by Proposition 1 that

(13) p __< (2n) + (2n + 2) 1 4n + 1.
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Given < 0 we can show that (13) is true by exchanging the roles of A and D, i.e.
counting sectors of A at the origin.

TrIEOREM 6. The order of the [2n/2n] Padb approximation to exp(it(lnz) 2) at z0= 1
is exactly 4n + I for every R, 4= O.

Proof. Since, by the analysis of {}2, the order is at least 4n + 1, the desired result is
a consequence of the inequality (13). rn

4. Stability analysis. In the present section we aim to prove that the highest order
method of Corollary 5 satisfies the von Neumann condition (4) and the Wiener-Hopf
condition (5) and, consequently, is stable.

Let

P(z; IX) (lnz)2 12n+2)Q(z; Ix)=e + O(Iz-1 degP, deg Q n 2r + 1,

(as polynomials in z). It follows that

R(e’" ixl=e-"2+ O(O"+
and

R( ei; -IX)
--e-tO2+o(O2n+2).

Therefore

(14) P(ei;ix)P(ei;-ix)-Q(ei;ix)Q(ei

The function

IX)--" O( O 2n+ 2)__ O((1 ei)2n+ 2).

P( ei; Ix ) p( ei; Ix )-Q( ei; IX)Q( ei; IX)
is a polynomial of degree 2n in 1-ei. Hence, it is a consequence of (14) that this
polynomial identically vanishes and so

(15) P( ei; IX)= Q( ei; IX).
We now proceed in a manner diametrically different from the standard stability

analysis--instead of fixing IX and showing that the von Neumann condition, say, is
satisfied for every 0 =< 0 =< 2 r, we fix 0 __< 0 =< 2r and intend to prove that

[R ( e i0

for a range of values of IX.
To emphasize the dependence of IX, we write

Go(IX)’- R(e iO

Because of (15) it is true that

ao(")=go(_.)
where go(" ) is a polynomial in e i.

LEMMA 7. The kth coefficient of the Taylor expansion off(z)=exp(ix(lnz) 2) about
zo 1 is k/2]th degree polynomial in Ix for every k >= O.
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Proof. Let

f(z)= Y’ .C,(/x)(z-1) k.
k=0

It is easily proved by induction that

(16)
d k (k )dz-;f(z)= ak,j(lnz) j z-kf(z), k>=O,

j--O

where the coefficients ak,j, 0 <_j _< k, k >_ 0, satisfy the partial difference equation

ak + 1,o ka,o + a,1;

(17) ak+l,j-- -21ak,j_l-kako+(j+ 1)ak,j+ 1, 1 <=j<=k;

ak+ l,k+ 2/a,k

for every k=>0. Since a0,0 1, it follows at once by induction that each ag, is a
polynomial in/x of degree [(k +j)/2].

The formula (16) implies that

C,(/x) ak,0,

a polynomial of degree [k/2]. []

It is straightforward to prove from the last lemma, by using the Pad6 theory, that
go is a polynomial in /x. However, we need a more elaborate piece of information,
namely the exact degree of that polynomial.

Let us denote by a,,j, the coefficient of [(k+j)/2] in ak,. It follows from (17) that
the ak,j.’s satisfy the difference equation

k+j even" Otk+l,j=2ak,j_l--kak,jW(j+ 1) ak,j+l;
(18)

k+j odd; a,+l,j=2ak,j_ +(j+ 1) a,,j+l,

where we set ak,j.= 0 forj =< 1 orj>__ k + 1.
LEMMA 8. ( 1) k +Jolk,j > 0 for every 0j <_ k.

Proof. By induction on k +j. It follows from (18) that

Otk + l,k_ 2s 2Otk,k_ l_ 2s-- kOtk,k- 2s w ( k 2S q- l ) Otk,k + l- 2s

and

Ok+ 1,k+ 1- 2s--- 20tk,k-2s q- ( k- 2s + 2)Olk,k_2s + 2

21,_=,1+ (k- 2s + 2) I,_2,+ 21 > o, O__<s__<

Hence the lemma is true. []

It follows that each Ck(/) is a polynomial of exact degree [k/2]. The C’s for
0 __< k __< 9 are given in Table 1.
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TABLE 1

The Taylor coefficients off(z exp(/ (ln z )2) about Zo= 1.

Co()-- .;
c1()--o;
c:(,)=;
c()= -;

11 1
c4(1=+;
c()= g-"

137 17 1.
7 7 1

363 967 +233c8=+ + ;
761 89 3 14.

LEMMA 9. Let Q(eia;ix)=ga(-ix)=E=oqkeika. Then each qk, l <=k<=n, is a poly-
nomial in Ix of exact degree 1/2n(n- 1)+ k, whereas qo is of exact degree 1/2n 2.

Proof. It follows from the Pad6 theory [1] that, subject to the normalization

(19)

each qk, 1 =< k =< n, is of the form

C1

Since each C is a polynomial in Ix, so is qk and it follows from Lemma 8 that, because n
is even, the coefficient of the highest power of Ix in qk is

(-- ]) f2nf2(n-1) C2(n-k+ l)f2(n-k)-lf2(n_k)_3 C : 0.

Therefore, by that lemma, qk is a polynomial of the exact degree 1/2n (n 1)+ k, 1 < k < n.
Also qo is a polynomial in Ix. The highest power of Ix in q0 is obtained, by emma

8, from (19) by following the main diagonal. This gives degree 1/2n 2. t
It is a consequence of the last lemma that the degree of go as a polynomial in Ix is

1/2n ( n + 1), regardless of the value of 0 #: 0 mod 2 r.
LEMMA 10. The lowest power of Ix in each qk, 1 <= k <= n, is Ixn.
Proof. Follows in exactly the same manner as Lemmas 7-9, by considering the

lowest powers of C. instead of the highest powers, r3

Since the factor of Ixn is repeated in both numerator and denominator of Go it can
be removed. We obtain a rational m/m function in Ix, where m 1/2n (n 1). In other
words, for every value of 0 < 0 < 2r Go has m poles and m zeros in C and neither zero
nor pole can travel to oo.
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Let R*(z) P*(z)/P*(- z) denote the m/m] Pad6 approximation to the ex-
ponential [1]. Since

G( ix ) e-’a= o( oEn+ :Z ),

it follows that

(20) Ga (/x) R*(-/x0) + O(0 2rrfin{m’n} +1).

Let o be a zero of P* and/0 "= -o/0 -. Then it follows from (20) that

go(o)=O(o2min(m’n}+l).

Hence, if 10l0, then zeros of ga(/) and P*(-/02) are arbitrarily close. Since P* and
go are of the same degree in , this is true regarding all their zeros.

According to [16] all the zeros of P* are in C-= (/" Re<0}. Therefore, for
0 < 101 << 2 rr all the zeros of Go are in + {/ C" Re/ > 0) and all the poles are in
C-

LEMMA 11. Go is analytic in cl C + C + for every value of 0 <= 0 <= 2
Proof. We already know that Go is analytic there for 0 __< 0 << 2rr. Let us assume

that there exists 00 in (0, 2r) such that Gao has a pole in el +. The pole.s of Go are a
continuous function of 0, since no pole can jump through oo. Therefore there must exist

0 in (0, 2 rr) such that Go1 has a pole on i. However, since IGo(it)[ 1 for every real t,
it follows that this pole coalesces there with a zero. Hence m __< m-1 exists such that
Go is a [mx/m] rational function. Moreover, this reduction must also lower the degree
of Go as a rational function in e, since the locus of this zero-pole pair is a nontrivial
function of 0. This is a contradiction of Theorem 6, since Go(it)=R(e;it) is an
approximation of order 2n+ 1 to e-u:. Consequently, no such 00 exists and Go is
analytic in cl C +.

We can now formulate and prove the main theorem of this section.
THOmM 12. The approximation R(z;/x) of order 2n+ 1 corresponds to a stable

methodfor every cl C +.
Proof. The function Go is analytic for every/clC + and IG0(t)l--1 for every

/ . Therefore, by the maximal modulus principle,

(21) IR(e’O;)l-Iao(t)l<a, C+.

Since this is true for every 0_<0=<2r. It follows by (4) that the. underlying full
discretization (2) of the differential equation (1) satisfies the yon Neumann condition
for every/ cl G +.

The Wiener-Hopf condition is satisfied for/ i, since then (cf. the proof of
Theorem 6) Q(e;/) has exactly n/2 zeros in fl+ and n/2 zeros in _.

Let us assume that this condition is violated by some/ C +. Since, by Lemma 9,
the zeros of Q are a continuous function of/ and the Wiener-Hopf condition holds for
/ it follows that there exists/2 C + such that Q(-,/) has a zero on the perimeter
of the unit disk, at e: say. This, however, is impossible, since Go: is analytic in G +.
Consequently no such/x exists and the Wiener-Hopf condition holds for every/ cl {2 +.
This completes the proof of stability.

Note that the highest-order method of the last theorem is, by (21), dissipative for
/ C / and conservative for/ R. This mimics the behaviour of the analytic solution
of the differential equation (1).
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EXTENDED INITIAL AND FORCING FUNCTION SEMIGROUPS
GENERATED BY A FUNCTIONAL EQUATION*

OLOF J. STAFFANS"
Abstract. We present two types of semigroups generated by functional equations of the form

x(t)+tt* x(t)=f(t), t>=O,
x(t)=cp(t), t<__O.

One of them is an extended initial function type semigroup, and the other an extended forcing function type
semigroup. These two types are adjoints of each other in the sense that the adjoint of a semigroup of one of
the two types is of the other type. They are also equivalent in the sense that there is a one-to-one,
bicontinuous mapping of the state space to itself, which maps a semigroup of the second type into a
semigroup of the first type. In particular, it suffices to study the asymptotic behavior of one of the two types
of semigroups, because the results can easily be transferred to the other type of semigroups.

1. Introduction. We discuss two types of semigroups generated by functional
equations of the form

(1.1) x(t)+t* x(t)=f(t), tR+,
with initial condition

(1.2) x(t)=q(t), tR-.

Here R+= [0, o), R-= (-o, 0], the values of x, f and lie in Rn, and/ is an n by n
matrix valued measure on R+, which is not allowed to have a point mass at zero. The
convolution x is defined a.e. by

/.

Equation (1.1) is fairly closely related to the retarded equation

d(1.4) "x(t)+, * x(t)=f(t), tR+

and the more general neutral equation

d(1.5) -(x(t)+l * x(t))+u * x(t)=f(t), tR+.

Here v is another n by n matrix valued measure on R/. For a long time (1.4) was the
most studied equation out of (1.1), (1.4) and (1.5), but lately also (1.1) and (1.5) have
received considerable attention. In this paper we shall discuss only (1.1), but the results
can be modified so that they apply also to (1.4) and (1.5) (see [33]). We have chosen to
first study (1.1) rather than (1.4) or (1.5) for the simple reason that technically (1.1) is a
simpler equation than (1.4) and especially (1.5). Once one understands the behavior of
(1.1) it is easier to understand the corresponding results for (1.4) and (1.5) given in [33].
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The idea behind the classical semigroup approach of Hale [10], applied to (1.1), is
the following: Take f in (1.1) to be zero, and solve (1.1) with initial condition (1.2). Fix
> 0, and define

x,(s)--x(s+t), sea,
qgt(S)=X(S+t), s R-.

Then x is again a solution of (1.1) with f=0, and with initial function qt- The mapping
which takes into i) turns out to be a semigroup. We shall call this semigroup for the
initial function semigroup generated by (1.1).

Miller and Sell [22], and later also Diekmann and van Gils [7], [8], [9] use a
different approach. Roughly, what they do is to take to be zero in (1.2) instead of
taking f to be zero in (1.1), and argue as above. The exact procedure is slightly more
complicated to describe, but conceptually it is quite similar to the procedure leading to
the initial function semigroup. We shall call Miller’s and Sell’s semigroup for the
forcing function semigroup generated by (1.1). In a sense it describes the evolution of
the forcing function in (1.1) rather than the evolution of the initial function in (1.2).

When the forcing function semigroup was discovered, it was not immediately
related to the initial function semigroup. In 1976 Burns and Herdman [3] proved that
for a certain equation of the type (1.4), the initial function and the forcing function
types of semigroup are adjoints of each other. Since then the same result has been
extended in the finite delay case to equation (1.1) [7] and to equation (1.5) [27]. From
Theorems 3.1-3.3 below one can conclude that the same result is true for equation (1.1)
in the infinite delay setting which we use here (the corresponding infinite delay result
for (1.5) is given in [33]).

In the finite delay case the initial function and the forcing function semigroup
generated by (1.1) are equivalent to each other, i.e. they can be mapped continuously
and one-to-one onto each other (see [9], [19], [27], or the summary paper [32]). In the
infinite delay case they are not in general equivalent (see [32]).

In 1982, the author made the trivial observation that one can allow both and f to
be nonzero in the argument sketched above which leads to the initial function semi-
groups for (1.1), (1.4) and (1.5) [31]. Doing so one gets certain combined initial-forcing
function semigroups. As the method used to construct these semigroups is a trivial
modification of the method used to construct the usual initial functions semigroups, we
shall call these semigroups for extended initial function semigroups.

The two main reasons for this work were that we wanted to find the adjoints of the
extended initial function semigroups, and to investigate what the xact relationship is
between the extended initial function semigroups and the standard forcing function
semigroups. As we already mentioned above, here we only treat the simplest case (1.1),
and return to (1.5) in [33].

For the benefit of the reader (who is not likely to be familiar with the rather
abstract paper [31]) we first describe our extended initial function semigroup for (1.1)
in 2. The state space which we use is of the same type as the state space in [28], apart
from the fact that here the state space contains both initial functions and forcing
functions. For more details the reader is referred to [28] (or to [30], where the same type
of spaces appear). It has an infinite delay, and the assumption on the kernel is minimal.
We already mentioned above that in earlier comparable works f is taken to be zero (or

to be zero in the forcing function semigroups). In addition, in these works either the
delay is finite, or the kernel is required to have more smoothness than we require, so
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even in the casef= 0 we get certain technical improvements of earlier results.
In {}3 we get to the heart of the matter, and compute the adjoint of the extended

initial function semigroup. This straightforward computation has been inspired mainly
by [3], [7] and [34] (later the author found out that the same type of computations have
been made in [2], [6] and [19] for the retarded case, and in [27] for the neutral case). The
final result of the computation has a very simple interpretation: The adjoint of the
extended initial function semigroup is an "extended forcing function semigroup",
which one obtains from the standard forcing function semigroup by adding an initial
function component. This initial function component has no influence whatsoever on
the forcing function part of the semigroup. It merely records the old values of the
solution x, which are normally lost in a semigroup of forcing function type.

As a result of the computation in {}3 we now have two combined initial-forcing
function type semigroups, an extended initial function semigroup, and an extended
forcing function semigroup. As we show in {}4, it is an almost trivial task to prove that
the two initial-forcing function semigroups are equivalent to each other. The equiva-
lence operator is an extremely simple one: To go in one direction one just adds an
initial function correction to the forcing function, and to go in the other direction one
subtracts the same correction term. Recall that without the extension, the initial and the
forcing function semigroups are not equivalent to each other in general in our infinite
delay setting.

The fact that the two initial-forcing function semigroups are equivalent provides us
with an answer to the second of the two questions which motivated this work. The
extended initial function semigroup contains not only the ordinary initial function
semigroup. It also contains the ordinary forcing function semigroup in the sense that
the extended initial function semigroup can be mapped continuously onto the ordinary
forcing function semigroup. This mapping is not in general one-to-one, due to the fact
that the mapping which deletes the initial function component of the extended forcing
function semigroup is not one-to-one.

In {}{}5 and 6 we show how the equivalence relation between the two different
extended semigroups can be used to transfer some known results from one of the two
semigroups to the other. More specifically, in 5 we describe the generators of the two
semigroups, and in {}6 we show how one under appropriate assumptions can .decompose
the two semigroups into parts with different exponential growth rate. The discussion in
{}6 makes fairly heavy use of the asymptotic results for the neutral equation given in
[28] and [30].

2. The state space and the extended initial function semigroup. We shall throughout
use a state space of the type N’xo-, where is a space of initial functions, defined on
R-, and o- is a space of forcing functions, defined on R+. We let both and o be of
the "fading memory type" described in [28]. For the convenience of the reader, let us
here recall the most important results concerning these spaces from [28].

Let /: R ---> (0, m) be a continuous function, normalized so that /(0)= 1, and define

(2.1) On(t) sup
/(s+ t) (tR).

Suppose that On(t) is finite for each t, and continuous at zero. Observe that 07 is
submultiplicative, i.e.

(2.2) On(s+t)<=On(s)on(t) (s,tR),
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and that

(2.3) rl(s+t)<=pn(s)l(t ) (s,tR).

The continuity of On at zero together with (2.2) implies that tan is continuous. We call a
function r/of this type an influence function, and call 0n the dominatingfunction induced
by

Influence functions can be used to define certain memory spaces. We let Lp(R; Rn; /)
(1 =<p =< ) be the Banach space of measurable functions y" R Rn, with norm

[(t)[lY(t)]]] Pdt (1 __<p<
IIY[[

ess sup r/( )[[y ( )[[ ( p oo)
tR

The translation operator rt, defined by

rty(s)=y(s+ t) (s,tR)

(for almost all s) is a continuous linear operator in LP(R; Rn; /) (for fixed t), with norm

(2.4)

as is easily seen (cf. [28, Lemma 2.2.]). It is strongly continuous in for 1 __<p < oe, but
not for p-m. Therefore, we shall also consider the Banach space BUC(R; R"; /) of
continuous functions y" R R" such that /y is uniformly continuous, with the norm of
L(R; R"; /). In this space 5 is strongly continuous (cf. [28, Lemmas 2.2 and 2.5]). We
let BC0(R; R"; r/) consist of those functionsy in BUC(R; Rn; /) which satisfy l(t)y(t) 0
(t o). Clearly BC0(R; R"; ) is a closed subspace of BUC(R; R"; ), which in turn
is a closed subspace of L(R, R"; /).

In the preceding memory function space notation, when we replace R by R- or R/

or some other interval I, then we mean the space which one gets by restricting each
function in the memory space in question to R/ or R- or I.

We denote the space of all real n by n matrices by Rnxn, and let M(R; Rnxn; On )
(where 0n is defined as in (2.1)) be the set of R’X’-valued measures/ on R, satisfying

If/z is supported on R+, then we write/. M(R+; Rnn; 0o)"
It was shown in [28] that if/ M(R; Rxn; 0n) and x belongs to either LP(R; R;

1 __<p __< m, or to BUC(R; R; r/), or to BCo(R; Rn; /), then/ x, defined a.e. by

(/x * x)(t)= [dl(s)]x(t-s),

belongs to the same space as x, and that IIt * xll lltllllxll. If/ M(R+; Rnn; Pn), then
we can also define the convolution #, x of/ with a function x whose restriction to
(- o, T) belongs to LP(( o, T); Rn; ) for some p, 1 _<p =< o, and every T, o < T
< o. In this case also the restriction of/ x to (- c, T) belongs to LP(( o, T); R"; )
for all T. The same statement is true with Lp replaced by BUC and by BCo.

Two rneasures and , can also be convolved with each other, and IIt * 11 _-<lltll I111
(see [28]).
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If #, M(R+; Rnn; p#), and/ has no point mass at zero, then equation (1.1) has a
fundamental solution X, which is a measure on M(R+; Rnn; e -dr) for some sufficiently
large number d. This measure satisfies

(2.5)

where is the identity point mass at zero. The solution x of (1.1) with initial condition
(1.2) is

(2.6) x q + x * (f+ Fq ),

where we have defined f and Fq0 to be zero on (- m, 0), to be zero on R +, and Fq0 is
the initial function correction

(2.7) (fqo)(t) f( [d,(s)lq)(t-s), ,>0

to the forcing function. For details, see [28], [29] and [31].
LEMMA 2.1. Let Y be one of the spaces LP, 1 <__p <= o, or BUC or BCo, let 1 be an

influence function with associated dominating function , and define = Y(R-; Rn; l),
if= Y(R+; Rn; r/). Suppose that/zM(R+;Rnn; On) has no point mass at zero. For each
q and each f, let x(q,f) be the solution of (1.1) with initial condition (1.2), and
define T(t)(q,f)=(xt(q,f),ft), where xt(q,f) is the restriction of rtx(q,f) to R-, and ft
is the restriction of rtf to R +. Then in the LP-case, 1 <_p < o, T(t) is a strongly continuous
semigroup in X’, and in the continuous case, T(t) is a strongly continuous semigroup
in the space

((q,f) xlm(w,f)=0},
where

(2.8) M(ep,f )=f(O)-cp(O)-I * q(O).

Again, for details, see [28] and [31]. As we mentioned above, we shall call the
semigroup T(t) in Lemma 2.1 for the extended initial function semigroup. Observe that
M(tp,f) also can be expressed in terms of F, namely

(2.9) M(q,f) (f+ Fq0 )(0) q0 (0).

3. The adjoint of the extended initial function semigroup. The semigroup T(t) has
an adjoint semigroup T+(t), which we want to compute. In the reflexive case when
=LP(R-;Rn;rl)LI"(R+;Rn;,1) for some p, l<p< o, one has T+(t) T*(t),
where for each t, T*(t) is the adjoint of T(t). In the nonreflexive cases T+(t) is a
restriction of T*(t) to a subspace of the dual space of ’. Therefore, let us first
compute T *(t).

Before we can find T*(t) we have to fix a representation of the dual space of. We first consider the case when =LP(R-;Rn;*I)LP(R+;Rn;I), with
1 _<p <_ o (the case BCo will be treated later, but we shall not discuss the dual of BUC).
Let q be the conjugate index p. We can identify the dual of Le(R; Rn; /) with e.g.
Lq(R; Rn; /), where

t R,
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through the duality mapping (,)" Lq(R; Rn; /)xLP(R; Rn; /)R defined by

Here we think of elements in Lq(R; R"; ) as row vector functions, and those in
LP(R; Rn; 7) as column vector functions, so that x*(-s)x(s) is the inner product in R"
of x *( s ) and x(s ). Defining

x* tR,

we have

(x*,x)=x**x(O),
and this is one reason for the introduction of the extra minus sign in the right-hand side
of (3.1).

The preceding duality mapping carries over directly to x-, and the dual of
.’xo-becomes o-* x*, where* =Lq(R-; R; ) and ..* Lq(R+; R; ). Here the
duality mapping takes the form

((f*, q*), (q,f)) (q*, q) + (f*,f)

=f._
qo* * {p(0) +f* * f(0),

where the convolution formula is valid provided the functions are extended to all of R
in such a way that either {p* vanishes on (- , 0) or {p vanishes on (0, ), and either f *
vanishes on (0, ) or f vanishes on (-, 0). In particular, if all the functions are
extended by zero outside of the original domain of definition, then the convolution
formula is valid. Observe that-* is a space of functions defined on R-, and that .* is
a space of functions defined on R+ (this is due to the extra minus sign in (3.1)).

Let (f*,{p*).’* x.’*, and denote T*(t)(f*,q*) by (f,q). Then by the defini-
tion of an adjoint operator, and by Lemma 2.1, for all ({p,f) ’x-,

(3.2) ((f (p ), (q,f )) ((f *, q)* ), T( t)(ep,f ))

(x,,/,)),
where x and ft are defined as in Lemma 2.1.

To get any further we have to replace x in (3.2) by 9;+ X *(f+ F{p), as in (2.6). In
the L P-case, 1 <p < z, there is nothing wrong with formula (2.6), but in the continuous
case and in the LX-case, it is convenient to make a very small change in (2.6). We
replace (2.6) by

(3.3) x={P+ x * (f+ G{p),
where we define f and Gq to be zero on R- (and not just on (-, 0)), qo to be zero on
(0, ) (instead of on R +), and

(3.4) (Gqo)(t) f[ [dl(s)]q(t-s), t>O
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(the only difference between F and G is that in the continuous case, F is right
continuous, whereas G is left continuous, so Fq0(t)= Gq(t) in all points of continuity).
We also definey(t)= 0, t<=O,y(t)=x(t), t>0. Then we have x=q+y, and

y=x*f+x,G.

Substitute this together with the definition of T(t) back into (3.2), define q*(t)=0,
< 0, f *(t) 0, __> 0, and use the fact that convolution commutes with translation to get

q q (0) +f, f(0) q0* ’t(q +y)(0) +f* ’tf(0)

(qg* (q9 +y))(0) +(f* f)(0)

=* *(q+y)(t)+f * * f(t)

=* * (t) + q* *(X * f+ X * Gq)(t)+f* * f(t)
=q* * q(t)+q* * x * Gq(t )

+ x)]*
3f- [Tt(l]o* * x’t-f*)] * f(O)

As q and f can be varied independently, we must have

(3.) * (0)= (,*)* (0)+ ,(* * X)], (0)
and

(3.6) f*f(O) [’t(q* * X+f*)] * f(O)

for all q and allfo. It follows from (3.6) that

or rather, f is the restriction of this function to R- This equation has the following
simple interpretation" Define

(3.7) x*(t)=f*(t),

and for positive t, let x*(t) be the solution of

t<0,

(3.8) x*(t)+f x*(t-s)dg(s)=q)*(t), t>=O.
[0, t]

Then x* =f * +* X, and f is the restriction to R- of ztx*. Observe that although f *
is an "initial function", it is ignored in the process of solving (3.8), and for positive t,
x*(t) is independent of f*. Also observe that q* is a forcing function in (3.8), not an
initial function.

An equivalent way of writing (3.8) is

(3.9) x*(t)+x* * g(t)=cp*(t)+f* * lz(t), t>=O,
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where we again interpretf as zero on R +. If we define y* x* -f *, then

(3.10) y*(t) =0, t<0,

(3.11) y*(t)+y* * (t) *, t>=0,

y is given byy q* * X, and x*(t)-y*(t) for t>__0.
Now let us go back to the eqlaation (3.5) for . The first term on the right-hand

side does not cause any problems. In the second term, replace q* X by y*, where y* is
the solution of (3.10) and (3.11), to get

( q0* * X )]* Gq0 (0) ( "fly* )* Gp (0).
Clearly

( rtY* ) * Gcp(O) G*rtY* ) * q (0),

where G * is the adjoint of G, mapping:-* into *.
Let us compute G*. Take an arbitrary f * o-*, and define f *(t)= 0, >__ 0. Then

for all tp , vanishing on (0, o),

G*f* * p(O)=f * * Gq(O).

By the definition (3.4) of G,

f* Gtp(0) f(0, ) f*(-s)( * p)(s)ds

-f* /x * q(O).

As this is true for all tp ’, we have G*f * -f * /, i.e.

(3.12) G’f *(t)= f( f*(t-s)dtx(s), t>=O.

Having found G*, we once more go back to qo. For all q M,

so clearly

+

6p ztcp* + G *’tY*,

or rather, if9 is the restriction of this function to R /. The interpretation of this equation
is the following. Solve the equations (3.10) and (3.11) to get y*. Let be the left-trans-
late of *, plus the term G*-ty*. This term is the left-translate of the correction which
has to be added to the forcing function * if we want to replace y* by zero on the
initial interval [0, t), and still let (3.11) be valid on [t, c).

In the reflexive case 1 <p < c, the adjoint semigroup T+(t) of T(t) is equal to the
adjoint T *(t) of T(t) [26, p. 277], and we have the following result:

THEOREM 3.1. Let l<p<, let 1/p+l/q=l, and take =LP(R-;R";/), .,-=
LP(R+;R";/), .’* Lq(R-;Rn;), and 6* Lq(R+;Rn;I). Suppose that
M(R/; Rnn; Pn) has no point at mass zero. Then the adjoint semigroup T/(t) of T(t) is

strongly continuous on" * *, and

v+ (,) (: ,, )= (x,,, + -:,, )),
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where x* is the solution of (3.7) and (3.9), xt* is the restriction to R- of rtx*, Pt* is the
restriction to R+ of ztq)*, and

The conclusion of Theorem 3.1 is true also for p 1 with q= o, except for the
strong continuity. The requirement that T*(t)(f*, p*) has to be continuous in puts
some additional conditions on (f *, p*) L(R-; R"; /) L(R/; R"; /). The mapping
which maps into the restriction of ztx* to R- is continuous from R/ into L(R-; R"; )
if and only iff * BUC(R-; R"; /), and x* is continuous. As x * and f * are continuous,
we can require all the preceding equations (3.7)-(3.12) to hold pointwise rather than
almost everywhere. By (3.7) and (3.8), x* is continuous at zero if and only if

(3.13) N*(f*,p*) 0,

where

(3.14) N *(f *, q)* ) =q)*(O)-f *(O)

(recall that we do not allow to have a point mass at zero). Suppose that f*
BUC(R-; Rn; /), and that (3.13) holds. Then x’ f* in L(R-; Rn; /) as ---> 0 +, SO by
the continuity of G*, we have G*xt*G*f* in L(R+; R";/) as t-o0+. This means
that the second component pt*+G*(xt*-ft*) of T*(t)(f*,q*) tends to p* in
L(R+; R"; ) as t0+ if and only if pt*- G*ft* tends to p*- G’f* in L(R+; Rn; /).
Now, by (3.12), we have

qot* G*ft* ,rt (qo* +f* l)=,rt(q*-G*f*),

where we have defined f *(t)= 0 for >= 0. Thus, Pt*- G*ft*--* P*-G *f * if and only if
vp+f* IBUC(R+;R"; 1). In other words, we have the following result:

THEOREM 3.2. Let =LI(R-; R; r/), -= LI(R +; R; r/), BUC(R-; R"; /), *
L(R+; R"; ), $+=BUC(R+; R"; /). Suppose that IM(R+;R"n; 07) has no point

mass at zero. Then the adjoint semigroup T/( t) is strongly continuous in the space

{ (f+, q) + ) S+ *lq)+- G*f+ +, and N*(f+,q+) 0},
and T+( )(f+, p +) is defined in the same way as in Theorem 3.1.

The dual of the space BC0(R; R"; /) can be identified with the space M(R; R"; /) of
measures on R, with weight /. One can compute T*(t) in this space, too, and get the
same the same formulas as above, but in M((-o, 0); R"; /)M(R/; R"; /) rather than
in Lq(R-; Rn; )Lq(R+; Rn; /). This time the requirement that T/(t) has to be strongly
continuous cuts down the measure spaces to the corresponding LLspaces. In other
words, we have the following result"

THEOREM 3.3. Let =BC0(R-; R"; r/), -= BC0(R+; R"; r/), -+= L(R-; R"; /), +
LI(R +; Rn; /), and let have no point mass at zero. Then the adjoint semigroup T+(t) is

strongly continuous in +, and it is defined in the same way as in Theorem 3.1.
In the sequel, rather than discussing T+(t) and equations (3.7)-(3.11), we shall

discuss the corresponding transposed equations. In addition we throughout replace all
notations which refer to adjoint spaces by the same type of notations which .are used in
(1.1) and (1.2). More specifically, we replace /by /, the transpose/2 of/ by/, x* by x,
f * by q0, tp* by f, y* by y, G* by F, the operator N* by an operator N, and substitute
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R(t) for T+(t). Then the equations (3.7)-(3.14)become

t<0,

(3.16) x(t)+f [dl(s)]x(t-s)=f(t), t>=O,
[0,t]

(3.17) x(t)+lz * x(t)=f(t)-Fq(t), t>__O,
t<0,

(3.19) y(t)+# * y(t)=f t>O,
(3.20) N(,f) =0,

(3.21) N( q,f ) =f(0) -q (0).

With the new notations, the semigroup which we found above can be described as
follows"

LEMMA 3.4. Let Y be one of the spaces L P, 1 <=p <= c, or BUC, or BCo, let be an

influence function with associated dominating function 07, and define = Y(R-; Rn; /),

-= Y(R+;Rn;/). Suppose that txM(R+;Rnn;o) has no point mass at zero. In the
L P-case, 1 <=p < , define 6aby 6a=,and in the continuous case, defineS/’by

5a= ((q,f)L(R+;Rn;)lf-Fq, andN(ep,f)=O}.
For each (q,f)5a, let x(q,f ) be the solution of (3.15) and 3.16, and define

R(t)(q,f ) (xt(q,f ),ft + F(xt-qt)),
where Xt(qg,f ) is the restriction of tx(q,f) to R-,ft is the restriction of rtf to R+, and

F(xt-t)(s)= f(s,s+t
Then R(t) is a strongly continuous semigroup in 5.

Here the case Y= BCo is new in the sense that it has not been mentioned before,
but it can be obtained by restricting the corresponding semigroup defined in BUC to
BCo. If / is absolutely continuous, i.e. dt(s)=a(s)ds for some function a
LI(R;Rnn; p), then in the continuous case the condition f-Fqis equivalent to

f. In this case the state space simply becomes ’-(this is the situation discussed
in [7] and [8]). The condition f-Fcan be replaced by another condition, which
makes no reference to qg. Namely, if we define (t)= 0 for >__ 0, y(t)= 9(0)(1 t)=
f(0)(1-t) for 0=<t<l, and y(t)=0 otherwise, then Fq(t)=-, qg(t) for t>=0, and
qg+y BC0(R; Rn; rl). This implies that also ,(+y) BC0(R; R"; /), and the condi-
tion f-Fg -is satisfied if and only if f-/ y, restricted to R +, belongs to . This
means among others that f has exactly the same discontinuities as #, y has. This
function again has exactly the same discontinuities as the function/([0,t])(0). Thus,
the function f-F is continuous if and only iff(t)-/ ([0, t])f(0) is continuous.

We leave it to the reader to prove that the adjoint semigroup of a semigroup of
type R(t) in the cases Y=L and Y=BCo is a semigroup of type T(t) in BUC and Lt,
respectively.

4. The extended initial and forcing function semigroups are equivalent. In the
preceding section we saw that the adjoint of a semigroup of type T(t) in L P, 1 <_p < ,
and in BC0, is a semigroup of type R(t), and vice versa. Here we shall show that there
is a one-to-one, bicontinuous mapping D of the state space onto itself (or of the state
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space of R(t) onto the state space of T(t) in the continuous case) such that R(t)=
D-1T(t)D and T(t)=DR(t)D -1.

Let 1 _<p =< , and ’= LP(R-; R"; rl),-= LP(R+; R"; ). We define the continuous
operator Q from into itself by

(4.1) Q(q,f) (0,- Fq),

where F is the operator defined in (2.7). Clearly Q2=0, so if we let I be the identity
operator, and define D by

(4.2) D I+ Q,

or equivalently,

D( q,f ) q,f Fq ),
then D is invertible, and

(4.3) D-I=I-Q.
If one wants to give a verbal description of the preceding definitions one can say that D
is the operator which subtracts the initial function correction from the forcing function,
and D-1 is the operator wch adds the same correction to the forcing function.

LEMMA 4.1. Define the semigroups T(t) and R(t) as in Lemma 2.1 and Lemma 3.4.
Then in all the different cases Y= L, Y= BUC and Y= BCo, we have R(t)= D-1T(t)D,
and T( ) DR( )D 1, with D defined as in (4.2).

Proof. It suffices to consider the case Y= Lp, 1 <__p <= , because the continuous
cases are special cases of Y= L.

Let (,f) LP(R-; Rn; /)LP(R+; Rn; /), and observe that the second component
of D(q,f), which is f-Fq, is exactly the forcing function used in (3.17). Let x be the
solution of (3.17) with initial condition (3.15). Then by Lemma 3.4,

R ( ) ( q f ) ( x f + Fx Fqgt )

where we have defined q(t)=0 for t>=0, and let 19 be the restriction to R- of ,tq. On
the other hand, we can also interpret (3.17) and (3.15) as a special case of (1.1) and
(1.2), (with freplaced byf-F), and with this interpretation we have (cf. Lemma 2.1)

T( ) D( q,f ) ( xt,ft- Fqt)

(xt,f( t)-Fqt+ Fxt)- (O,Fxt)
=R(t)(q,f)+QR(t)(q,f )=DR(t)(ep,f ).

As D is invertible, this gives the conclusion of Lemma 4.1.

5. The generators of the extended semigroups. As a first application of Lemma
4.1, we shall compute the generator of the semigroup R(t) with the aid of the generator
of the semigroup T(t). The generator A of T(t) is very easy to compute. By the
definition of the generator of a semigroup, (q,f) belongs to the domain (A) of A, if
lim,0+ t-[T(t)(q,f)-(q,f)] exists, and for (q,f)(A),

A(q,f)= lim t-l[T(t)(cp,f)-(q,f)].
t0+

It is clear from the definition of T(t) that A(q,f) must equal (’,f’), where we use the
prime to denote differentiation (e.g. in the distribution sense, or in the LP-sense).
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Moreover, (,f)(A) if and only if ((p,f)x’, f is differentiable with f’
and the solution x of (1.1) and (1.2) has a derivative x’, whose translates ztx’, restricted
to R-, belongs to . In other words, the generator A can be described as follows"

TI-IEOREM 5.1. The domain (A) of the generator A of T(t) is given by

.(A) ((W,f)xI(W’,f’),M(w,Z)=O}
in the Le-case, 1 <=p < , where M is the operator defined in (2.8), and by

(A)= { ((p,f) X-I(q0’,f’) Xo-,

and M((p,f )= M(qg’,f’)=0}
in the continuous case. In both cases, A((p,f )=((p’,f’).

To get the generator B of R(t) we use Lemma 4.1 and Theorem 5.1. Clearly,

lim t-[R(t)(q),f )-(cp,f )] =D- lim [T(t)D(cp,f )-D(q),f )],
t-)0+ t-)0+

provided one of these two limits exists. In other words, B=D-1AD, with domain
(B)=D-I.@(A).

THEOREM 5.2. Both in the L P-case and in the continuous case, the generator B of
R(t) is given by

(5.1) B(q),f)=(q)’,(f(t)-l([O,t])q)(O))’)
for all ((p,f ) in the domain (B) of B. In the L P-case,

(B)= {(cp,f)NX,lB(q,f)NX,, and N(q0,f) =0},
where N is the operator defined in (3.21), and in the continuous case,

(B) ((q,f)L(R+;Rn;l)lq/,
(f Fq ) (f Fep ) and N(q f ) NB ( ep f 0 ).

If we replace q(0) in (5.1) by f(0), the description of (B) above in the LP-case
has the property that the conditions on f are independent of the conditions on q. One
could also in the continuous case give a description of (B) of the same type (cf. the
discussion following Lemma 3.4).

Proof. Let ((p,f)(B), and define g=f-F(p. Then D((p,f)=((p,g), so ((p,g)
N(A), i.e. ((p,g)Mx, ((p’,g’):-, M(q,g)= 0, and in the continuous case, also
M((p’,g’)= 0. Moreover, A(q,g)=(q/,g’). Thus,

B ( (p f ) D AD cp f ) D --1A ( q g ) D ( (p’ g )

( I Q ) ( (p’, g’ ) ( (p’, g’ + F(p’)= ((p’, (f F(p )’ + F(p’ )
which gives us the preliminary formula

B( q,f ) ( (p’, (f rep)’+ Fep’)
for B. Define y(t)=0 for t<0, and y(t)=q(0), (p(t)=0 for t>0. Then F(p=-/ .(p,
and

-. +y)’ -(. +y))’.
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Thus

(5.2)
As

(f Fq )’ + Fq/ (f+/.t* ( I.t , ( q +y ) ) (f I* * y )

t=>0,

we get the formula (5.1).
Let us turn to the two descriptions of (B). In both the LP-case and the continu-

ous case, N(tp,f)=0 if and only if M(tp, g)= 0 (see (2.9) and (3.21)). In the continuous
case we can evaluate (5.2) at zero to get

g’(O)+Fp’(O)=(f-I * y)’(0),
which means that M(tp’,g’)=0 if and only if NB(p,f)=O. In the continuous case, the
conditions p, tp’, (f-Ftp), (f-Ftp)’are clearly equivalent to the requirement
that (tp, g), (tp’,g’)’. In the LP-case, Ftp’, and (f- Ftp)’= (f-/ y)’-Fcp’,
so we can replace (f- Ftp)’ -by (f- y)’, and get B(p,f)’. The proof
of theorem 5.2 is thereby complete.

6. The asymptotic behavior ot the extended semigroups. Below we shall look at the
asymptotic behavior of T(t) and R(t). The discussion of the asymptotic behavior of
T(t) is based on [28] and [30] (although the equation discussed there was a differenti-
ated one rather than the undifferentiated equation (1.1)). Once the behavior of T(t) is
known, the results can be transferred to R(t) with the aid of Lemma 4.1.

In the sequel, we suppose throughout that

(6.1) (equation (1.1) is noncritical with respect to ,/)
i.e. there exists a measure vM(R; RX; p) satsifying (2.5) with X replaced by v. In
general, , does not vanish on R-. If it does, then the fundamental solution X in (2.5)
belongs to M(R+;R";pn), and ’=X. See e.g. [16] for conditions which imply that ,
exists.

With the aid of , we can split the solution x of (1.1), (1.2) into two components
x xs + xv, where

(6.2) Xs= q + , . (f+ Fq) )
and

(6.3) xv=(X-,),(f+F)
(here we have used the same conventions as in (2.6)). Neither xs nor xv satisfies in
general (1.2). Instead they satisfy

* ,(t), t<0,
(6.4) Xs(t)+t * Xs(t)= f(t t>=O,

and

(6.5) x (t) =0, <t<

We define the stab&part Ts(t ) and the unstable part Tv(t) of T(t) by

(6.6) Ts(t)(q),f ) ((Xs)t,ft),
(6.7) Tv(t )( q,f ) ((xv)t, 0),
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where (Xs) and (xv) are defined analogously to x in Lemma 2.1. Then T(t)= Ts(t)+
Tv(t). The operators Ts(O) and Tv(0) are projection operators, which split the state
space of T(t) into a stable subspace S and an unstable subspace U. Both S and U are
invariant under T(t), the restriction of T(t) to S equals Ts(t ) (restricted to S), and the
restriction of T(t) to U equals Tt(t ) (restricted to U). Because of (2.4), IITs(t)ll--
O(pn(- t)) as t . The growth rate of Tv(t) is bigger at infinity than the growth rate
of Ts(t ), except when v=X, and U= (0). The restriction of the semigroup Tv(t) to U
can be extended to a group. If the singular part of # is small enough (e.g. zero), and if
the determinant det(I+/2(z)) of the Laplace transform of +/ is bounded away from
zero in the half plane Rez >= a, where

a=- lim t-llog(on(t)),
t---- oO

with the exception of finitely many points in Rez > a where it may be zero, then (6.1) is
satisfied, and U is finite dimensional (its dimension is the same as the sum of the
dimensions of the singularities of (I +/2)). In this case, all "initial functions" in U are
exponential polynomials related to the singular points of (I +/2).

We can use Lemma 4.2 to get a similar decomposition of R(t) into a stable part
Rs(t) and an unstable part R v(t)- One simply defines Rs(t) and Rv(t) to be Rs(t)
D-ITs(t)D and Rv(t)=D-1Tv(t)D. This gives a decomposition of R(t) into two
parts with almost exactly the same properties as Ts(t ) and Tv(t ). The stable subspace
S of T(t) is mapped into the stable subspace D-S of R(t), and the unstable subspace
of T(t) is mapped into the unstable subspace D-1U of R(t). In particular, we get the
following description of the unstable subspace D-1U of R(t): An element (,f)
belongs to D-1U if and only if

t<0,

and

f(t)= f [dlx(s)]q(t-s), t>_O.

Observe that although may be C smooth, f will not in general be even continuous
(f is continuous if is continuous and/ has no point masses).

Acknowledgments. The author wants to thank the referees for their very ap-
propriate criticism of the original presentation, and for providing us with a part of the
motivation to rewrite [32]. One of the questions posed by one of the referees, i.e. the
question whether the ordinary initial function and the forcing function semigroups are
equivalent in the infinite delay case, has been given a partial answer in [32].
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DENSE SETS AND FAR FIELD PATTERNS
IN ELECTROMAGNETIC WAVE PROPAGATION*

DAVID COLTON" AND RAINER KRESS:

Abstract. It is shown that the electric far field patterns corresponding to the scattering of entire incident
fields by a bounded perfectly conducting obstacle are dense in the space of square integrable tangential
vector fields defined on the boundary of the unit ball if and only if there does not exist a Maxwell
eigenfunction that is an electromagnetic Herglotz pair, i.e. a solution E, H of Maxwell’s equations defined
in all of space such that

lim
1 jf (]E(x)12+lH(x)12)dx<.
!

Ixl<=r

1. Introduction. A basic task in the investigation of the inverse scattering problem
for time-harmonic acoustic and electromagnetic waves is the study of the class of far
field patterns corresponding to the scattering of entire incident fields by a bounded
obstacle. Indeed if T denotes the operator mapping the incident field and scattering
obstacle onto the far field pattern, then the inverse scattering problem is to construct
T-1 defined on the range of T, and the determination of this range is nothing more
than the description of the class of far field patterns. Unfortunately, little is known
concerning this class except for the well-known fact that the far field patterns are entire
functions of their independent (complex) variables for each positive fixed value of the
wave number [3], i.e. the range of T is not all of L2(8f) where f is the unit ball. We
note that this implies that the inverse scattering problem is an improperly posed
problem since the far field patterns are, in practice, determined from inexact measure-
ments.

Recently Colton [1] and Colton and Kirsch [2] have investigated the case of
acoustic scattering and asked the question if the class of far field patterns correspond-
ing to a fixed scattering obstacle and all entire incident fields is dense in L2(2). The
rather surprising answer to this question is that if the impedance of the scattering
obstacle is positive, then the far field patterns are dense in L2(3f), whereas if the
scattering obstacle is sound-soft (i.e. Dirichlet boundary data) or sound-hard (i.e.
Neumann boundary data) then the far field patterns are dense in L2(2) if and only if
there does not exist an (interior) eigenfunction that is an entire Herglotz wave function,
i.e. a solution u of the Helmholtz equation defined in all of space such that

)m l__r ff lu( )l=d <
Ixl<__r

This phenomenon is rather unusual since in a wide variety of improperly posed
problems in mathematical physics the range of the operator which one wants to invert
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is dense in (but not equal to) the Banach space in which the measurements are being
made. Hence, the inverse scattering problem is peculiar even in the class of improperly
posed problems. Furthermore, not only is the property of the far field patterns being
dense very sensitive on the shape of the domain, but from physical considerations the
interior eigenvalues should in fact have nothing to do with the exterior scattering
problem at all.

The purpose of this paper is to extend the above results for acoustic scattering to
the electromagnetic case. In particular we shall show that the far field patterns of the
electric fields corresponding to the scattering of entire incident fields by a bounded
perfectly conducting obstacle are dense in the space of square integrable tangential
vector fields defined on Of if and only if there does not exist a Maxwell eigenfunction
that is an electromagnetic Herglotz pair, i.e. a solution (E,H ) of Maxwell’s equations
defined in all of space such that

)irn
1 ff (IE(x)la7 +lH(x)l)dx<

Ixl<=r

This result will be established by first constructing an appropriate complete set of
functions defined on the boundary of the scattering obstacle, and then establishing an
integral representation for the electric field of an electromagnetic Herglotz pair. Al-
though we only prove necessary and sufficient conditions for the electric far field
patterns to be dense, from the symmetry of Maxwell’s equations we can easily deduce
an analogous result for the magnetic far field patterns.

In the analysis which follows we denote the scalar product of two vectors by (.,.),
the vector product by [.,. ], and the triple product of three vectors by (.,.,.). By an
entire solution to the vector Helmholtz equation or Maxwell’s equations we mean a
solution that is defined in all of Euclidean three-space R 3.

2. Complete sets of tangential vector fields. We begin by defining our notation.
Let Jn denote the spherical Bessel function of order n and h the spherical Hankel
function of the first kind of order n. Let

Ynm( o q)) [ (2n + l)( n- [m[)!]/2plnl (cosO)eimw4r(n+ Iml)!
n 0,1, 2,-.., m -n,. .,n, denote the spherical harmonic of order n where pm is the
associated Legendre polynomial. Define

um(x):=jn(kr) Ynm(0, tp),

vnm (X) hn(kr)Y"(O,q )

where (r, 0, q) are the spherical coordinates of x fl and k > 0 is the wave number. Let
e., j 1, 2, 3, denote the Cartesian unit coordinate vectors and define

Ejm,, (x)" curl curl eju2 (x),

j=1,2,3, n=0,1,2,-.-,m--n,...,n. Note that the Ejm,, are entire solutions of the
vector Helmholtz equation. Since they are divergence free, the pair { Ejm,,, Hjm, }, where

1
Him,. --curlEjm, n,ik
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is a solution of Maxwell’s equations

curlE ikH 0, curlH+ ikE O.

The set consisting of all functions Ej,mn will be denoted by

e.= ,n,j=l,2,3, n=O,1,2,...,m= -n,. .,n

Now let D denote a bounded region in N with the boundary 3D consisting of a
finite number of disjoint, closed, bounded surfaces belonging to class C 2. The exterior
domain N3\ is assumed to be connected, whereas D itself may have more than one
component. We assume that the unit normal , to 3D is directed into the exterior of D.
Let

x’= { a" OD--,e3l(u,a)=0, aL2(OD)}
denote the Hilbert space of square integrable tangential fields defined on the boundary
OD.

Before proceeding to the main results of this section, we first present a brief
discussion of the jump relations for vector potentials with square integrable densities.
To do so we begin by stating the corresponding results for continuous densities.
Consider the vector potential

A(x)" foo(x,y)a(y)ds(y),
where

1 e iklx-yl

(x,y)’=
4r Ix-yl’

x4:y,

is the fundamental solution to the Helrnholtz equation and a is a continuous tangential
field defined on OD. We then have the following result.

LEMMA 2.1. For the vector potential A with continuous tangential density a we have

(2.1)

(2.2)

lim [,(x), curlA(x +h,(x))-curlA(x-hu(x))] =a(x),
h--*0
h>0

lim u (x), curl curlA (x + h v (x)) curl curlA (x h v (x)) O,
h-*O
h>O

uniformly for x OD.
Proof. For a proof of (2.1) see [3, Thm. 2.26]. For (2.2), as in the case of [3, Thm.

2.21], it suffices to carry out the proof for k=0. Setting x+_ "= x+hu(x), xOD, we
observe that curl curia grad divA for k 0 and use this to obtain

4rcurlcurlA(x +)=fo {3 (x +/--y,a(y)) (x +-y)---
o Ix_+-yl

a(y) } ds(y)ix +__yl3
In particular, if a [u, c] where c is constant, we see by Gauss’ theorem that

divA(x) foo(,( y), c, gradyd( x,y)) ds( y) =O, xR3\OD.
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Hence we have that

4r [v(x), curlcurlA (x _+)l

z Ix_+-yl

[g(x), [v(y),b(y)-b(x)]]

where we have set b:= [a, v]. The proof of the lemma can now be completed as in [3,
Thm. 2.21].

By using Lemma 2.1, the proof of the following lemma can now be carried out
analogously to the results of Kersten [5] for the case of scalar potentials with square
integrable densities.

LENNA 2.2. For the vector potential A with square integrable tangential density a we
have

lim fa [[u(x), curlA(x+hv(x))-curlA(x-hv(x))]-a(x)12ds(x)=O,
h-+O D
h>O

lim fo I[v(x)’ curlcurlA(x + hv(x))-curlcurlA(x-hv(x)) I2ds(x)--O.
h--+O D
h>O

We are now in a position to prove our first theorem.
TnEOIN 2.1. Let > O. Then

W’= {c’= [[curlE,vl, vl+i[v,El, Eg }

is complete in X.
Proof. Let a X such that

0

for all c W, i.e.

(2.3) foz{- (6, curlE)+il(6, v,E)} ds=O

for all E d. The theorem will be proved if we can show that a- 0. To this end we first
write

Aeju + grad div ejum k 2ej/,/2 -q- gradEj.,mn curl curl eu

and hence

curl E,m. k 2 curl eu k 2 t[grad u.,em
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We can now rewrite (2.3) as

z)
k2[ej’ gradu] +ik2[v’ejlum +il v, grad---yj , ds(y)=O.

Define the vector field F by

F(x)" curl f0.a(Y)b(x’y)ds(y)
i f+ -scurl curl o[v(Y)’a(Y)]O(x’y)ds(y)"

We use the identities

curlxa(y)d(x,y)= [gradx(X,y ), a(y)] [a(y), grad(x,y)]
and

(ej, gradxdivx[u(y),a(y)l(x,y))=-xdivx[u(y),a(y)l(x,y )

(gradx (x,y),u(y),a(y))

(grady(X,y),v(y),a(y))

grady -x, (Y), a(Y)

( )grady -y,V(y),a(y)
to calculate

k(ej’F(x))=kf9(e’6(Y)’ grady(X,y))ds(y)

’tiTlk2fD(ej’v(Y)’a(Y))d(x’y)ds(y)

+ifz)(u(y),6(y), grad
Making use of the expansion

(x,y)= E onm(x) Unm(y),
M---O
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which together with its term by term derivatives is uniformly convergent for [xl > [Yl, we
see that

k2(ej,F(x)) =ik E . v(x) k (ej,a(y), gradum (y))ds(y)
n-----0 m=-n D

+i*lkfao(eJ’u(Y)’K(Y))u(y)ds(y)

+ir/fa/9( u ( y), 6( y), grad

for Ixl sufficiently large. From (2.4) we can now conclude that F(x)=0 for Ixl suffi-
ciently large, and by the analyticity of solutions to the Helmholtz equation we see that
F(x)= 0 for x R 3\. From Lemma 2.2 we now see that on OD

-[e,F_l=,
[v, curlF_ it/Iv, 6],

and with the aid of Gauss’ theorem we have

ff div[ if, curlF dx
D

ff (Icurl FI 2 (if, curl curl F) } dx
D

ff { Icurl FI2- k 21FI = } dx.
D

Since the left-hand side is purely imaginary and the right-hand .side is real, it follows
that a 0, and this completes the proof of the theorem.

Remark. Note that Theorem 2.1 is not valid if 7 0. To see this let D be the unit
ball. Then consider

F (x)" curl curlxu(x).

Straightforward calculations show that

and

F, (x) k 2 m grad[u )+(x graduXU (X)’- mn(X m(x))]

curl F,m(x) k 2 [grad u’(x),x ].
Therefore. if k is a zero ofin for some n, then

,, curl F, k 2jn ( k)grad .Yn 0

[,,F] =kj(k)[, grad Y] 4:0

and

on 0D

on 0D
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for all m -n,...,n. We apply Gauss’ theorem to obtain

fao([[curl E, ], ], , Fm]) ds faz)
{ ( ’ curlE, F ) ( , curl Fn E ) } ds

fD div ( [curl E, Fn [curlFm, E } dx 0

since E d and Fn solve the vector Helrnholtz equation. Hence, W is not complete if k
is a zero ofjn (in the case 0 and 0D the unit ball).

We now consider the set T of all solutions ( E,H ) of boundary value problems of
the form

curlE ikH= 0 in R3\curlH+ ikE 0

[v,E]=0 on D,

where E E + Es, H=H +H such that E do, Hi: (1/ik)curlE i, and

Hs
x

-E’=o [x[o.

Then we have the following theorem.
THEOREM 2.2. The set

V’= {b’= [[H,v], v], (E,H)T)
is complete in X.

Proof. We first derive a uniquely solvable integral equation for b= [[H, v], u] by
combining the magnetic and electric field equations (cf. [3, 4.8]). Define integral
operators M, M’ and N by

(Ma)(x)’= 2f [u(x),curlx(d(x,y)a(y))]ds(y ), x3D,
D

M’a := [v,M[u,a]],

(Na)(x)" 2[v(x), curlxcurl fDd(x’Y)[v(Y)’a(Y)] ds(y)], xOD,

where a is a HOlder continuous tangential vector field defined on 0D which in the case
of the operator N in addition is assumed to have a HOlder continuous surface diver-
gence DN[v,a]. We note that the operators M and M’ are adjoint with respect to the
pairing

(a,b)’= f (a,b)ds,
D

and the operator N is self adjoint (cf. [3, p. 63]). From the representation theorems for
solutions to Maxwell’s equations we can now deduce (cf. [3, 4.8]) that

,H[v,E*I-M[v,E*I--N[v [v 1]=0,
1-[r,E’I-M[r,E’I--N[v, [r,H’]] =0.
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If we now add these two equations and use the boundary condition [,,E]= 0 we see
that

(2.5) Nb= -2ik[u,Ei].

Similarly, from the magnetic field equations

,E[,HI-M[,H’I+N[ [ 1]=0,
1

,H-[,H]-M[,H]+7N[ [ l]=0,

we see that

(2.6) b+M’b=2[t’,[’,Hil].
We now combine (2.5) and (2.6) to obtain the combined magnetic and electric field
equation

i/ 2
b + M’b + --Nb ([[curlE i, ’l, u] + iv/[ ,,Eil)(2.7)

which for 1 > 0 is uniquely solvable (cf. [3, Thm. 4.47]).
Now let a X such that

b) 0

for all b V. Our aim is to show that a 0. To this end we see from (2.7) that

7, I+M’+ N c ds=O

for all c W. But this implies that

I + M +-N ff, c ds=O

for all c W, and by Theorem 2.1, we can conclude that

i/ )
-x

I+M+-N =0,

which implies that a=0. (Here we have made use of the fact that (I + M +(i’q/k2)N) -1
is defined and injective on X. This result is shown in the space of HOlder continuous
tangential fields in [3, Thm. 4.44] through the use of a regularizing technique for the
singular operator I + M+ i(q/k2)N and the same method can also be used to show the
result for the space X).

3. Far field patterns. Before we can present our results on the denseness of electric
far field patterns in the space of square integrable tangential fields defined on the
boundary of the unit ball, we need to introduce a special class of entire solutions of
Maxwell’s equations which are the electromagnetic analogue of Herglotz wave func-
tions for the scalar Helmholtz equation (cf. [4]).
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DEFINITION 3.1. Let (E,H } be a solution of Maxwell’s equations. Then (E,H)
will be called an electromagnetic Herglotz pair if

)irn l__r ff ([E(x)l+ lH(x)l) dx < "
Ixl_r

Remark. It is easily verified that E/, and Hj.,, (1/ik)curlEj,, form an electro-
magnetic Herglotz pair.

Motivated by the results of Hartman and Wilcox [4] for the scalar Helmholtz
equation, we begin by obtaining an integral representation for the electric field of an
electromagnetic Herglotz pair.

THEOREM 3.1. Let (E,H) be an entire solution of Maxwell’s equations. Then
( E,H ) is an electromagnetic Herglotz pair if and only ifE has the representation

E(x) =’’ aa()eik(x’P)ds()
where a is a square integrable tangential field defined on the boundary 2 of the unit ball
f.

Proof. Let (E,H } be an electromagnetic Herglotz pair. Then E and H are both
solutions of the vector Helmholtz equation and hence have the expansions

E(x)= E i"a,mU(X),
n=0

/-/(x) E  "b.mu2(x),
--0

where a,m and b,m are constant vectors and the series are uniformly convergent on
compact subsets of R 3. Since (E,H } satisfies the Herglotz conditions, it follows from
the results of [4] that

2

n=0

For 2 02 we can now define bL2()) by

b(2)’= E bnmYnm(O,q))
n=O

where (0,) are the spherical coordinates of 2, and from the addition formula

ei’(x’)=4r E i"u’(x)’(O’,q)’)
O

where (0’, q’) are the spherical coordinates of. 2, we see that

H(x) --- fb(fi)eik(x’P)ds().
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Since from Maxwell’s equation E (1/ik)curlH we can compute

(3.1)
1 ik(x,y)ikE x ) curlH(x ) =curl ab ( ) e ds ( . )

4ri---k faa [y, b(.)] eik(x’P)ds(),

i.e.

1 fa ik(x,p)a(y)e ds(y)(3.2) E(x)
a

where a(p)" -[p,b(p)] is a square integrable tangential field defined on Oft.
Conversely, suppose (E,H ) is a solution of Maxwell’s equations such that E has

the representation (3.2) for some square integrable tangential field a defined on Of.
Then each component of E can be represented in the form (3.2) for a scalar square
integrable function a defined on Of, and hence from the results of [4] for scalar
Herglotz wave functions we can now conclude that

)i__,rn l_.r ff E ( x ) gdx <
Ixl_r

From Maxwell’s equations we have that H=(1/ik)curlE, and hence from a calculation
analogous to that in (3.1) we see that H can also be represented in the form (3.2) for
some square integrable tangential field a. Hence we can conclude that

lim
1 ff IH(x)ldx <

Ixl<=r

i.e. { E,H } is an electromagnetic Herglotz pair.
We now turn our attention to the class of electric far field patterns corresponding

to the scattering of an entire incident field by a perfect conductor. To this end let D be
as defined in {}2 of this paper and let the incident field { Ei, n } be an entire solution of
Maxwell’s equations. Then the exterior Maxwell boundary value problem is to find
E= E + E and H= Hi+ H such thatE, H CI(N3\))C3C(N3\D)and

(3.3a) curlE- ikH 0 in
curlH+ ikE 0

(3.3b) [,,EI=0 onOD,

(3.3c) ns x

where (ES, H } denotes the scattered field. The existence of a unique solution to the
boundary value problem (3.3) is well known (cf. [3]). From [3, pp. 110, 114], we see that
E has the representation

1
E(x) -curl curl v(y),H(Y)lO(x,y)ds(y),



DENSE SETS AND FAR FIELD PATTERNS 1059

and using the relations [3, p. 113]

where e is a constant vector, we see that

ikeiklxl f e-ik(c,y)([v,H]_([v,H],Yc)Sc) ds(y)+O( l____)4,111 oa Ixl:
DEFINITION 3.2. The function

1 fa -ik(2,y) ,H],.,). } ds(y)F(2)’= ae {[v,Hl-([v

is called the far field pattern of the electric field corresponding to the boundary value
problem (3.3).

Note that if F is the electric far field pattern corresponding to the boundary value
problem (3.3), then (2,F)= 0, i.e. F is tangential to the unit sphere.

We now want to establish the main result of this paper, that is to determine
necessary and sufficient conditions for the class of electric far field patterns corre-
sponding to all entire incident fields to be dense in the Hilbert space

Y’= { a’Oa-+C31(Yc,a)=O, aeL2(Oa),YceOa}.

In order to state our theorem we need the following definition.
DEFINITION 3.3. The positive number k is called a Maxwell eigenvalue provided

there exists a nontrivial solution of the boundary value problem

curlE- ikH 0 in D,
curlH+ ikE 0

[v,E]=0 on0D.

Such a nontrivial pair { E,H } is called a Maxwell eigenfunction.
We note that the set of Maxwell eigenvalues is countable with its only accumula-

tion point being the point at infinity (cf. [6]).
THEOREM 3.2. Consider the set ’k of electric far field patterns corresponding to all

entire incident fields and a given domain D. Then
a) If k is not a Maxwell eigenvalue, then is dense in Y.
b) If k is a Maxwell eigenvalue, then is dense in Y if and only if none of the

Maxwell eigenfunctions is an electromagnetic Herglotz pair.
Proof. Suppose there exists a Y such that

fo( a’ F ) ds O
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for all Fo-k. Then

(3.4) 8,r)as= Iv,H], aa(Scle-ik(s")ds(Sc) ds(y)

where

([../4].

(3.5) Eo(Y)" a(Sc)e-i’s’Y)ds(5c).
Note that Eo as defined by (3.5) is an entire solution of the vector Helmholtz equation,
and since

divE 4rrik fo(l(SC)’)e-ik(yc’Y)ds()--O’
we have that Eo and Ho’= (1/ik)curlEo satisfies Maxwell’s equations [3, p. 112]. Using
the vector identity ([[u,H], ,], [Eo, u])=([u,H], Eo), we can rewrite (3.4) in the form

Hence from (3.6) and Theorem 2.2 we now see that if

(3.7) foa( 8, F ) ds O

for all F-,, then [Eo, u]=0 on OD, i.e. { Eo,Ho ) is either a Maxwell eigenfunction or
Eo (and hence H0) is identically zero.

If k is not a Maxwell eigenvalue and (3.7) is valid, then Eo is identically zero, and
from (3.5) and the analysis in Theorem 3.1 we see that a is identically zero, i.e. is
dense in Y. This proves part a) of the theorem. If k is a Maxwell eigenvalue and (3.7) is
valid, then we see that either a is identically zero or El"= E0 and Hi"= (1/ik)curlEo
constitute a Maxwell eigenfunction, and from Theorem 3.1 we see that { El,H } is an
electromagnetic Herglotz pair. This proves part b) of the theorem.

Example. Let D be the unit ball. Then from the remark after Theorem 2.1 we see
that if jn(k)=0 then E’=curlFm, H’=(1/ik)curlE, m= n,. .,n, constitute
Maxwell eigenfunctions which are easily seen to be electromagnetic Herglotz pairs.
Hence in this case- is not dense in Y.
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ROGERS’ LINEARIZATION FORMULA FOR THE CONTINUOUS
q-ULTRASPHERICAL POLYNOMIALS

AND QUADRATIC TRANSFORMATION FORMULAS*

GEORGE GASPER"
Abstract. A simple proof is given for the Rogers’ linearization formula for the continuous q-ultraspheri-

cal polynomials. This formula is then used to derive several quadratic transformation formulas.

1. Introduction. Almost 90 years ago, in his work [11]-[13] on the now famous
Rogers-Ramanujan identities, Rogers [13, p. 29] used an induction argument to prove
the linearization formula

(1.1)

C(x; Blq)Cm(X; /31q)--
min(m, n)

] (q; q)m+n-2k(; q)m-k(i; q)n-k
k=0 (q; q),(q; q)m-*(q;

(/3; q)k(/3-; q)m+n_k(l--iqm+n-2k)
(/3q; q)m+n_k(2; q)m+n_2k(1--)

Cm+n-2,(x; ]3lq),

where, following Askey and Ismail [2], the continuous q-ultraspherical polynomials are
defined for x cos 0 by

(1.2) C,(cosO" fllq)= (/3; q)nein0 [ q-n, i ](q; q)2 2*l[-aql-,;q, q-1e-2iO

Here (a; q)0 1, (a; q)n=(1-a)(1-aq) (1 -aq"-1) for n= 1,2,-.., and a r+lr
basic hypergeometric series is defined by

(1.3) [al,’’’,ar+l (al; q)k’’’(ar+l; q)k
r+ ll)r bl,... ,b ;q,z -b-ri,=0 ( ;q)," (

k
Z

(q; q),

whenever the series converges. We also let (a; q) =(1 a)(1 aq)(1 aq2) when
Iql < 1. The series in (1.3) is said to be balanced (Saalschiatzian) if qala:...ar+a bib

b and to be well-poised if qa a 2b a b: a + lbr-
Additional proofs of (1.1) were not published until 1981 when Bressoud [6] used a

nontrivial inductive type argument to prove it in an equivalent multiple series form
(which, as in the Rogers proof, required knowing the linearization coefficients explicitly
beforehand) and Rahman [10] gave an impressive computation of the linearization
coefficients (as 10b9 series) for the more general continuous q-Jacobi polynomials that is
quite lengthy even in the ultraspherical case. Rahman’s results were employed by the
author [8] to give a convolution structure associated with the linearization, a
Wiener-L6vy type theorem, and positivity of a generalized translation operator. Askey
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and Ismail used (1.1) to give an inverse formula [2, (4.19)] that was subsequently used
in Gasper and Rahman [9] to derive an s7 series representation for the Poisson kernel
Pt(x,Y; fllq) for the continuous q-ultraspherical polynomials from which the positivity
of this kernel follows immediately for 1 < < 1, 1 __< x, y __< 1 when 1 < q < 1 and
0 =< fl < 1. Applications of (1.1) to q-ultraspherical functions of the second kind and to
sieved ultraspherical polynomials were recently given in Askey, Koornwinder and
Rahman [3] and in A1-Salam, Allaway and Askey [1], respectively.

These applications finally convinced the author to publish the following simple
computational proof of (1.1) which he discovered several years ago (see [10, p. 961])
while searching for a proof as simple as that given by Bailey [4] for Legendre polynomi-
als. We shall also use (1.1) to derive several quadratic transformation formulas involv-
ing series that are neither balanced nor well-poised.

2. Proof of (1.1). From Heine’s formula [5, 8.4(2)]

(2.1)

it follows that if Iql<lfll < 1 and x cosO, then

(2.2) Cm(x fllq)
(fl; q)m(fle-2iO" q)eimO
(q; q)m(qfl-le-2iO; q)o

and hence

(2.3)

where

I qfl-1, fl- 2ql-m
21

n

Cn(x; fllq)Cm(x; fllq)=Am E (q-n; q)r(fl; _q_).r_ (q-le-2io)r
r=0 (q; i’’i’-----n; q)r

so ( qfl q ) ( fl 2q iq_s ) ( fle 2 O )
(q; q("-lql-m; q

=A,,hE (qfl-1.;q)y(fl 2qX ;q)y(fle_2ie) y

j=0 (q; q)j(-lql-m; q)j

flqm-j,,q-n,q-j
"43 /2qm_j, Bq-y, -lq1-.

(B" q) (B" q) (fie -2i" q) i(m+n)OAm,n e
(q; q)m(q; q)n(qfl-le-2i; q)oo

At this point it is crucial to observe that since the above 43 is balanced it follows from
Watson’s [5, 8.5(2)] transformation formula

4qb3 IX, y, 2, q-n q, q
U V, W

(u/z; q)n(U/y; q)n
(U; q)n(U/yz; q)n

[ a’qv/--d’vTqgC’w/x’o/x’Y’z’q-n owq ]"87 l/-, 1/’, W, zu-lqX-n, yu-lql-n, yzq/u
q’ yz
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where a yzu- lq-,, owx- lq- 1, that

flq.,_j, fl, q_,,,q_j ]4b3 flZqm-j, flq-j, fl-lql-n
;q’ q

(-2ql-m-.; q)j(-lql-m; q)i
(fl-lql-,,,-.; q)j(B-Zql-.,; q)j

c, qv/-, -qv/, fl-2ql+j-m-n, q-m, [3, q-", q-J
"8q7

V/--, -V-, flq-J, fl- lql-,,, -2ql--m-n, -lql-m, -- lql +j-m--n

with c ,8-lq-m-n. Hence, from (2.3) and (2.4),

Cn(X; lq)Cm(x; fllq)

--Am E (qfl 1; q)j(fl-2ql-m-n; q)j
(fle-2iO) j

j=o (q; )j(-lql-m-n., )j
c, qvC-, -qv/-, q-n, fl-2ql +j--m--n, q--j, fl, q--m

"8t7 V-, --r-, fl- lql- m, flq-j, fl- lql +j-m-n, fl- 2ql-m-n, fl- lql-n q]
min(m,n) (C; q)k(qv/’- q)k(--qf" q)k(q-n; q),(fl" q)k(q-"; q)k
k=0 (q; q)k(v/-; q)(-V/-; q)k(fl-lql-m; q),

(c; q)(q-; q)k(--ql/-; q)k(q-"; q)k(fl; q)k(q-m; q)k
(-2ql-m-n; q)k(-lql-n; q)k

( fl- 2ql -_m-i q)Ek (qfl- e- 2,o) 21 [ qfl- 1, -- 2ql + 2k-m-n

( ’---q--m--n; q)2k fl-lql+ 2k-m-n
q, fie- 2io ]

mi ,n) (q; q)m+ -2k(fl; q)m-k(; q),,-k(fl; q)k(fl q)m+n-k
m=0 ( q, -i t i -m--- (; -)-’---’( flq, q ) m+n- k ( fl q ) m+n-2k

l flq m+ 2k

Cm+n-Ek(X;lq)

by changing the order of summation and using (2.2). This completes the proof since the
restrictions that Iql < 1/31 < 1 and 1 <_ x =< 1 can now be dropped.

3. Quadratic transformation formulas. From the above proof it follows that (1.1) is
actually equivalent to the transformation formula (2.4). If instead of using both (1.2)
and (2.2), we just use the series representation in (1.2) for all three polynomials in (1.1)
and compare the coefficient of e’+"-2j) on both sides of (1.1), we find that (1.1) is
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also equivalent to the transformation formulas

(3.1a)

q-j, q-,,,, flq,,-j q2 ]4t3
/- lq-j, /- lql-m, ql+,-j’

q’

(q-m-n; q)j(fl-lql-n; q)j
(q-n; q)j(-lqX-m-n; q)j

fl, q-j, q-m, q-n, fl-lq-m-n, qj-m-n:
"98

fl- lql -j, - lql m, lql n, fl- 2ql n, fl eql +j-m-n:

fl-2ql-m-n, fl-2q2-m-n, fl-lq2-m-n

_
]qX-m-n, q-m-n, fl-lq-m-n

;q, q2,

forj O, 1,- ., n and

(3.1b) , q-n, qj-m-n, qj-n
43

fl_ lq _., fl_ lql +j- n, q +j-.

(fl-lql-j;q)n(qm+l;)n(fl)n( q-J;q i-,,-i’--i ")- -,q-j,q-m,q-n, fl-lq-m-n, qj-m-n:
98 lql --j, lql m, lql n, fl 2ql n, lql +j- n:

fl 2ql n, fl .q 2- n, fl lq :--

qX-,,,-,, ,q fl-lq

for j=n,n+ 1,-..,n+ m. In (3.1a) and (3.1b) the bi-basic hypergeometric series are
defined by

al,. ,at+ 1"
r+s+lr+s

Cl. .Cr.

E (al; q)"’" (ar+l; q)k(bl; k-" (b," q’)
,=0 -(-c; qi -(i-qi(i -q3 ds; q’),

kZ

(q; q)k"

Note that (3.1b) can be obtained from (3.1a) by replacing j, n, and m by n, j, and
m + n-j, respectively. By analytic continuation m and n can be arbitrary (complex
valued) parameters in (3.1a) when j=0,1,2,.... If the coefficient of the bi-basic 98 in
(3.1a) is replaced by its equivalent form (qn+l; q)m(q,,-j; q),,,/(q+n-j; q)m(qn;
q)m, then (3.1a) holds for arbitrary complex values ofj and n when m=0,1,2, .

Since the above 4b3 series are neither balanced nor well-poised, it is natural to
investigate what structure they do have. From the way we have written these 43 series,
it is obvious that /3 times each denominator term is q times a numerator term, a
property that we shall call "level". In general, the r+ qr series in (1.3) will be said to be
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a level series if a qa2/b qa3/b2 qar+ l/hr. When the order of summation in
a terminating level series is reversed then the resulting series is also a level series. If we
rewrite the 43 in (3.1a) in the form

43[ flq,, , fl, q-, q-m q:Z]
ql + n-, fl- lql-m, -- lql-j’

q’ -S]’
then it is of the type

a, b, c, d
aq/b, /c, /d’ q’ z

which, following Whipple [14, p. 270], we shall call a half-poised series. Turning to the
above (identical) bi-basic 9q8 series, observe that the terms corresponding to basee q
have the "level" property, while the terms corresponding to base q2 have the property
that bid bzd2 ---b3d3 fl-2q2-2m-Zn, giving series which are split between being level
and half-poised. By using (a; qZ)n=(gr; q)n(--V/-; q)n, we can also write these
bi-basis 98 series as 12 series in base q that are well-poised (with a=fl-lq-m-n)
and, in fact, very well-poised (i.e., they also have the property that qVl a2 -a3
qb -qb2). Explicitly, by analytic continuation, it follows from (3.1a) and (3.1b) that

(3.2)

a,b,c,d q
4 bq/a, cq/a, dq/a q’ -(a/d; q)o (bq/d; q) (cq/d; q)o (abc/d; q)

( q/d; q) (ab/d; q )o ( acid; q )o ( bcq/d; q)

bc/d, qvrbc/d, -qv/bc/d, a, b, c, ab/d,
"lthl v/bc/d, v/bc/d, bcq/ad, cq/d, bq/d, cq/a,

ac/d, v/bcq/ad, v/bcq/ad qv/bc/ad qv/bc/ad q ]
bq/a, v/abcq/d v/abcq/d v/abc/d x/bc/d

q’
a J’

where a, b, or c is of the form q-n with n- 0,1, 2, (so that both series terminate).
By replacing a, b, c, d in (3.2) by a a, qb, qC, qd, respectively, and letting q--> 1 we

obtain the following quadratic transformation formula between a 4F3 and 9F8 hyperge-
ometric series"

(3.3) 4F3 a,b,c,d "1]1 +b-a, 1+c-a, l+d-a’

F(1-d)F(a+b-d)F(a+c-d)F(1 +b+c-d)
F(a-d)F(l+b-d)F(l+e-d)F(a+b+c-d)

b+c-d, 1 +(b+c-d)/2, a, b, c,
"9F8 (b+c-d)/2,1+b+c-a-d, l +c-d, l +b-d,

a+b-d,a+c-d, (l+b+c-a-d)/2, l+(b+c-a-d)/2
1+c-a, 1 +b-a, (1 +a+b+c-d)/2, (a+b+c-d)/2

where a, b, or c is a negative integer.
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Since C,,(x; qXlq) tends to the ultraspherical polynomial CX(x) as q--*l, addi-
tional quadratic transformation formulas can be obtained from the limiting q 1
ultraspherical polynomial case of (1.1)

(3.4) CmX(X) C.x (x)
min(m, n)

E
,=o k!(m-k)!(n-k)!(X+ 1)m+n_k(2X)m+n_2k

h+m+n-2k C2+n-2k(X),

where (a)o= 1 and (a),=a(a+ 1)... (a+ k- 1)= F(k + a)/F(a), by using the follow-
ing power series representations [7, p. 176]

(3.6)

(3.7)

Using (3.5), (3.6), (3.7), and both (3.7) and (3.8) in (3.4) yield respectively,

(3.9)

1

4F3
-j, -,-j, -m, m+2;k

I ;1
1 +n--j, 1- 2,-n-j, ,+
(j+ n+ 2X)m(t)m(n+ 1)m
(l +n--j)m(2)k)m(n+X)m

1 1
-X-m-n, l--()k+m+n), -m, -n,X, (j-m-n),

"9F8 1--(h+m+n),l-h-n,l-X-m, 1-2X-m-n,
z-

l(l_m_n) 1-X -1l(l+j_m_n) -X+- -(m+n)2
1 l(l_j_m_n) l(l_m_n) 1

1-2t--(j+m+n), -X+- - (m+n)
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(3.10)
1 1 1

j X + n-j, -m - -mF3 1 1 1
-+-n-j, 1 +-n-j, 1-X-m

;1

-)-n-m,1--()+m+n), -m, -n,(X+n-j)m(n+l).,
8Fv 1(l +n-Zj)m(n+’)m --(X+m+n), l-X-n, l-X-m,

11 (1-m-n) 1-)t---(m+n)-j, ), -)+
1 1

1-X+j-m-n,l-2X-m-n, g(1-m-n), --(m+n)
(3.11)

1
-j, --)-j, -m, m+}k

4F3 ;1
1 +n-j, 1-)t-n-j,X+

( X "l-j+ n)m(n + 1) m(.)2m(2n + 2k)2
(1 + n--j)m(n + X)m(2X)2m(2n + k)2

1
-X-2m-2n, l-h-m-n,

"7F6 1
-X-m-n,

-2m, -2n,j-m-n,,, 1-,-m-n

1--2n, 1-k-2m, 1-)-j-m-n, 1-2,-2m-2n, -m-n

(3.12)
1

-j, -,-j,-m,m+X+l

1+n-j, 1--n-j,+-
+ a) +

(1 + n -J)m(n + X),+(2k )2m+ 1(2n + 2 )2m+l
1 1

-1-,-2m-2n, --)-m- n,
"7F6 1 lx_m_ n

2 2

1-h-2n, -h-2m, -2-2m-2n, --j-m-n, -m-n

where, e.g., j and n may assume complex values when rn 0,1, 2,’--
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For completeness it should be noted that, analogous to the use of (2.1) in the proof
of (1.1), we can also apply Euler’s transformation formula

=[1__2c bg. 1;, C a, c

to each of the 2F1 series in (3.5), (3.6), (3.7), and the substitute each series along with its
transformed series into (3.4) to derive, respectively, the transformation formulas

(3.14)

1
-j, ---)-j, -m, m+

4F3 1 1 1
;1- + X + n -j, -- X- n -j, , + -(1/2"+" k + H +j)m()m(H -- 2)m(1/2+ , + n-j)(2,)=(n +

1
-X-m-n,1--(X+m+n),

"7F6 1
2(h+m+n),

m, n, ,, - -- X +j- m- n - -- , +j- m n

1-X-n, l-X-m, l-2X-m-n, - -X-j-m-n - --X-j-m-n

(3.15)

1 1 1
j X + n-j, -m -K -m4F3 1 1 1

;1

,+-n-j, -+,+n-j, 1-X-m

;1

(,+ n--j)m(n+ 2k)m
(2X+n--2j)m(n+.)m

1-X-m-n,1--(,+m+n), -m,

+m+n), 1-.-n, 1-h-m, 1-h+j-m-n, 1-2h-m-n
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and

(3.16)
1

-j, --j,-m,m+)
4F3 1 1 1

;1- + n -j, -- n -j, +

(1/2.at_ X -Jl" tl -ll-j ( 1/2"-I- rl ( X )2m (2n q- 2X )2m
( 1/2q" t’l --j ) (--}-t- "t’- Fl ) 2 )2m 2rl " )2

1,- 2m- 2n,1--- m- n,

"7F6 1
-X-m-n,

1 1
2m 2n ,, ---m n -+j- m n

1 1
1--2n, 1-,-2m, 1-2,-2m-2n, --m-n, --t-j-m-n

Note that the 4F3 series on the left of (3.12) and (3.14)-(3.16) are balanced.
The above very well-poised 6F5(-1) and 7F6(1) series can also be written as

multiples of 3F2(1) and balanced 4F3(1) series, respectively, by applying the formulas
[5, 4.4(2)] and [5, 4.4(5)]. In particular, this gives from (3.11), (3.12), (3.14), (3.15), and
(3.16), respectively, that

(3.17)

1
-j, -- )-j, m, m + X

4F3 1
;1

1 +n-j, 1--n-j,)t+-

(i + n7n’{’_7’ 4F3

(3.18)

1
-j, --)-j,-m, m+,+l

4F3 1
;1

1 +n-j, 1--n-j,+-

( X-kj’-b n)m+ l( n W1)m
(1-+- n --j ) ( n Zt- k ) m+ 4F3

-j,-2m,-2n,X
1-X-j-m-n, -m-n, 2x

l

-j,-2m-1,-2n,,
-X-j-m-n, -m-n, 2,’ 1
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(3.19)

1
-j, --)k-j, -m, m+

4F3 1 1 1
;1- + X + n -j, -- X- n -j, X +

(1/2+)t+n-j) 4F3 1 1 1 3

" ---)t--j--m--n,- ---)t--j--m--n ,2)t
1

(3.20)

1 1 1
-j, )k + n-j, -m, -3---m

4F3 1 1 1
;1

)t+-n-j, -+)+n-j, 1-)t-m

(X+n-j),,(n+2X),,, [ -m, -n, l-2X+j-m-n
(2)k+n-2j)3; 3F2 1-2X-m-n, 1-h+j-m-n

(3.21)

1
-j, -- X-j, m, m + X

4F3 1 1 t ;1- + n -j, -- 2t- n-j, )t +-
-j, 2m, 2n, , ](1/2q-X+n"l-J)m(1/2+n)m

4F3 1 1
(1/2+n-j),.(1/2+X+n)m --m-n, -ff-X-j-m-n,2X

’1

Formulas (3.14)-(3.21) hold for arbitrary complex values ofj and n when m 0,1, 2,’".
Most of the above formulas can undoubtedly also be derived by using known trans-
formation formulas, but in this section our main goal was only to point out transforma-
tion formulas that easily follow from (1.1).

Several summation formulas (mostly known) follow from the formulas in this
section by considering cases in which one of the series reduces to only a few terms or is
summable by known summation formulas. However, here we shall only point out that
from the j= 1/2- X cases of (3.9) and (3.14) it follows on setting a=-X-m-n and
d 1 + a- X that

(3.22)

1 d 1 1
a, l +-a, -, -+-d, l +a-d, l + 2a-d+m, -m

7F6 1 1 1 1
;1

-a, l +a--d, -+a-d,d,d-a-m, l +a+m

(l+a)m(2+2a-2d)m
(l+a-d)m(l+2a-d)m’
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which, like a similar formula in Bailey [5, p. 98, Ex. 8], is not a special case of Dougall’s
formula [5, 4.3(5)].

Acknowledgment. I wish to thank the referee for suggesting some improvements in
the presentation of these results.

REFERENCES

[1] W. AL-SALAM, W. R. ALLAWAY AND R. ASKEY, Sieved ultraspherical polynomials, Trans. Amer. Math.
Soc., 234 (1984), pp. 39-55.

[2] R. ASKEY AND M. ISMAIL, ,4 generalization of ultrasphericalpolynomials, Studies in Pure Mathematics, P..
ErdSs, ed., Birkhtuser, Basel, 1983, pp. 55-78.

[3] R. ASKEY, T. KOORNWINDER AND MIZAN RAHMAN, ,4n integral ofproducts of ultrasphericalfunctions and
a q-extension, to appear.

[4] W. N. BAILEY, On the product of two Legendre polynomials, Proc. Camb. Phil. Soc., 29 (1933), pp.
173-177.

[5] Generalized Hypergeometric Series, Cambridge Univ. Press, Cambridge, 1935.
[6] D. M. BRESSOUD, Linearization and related formulas for q-ultraspherical polynomials, this Journal, 12

(1981), pp. 161-168.
[7] A. ERDI3LYI et al., Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York, 1953.
[8] G. GASPER, ,4 convolution structure and positivity of a generalized translation operator for the continuous

q-Jacobi polynomials, Conference on Harmonic Analysis in Honor of Antoni Zygmund, Wadsworth
International Group, Belmont, CA, 1983, pp. 44-59.

[9] G. GASPER AND MIZAN RAHMAN, Positivity of the Poisson kernel for the continuous q-ultraspherical
polynomials, this Journal, 14 (1983), pp. 409-420.

[10] MIZAN RAHMAN, The linearization of the product of continuous q-Jacobi polynomials, Canad. J. Math., 23
(1981), pp. 961-987.

[11] L. J. ROGERS, On the expansion of some infinite products, Proc. London Math. Soc., 24 (1893), pp.
337-352.

[12] Second memoir on the expansion of certain infinite products, Proc. London Math. Soc., 25 (1894),
pp. 318-343.

[13] Third memoir on the expansion of certain infinite products, Proc. London Math. Soc., 26 (1895),
pp. 15-32.

[14] F. J. W. WHIPPLE, Some transformations of generalized hypergeometric series, Proc. London Math. Soc.,
26 (1927), pp. 257-272.



SlAM J. MATH. ANAL.
Vol. 16, No. 5, September 1985

(C) 1985 Society for Industrial and Applied Mathematics

012

ASYMPTOTIC EXPANSION OF THE FIRST ELLIPTIC INTEGRAL*

B. C. CARLSONt AND JOHN L. GUSTAFSON*

Abstract. Asymptotic formulas with error bounds are obtained for the first elliptic integral near its
logarithmic singularity. It is convenient to start from the more general problem of expanding the integral over
the positive t-axis of [(t+ x)(t +y)(t+ z)(t + w)] -1/2. The method of Mellin transforms gives an asymptotic
expansion that converges uniformly if 0< max(x,y}/min(z,w)=<r< 1. Each term of the series contains a

Legendre polynomial and the derivative of a Legendre function with respect to its degree; this derivative
involves nothing worse than a logarithm. A simple bound for the relative error of the Nth pkrtial sum is
obtained from Wong’s formula for the remainder, aided by Chebyshev’s integral inequality. Error bounds are

given also for more accurate asymptotic formulas containing a complete elliptic integral. Formulas for the
standard elliptic integral of the first kind are obtained in the case w c. The method of Mellin transforms
and Wong’s formula are discussed in an appendix.

1. Introduction and summary. Legendre’s first elliptic integral,

F( q0, k fo
w

(1 k 2 sin2 O -1/2dO,

has a logarithmic singularity at q r/2, k 1. The asymptotic behavior of the complete
case is well-known:

K(k) F(,r/2,k) log(4/k’), k’=(1-k2)1/2 kl-

where log denotes the natural logarithm. This is the case tp=r/2 Of an asymptotic
formula that is less widely known:

4
A (1 k 2 sin2 )1/2 k ---, 1F( k) log A / cos tp

q- (,r/2) -.

The latter formula is implicit in a series expansion given by Kaplan [10, (3)] and has
been derived by two other methods in [11, (5.2)] and [3, (9.2-10)]. In the present paper
we shall obtain error bounds:

(1.1) (1-O)K(k)=log(4/k’), 0<0<1/4k’2, 0<k<l,

4
(1.2) (1-O)F(ep,k)=(sinq)lOgA+cosep 0 < 0 < + cos

where 0 __< k <_ 1, 0 __< q0 =< ,r/2, and k sin < 1. As k sin q --, 1 the upper bound for 0 is
asymptotically best possible.
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Laboratory is operated for the U. S. Department of Energy by Iowa State University under contract no.
W-7405-ENG-82. This work was supported by the Director of Energy Research, Office of Basic Energy
Sciences.

*Now at Floating Point Systems, Inc., P. O. Box 23489, Portland, Oregon 97223.
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The asymptotic formula is the first term of a uniformly convergent series whose
Nth partial sum approximates F(q0,k) with a relative error bounded by (1/2)NA2N/N !,
where (a)u=a(a+ 1)... (a+N-1). In deriving this series by the method of Mellin
transforms, we shall use the symmetric elliptic integral

lf0 (1.3) RF(x,y,z)=- [(t+x)(t+y)(t+z)]-1/2dt,

which is homogeneous of degree 2,

(1.4) Rr(Xx .y kz)=k-X/2R (x,y,z)F

and is normalized so that

(1.5) RF(X,X,X)---X -1/2.

For other properties of RF see the references listed in [4]; for a Fortran program see [6].
The connection with Legendre’s integral is

(1.6) F(q),k)=(sincp)RF(COS2cp,A,l), K(k)=R(O,l-k,l).
The logarithmic singularity of R occurs when two of its arguments are 0 or (by
homogeneity) when one argument, say z, is infinite. Assuming 0 <_ x __< z, 0 _<y _< z, and
x +y > 0, we shall derive the uniformly convergent expansion

1 _l/2E 1 1 1 1 -1(1.7) RF ( X Y Z ) -z
--0

R n - - x y t " z ,0

L " - x,y R " - z 0

where R. and L. are expressible in terms of a Legendre function and its derivative with
respect to the degree,

1 1 / x +y
L- .(1.8) R,, -, - ;x,y =(xy) P 2(xy)l/:Z i)v

Both functions are symmetric in x and y. If n is a nonnegative integer, R is a
homogeneous polynomial,

(1 1 ) i (1/2)m(1/2)n--m (11 --1, ) (1/2f/In--n(1.9) R -, - ;x,y
m=0 m!(n- m)!

xmyn-m’ R -, - ;z 0 z

The function L, a Dirichlet average of x"logx, is discussed in [5], where it is shown
that

(1 1 -1 ) (1/2)(1.10) L - - ,0 n!
z-n (1)logz++(l+n)-+ +n

Here q is the logarithmic derivative of the gamma function, satisfying

(1.11)

1q (1)-q () 21og2,

(1) 1
4,(1+n)-+ -+n =2 log2-1+ n21.
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The quantity Ln( 1/2, 1/2; x,y) is more complicated except for low values of n"

(1.12)
Lo -, - ;x,y =2log -(xl/2+

g,g;x,y g,g;x, 

By differentiating the recurrence relation for Legendre functions, a recurrence relation
(2.24) for L can be obtained [5, (3.4)] which shows that

(1.13) L - - x y R - - x y Lo - - x y + X - - x y

where Xn is a homogeneous polynomial of degree 2n in X1/2 and yl/2.
Furthermore we shall obtain error bounds for the truncated series,

(1.14)
N-1

(1--Ou)RF(X,Y,Z)=z-1/2 E
n=O

R - - x,y L - - z ,0

L - - x,y R - - z ,0

O<ON<RN -,-;x,y RN -, - ;z ,0 <_.N! z

N>__I, O<=x<=z, O<=yNz, x+y>0.

The case N 1 is

(1.15) (1 01 ) R F( x’Y’Z ) Z- 1/2 log
4Z1/2 X +y

xl/2 +yl/2’
0 < 0 < 4--7-’

which implies (1.2) by way of (1.6). The case N= 2 is

[( x+Y)lg 4zl/2 x+y--xl/2y1/2 ](1.16) (1 --02)RF(X,y,z)--Z -1/2 1 +
4Z Xl/2 +yl/2-- 4Z

3 (max{x,Y})0"<02<g Z

The upper bound given for 01 is the case N 1 of the upper bound given for ON as a
product of R-polynomials; both of these bounds are asymptotically best possible as

(x +y)/z 0. Positive lower bounds are given in (3.27), (3.42), and (3.44). Equations
(1.15) and (1.16) agree with [7, pp. 19, 26], where a different bound of comparable
accuracy is given for the absolute error 81R F but no bound is given for 82RF-
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The complete case of (1.14) is

(1.17)
1 NI (1/2)n

(1-Ou)K(k)=-
,=0

n! (1 1 ) k,2,L,(1 1 )],-;k’2 0 ,-;1,0
(1/2)n(1/2)n

log +q(1 +n) q +n
.=0

n n -7 -0<0N<(1/2)N(1/2)Nk’2N 0<k<l k’=(1-k2)1/2

N!N!

kt2n

The terms of the series are well known [2, (900.06)], but the upper bound for ON is new
and is asymptotically best possible as k 1 -.

The occurrence of the pair (z -1, 0) in (1.7) suggests a more general expansion
containing (z-1, w-1). Indeed there is such an expansion of

(1.18) I(x,y,z,w)=(zw)l/9-fo [(t+x)(t+y)(t+z)(t+w)]-l/2dt,

and its proof is more symmetrical than that for Rv. Hence we shall treat I(x,y,z,w)
first and consider later the case

(1.19) 2zl/2RF(X,y,z)=I(x,y,z ).
The generalization of (1.14) is

(1.20)

(1--ON)I(x,y,z,w)= -R. -, - ;x,y L. -, - ;z -1

-1

O < ON " RN - - x,y RN " -’ Z W

We define

(1.21) p max{ x,y }/min ( z, w }.
As N o the partial sum converges uniformly to I if 0 < p =< r < 1, where r is any
number in (0,1). As O0 the upper bound for 0u is asymptotically best possible.

More accurate but less elementary approximations to I and Rr can be obtained by
separating all logarithmic terms with the help of (1.13) and summing them to get a
complete elliptic integral times a logarithm. The resulting expansion of i is given in
(2.20) with error bounds in (3.37). First and second approximations for RF are given in
(3.46) and (3.47). The first approximation for Legendre’s integral is

(1.22) F(q0 k)
2
K(k’)log 4

,n" A + cos q

A2 sin A2 log 2
8 k 2 sin
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In an appendix we shall derive the asymptotic expansion of

fof(t)h(Xt)dt, X-+ + o,

wheref and h are algebraically dominated. The proof differs in some respects from that
of Wong [13]. Also, we shall give an alternative proof of Wong’s formula for the
remainder from the contour-integral representation due to Handelsman and Lew [8].

After this paper was submitted, we learned of a recent paper by Wong [15]
containing a somewhat different form of the asymptotic expansion of RF(X,y,z ) with
bounds for the absolute error. Although zl/9R r(x,y, z ) and the terms of its asymptotic
expansion depend only on the ratios x/z and y/z, the error bound obtained from [15,
(4.32)] depends also on the value of z. If z is large compared to x and y but small
compared to unity, the error bound may be excessively large.

2. The series with remainder. Let x, y [0, ) and z, w (0, ]. It is assumed
that x and y are not both 0, and z and w are not both infinite. If z or w is infinite, (1.18)
is taken to mean

(2.1) I(x,y,z,w)=fo [(t+x)(t+y)(l+tz-1)(l+tw-1)]-l/Zdt

=f0
m

[(1 + tx)(1 + ty)(1 +/’-12-1)(1 + t-Iw-1)]-1/2l-ldt,

where has been replaced by 1/t in the second integral. (The limit as w -+ m or x -+ 0
may be taken under the integral sign by the Lebesgue theorem of dominated conver-
gence.) Thus I has the form

where

(2.3) f(t)=t-l(1 + tx)-l/2(1 + ty) -1/2"- _, ft"-, t-+O+,
n=0

(2.4) h(t)--(1+t-lz-1)-1/2(1+t-lw-1)-1/2"-
n--0

Comparison with the generating function of R-polynomials [3, (6.6-1)] shows that

(2.5) f=(-1)’R -,;x,y h.=(-1)’R, -,-;z ,w-

where R is the homogeneous polynomial (1.9).
We assume for the moment that both x andy are positive. In the strip 1 < Res < 0

the Mellin transform off is represented by an absolutely convergent integral,

(2.6) M[f; l-s] =fo
m

t-’f(t)dt= fo t-s-l(1 + tx)-l/2(1 + ty)-l/2dt.

The integral can be evaluated in terms of an R-function by [3, Ex. 6.8-8]:

(2.7) M[f;1-s]=B(-s,l+s)R, -,-;x,y =sinrsR -,-;x,y
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where B is the beta function. Since R is entire in s if x and y are strictly positive [3,
Cor. 6.3-4], the last member of (2.7) shows that M[f; l-s] has a meromorphic
continuation with simple poles at the integers. Its Laurent expansion about a nonnega-
tive integer n is

(2.8) M[f;1-s]= -fn +Fn+O(s_n) sn,
stun

where fn is given by (2.5). The constant term is

(2.9) (11 )F,= (- 1)n+lLn " " x,y

where the function L,, discussed in [5], is defined for any complex , by

(2.10) L, - - x y 3 , - - x y

The function R, is expressible in terms of a Legendre function by (1.8) (see [3,
(6.8-18)]), while L, involves both a Legendre function and its derivative with respect to
the degree.

Next we verify that (2.7), and therefore (2.8) and (2.9), still hold if exactly one of x
and y is 0 and Res > -1/2. Say y=0 for the sake of definiteness. The integral in (2.6)
converges absolutely in the strip 1/2 < Res < 0 and is essentially a beta function,

(2.11) M[f;1-s]=xSB(-s,1/2+s).
It has a meromorphic continuation with simple poles at the nonnegative integers and
the negative half-odd-integers. Gauss’ theorem for a hypergeometric function with unit
argument [3, (8.3-4)] yields

(2.12) B(-s,l+s)R, -,-;x,O, =B -s,+s R, - ;x =x -s, -+s
1

Res>
2’ s4:0,1,2,...

Thus (2.11) is the same as (2.7) with y=0 provided that Res > 1/2. (Note that R is
no longer entire in s if one of its arguments vanishes, although (2.12) shows that it is
still holomorphic for Res > 1/2.)

The Mellin transform of h is

(2.13) M[h;s]= t-Xh(t)dt

ts-l(1 -+-t-lz-1)-l/2(1 q-t-lw-1)-l/2dt

t-s- 1(1 + tz- 1) 1/2(1 q-tw-1)-l/2dt,

where has been replaced by 1/t in the last integral. This is the same as (2.6) with (x,y)
replaced by (z -x, w-X). Even if z or w is infinite, we conclude immediately that the
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following equations hold for Res > 2"

-r (1 1 _1 _1)(2.14) M[h;s]= sinrsgs , ;z ,w

-h n t_Hn+O(s_n), sn, n=0,1,2,...,
stun

1 1Hn=(-)"+l. , 2 ;
-1

where h, is given by (2.5).
We are now ready to apply the expansion formula (A.18) in the Appendix. It

would only spoil the symmetry to single out z or w as a large parameter at this stage,
and so we put X= 1. Comparison of (2.3) and (2.4) with (A.2) and (A.3) shows that the
sets A and B are the set of nonnegative integers. Absolute convergence of the Mellin
transforms (A.4) is assured by choosing c so that 1/2 < c < 0. Using Wong’s form (A.8)
of the remainder, we may choose o N where N is any positive integer (see the last
sentence of the Appendix). Then we find

I(x,y,z,w)= f(t)h(t)dt

N-1

E Rs ( M[f; -]M[;]} +,’
n-----O s----n

(2.15)

where

Res -+F "+H, +ru
n=O s=n s-n s-n

N-1

E (fnnn +Fnhn) +rN
n=O

N-1

-R , ;x,y L, -, ;z ,w

(11 )(11_1_1)-L. -, ;x,y R. -, - ;z ,w

(2.16) ru= qN(t)PN(t)dt, N>= 1.

Defining

(2.17) 0= max( x,y }/min( z, w ),

we shall show in the next section that ru 0 as N z if 0 < 0 < 1.Then I is represented
by a convergent infinite series that has an alternative form obtained by substituting
(1.13)"

(1 1 ) (1 1 -1, 1)](2.18) I(x,y,z,w)= -Lo -, ;x,y -Lo -, ;z w-
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(2.19)

sn= R -, x,y k ", " z w -[-k -, - x,y R,, -, - z w

Note that X0=s0=0 and that s, is a polynomial in the square roots of x,y, z -1, w -a.
The series of products of R-polynomials in (2.18) can be summed by Meixner’s formula
[3, (6.11-3)]. Using also (1.12), we find

(2.20)

(2.21)

I(x,y,z,w)

=2Rr[(I-X)(I-Y)’(I-X)(I-Y)]lgzw w z

N-1

n--0

3N"- E Sn"
n=N

(xl/2-by1/2)CZ-1/2-[- w-l/2)

The complete elliptic integral Rr satisfies

(2.22)

Its numerical value can be computed quickly by Gauss’s algorithm [3, (6.10-8)],

1(2.23) Rr(Xa’ Y-)= M(X, Y)’

where M(X, Y) is the arithmetic-geometric mean of X and Y.
In the next section we shall determine bounds for rN/I and rN in (2.15) and for 6N

in (2.20). Both expansions are more useful for finding approximations with error
bounds than for numerical calculation to high accuracy because LN and n are com-
puted from an inhomogeneous recurrence relation [5, (3.4)]:

(2.24) (1)(n+l)Ln+- n+- (x+y)Ln+nxyLn_ =-Rn++(x+y)Rn-xyRn_
2(x-y a
Rn+n(n+l) 3x3y

where L, L, (1/2, 1/2; x,y) and R R (1/2, } x,y). In the case n 0 one needs R_
(xy) -1/a since the last member of (2.24) is indeterminate. The inhomogeneous recur-
rence relation still holds if L is replaced by X because R satisfies the homogeneous
recurrence relation. Since X0=0 by (1.13), it follows from (2.24) that Xl= 1/2(x +y)-
(xy)1/2 and hence by induction that n is a homogeneous polynomial of degree 2n in
X1/2 and yl/2 containing (X1/2--y1/2) 2 as a factor.

3. Error bounds and convergence. The functions in the integrand of (2.16) are
given by (A.9) and (A.10) for every positive integer N:

N-I N-1

(3.1) PN(t)=f(t)
n=0 n=0
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Equation (2.3) implies

(3.2) f(t)--t -1, CPN(t)"fNtN-1, tO+.

Noting that (--1)ufu > 0 by (2.5), we shall show, for every > 0 and N >__ 1, that

(3.3) O<(--1)NqN(t)<(--1)NfNtUf(t ).

That is, the ratio of (--1)N{pN to f is majorized for all t>0 by the ratio of their
asymptotic formulas (3.2). Analogous inequalities hold for qN.

A proof starts from the integral representations [3, (6.6-6), (5.7-1)]

dl( u)(3.4) tf(t)=(1 + tx)-l/-(1 + ty) -1/2= fo l+t[ux+(1-u)y

(11)f01(-1) f=R, ,-;x,y [ux+(1-u)y]"dlz(u),

d]l(u)--qr-lu-1/2(1-lg)-l/2dbl, f01 a/,(u) 1.

It follows that

N-1 ux + (1- u) y] u(3.5) ’{PN(t)=tf(t) E fntn=(--t)Nfo1n=0 1 +t[ux+(1-u)y] dl(u).

We may apply Chebyshev’s inequality [9, Thm. 236] to the last integral because ou is an
increasing function of o while 1/(1 + to), t>0, is a decreasing function of o on the
positive real line. The result is

0< (--1)NtfPN(t)<tNfo1 [UX+ (1--u)y]Ndtz(u ). fo dlx(u)
l+t[ux+(1-u)yl’

with equality if and only if x =y. This proves that

0 < (- 1) NtePN (t) <= tN( 1) NfNtf(t
which is equivalent to (3.3).

Similarly (2.4) implies

(3.6) h(t)-l, aPN(t)’hNt-N, t +.

The same procedure that led to (3.5) now leads to

N(t)=(--t)-Nfo1 [UZ_ + (1_ U)W_I] N

(3.7),
1 q-t-I[uz -1 +(1--u)w-1] dl(u).

For every t > 0 and N__> 1 Chebyshev’s inequality yields

(3 8) 0<(--1)Nq NhN(t)<(--1) N Nh(t)
with equality if and only if z=w. That is, the ratio of (--1)N+N(t) to h(t) is majorized
for all > 0 by the ratio of their asymptotic formulas (3.6).

Combining (3.3) and (3.8), we find

(3.9) 0 < fDN( t) +N( t) <=fuhNf( t)h( t)
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with equality if and only if x =y and z--w. Integrating over all positive t, we obtain an
inequality for the remainder (2.16),

(3.10) O < rN <=fNhNI( X,Y,Z, W).
We define the fractional remainder 0N by

(3.11) ru=OuZ(X,y,z,w),

and so

(3.12) O<ON<=fNhN.

In the rest of this section we shall use frequently the abbreviations

(3.13) R,(x,y)=R, -, - ;x,y L,(x,y)=L, -, - ;x,y

max( x,y }(3.14) =max{x,y}, ’=min{z,w}, P=min{z,w} =-("

Two inequalities for R, [3, (6.2-24,25)] are

(3.15) R,(x,y) <=t", R (x,y) < (1/21 (X +y)n

the first being an equality if and only if x =y and the second if and only if xy-0 or
n- 1. The first inequality is the sharper one for large n if xy 4 O. From (3.12) and (2.5)
we find

(3.16) O<Ou_<Ru(x,y)Rs(z-l,w-)Npu

with equalities if and only if x =y and z w. If 0 < O < 1 then 0N"- 0 and ru0 as
N oe, whence

(3.17)

I(x,y,z,w)= E [-Rn(x,y)Ln( z-1
n-----O

,w-1)-Ln(x,y)Rn(z -x ,w-X)] 0<0<1

Next we show that this series converges uniformly if 0 < O < r < 1 where r is any
number in (0,1). Since the remainder after N terms is rN--ONI it is necessary to
majorize I as well as 0u. For this purpose we put N= 1 in (2.15) and use (1.12) to
obtain

(3.18)
(1 01)I(x,y,z, w) 2 log

(xl/2 -+-yl/2)(Z-1/2nt- W- 1/2)

0<01 ____< (x+y)(z-x + w-X)/4 <=p,

with equalities if and only if x=y and z=w. Since l/2_<X1/2+yl/2<=21/2, with
equality on the left if and only if xy O, (3.18) implies

(3.19) log -<I<1 log(16/p)
0 1-o
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The right-hand inequality is strict because it combines two inequalities with mutually
exclusive conditions of equality. From (3.16) and (3.19) we get inequalities for rs= OsI:

(3.20)
pN 16

0<rN< 1 "/9 log-p-.

Since 0 __< p log(l/p)5 1/e if 0 < p =< 1, the condition 0 < p =< r < 1 insures that

1 ( N rN-1)r logl6 +0<rs< 1-r e

The upper bound is independent of x,y,z, w and tends to 0 as N o, proving uniform
convergence.

To derive a strictly positive lower bound for rs, we replace the denominator of the
integrand in (3.5) by 1 + t, obtaining

(3.21) (- 1) SCPN(t ) >= (-- 1) NfNtN-1/(1 + tl)

with equality if and only if x =y. Similarly (3.7) implies

(3.22) (- 1) S+N(t ) >= (-- 1) ShNt-N/(1 + t-l-1)

with equality if and only if z w. Wong’s formula (2.16) gives

fo fo
o dt

=fNh(3.23) rN= Ps+Ndt>=fNhN (1 _[_ t)(t_[_

_
) N

log(l/p)

with equality if and only if x=y and z w. A lower bound for ON= rN/I then follows
from (3.19):

(3.24) Ou>fsh
log(l/p)

U 1og(16/p)

In summary we conclude from (3.16), (3.18), and (3.23) that the absolute error

rN= OsI in (2.15) satisfies

(3.25) log(l/p)<
1-t), Rs(x,y)Rs(z-l,w-)

2 4
< log
l_(x+y)(z-lWw-1)/4 (xl/2+yl/2)(Z-1/+W -1/2)

log(16/O)

with equalities if and only if x =y and z w. By (3.12) and (3.24) the relative error in

(3.26)
N-1

(1--Os)I(x,y,z,w)= Y’ [-R,,(x,y)L,(z-l,w-)-L,(x,y)R,(z -1

n----O
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satisfies

0N(3.27)
log(l/p)

< <1
log(16/p) Ru(x,y)Ru(z-1’,w-1)

with equality if and only if x=y and z w. It follows from these inequalities that as
p0,

(3.28)
1

ru.- RN(.x,y ) R u( Z-I’ w-1)lOg, ON’- RN(X,y)RN(Z

Thus the upper bound for 0u in (1.20) is asymptotically best possible. It is evident from
(3.4) that

(3.29) R,,(x,y) >=R,,(l, O)= (1/2nl" I"
with equality if and only if xy 0. Combining this with (3.15), we find

(3.30) i <=Ru(x’y)Ru(z I’W-1)<=PN

with equality on the left if and only if xy 0 and z-1’w-1,= 0 and equality on the right
if and only if x=y and z w. Wallis’ formula [3, (2.5-6)] implies

1 (1/2)U 1
(3.31) ,tr(N+ 1/2)

<
N!

<
rrN

The expansion (2.20) has a remainder 8u that contains no logarithms and so is
expected to be smaller than ru if p << 1. In the absence of a representation of 8u like
Wong’s formula for ru, we must bound the individual terms s, in (2.21) and carry out
the summation. It is helpful to rewrite (2.19) in the form

X(z w ]--1.)X,,(x,y)
+ --5(3.32) Sn’--Rn(x,Y)Rn(z-l,w -1) Rn(x,y ) Rn(z-1, w

We find from [5, Thm. 7.1 and following Remark] that L,/R, increases with n and
approaches the logarithm of the largest argument as n oo. By (1.13) X,/R, also
increases with n, and

Xl(x,y )
<

X.(x,y) 2,
(3.33) R1,(x,Y) :-(-xi-i <=lgli-L(x’y)=21gx1’/)+y1’/’ n> 1,

with equalities for n > 1 if and only if x=y. Since X1,(x,y)= 1/2(xl/2--y1’/2) 2 by (1.12),
we have

kl ( Z-1, W-1) ( Xl/2y1/2 Z1/2W1’/2 )X1’(x’Y) + =2 1-(3.34) R1,(x,y ) R1,(z-I,w -1) x+y z+w
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Also, from the integral representation (3.4) of R and Chebyshev’s inequality [9, Thm.
236], we deduce that

(3.35) R,,_N(x,y)RN(X,y)<=R,,(x,y)<=Ii"-NRN(X,y), n>N,

with equalities for n > N if and only if x=y. Combined with (3.32), these inequalities
show that

(3.36)

1
X1/2y1/2
x+y Z1/2W1/2Z"[-W )R -N(X,Y)R -N( Z-1

S

2RN(X,y)Ru(z-1
<p,-Nlog 4P1/2

,W -1) (X1/2"-t-yl/2)(Z-1/2q-W-1/2)

where n>=N>l and the equalities hold for n>l if and only if x=y and z=w.
Summation on n in accordance with (2.21) and use of Meixner’s formula [3,(6.11-3)]
yield

(3.37)

1
X1/2y1/2
x+y Rr 1-- 1--- 1--- 1--

Z -[’- W Z W W Z

N 1 4/91/2
__< log

yl/2 1/2 1/22RNCxy)RNCz-I,W-1) 1-O (xl/2+ )(z +w )

with equalities if and only if x =y and z w. This implies

(3.38) O
Nlog 16

which shows that, as N--* , iN----) 0 uniformly for 0 < p < r < 1. As expected, compari-
son with (3.28) and (3.30) proves that 8u/ru 0 as p 0. By (2.23) the R/cfunction in
(3.37) satisfies 1 < Rr<(1-p)-1 since M(X, Y) is a strictly increasing function of X
and Y and since M(X, X)= X.

Finally we consider the case w-1= 0, in which

(3.39) I(x,y,z, oo)=2zl/2RF(X,y,z ) and p=max{x,y)/z,

according to (2.1) and (1.3). An interesting difference from the case of finite w is that
the expansion (3.17) is valid if O 1 when w= . (For example, if x=y= z and w= ,
both sides of (3.17) are 2; but if x=y=z= w, the left side is 1 and the right side is 0.)
Since z 4= w, (3.16) becomes

(3.40) O<ON<RN(X Y)RNCZ -1 0)<
(1/2)N N

Nt P-

Because (1/2) N/N --> 0 as N oe, it suffices to assume 0 < O < 1 to insure convergence of
the infinite series (1.7).
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To show that the convergence is uniform for 0 < 0 < 1, we put w-1= 0 in (3.25) to
get

N!ZNrN 2 4Z1/2 1og(16/p)
(3.41) log(l/o)

< < log <
]--O (1/2)NRN(X,y) 1-(x+y)/4z xl/2+yl/2 l-o/2

where the first member is taken to be I if O 1. It follows that

(1/2) u pNlog(16/p)
0<ru<N! 1-0/2

Since pNlog(1/p) 1/Ne for 0 < p < 1, we see that

0<rN< ( 1)(1/2)u2 1og16 +N! e
The upper bound is independent of x,y,z and tends to 0 as N , proving uniform
convergence.

Equations (3.18) and (3.27) yield

(3.42)
(1 01)Z1/2R F( x,y,z ) log

4zl/2
xl/2

__
yl/2

log(l/o) 4z01< < 1, O max( x,y )/z,log(16/O) x +y

which implies (even with a lower bound of 0 for 01)

(3.43)
1 04__ log(16/p)
-log <z1/ZRF(X,y,z)<

2-0

Equations (2.15), (3.27), and (3.30) give a closer approximation:

(3.44)

x +y )log(1--02)zl/ZRr(x,y,z) 1+
4z

902 log(l/o)
64 log(16/O)

4zl/2

X1/2 -Jr yl/2

<02<
3p2

1 Xl/2yl/2 ),

Putting w= does not change the factor 1-O in the denominator in (3.37), and
so our condition for uniform convergence of the series (2.21) remains 0< p<=r< 1.
Since z 4: w there are now strict inequalities in (3.37), of which a simplified but less
precise version is

)2 (1/2) N 0N1og 16(3.45) (1/2)N oN<SN<N! N! 1-p
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Since so 0 and Rr is homogeneous of degree 1/2, the cases N= 1 and N= 2 of (2.20)
yield

4z1/2 1
(3.46) R:(x,y,z)=Rr(z-x,z-y)log -z-1/31,

X1/2 +y/2 2

p
<61 <

olog4
1 O

p max( x,y }/z,

(3.47) a x+y-xl/2yl/2 + 2,
9p2 3p2 log 2

2z 64 <82< 2(1-p)

For example, these give respectively 0.3158 < R(0.5,1,100)< 0.3165 and 0.3163943 <
Ru(0.5,1,100) < 0.3163989, the true value being Ru(0.5,1,100)= 0.316397,14

Appendix. The method of Meilin transforms. The asymptotic expansion of

(A.1) f(t)h(,t)dt, h +

where f and h have asymptotic power series shown below in (A.2) and (A.3), has been
obtained in terms of Mellin transforms by Handelsman and Lew [8], Soni and Soni
[12], Bleistein and Handelsman [1], and Wong [13] [14] [15]. Wong represents the
remainder by an integral over the real line [13, (2.14)] that is very useful for obtaining
error bounds. Bleistein and Handelsman admit a larger class of functions and give the
general term of the expansion in a convenient form in the logarithmic case [1, Ex. 4.16].
With assumptions adequate for the purposes of this paper, we present a proof similar in
spirit to Wong’s but different in some other respects. Also, we sketch the
Handelsman-Lew-Bleistein proof and deduce our form of the expansion and Wong’s
form of the remainder from theirs (contrary to the expectation in the first paragraph of
[13]). Part of what follows is not used in the body of the paper but may be helpful in
clarifying the relation between two versions of the method of Mellin transforms.

Let f and h be real functions, locally integrable on (0, or), with asymptotic expan-
sions

(A.2) f(t)--" ., ft-, tO+,

(A.3) h(t)- _, hBt-, t--* +

where f,, and ha are constant coefficients and A and B are denumerable sets of real
numbers with no finite cluster point. We assume there exists a real number c such that
the Mellin transforms

f0 fo(A.4) t-f(t)dt and tS-h(t)dt

converge absolutely if Res= c. (For weaker assumptions see [1, 4.5].) This implies that
c < et for every aA and that the Mellin transform of f converges absolutely and is
holomorphic in the vertical strip c < Res <or1, where 61 is the least element of A. It
implies further that the Mellin transform of f can be continued analytically (as proved
in Lemma A.2 below) to the half-plane Res > c, where it is analytic except for a simple
pole at every aA with residue -f,,. We denote the analytically continued Mellin
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transform by M[f; 1- s] and define F to be the constant term in the Laurent expan-
sion about a,

(A.5) M[f;1-s]= -f" +F,+O(s-a), s--)aA.
S O

Likewise the second integral in (A.4) is holomorphic in the nonempty strip c < Res <1
(where/31 is the least element of B), its analytic continuation M[h; s] is meromorphic in
the half-plane Res > c, and

(A.6) M[h;s]= s-fl +Ha+O(s-fl), sflB.

THEOREM A. Let X be positive and o be real. The integral (A.1), if it converges,
satisfies

(A.7) f(t)h(Xt)dt- E fM[h;]x-+ E
otA\B fl:- BNA

h#M[f;1- fl lX-
+ E (Lhvlg )t +fvHv + Fvhv) X-+ ro,

(1.8) ro= fo (t)- Lt"- h(Xt)- E h#x-#t- dt.
aA flB

Before proving the theorem, we establish some properties of the factors in the
integrand of the remainder r. For any real o we define

(A.9) %(t)=f(t)- E fata-x,

(A.10) +.(t)=h(t)- hat-.
Note that %=fif o _< O and qo= h if o __</31.

LEMMa A.1. Given o > a let a’ and a" be the greatest and least elements, respec-
tively, ofA such that a’ < o <= a". Then

fo t-q)o ( ) dt

converges absolutely in the strip a’ < Res < a". If o > fll and if fl’ and fl" are the greatest
and least elements ofB such that fl’ < o <_ fl", then

fo ts-lo(t)dt

converges absolutely in the strip fl’ < Res < fl".
Proof. As 0+, %(t)--f,,,t ’’-1 by (A.2) and (A.9). From the assumption that

fo It-f(t)ldt< o if Res c,
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it follows that f(t)=o(tC-1), t--, +z. Since a’>=c we see that %(t)---f,t’-- as
t +c. Similarly, +o(t)--h,,,t -/’’ as t +z, and /o(t)--h,,t-" as t0+. The
asserted convergence properties follow at once.

A curious result, to be proved in Lemma A.2, is suggested by the following
example. If n is a positive integer, consider

f(t) (1 + t) -1" l-t+ 2 t---) 0 +

q%+(t)=(1 + t) -1- 1 +t (--t)n-=(--t)n(1 + t) -1,
r

0 < Re s < 1t-7(t) dt
sin rs’

f0 (--1) nq’/"
n<Res<n+l.’- cP"+l(t)dt= sinrr(s-n) sinrrs

Thus f and q%+ have the same analytically continued Mellin transform,

M[f;1-s]=M[%+;1-s]- sinrs’

although the defining integrals converge in disjoint strips and the functions differ by a
polynomial in t. The explanation, in terms of the generalized Mellin transform dis-
cussed by Bleistein and Handelsman [1, p. 115], is that the generalized Mellin transform
of a polynomial is 0 although the defining integral of the ordinary Mellin transform
diverges for every s. Another interpretation is provided by regularization [14, p. 424].
Since we assume the integrals (A.4) converge absolutely if Res=c, ordinary Mellin
transforms suffice in proving the following lemma (cf. [12, (4.2)] [14, p. 426] [15, p.
1.571).

LEMMA A.2. M[f; l-s] is meromorphic in the half-plane Res>c, where its only
singularities are a simple pole at every aA with residue -f,. Likewise, M[h;s] is

meromorphic for Res > c and has a simple pole at every B with residue hB. If% and
/, are defined by (A.9) and (A.10), then M[q%; ]= M[f; and M[qo; ]-- M[h; for
every real o.

Proof. We shall prove only the statements relating to f since the proof for h is
entirely similar. If o is real, a is the least element of A, and s is in the strip
c < Res < al, then

(A.11) M[f; I-s]= t-’f(t)dt

foil ] fl%(t)+ ft-1 dr+ t-’f(t)dt

t-%(t)dt + t-f(t)dt.

The sum of powers can be integrated because a A implies a > aa > Res. Since %(t)=
O(t-) as 0+, the first term in the last line is holomorphic in the half-plane
Res < o. The second term is meromorphic with simple poles and residues exhibited, and
the third term is holomorphic in the half-plane Res > c. The sum of the three terms
provides the meromorphic continuation to the strip c < Res < o. By taking o arbitrarily
large, the first part of the lemma is proved.
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In the second part, since %=f if o =< a1, we may assume o > a Hence o (a’,
in the notation of Lemma A.1. If s is in the stripa’ < Res < a", then

(1.12) M[%; l-s] t-s%(t)dt

-’%()+ -’()- E _,.
The sum of powers can be integrated because a A and a < o imply a < a’ < Res. The
last line is the same as the last line of (A.11).

Proof of Theorem A. We consider first the case where A and B are disjoint. Let the
half-open interval [/z, v) contain exactly one point a A and no point in B. Then

q)(t)--%(t)+fat a-1 pt(t) p.(t),

.( t) G(at)-%( t) +.( at) =Lt-.(t).

The integral of the right side over (0, oe) converges absolutely by Lemma A.1 since we
may identify o with v and s with a to obtain/3’ </z =< s < o < B". Hence

(A.13)

fo [qol(t)t(kt)--)u(t)u(kt)] dt--fafo ta-1u(kt)dt-f.k-afo ta-l.(t)dt

=Lx-M q,.;-1 =LM[ h; ]X-o.

We have used Lemma A.2 in the last step. Similarly, if [/z, v) contains exactly one point
fl B and no point in A, we find

=ht)k-tM[%; 1-B]=h.M[f; 1-fllX-.
Since Theorem A is trivial if o < c, we assume o > c. If A and B are disjoint, we can

partition c, o) into a union of half-open intervals, each containing exactly one point of
A U B. To each interval corresponds an integral of the form (A.13) or (A.14), and the
sum of all the integrals telescopes to

(A.15)

Since %=fand g,= h, this proves the theorem when A and B are disjoint.
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If A and B have points in common, we apply a small perturbation to h (t) to make
A and B disjoint. Any two points, say aA and fl B, which coalesce when the
perturbation is removed, make a joint contribution to the right side of (A.15) that
becomes

lim (fM[h;alX-+haM[f;1-]h-a}

lim f

lim ha

where we have used (A.5) and (A.6). Since ha h and Ha t1 as the perturbation is
removed, the above limit is

(fh,, logX +fH+Fh)X-’.

This completes the proof of Theorem A.
Alternative proof of Theorem A. Bleistein and Handelsman [1, {}4.4 and Ex. 4.16]

give a shorter but less elementary proof, adapted from [8], which uses Parseval’s
theorem for Mellin transforms, the residue theorem, and the asymptotic behavior of
Mellin transforms along vertical lines in the complex plane. We shall sketch their proof
without verifying the properties of Mellin transforms. Since the integrals (A.4) are
assumed to converge absolutely if Res c, Parseval’s theorem yields

(A.16) fo 1 fc+i X_SM[f;l_slM[h;slds.f(t)h(Xt)dt= i c-i

The factor X comes from

(A.17) fo tS-lh(Xt)dt=X- t-lh(t)dt=X-M[h;s]"

If o > c and o A td B, we may apply the residue theorem to a rectangle with vertices
c +__ iT, + iT because M[f; 1- s] and M[h; s] are meromorphic in the half-plane Res > c

by Lemma A.2. The contributions from the top and bottom of the rectangle vanish as
T because both Mellin transforms tend to zero [1, 4.3] as s along any
vertical line in the half-plane Res > c. Hence the integrals along the two vertical sides of
the rectangle differ in the limit by the sum of residues in the strip c < Res < "

(A.18)

(A.19)

fof(t)h(ht)dt so Res(h-SM[f; 1-s]M[h;s]) +ro,
sAUB

1 fo+i h_M[f;a_slM[h;slds.r- 2ri o--ioo
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To see that (A.18) and (A.7) agree, consider for example a point y A B. Then
(A.5) and (A.6) show that

,-*M [f; 1 -s ]M[ h;s 1=- [1 -(s- r)logh + O((s- ),):)

=-[ f’hv)2-f’h’lgA’+fHv+F’hv+ 0(1)](s-y s-y

The negative of the residue is (fhrlogX+f/-/+ Fvhv)X-v, in agreement with (A.7).
The residue at a point belonging to either A or B but not both is calculated similarly.

Equation (A.8) is more useful than (A.19) for obtaining error bounds. To see that
the two expressions for the remainder are equal if o is not in A or B, we use Lemma A.2
to rewrite (A.19) as

1 fo+i h_SM[po;l_slM[bo;slds.r= 7i ioo

By Lemma A.1 the defining integrals of M[o; 1 s] and M[ko; s] converge absolutely
on the path of integration, where Res o. Thus Parseval’s theorem yields

ro= qo(t)o(At)dt

in agreement with (A.8). Note that ro, defined as a function of o by (A.8), is continuous
from the left at points of A U B, while the integral in (A.19) is not well defined at such
points and is infinite as a point o A f3 B, where the integrand has a double pole.
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ON SIEVED ORTHOGONAL POLYNOMIALS I:
SYMMETRIC POLLACZEK ANALOGUES*

MOURAD E. H. ISMAIL"
Abstract. Two sieved analogues of the Pollaczek polynomials are introduced and the weight functions for

the new polynomials are computed. Various asymptotic and explicit formulas are derived. Generating
functions are also included.
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1. Introduction. The ultraspherical polynomials are generated by the recurrence
relation

(1.1) 2(n+)xCff(x)=(n+l)Cff+l(X)+(n+2-l)Cff_l(X), n>O,

and the initial conditions

(1.2) Coa(x) 1, Cla(X)=2.x.

Rogers [17], [18] studied the polynomials { Cn(x; fl[q)} defined by

(1.3) 2x(1-[3q")C,,(x;fllq)

--(1--qn+l)Cn+l(X;Jq)+(l 2qn-1)Cn_l(X;Jq), n>0,

Co( x; fllq) l, Cl ( X; fl[q) 2x(1- fl )/(1- q ).

He solved the connection coefficient and the linearization coefficient problems for
these polynomials and used them to prove the well-known Rogers-Ramanujan identi-
ties of the theory of partitions; see e.g. Andrews [5]. The Rogers polynomials are called
the continuous q-ultraspherical polynomials. They generalize the ultraspherical poly-
nomials in the sense

(1.5) lim C,,(x; qXlq ) C(x).
q--l

The weight function for these polynomials was computed very recently by Askey and
Wilson [9] and Askey and Ismail [6], [7]. Pollaczek and Szeg/5 generalized the ultra-
spherical polynomials in a different direction. Szeg6 [20] introduced the polynomials
( P)(x; a,b)) defined via

(1.6) 2[x(n + + a)+b] PnX(X; a,b)

--(n+ 1)PnX+l(x;a,b)+(n+ 2- 1)P_l(x;a,b), n>0,

Received by the editors December 22, 1983. This work was partially supported by the National Science

Foundation under grant MCS 8313931.
Department of Mathematics, Arizona State University, Tempe, Arizona 85287.
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with

(1.7) PoX(x;a,b)=l, PlX(x;a,b)=2[b+x(.+a)].
Pollaczek [14] studied the case )= 1/2 earlier. The polynomials { P,X(x;a,b)} are now
called the Pollaczek polynomials. Pollaczek’s memoir [15] contains a good survey of his
methods.

A1-Salam, Allaway and Askey [3] set

(1.8) q=soak fl=s xk, 0k’=exp

(1.9) C,,(x;fllq)=(fl2;q)nC,,(x;fllq)/(q;q)n,

and noted that

lim G(x;lq)--cX(x;k),
ql

exists and that the cX(x; k)’s satisfy

(1.10)

(1.11)

c(x;k)=l, cXx (x;k)=x,
2xcX,(x k) x cx l(X;k) n4:mk,-C.+l(X;k)-t-

x mCXmkx (x" k)=(m+ 2X)Cmk+l(X k)+ (x" k)2x(m+)Cmk m>0.

(1.12)
and

(1.13)

Another set of polynomials similarly results from letting

q=StOk, --sXk+lk,

BX, (x;k) lim Cn(X;shk+looklSOOk).
s-+

A1-Salam, Allaway and Askey refer to both polynomials as sieved ultraspherical poly-
nomials.

In this work we carry this programme one step further. We derive a sieved
analogue of the symmetric Pollaczek polynomials (b 0 in (1.6) and (1.7)). The starting
point is to discover a three-parameter generalization of the two-parameter (/3 and q)
family of polynomials { C,(x; fllq)}. The second step is to consider the limiting case
when q lies on the unit circle and choose the remaining parameters appropriately. The
third and most important step is to find the measure (distribution function) that these
polynomials are orthogonal with respect to. The appropriate symmetric three-parame-
ter family that generalizes the continuous q-ultraspherical polynomials is

(1.14) Fo(x;a,fllq)=l, Fl(X;a,fllq)=2x(1-a)/(1-q),
(1.15) 2x(1 -aq")r,(x; a,Blq)

=(1-qn+X)Fn+l(x;t,lq)+(1-qn-X)Fn_x(X;a,lq), n>0.

These polynomials have been studied by Askey and Ismail [8]. They used a different
normalization and their polynomials are random walk polynomials of a birth and death
process (see [8] for details). We now observe that

lim F,( x; tOkSkh+ka+ 1; .O2kS2hk+ 2lSt0k)
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defines a new set of polynomials. Let BX(x; a; k) denote the above limit. It is easy to
see that the recurrence relation (1.15) becomes

(1.16)
2xBX, (x;a,k)=BXn+l(x;a,k)+BX,_l(x;a,k ), n+ 1 km,

2x(.+a+m)Bk_(x;a;k)=mBXk(x;a;k)+(2h+m)BXmk_2(x;a;k), m>0,

while the initial conditions (1.14) become

(1.17) BXo ( x; a; k ) l, BXl ( x; a; k ) 2x.

We are assuming k > 1 because the case k= 1 of (1.16) is the symmetric Pollaczek
polynomials. Similarly

(1.18) lim (S60k;SOk)nFn(X;sk+ka,s2k; 6OkS)/(s2kX; O)kS)n
s-*

exists, where

(1.19) (o;p)0"= 1, (o;p),=(1-o)(1-op)... (1--opn-X),
Denote the polynomials in (1.18) by cX(x; a, k). They satisfy

(1.20) CXo(x;a;k)=l, CXl(x;a;k)=x(,+a)/X,

n>0.

and

(1.21)
2xcX,(x.a;nk) x=cn+(x’a k)+ xc,,_(x;a;k), nCkm,

2x(h+a+m) x xc,,,k(x) (2h+m)xCmk+l(x;a;k)+mCmk_l(x;a,k ).

The relationships (1.20) and (1.21) can be proved as follows. Set

(1.22) F,(x;a;fllq)=(fl;q),l(x)/(q;q),.

The r/n’s also depend on a and ft. The substitution of the Fn’S as in (1.22) in the
relationships (1.14) and (1.15) implies

r/o(X) 1, ll(X)=2x(1-a)/(1-fl)(1.23)
and

(1.24) 2x(1-otqn)ln(X)=(1-flqn)rln+l +(1-qn)rln_l(X), n>0.

Now, setting Ol-"S k’+ka, --S 2Xk, q=WkS and letting s 1 in (1.22) and (1.23) establish
(1.20) and (1.21). Observe that when a=0 the BX,(x; a,k)’s and cX,(x; a,k)’s reduce to
the BX(x; k)’s and cX(x; a)’s of A1-Salam, Allaway and Askey [3]. A1-Salam, Allaway
and Askey called (c,,(x;k)} and (BX(x;k)} the sieved ultraspherical polynomials of
the first and second kinds respectively. We shall follow this terminology and call

X(x; a k)} the sieved polynomials of the first kind and call (BX(x; a,k)} the sievedCn
polynomials of the second kind. We need to caution the reader about a possible
confusion this terminology might cause. The polynomials of the second kind are not the
numerator polynomials in the corresponding continued fraction, Chihara [10] and
Askey and Ismail [8].

In 2 we derive generating functions for the sieved polynomials of the first and
second kinds. These are the limiting cases of the generating functions for the F,’s. We
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also obtain explicit representations for the sieved polynomials cX(x; a, k) and BX(x; a, k)
as trigonometric polynomials. In {}3 we use a heuristic argument to discover very good
candidates for the distribution functions (positive measures) that ( cnX(x,, a, k)} and
{ BXn(Xi a,k)} are orthogonal with respect to. Rigorous proofs are included in 5. In 4

X,s and the Bnx’s. Thewe investigate the numerator polynomials associated with the c
asymptotic behavior of the numerator polynomials is determined and the associated
continued fraction is computed. In [}5 we use Markov’s theorem and some of the
asymptotic results of 3 and 4 to compute the distribution function. It turns out that
the discrete spectrum is empty, that is the distribution function is absolutely continu-
ous, when a > 0 and X >- 1/2. The discrete spectrum is countably infinite when a < 0,
>- 1/2 and X + a + 1 > 0. Note that this gives a new proof of the orthogonality rela-

tions for the sieved ultraspherical polynomials in A1-Salam, Allaway and Askey [3]. Our
proof uses Markov’s theorem and asymptotic analysis, the techniques used successfully
by Pollaczek [15] and later by Askey and Ismail [8]. Our results are equivalent to
computing the spectral measure of a self-adjoint bounded Jacobi matrix. We refer the
interested reader to Akhiezer and Glazman [1] and Akhiezer [2] for the connection
between spectral properties of Jacobi matrices and orthogonal polynomials.

2. Generating functions. For completeness we include a derivation of a generating
function for the Fn’S. Set

(2.1) r(x,t)’= EtnFn(x;
o

Multiply (1.15) by n+l and add the resulting equations for n=1,2,. -., to obtain the
functional equation

1 2axt + t2Fx,qt. l(2.2) F(x,t)=
1 2xt + 2

We also used (1.14). We now iterate the functional equation (2.2), that is successively
replace by qt and obtain

(2.3) F(cosO,t)
(t/7;q),(t/A;q), F(cosO tq")

where

(2.4) 1 2cxt +/t2= (1 -t/y)(1 t/A).

Letting n z in (2.3) gives

(t//;q)(t/A;q)
(2.5) F(cosO,t)=

(teiO;q)(te_iO;q)

where (o; q)o is I-I(1--oqn).
We now show how to obtain generating functions for our sieved polynomials from

(2.5). Recall the q-binomial theorem, Slater [19, p. 92], Andrews [5, Thm. 2.1]

(2.6) (oz’q)/(z’q) E(o’q) z (q’q),.
o
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We now consider the Bx’s of (1.16) and (1.17), so choose

(2.7) ol=o)kSk’+ka+l fl=oZs 2kx+2 q=okS

We choose V and A in (2.4) as

x-cos0,

then use (2.6) to obtain

(2.9) (t/v;q)o/(te-i;q)o=,(ei/y;q),(te-g)"/(q;q),.
0

When a, fl and q are as in (2.7), a typical term in the quotient of finite products
(eg/y; q),/(q; q), is [1-qJeg/V]/[1 qj+l]. It is easy to see that (2.7) and (2.8) give

(2.10) 1 x,+l[s, 2, 9_

0ks cos0- iv/1 s cos 0 ].
Therefore

lim
1 qe/V 1 if k +j + 1.

sl 1--qj+x

If j + 1 -mk the above limit is + m + ia cot 0 ]/m. This proves

lim (ei/v;q)"-(l+’+iactO)m- n+l =mk+l.
s--,1 q,q m! O<l<k,

under the assumption (2.7), where

(o)0 1. (o),=o(o+l)...(a+n-1), n>0.

This calculation and (2.9) imply

lim
(t/v;q)

lim { E(,e-, )q O<l<k
m>O

(eiO/V;(q; q)mk+lq)ml+! (te-iO)mk+’}
oe k-1

E ( h + 1 + ia cot O) (te-io) mk E (te-m!m=O l=0. X + 1 + ia cot O) (re-io) ..m!m=O

1 tke-k

1 te- so

(1 -te-i)-(1 tke-ikO) -x-iactO,
in view of the binomial theorem. This and (2.5) establish the generating function

(2.11) _,BX (cosO;a;k)t"
o

(1 2t COSO -[- t2) 1(1 te-ik) -h-iacotO (1 tke ik) -x+ iotO

The generating function (2.11) enables us to obtain explicit representations for our

Bx’s. It also yields another formula relating the BX’s to the Pollaczek polynomials.
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Recall the generating function

E v (o O)t(2.12)
1 2t cosO + 2

Rainville [16, p. 301], and

(2.13) EP(osO; a, 1)t n= (1 te-i) -x-iacto (1 teiO) -+iactO
0

where the pX’s are the Pollaczek polynomials as defined by (1.6) and (1.7) see Chihara
[10, p. 184]. We now expand the first factor on the right side of (2.11) in powers of as
in (2.12), then expand the rest in powers of k using (2.13). This establishes, upon
equating the coefficients of various powers of t, the identity

(2.14)
,’,/

j=0

where [o] means the largest integer less than or equal to o. We can also factor
(1-2tcosO+t2) -1 as (1-tei)-l(1-te-i) -1 then use the binomial theorem to ex-
pand the right side of (2.11). Simple manipulations lead to

BX (cosO; a; k ) E exp[iO(j-l+kr-km)] ()t+iactO)m ()t-iactO)r
j,l,m,r

where the sum is taken over j, l, m, n > 0 such that n +j + km + kr and l,j < k. There-
fore

(2.15)

BXn (cosO; a; k ) E (,+iacotO)m (-iacotO)r
m! r!

j,r,m>O
j+km+kr<__n

exp[iO(2j+ 2kr-n)],

X’s. Recall that in this case we setwithj < k. We now proceed with the c,

(2 16) Ol--"S k’+ka ,8"-" 2k)
S q=stOk

then let s---, 1. We need a slight modification of the generating function (2.5) in order to
x’s by letting s 1. Clearly (2.2) impliesobtain a full generating function for the c.

[1-a+(flF(cos0 t)-aF(cosO,qt)= 7’t2] F(cosO qt),
1-2xt+

that is

(2.17) E (1- aq")
1--

0
F, (cosO; a fllq) n [1 + ,B-a 2] (qt/7; q)(qt/A; q)

1-a (te-iO;q)(tei;q)
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Starting with (2.17) and essentially repeating the argument used to derive (2.11) from
(2.5) we obtain

(2.18)_, bncX(cosO;a;k)tn= 1-
n=O

X-a 2](1 2t 0+ 2 -1( ke_ik0 -h-iacotO
cos ) 1 )h+a

.(l_t,ei,o) -x+iact

where

(2.19) bn’= (()+l+a)t,/gl(2))[n/k])/((1)tn/gl(k+a)[n/g]),
and [o] means the smallest integer greater than or equal to o.

If we combine (2.18) and (2.11), we get

,-a x(2.20) bcX(x;a;k)=BXn (X;a;k)-XaB,_2(x;a;k ), n> 1.

Two more representations for cX(x; q; k) can be obtained from (2.14), (2.15) and (2.20).
Note that (2.11) and (2.12) imply

(2.21) BX,(cosO;a;k)=Un(x), n=0,1,-..,k-1.

This also follows from (2.14).
We now derive two families of generating functions. Our proofs rely on the

following lemma.
LEMMa 2.1. If

(2.22) P(t)=_,Pntn,
0

then

(2.23) Y’ P(to)-tJ=k ., Pk,+tt‘+k", /=0,1,..-,k-1.
j=O =0

Proof. Clearly

k-1 (kg ff’= (1_o,b)/(1_o,)j=O

if klb,
ifk+b.

Thus

(2.24)
k-1

E tOkb= ( k ifklb,

j=0 0 if k+b.

This leads to

k-1 k-1 o k-1

E -JtP(t6J) E -JtEPntnjn=Ep,tn E J
j=0 j=0 0 n j---0

which when combined with (2.24) implies (2.23).
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THEOREM 2.2. We have

(2.25) E B)+kn(COSO; a; k)t n-- (1 teik) -x-1 +iacotO (1 te-ik) -x-l-iaetO
n-O

( v, (cos 0) + tv_,_: (cos o) }
and

(2.26)

nO (2x) n+l (COS O" a" k)t

(1 teik) -x-l+iactO (1 te-ik) -x-l-iaetO

.[]X+a ((csO)+ ’Uk-/- 2 (cs O) ) X+’aX-(1-2tcoskO+t2)l’
+ 2-x+ coso( _,(cos 0) +, ,_ (os o)

where O, 1,. ., k 1 and U_ (x ) is interpreted as zero.

Proof. We first prove (2.25). From Lemma 2.1 we get

E L.(cosO;;)
n=O

k-1

jO

(1 te-i)-x-t(1 tei)
k-1

=(1-te-)-x-t(1-te)-x+’ E ’ E U(cosO) t.
jO nO

Applying Lemma 2.1 to the right side of the above equality establishes

E v,.(osOl.
The obseation

E t"U+,(cosO)= E t{e(’++-e-i(+’+}/(2isinO)
nO

{ i(l+l)O -i(l+l)O }1-ei l-re-i
/(2isin0)

and (2.27) prove (2.25).
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Formula (2.26) can be proved along the same lines. The interested reader can
easily fill in the details of the proof.

Using (2.13), (2.25) and (2.26) we obtain

(2.28) BX+k,(cosO;O;k)= U(cosO)PX+l(cosk;O;1)

+ U,_,_2(cosO).PX_+?(coskO; O, 1)

and a similar formula for the polynomials of the first kind when a--0. Recall that

PX( x, O,1) CX(x ).
The generating functions (2.25) and (2.26) reduce to new generating functions of the
sieved ultraspherical polynomials when a- 0.

A1-Salam and Chihara [4] determined all pairs of orthogonal polynomials { p,(x)}
and { q,(x) } such that their convolution

Q,,(x,Y) i P.i(x)q,,-(Y), n>O.
j 0

defines { Q,(x,y)} as an orthogonal polynomial set in x for all y. They were motivated
by two examples involving Hermite and Laguerre polynomials, namely

p,,(x)=q,,(x)=H,,(v/x)/n!, Q,,(x,y)= 2-nH,,(x +y)/n!,
pn(x)=L’(x), q,(x)=Lff(x), O(x,y)=L+t+l(x +y).

A related question, which is still open, is to characterize all orthogonal polynomials
( p,(x)), ( q,(x)), (Q,(x)) that satisfy

(2.29) Q,(x)= pj(x)q,_j(x).
j=0

This seems to be a much harder question. A slightly more general question is to replace
the convolution (2.29) by

(2.30) Q,(cos0)= Z pj(coskO)q,,_,(cosO),
j=0

and ask the same question. Formla (2.14) is an example of (2.30).

3. Limiting relations. Recall that if { p,(x)} is a sequence of polynomials satisfy-
ing

(3.1) p,+l(X)=(A,x+B,)p,(x)-CnP,_l(X), n>0,

(3.2) p0(x)-l, pl(X)=Aox+Bo, Ao4=O
and the positivity condition

(3.3) A,_IA,C,>O, n>0,

then there exists a positive measure dq such that all the moments ftnd+ exist and

(3.4)
o
P" ( X ) Pm(X ) d+ ( x ) kntm,



1102 MOURAD E. H. ISMAIL

with

Ao(3.5).),=-7C1... C,)o, n>0.

We shall normalize by X 0 1. The function is called the distribution function and is
normalized by k(-o)= 0, k(x)= 1/2[(x + 0)+(x- 0)] and, of course fd= 1. Nevai
[10, pp. 141,143] proved that if

(3.6)
nl

then

where ’ is continuous and positive on (-3’,’/), vanishes outside [-3’,3’], and j is a
jump function, constant inside (-3’, 3’). He also proved the limiting relation

(3.7) limsup(p(x)’(x :-x: /X =2’
for almost all x ( 3’, 3’).

The condition (3.6) is not satisfied when p,(x) is BX,(x;a;k) or cX(x;a;k). The
function k’, as it will out, vanishes k-1 times in (-1,1). In both cases 3’= 1. The
asymptotic formula (3.7) still holds for both sets of polynomials. As a matter of fact,
this is how I discovered what k is. So, we now compute the left side of (3.7). We shall
use Darboux’s method.

THEOREM 3.1 (Darboux’s method). Assume that f(z)=Ef,z" is an analytic func-
tion in Izl<r and that g(z)=F?g,z n is a comparison function, that is, f-g is continuous

Izl- r and g(z) is analytic in Izl < r. Then

(3.8) f,=g,+o(r-").

Olver [11, 8.9] proves Theorem 3.1 from the Riemann- Lebesgue lemma.
Our first asymptotic results are the following.
TH.OREM 3.2. We have

(3.9) BX. (cosO;a;k)= (2k)-XnXexp(acotO( r/2-kO+ l r)) cos[e.(0)],
Ir(X+l-iacot0)lsin0lsin(k0)[

x

with 0,1, and

asn---)o, 0<0<r, lr<kO<(l+l)qr,

(3.10)
o (n)e,,(O)’= (n+kX+l)O--(X+l)-acotOln +argF(X+l+aicotO)

--rlX-- arg[(sinko)aict]
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and

(3.11)

cX(cosO;a;k)

/2nx exp(a cot0(r/2 kO + lr))[X2 + a 2 + (a 2 )2)cos 20] 1/2

IX + al II’(X + -iacotO)Isin 0 [2klsin(k0
as n oo, where en(O ) is as in (3.10), 0 < 0 < r, lr < kO < (l+ 1)r and

(3.12) q,=arg[1-()-a)e-:i/()+a)].

Proof. The dominant term in a comparison function for (2.11) is

(1 teiO)-x-h+iactOk-)+iactO(1 e-2i)-1(1 e-2ikO) -)-iactO

+ a similar term with 0 replaced by -0.

Therefore

(3.13)

Bn(COSO;a;k).Re( k-x+iact(x+ l-aictO)nexp[iO(n+ l + k)+ iakctO)] }2n!exp[i(r/2)(X+l+iacotO)](2sinkO)X+iacotOsinO
Recall that

(o). r(,+n) n-1

n! r(o)r(n+l) r(o)
as n o.

The above relationship and (3.13) yield

B,,(cos 0" a;k)= Re( (2k)-Xexp((r/2-kO+ lr)actO)nX-iact
2sinOIsinkOIXlF(X + 1 aicotO)l

exp[iO(n+ 1 + k))+iacotOln(k/2)

-t()+ 21+ 1)- ia cotOln(IsinkOI)-iarg r(x + 1 ai cot0 )

which, after some simplification, reduces to (3.9).
The proof of (3.11) is similar and will be omitted. This completes the proof of

Theorem 3.2.
In the case of { BX(x; a; k)}, the coefficients in (3.1) and (3.2) are given by

2, n4:mk-1, (1, n4:mk-1,
(3.14) Bn=0 An= 2(,+a+m) n=mk-1 Cn= 2h+m, n=mk-1

m m

3, 1, so (3.6) diverges like Inn and (3.18) and (3.21) give

.n,(2,+l),n/,)/(n/k)V F(2X+l+n/k)
F(ZX + 1) I’(1 + n/k)’
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hence

n)
x 1(3.15) Xn= " F(2X+ 1)’

since F(a+n)/F(b+n)=na-b and X0 is normalized to be 1. Nevai’s result (3.7), in
view of (3.9) and (3.15) suggests

(3.16) q/(x) 22+1=(1-x)X+/lu_x(x)lXlF(X+ 1-iacotO)l

exp[ a cot O(2kO rr 21rr)],

F(2h+ 1)

x cos 0e( -1,1). In the next section we shall prove that p is absolutely continuous and
p’ is indeed given by (3.16) under the normalization 0 1. When a=0, (3.16) reduces
to a result mentioned in A1-Salam, Allaway and Askey [3]. We shall also prove that
(3.7) holds when Pn(x) is cX(x;a;k). This raises the question of the validity of (3.7)
when

1 { n

[Cj/.hjaj_ ’l} <00.(3.17) sup E In/a2l+ r
n>0 j=l

Condition (3.17) seems to be sufficient for the validity of the asymptotic relationship
(3.7).

x in theWe now determine the asymptotic behavior of the polynomials Bx and c

complex plane cut along [- 1,1]. If x ff [-1,1] then the quantities e 0= x il x
have different absolute values. It is easy to see that

(3.18) lel>l>le-l, Imx>0, Rex[-1,1], x=cos0,

(3.19) lel<l<le-[, Imx<O, Rex[-1,1], x=cos0,

provided that x lies in a neighborhood of the real as. A proof similar to our proof of
Theorem 3.2 establishes the following result.

THEOREM 3.3. The asymptotic results

(3.20) )(x. a" )= {1-e-*)-l{1-e-*)--act-+’’n-i"’
r(x + a ia cot O)exp( in O)

(3.21) n{x;a’)= [X+a--{X--a)e-*] ){x’a’)X+a

holds as n and x and 0 are as in (3.18)provided that + 1- iacotOO, -1,
1, .. In the lower halfplane the corresponding asymptotic formulas follow from (3.20)

and (3.21) by replacing 0 by -0.
When

(3.22) X + 1 iacotO= -j, j=0,1,2,. ,
then 0 must be purely imaginary and (3.18) holds if and only if x > 1. In this case (3.22)
gives

ax
-(X+j+ ).(3.23)

fx_ a
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This has a solution x > 1 if and only if

(3.24) a(X+j+ 1) <0.

If (3.22) and (3.24) hold, then the generating function (2.11) becomes an analytic
function of in Itl < lel and (3.20) must be replaced by

(1-e2’O)-(1-e2’.e) j+l

( n )
x+,,cot e

BX" (x; a; k )= F( X + l + iacotOyxp(g-O) -Similarly, the asymptotic behavior of cX(x; a; k) when x satisfies (3.23) can be de-
termined.

4. The numerator polynomials. Let (p,(x)) and (p*(x)) be two solutions of the
three-term recurrence relation (3.1) and assume that (p,(x)} satisfy the initial condi-
tions (3.2), i.e.

(4.1) Po(X)=l, pl(X)=Aox+Bo, Ao*O,

and { p*(x)} satisfy

(4.2) p’(x) O, p’(x)=Ao

The p’s are called the denominator polynomials of the continued fraction

(4.3) Ao C C2X(X)" Aox + Bo_ A1x + B1 A2x + B2

while the p* are its numerator polynomials. In fact pn*(X)/p,(x) is the nth convergent
of the continued fraction (4.3). When the support of the measure dq, see (3.4), is
bounded, then Markov’s theorem asserts

(4.4) X(x)= lim p*(x)=j- dq.,(u)
p.(x) x-u

is valid in the x complex plane cut along the support of dq. In the present section we
h*study the polynomials c, (x; a; k) and B (x; a; k). We derive generating functions for

these polynomials and use the generating functions to determine the asymptotic behav-
X*ior of c and B for large n and fixed x. The purpose is to combine these asymptotic

results with the asymptotic results of {}3 then compute X(x) from (4.4) and then
determine the distribution function from the inversion formula for the Stieltjes trans-
form

(4.5) q(t2)-q(tl) lim
1 fti2-o

[X(u-ie)-X(u+ie)]du.

Recall that the F,’s satisfy the recursion relation (1.15); hence Fn* also satisfies
(1.15) and, in view of (1.4), (4.1) and (4.2), the initial conditions

(4.6) Fo*(X; ; lq)-- O, Fl*(X; a,Blq)= 2(1 a)/(1 q).
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Now multiply (1.15), with F replaced by Fn*, by n+ and add the results for n 1,--..
This and (4.6) give

(4.7) F*(x t) 2(1-a)t +l-2xat+t.,t *(F x,qt)
1 2xt + 2 1 2xt + 2

where

(4.8) F*(x,t)’= E F*(x; a; fllq)t.
n--0

The solution of the functional equation (4.7) is

(4.9) F*(cosO,t)=2t(1-a)_, (t/,/;q)(t/A;q) q,
0 (te-iO;q-+;(eiOi-q-)+x

where , and A are as in (2.4). Using the observation

(o; q)n (O; q)/(oqn; q),
and (2.5) we can express F *(cos 8, t) as

F*(cosO,t)=2t(1-a)F(cosO,t)E (te-iqn+l;q)(teiqn+l;q)

The q-binomial theorem (2.6) and the above representation lead to

F*(cosO,t)--2t(1-)F(cosO,t)
(’qe ;q)(Aqei;q)

m,j=O (q;q)j(q;q)m

E q(m+j+ 1)n

Therefore we have

(4.10)

F*(cosO,t)=2tF(cosO,t) _, (’q2e i;q)(Aqei;q)
m,j--O ( q; q ) j( q; q ) --(1-Tqe-i) (1-Aqei) 1-t

(1-Te-iOqj+1) (1-AeiOq+) l_q-,+J+’

The numerator polynomials of the sieved polynomials of the second kind arise when q,
a and fl are chosen as in (2.7) and s 1. It is easy to see that

lim
1 yqe-iOq t 1 if k r,

-X-iacotO+r/k
s--* 1 qr t r/k

if kit,

lim
1-Aqeiq [1 ifkCr,

-X+iacotO+r/k
s--* 1 qr t r/k

if klr,

1 yqe-o + ia cot 0
lim
s-, 1 ye- iOql + kr A. ia cot 0 + r’

1 Aqe h + ia cot 0
lim

Oq + X + ia cot 0 + r-, 1-Ae
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As s 1 the terms in the sum and in (4.10) will vanish except in three cases

(I) klj and klm, (II) klj and klj + m + 1, (III) klm and klm +j+ 1.

We let

F*(cosO,t)
lim
s- F(cosO,t)

where k,j belong to cases I, II, III in Y’a, E2, E3, respectively. Using the limiting
relationships following (4.10), it is easy to see

E1(/9) 2t(1 -tke-ik) X+iacotO (1 --tkei) ,-iacotO,

.,2(O)=2t(teiO)k_l ., (-)-iacotO) (1-,+iacotO)m
j! m

j gn

g J[teiO[ ]
mk ( -- ia cot0 )

j+m+l

In we replace t(++l/(j+ m+ 1) by fdu+du to obtain the integral representa-
tion

(4.11)

(O)=2e(-lo(X-iacotO)’ (1-ue-io)x+t(1-ueiO)X-1--tdu
and a similar integral representation for . Both representations are vNid when X > 0.
RecM1 that

(4.12)

say. Thus

(4.13)

lim F(cos 0, t) EBX(cos 0; a; k)tn=: B (cos O, t),
sl 0

B (cos 0, t) (1 2t cos0 + t2) 1(1 te-i) -x-iacotO (1 teik) -x+ iacotO,

see (2.11). Therefore

(4.14) E x. 2tn (cosO;a;k)tn= +B(cos0
n=o 1 2xt +

We now apply Darboux’s method to (4.14). The result when ;k > 0 is

(4.15)

BX*(cosO;a;k)

-- 2 Bff (cos 0; a; k)[(X ia cot 0)e i(k- 1)0

foe-ikol(1 ue_ikO) h+iacotO (1 ue ikO) X-l-iacotOdu

+() + ia cotO)e-i-lfe-’-(1 ueig) X-iacotO (1 ue-i) X-l+iacotO

"0
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where x=cosO, Imx>0. When Imx <0 the above formula holds with e -ikO replaced
by eik only in the upper limit of the integrals. The above integral is a Hadamard
integral, see [8] and [15].

We now essentially repeat the above analysis for the numerator polynomials of the
first kind. Recall that in this case

(4.16) q=sok

and we let

(4.17)

]l=s-kh( s ka cos0 + iv/1 sk" cos0 }, A s -kx( s .cos e i/i s2a COS2 e }.
The analysis till (4.10) remains valid but we rewrite (4.10) in the form

(4.18)

F*(cosO,t)=2tF(cosO,t) _, (,/qe i;q)j(zqeiO;q)m tit 1-a

m,j:o (q;q)j(q;q)m 1--q re+j+1

One can easily apply (4.16) and (4.17) to show that

lim (1 ve-iOqr)/(1 qr)= lim (1 AeiOqr)/(1 qr)_ 1 if k r,
s--+l s--+l

and

lim
1 ye- iOq kr r- ) ia cot 0

lim
1 Ae iOq kr r + ia cot 0

l q kr r s 1- q’ r

Furthermore

lim
1-a (0 ifk+j+m+l,

1--qm+j+1 (h+a)/r ifj+m+l=kr.

Using the above calculations, we see that the result of letting s ---) 1 in (4.18) is

lim F*(cosO,t)=2k(X+a) E
sl F(cosO,t) klj+m+ 1

(1 X ia cot 0 ) j/, (1 )t + ia cot 0 ) m/k

(1)[/kl(1)t/kl(m+j+ 1)

.tJ+m+lei(m-j)O.

Set

j-kjl+l, m=km1+k-l-l, O<l<k,

SOJl >- 0 and m > 0. Thus

lim
F * (cos O, t) 2(X + a)

s--+ F(cosO,t) Jl ml 0

(1- )- iacotO jl (1- X + iacotO ml t(ml +Jl + l) k

J!ml!(m +Jr + 1)

k-1

e-iOeikO(ml -jl+l) E e-2il,
l=0
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that is

(4.19)
r*(cosO,t)

lim
sl F(cosO,t) 2( ? + a) sin k0 f0t*sin0 (1 ue -ikO ) 2-1 +iacotO (1 ue ikO ) X-l-iacotO

Applying Darboux’s method to the above generating function establishes

(4.20) x. X(cos0; k; a)
sink0

Cn (csO;a;k)--2(?+a)cn sin0

/e--7(1 ue_ie) -1 +iacotO (1 ueie) A-l-iacot8 du,
"o

where, as before, x=cosO, Imx > O. If Imx < O, e- in the upper limit of the integral
should be replaced by ei.

Using the integral representation

r(c) rl
1o

[zl< a, Re(c)> Re(b)>0, Rainville [16, p. 47] we can express Y’2 as a multiple of a
hypergeometric function. This enables us to express the right side of the generating
function (4.14) and (4.19) in terms of hypergeometric functions. In the next section we
use the integral representations directly to compute the distribution function. Using
hypergeometric functions would have complicated the problem by forcing us to use
analytic continuation and contiguous formulas, see Erd61yi et al. [11], to achieve the
same results.

5. Orthogonality relations and continued fractions. The support of the measure d+
in (3.4) is bounded when (Bn/An} and {Cn+I/AnA,+I} are bounded sequences,
Chihara [10, p. 109]. Both sequences are bounded in the case of the sieved polynomials
of the first and second kinds. Thus, Markov’s theorem is applicable and (4.4) holds. Set

Xl(X):= lim BXn*(X;a;k)/BX(x;a;k),
h*X2(x) "= limc (x;a;k)/cX(x;a;k).

Clearly (4.15) implies

Xx (cos 0) 2( X-iacotO)ei(k- x)fe--7 (1 ue -ik) x+ iacotO (1 ue ikO ) X-X-iacotOdb
0

(5.3) + 2(, + iacotO)e-i(k-a)

fe-i-7l(1 ueikO)X-iacotO (1 ue -ikO ) h-l+iacotO du,
o

Im(cos0)>0. An application of (4.21) expresses Xl(x) in terms of hypergeometric
functions and makesit clear that Xl(x) has no poles when a > 0, so the discrete part of
dk, if any, may occur on the support of the absolutely continuous component. The
inversion formula (4.5) implies

2ri+’(x)=Xl(X- iO)-Xl(X + iO).
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Therefore

(5.4)

ri’(x)= (X- iactO)ei(k-1)feWl-,o (1- ue-i ) N+iacotO (1 ue ikO ) x 1- ia cot o du

+(X+iactO)e-i(-)fgk--gl ) h+iacotO (1-ue-io ) h-l-iacotO du.

The integrals in (5.4) are beta integrals. The change of variable u e-i+ v(ei- e-)
reduces the first term on the right side of (5.4) to

e-i()- ia cot )(1 e-2ie) )+ ia cot/ (1 e 2ie) a- ia cot 0

fo vh_l_iacotO(1 /3) h+/acotOdo,

that is

22Xe-’el sin kol= lr ( x + 1 + ia cot/9 ) 12exp a (2kO r 2rl )cos O ]/r(2x + ),

where lrr < k/9 < (1 + 1)rr, 1= 0,1,.--
(5.4) is

Similarly, the second term on the right side of

22Xe’el sin kol  lr(x + 1 + ia cot O) 12exp a (2ke rr 2 rrl)cot O ]/r(2x + 1).

This and (5.4) give

WX(cos 0; a; k) sin OlsinkOlXlF ( h + 1 + ia cot0)12exp a(2kO r 2rl )cot 0],

where

WX(cosO; a; k)’= rr(2X + 1)2-2x-1’(x).

Recall that if (Pn(X)} is orthogonal with respect to a unique distribution function then
xo is a mass point if and only if Y.P2(Xo)/)n diverges; Akhiezer [1, p. 69], n is as in
(3.4). In the case under consideration

(5.6) hn=Cn 2x, C0,

follows from (3.15). Furthermore (3.9) and (5.6) show that the series

(5.7) . ( BX(x; a;k)) 2n-2X

diverges for x (-1,1), hence (-1,1) carries no discrete masses. We next consider
the points +1. In the case of the Pollaczek polynomials PX(x;a,O), )n is
21-2XrF(2)t+n)/(n!(n+a+))), Chihara [10] or Szeg/)[21], so )nCn2x-2, CO
and the points + 1 did not support discrete masses. Therefore

_,P+(+l,a,O)n
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diverges and (2.25) establishes the divergence of the series in (5.7) at x= + 1. This can
be also proved directly from (2.11) and the aysmptotic properties of Laguerre poly-
nomials. Finally, (3.14) and (3.5) give, after simple manipulations,

.8) x. (;k + a+ 1) t,,/,l (2) + 1)t (n+l)/k]

(1)t,,/,l(X+a+ l)[(.+l)/k]
The positivity condition (3.3) is satisfied if and only if X>- 1/2, X + a+ 1 >0. This
establishes the orthogonality relation

(5.9) fl BX. (x;a;k)BX.,(x;a;k)WX(x;a;k)dx=rF(2h+ 1) )n
--1 22h+ ,n

where Wx is as in (5.5), X>0, a>_0 and h, is given by (5.8). When a=0, (5.9) reduces
to the orthogonality relation mentioned in [3]. The case 0 > , > 1/2 is more complicated
and will not be treated here.

h,
SWe now compute X2(x) and the weight function that the c, are orthogonal with

respect to. Clearly (4.20) and (5.2) yield

(5 10) X.(x)=2(h+a)sink0 fe-%7"(l_ue_i,o)X-+iacotO(l_uei,o)X-X-iacotOdusin 0 0

if x=cos0, Imx>0. If Imx <0, the e -ikO appearing in the upper limit of the integral
should be replaced by eik. Here again with the help of the integral representation
(4.21) one can identify X2(x) as a hypergeometric function and observe that it has no
poles in the complex plane cut along [-1,1]. Let o(x) be the corresponding distribu-
tion function so

(5.11) do(u)

and (4.5) yields

2ria’( x) =X2(X-iO)-x2(x + i0);

hence

2rio’(x)=2()+a)
sink0 fe771sin0 -ikO

(1-ue-ikO)-l+iacotO(l__ue ikO) X-l-iacotO du.

As before, we make the change of variable u= e -ikO q-(e"- e-’)v and obtain

(5.12) wX(x; a; k)= It( x + ia cot 0 ) Iexp[ a(2kO r 2rl )cot 01Isin
sin0

where

(5.13) r(2,) 2_2a+l,,(x)wX(x;a;k)’= r a+a
In the notation of (3.1),

A.=2, C,=I ifk+n,

2(X+a+m)
Amk= 2+m

m
Cm=2X+m
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where we used (1.21). The ,n’s in this case, see (3.5) are given by

()t + a)ml ()t + a)m!ifl4=0, )trek= ()t+a+m)(2X)kmk+l (2)k)m+l

In other words

(X + a)[,,/l(1)t,/(5.14) X,= ()t+a+ 1)[,/kl(2X)In/k

Clearly ,-- Cn 2, C O. As in the case of the B2’s one can show that

E {c(x;a;k)}2/X,=
0

for x 1,1], so the discrete support is empty. Thus, we have

f x ,k)wX(x,a k)ax F(2X)2_2X+Xn3m(5.15) c2(x,a,k)cm(x, a.
_t (X+a)

X, is given by (5.14) h>0, h + a>0 and wX(x; a; k) is defined by (5.12).
We now discuss the cases when the distribution function has a nonvanishing

discrete part. The masses occur at the singularities of the corresponding continued
fractions. The polynoals { B(x; a; k)} and { c2(x; a; k)} are symmetric so the distri-
bution function must be even and it suffices to consider the singularities of Xx(X) and
X z(x) in the half plane Rex 2 0. The points x 1 are singularities of X(x) and
X(X) but, as we saw earlier, do not support discrete masses. The additional singulari-
ties of Xl(X), if any, will coincide with the roots of (3.22), see (5.3), and these
singularities occur if and only if (3.24) holds. When a 2 0, (3.24) is violated and the
discrete spectrum becomes empty. On the other hand, when a<0 (3.23) and the
symmetry of the polynomials show that the discrete masses are located at x, with

xj (X+j+I){(X+j+I)2
a2}-/2 j=0,1,....

Since the x’s are simple poles of Xl(X) the mass @ at x is the residue of X(x) at
x x. The residues @. can be easily computed.

The singularities of X(X) can be silarly analyzed. It is easy to show, from (5.14)
that the positivity condition (3.3) holds if and only if h > 1/2, h + a > 1, X(X + a)> 0.
The poles of X 2(x) are solutions of

(5.16) X-iacotO= -j, j=0,1,....

The above equation has a solution satisfying e> 1 > e- if and only if

(S.17) a(X+) <0,

in which case the solutions are y with

(5.18) Y (X+j){(X+j)2 a2}-1/2 j=0,1,....

The condition (5.17) identifies the set of jumps of o(x) as
I empty when a 2 0, X 2 0,

II { Y0} when X>0, a<0.
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In all the above cases I and II it is further assumed that ;k + a > 0. Here again, we shall
not treat the case )t < 0; those cases will be investigated in a future work.
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AN ELEMENTARY PROOF OF LOCAL INVERTIBILITY FOR
GENERALIZED AND ATTENUATED RADON TRANSFORMS*

ANDREW MARKOEt AND ERIC TODD QUINTO

Abstract. There is a great deal of current interest in inverting attenuated Radon transforms which occur
in single photon emission tomography. These transforms are special cases of generalized Radon transforms

R, which are defined by integrating a function over lines with respect to given positive C measures/z.
As a positive result, we show R, is locally invertible. However, on the negative side, we present

counterexamples to show that some smoothness assumptions on the measures are crucial for invertibility. The
second example shows that limited angle tomography is not possible in general, even with somewhat
smoother measures.

Introduction. One contribution of this paper is a proof of local invertibility for
generalized Radon transforms on lines. This is an improvement on a result in the
folklore of Fourier integral operators that this transform is locally invertible for posi-
tive smooth measures on lines in Ra. The improvements are that the measures need
only be Ca and positive instead of COO and positive, and that the proof is elementary.
We hope the techniques used here may lead to a global invertibility proof. Secondly we
show by two counterexamples that some smoothness is essential for the measures.
Example 1 gives a strictly positive bounded measure/ for which R, is not invertible,
and Example 2 provides a nicer measure for which "limited angle tomography" would
not be possible.

The attenuated Radon transform (Natterer [5]) of single photon emission tomogra-
phy is a generalized Radon transform whose inversion would be of.great practical value
in diagnostic medicine. For constant attenuation, invertibility is known (Bellini et al.
[1], Markoe [4], Quinto [7], Tretiak-Metz [liD. However invertibility is unknown in
general.

Let be the standard inner product on Ra and let[. [be the norm. For 8 [0, 2r]
let =(cosS, sinS) and 8+/-=(-sinS, cosS). For (8,s)[0,2r]R, L(8, s)=(xRa[
x.= s ) is the line perpendicular to and s units from the origin. Let/(x, 0) be a Ca

function on Ra [0, 2r]. We will always assume functions of are 2r periodic along
with their derivatives. Let fLf(Ra), that is f is an Lp function of compact support.
We define the generalized Radon transformR by

(1) Rf(O,s)= f(s+ tO")#(s+ tO+/-,O)dt.

This is simply the integral of f over L(O,s) in the measure #(x,0) times Lebesgue
measure on the line. Generalized Radon transforms on (n- 1)-dimensional hyperplanes
in R" are defined in a similar manner [7]. Certain classes of generalized Radon
transforms have been inverted [3], [6], [7], but even for />0 there is no general
inversion theorem.

*Received by the editors August 18, 1983, and in revised form June 6, 1984.
Department of Mathematics, Rider College, Lawrenceville, New Jersey 08648.
*Department of Mathematics, Tufts University, Medford, Massachusetts 02155. The work of this author

was partially supported by the National Science Foundation under grant MCS 82-01627.
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Results. Our main theorem is a step on the way to inverting attenuated and
generalized Radon transforms.

THEOREM. Let be a strictly positive C2 function of (x, 0 ) REx [0, 2r] ofperiod 2r
in 0 along with its derivatives. Let xo RE and 2 <p. Then there is a nonempty neighbor-
hood, Uxo ofxo such that R is injective on domain LP(Uxo ).

The theorem is proved by a perturbation argument; the closer R is to a classical
Radon transform, the larger Uxo is (see (8)).

For/ C this theorem can be proven on the domain of distributions of compact
support by showing that R, is an elliptic Fourier integral operator (Guillemin-Stern-
berg [2], see also Quinto [6]), but the proof below uses only elementary analysis. This
theorem generalizes directly to the X-ray transform on Rn.

Proof. First, there is no loss of generality in assuming/ is periodic of period r in/9.

(Define (x, 0)= 1/2(/(x, 0)+/(x, 0 + r)) then R satisfies the hypotheses of the theo-
rem and is rr periodic. Invertibility of R implies invertibility of R.) Now assume

Xo=0 and that the neighborhood Ux0C B(1) where B(r) is the ball of radius r centered
at 0. Then/ can be smoothly altered so that/(x,8)= 1 for Ixl> 2 but/.t is unchanged
for [x[__< 1. ForgL([0,2rr]R) define

0 is a weighted back projection.To a tomographerR
0.One proves R,: LP(B(1))LP([O,2r]R) and R LP([O, 2r]R)Loc(R2)

for 1 =<p _<_ are continuous by using the definitions and Holder’s inequality (Rudin
[8]).

ForyR2-0 let argy [0, 2r) be the angle between the vector y and the positive
x-axis, y ylargy.

A calculation using the fact that/ is a periodic as well as a polar integration on R2

shows that forf Lf(R-)

ROR,f(x)=fR
f(x+y)l(x+y,argy+r/2)

dy.
lyll(x,argy+r/2)

Rewriting this we see

(3) ( 1 ) fR f(x+y)M(x,y, argy)
dy,RR,f(x ) f * - +

lY[

where

M(x,y,O)= I (X +y, O + r/2) I ( x, O + r/2)
I ( x, O + r/2)

Let Kf(x) be the second integral in (3).
Define a norm on Ccl(R2) by

E
j=l Lp

This can be extended as a seminorm to distributions with Lp first derivatives.
The following two lemmas are the keys to the proof.
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LEMMA 1. For each 1 <p < o there is a positive constant cp such that for every
f LP(B(1)), cpl0ql _-<llf * (l/Ixl)llx,p.

LEMMA 2. Let 2 <p < and let c > O. Then there exists a ( p, c, I) such that for
allf LP(B(I)), Ilgjqll,p<= cllJqlLp.

The lemmas will be proved momentarily. Now, the lemmas in conjunction with (3)
prove that for C<Cp and 6=6(c,p,), IIRRI]Ix,p>=(cp-c)Ill]I for fLP(B(6)).
This proves the theorem for Ux0= B(8) and 8 < 8(ce,p,) (see (8)).

It is interesting to note that the radius 8 can be estimated by (8) in terms of the
derivatives of/ and norms of certain Riesz operators. The closer R, is to a classical
Radon transform (---constant, B--0 in (8)) the larger is.

Proof ofLemma 1. Let Rjfbe the standard Riesz transform off,j= 1,2 (Stein [9, p.
572]). Then (8/Oxj) (1Axl))-- LR2f for some L 4:0 [9, (20), p. 126]. ForfLP(B(1)),
the derivative is understood distributionally. Now the equation R2 +R= -id [10, (2.9)
p. 224] combined with the L continuity of Rj. [10, Thm. 2.6, pp. 223-4] finish the
proof of the lemma.

Proof of Lemma 2. The hypotheses on/ guarantee a positive uniform lower bound
on as well as uniform upper bounds on/ and its derivatives of order less than or
equal to two. This and the mean value theorem provide a constant B such that

(4)

for all (x,y,O) andj= 1,2. Now assumef CI(B(1)). To prove the lemma we compute
IIKjqll,p by bounding each first derivative of Kfby a multiple of [fi. 1/]xl. First

M(x,y, argy) f(x +y)dy

M(x,y, argy)+
lYl ax---f(x +y) dy.

The derivative can be brought inside the integral since the integrand is bounded
uniformly by an L function in y. Then (3/x)f(x +y) can be replaced by
(/y)f(x +y) because of symmetry in x +y. An integration by parts combined with
an elementary chain rule calculation yields

(5)

yO-- Kf( x )
xj

i
M( x y argy ) -y y arg )

+ M(x,y argy)- argy)
2lyl [y[

(- 1)JY3_j f(x +y)
dy.

Using the bounds from (4) in (5) and taking Lp norms proves that, forf Gel(R2),

(6) Ilgfllx, Z 8B If[ *
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Finally, the Hardy-Littlewood-Sobolev theorem [9, p 119] and Holder’s inequal-
ity [8] prove, forp > 2 andf LI"(B())

<= dp[lf[l <= dpr/llfl[ip,(7) Ifl *
L,

where r= 2p/(2 +p) and dp is the Lr- Lp operator norm of this Riesz potential. Now
(6) and (7) prove Lemma 2 forf C(B(8)) when

C(8) --t(c,p,ll--
(SOdp,trl/2)

Since C(B(8)) is dense in LP(B(8)), the lemma is true forfLP(B(8)).
The basic argument above should work for the Radon transform on hyperplanes in

R", however [6, (28)] would be used to calculate (2) and different norms would be used.
A Radon transform R, is rotation invariant if for each orthogonal transformation u

and all f,R u-1)(uO, s)=Rf(O,s), where uO= arg(u).
EXAMPLE 1. A strictly positive bounded t(x,O) is constructed such that R is

rotation invariant, but R, is not invertible on L(R2).
Construction. Define T= (xl(j- 1)/j<=lxl<j/(j+ 1)). Let Isl 1. Now let jo(s)

be the unique index such that the line L(O,s) satisfies Tj.o(S)CL(O,s)4= but Tj.N
L(O,s)= forj<jo(s ). Forj>=jo(s ) define aj(s)=l(L(O,s)CTj.), where/is Lebesgue
measure on the line. Note that neither J0 nor aj _depends on 0 as each Tj. is rotation
invariant. Let [xl< 1 and 0[0,2r]. Letjo=Jo(x.O ). Then for some k (0,1,2, },x

Tjo+2kl,.) Tjo+2k+ 1. Define

1/2 ifx Tj.o + 2k,

(9) t, ( x, O )
ao+2k(x.O)/ao++l(x.) ifx Ta.o++l.

Also define/,= 1 for Ix >__ 1 and all 0.
It is clear that/, is positive and rotation invariant. Here is an argument to show

that/, is bounded. Let jl, for s[O,j/(j + 1)] elementary calculus shows the maxi-
mum of a(s)/ag+l(S ) occurs at s=(j-1)/j. Then it is straightforward to show
limj_+a((j-1)/j)/a+l((j-1)/j)=(x/-l) -1. This proves there is an M>0 such
that for all j and all s[-j/(j+l),j/(j+l)], la(s)/a+l(s)l<__M. Examining the
definition of/,, (9), proves/, is bounded.

Now define f(x) (- 2) -J on T and f(x) 0 for ]xl >_- 1. Clearly f is L and
nontrivial. We now show that R,f=O. Clearly for ]sl>=l, Rf=O. Let Isl<l and
J0 =J0(s) then

Rf( o ) ft(o,s f(x)#(x,O)dl(x)

k--0 "o+2kNL(O,s)
f(x)#(x,O)dl(x)+fTjo+2k+ 1NL(O,s) f(x)(x,O)dl(x)

E (--2)-(a+Zk) 1

+ (_ 2)-(ao +,+ 1)( a,o+zk(s)/ajo+ 2k+ l(S))l( Tjo+ 2k+ (’)L(O,s))
as seen by pairing adjacent T. But this last sum is clearly zero.
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Remarks. Although thef constructed in Example 1 is not smooth, it could easily be
modified to be smooth. Just keep the rotation invariance and taper f off smoothly to
zero on the union of the boundaries of T. Of course the definition of/ would have to
be modified somewhat to account for the tapering of f. In any case, we omit the details,
and merely note the interest in a smooth nontrivial function in the null space of a
positive rotation invariant Radon transform.

The union of the boundaries of the Tj. give an idea of the simplest possible
structure of the zero set of a nontrivial function in the null space of a general Radon
transform.

If/x is smooth and positive and R, is rotation invariant then R is invertible on the
domain of compactly supported distributions [7]. Hence counterexamples like Example
1 must have non-C/. Moreover, the result from [7] can be used to prove that, for any
C2 positive/, R, is invertible when restricted to compactly supported radial functions.
In contrast, in Example 1, the functionf for which R,f= 0 is radial.

Note that the function/(x,O) in Example 1 gets arbitrarily close to zero for some
(x,O) for which x.O is nearj/(j + 1) for eachj.

Example 2. A positive (x,O) that is bounded and bounded away from zero is
constructed such that limited angle tomography is not possible for R,. Specifically, a
functionfL(R2) is constructed so that R,f(O,s)=O for 0 [-rr/4, r/4] and all s.

Construction. Let A be the triangle with vertices (-2, 0), (0,1), (2, 0) and let B be
the triangle with vertices (- 2,0), (0, 1), (2,0). For [- r/4,r/4] and x=(a,b)R2

define

l if b<O,

(10) /x(x,O)= I(BOL(O,x.))
if b>_O and -2cosO<x.<2cosO.

By elementary plane geometry, the ratio in (10) is constant for fixed 0 and
L(O,x.) near (2, 0) or (- 2, 0). Therefore/x can be defined for all x and 0 r/4, r/4]
to be bounded, bounded away from zero and discontinuous only along the x-axis, b 0.
Now/ can easily be extended to R2 [0, 2r to have these properties.

Let f=XA-XB. Then, by the definition of/, Rf(O,s)=O for 0[-r/4,w/4]
and all s.

These examples make clear the necessity of some smoothness restrictions on/ for

R, to be inverfible and somewhat more stringent .restrictions on for "limited angle
tomography" to be possible.

Acknowledgments. Professor Quinto would like to thank Frank Natterer, Alfred
Louis and Uwe Heike for their kind hospitality during his stay at the Institut
Numerische und Instrumentelle Mathematik at Universitt Mianster as well as Don
Solmon and David Finch for valuable conversations. The authors greatly appreciate the
referee’s advice in simplifying the proofs of Lemmas 1 and 2.

Note added in proof. Very recently Jan Boman has proven injectivity for R, with
positive real analytic measures/ on lines as well as for Radon transforms with real
analytic measures on certain other real analytic curves (to appear in Proc. Conference
on the Constructive Theory of Functions, Varma, Bulgaria). He has an example of a
positive C/ for which R, is not invertible. This example is neither an attenuated
Radon transform nor an averaged attenuated transform in the sense of [7, (4.2)].
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DEGENERATE HOPF BIFURCATION AND NERVE IMPULSE*

ISABEL SALGADO LABOURIAU"
Abstract. It has been established by other authors that the clamped Hodgkin and Huxley equations for

the nerve impulse have two branches of periodic solutions arising through Hopf bifurcation. In this paper
these solution branches are shown to join, using singularity theory methods developed by M. Golubitsky and
W. Langford (J. Differential Equations, 41 (1981), pp. 375-415). The equations are perturbed by varying
parameters like temperature and average membrane permeability to certain ions. A hidden organizing centre
for the equations is obtained, and its unfolding provides a topological description of the periodic orbits that
bifurcate from the equilibrium solution.

1. Introduction. It has been known since the nineteenth century that the activity
of nerve cells is accompanied by electrical changes. External factors, like the activity of
other nerve cells, or sensory stimulation, can induce fluctuations on the electric poten-
tial across the cell membrane. If depolarization reaches a threshold level, a large
perturbation is generated and travels as a wave along the axon (a cytoplasmatic
outgrowth of the nerve cell). This propagated disturbance is called an action potential.

In 1952, Hodgkin and Huxley introduced a new experimental technique for in-
vestigating the electrical activity in isolated giant axons of squid [8], [9], [10], [11].
Because of their large diameter these axons can be threaded lengthwise with electrodes
of low resistivity compared to the axon’s protoplasm. In this way, spatial variations of
current are eliminated over a length of axon, and the electric potential can be measured
or controlled, with appropriate electronics. When current is applied to the "clamped"
length of axon, it responds to suprathreshold stimulation with a stationary voltage
pulse. The concentration of ions in the saline solution surrounding the axon can be
varied, and in this way Hodgkin and Huxley established that these pulses, called
stationary action potentials, appear as a consequence of variations in the membrane
permeability to certain ions, especially sodium (Na 4) and potassium (K 4). The experi-
ments are described by a system of nonlinear differential equations, known in the
literature as the clamped Hodgkin and Huxley equations [12], [18]. These equations are
presented in 2, below.

At the molecular level, the mechanisms of selective membrane permeability to
Na/ and K/ are only incompletely understood. We quote Rinzel [18]: "The major
Hodgkin and Huxley contributions were the separation of [the total ionic currents] into
its individual ionic currents, [... demonstration of their independence, and derivation
of empirical expressions for them and the ionic conductances." In the formulation of
the quantitative model it was found to be more convenient to make the ionic conduc-
tances depend on dummy variables instead of using them directly. The sodium flow
was thus separated into a fast sodium activation and a slow Na/ inactivation, in the
notation of 2, the variables M and H, respectively. For the K/ conductance a single
slow equation (for the activation variable N) was found to be sufficient.

These empirical expressions fit the experimental results remarkably well. Quoting
Rinzel [18] again: "Even though the Hodgkin and Huxley model is based upon a
restricted set of data (voltage clamp) and for a single perparation, its qualitative
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features are consistent with the classical signaling phenomena [...]. Among these
features are propagation of a single impulse and trains of impulses, threshold properties
for their initiation, appropriate dependence of propagation characteristics and
thresholds upon temperature and other parameters, also subthreshold behaviour with a
linear regime for small signals. These characteristics were demonstrated primarily by
numerical calculations." Moreover, this qualitative model has been successfully applied,
with modifications in the parameters, to nerve cells in other animals as well as to other
excitable tissue, like muscles. For more details on the Hodgkin and Huxley model, see
[1] and [18].

Under some circumstances "clamped" axons respond to maintained stimulation
with a train of stationary pulses that lasts until the stimulus is withdrawn [5], [14].
Hassard [6] used the classical Hopf bifurcation theorem [15] to show that the Hodgkin
and Huxley equations have small amplitude periodic solutions bifurcating from the
steady state solution. The applied current I is used as a bifurcation parameter, and two
families of periodic solutions were found (see 3 below). These results were improved
by Rinzel and Miller [19], who developed a numerical method for tracing unstable
periodic solution branches. Their findings are described in 3.

In this paper we use singularity theory techniques to study the way periodic
solutions bifurcate from the equilibrium solution of the Hodgkin and Huxley equations.
We compute the invariants that arise in Golubitsky and Langford’s classification of
degenerate Hopf bifurcations [2], thus establishing the existence of two temperatures
where the Hodgkin and Huxley equations are contact equivalent to generalized Hopf
bifurcation germs of codimension 1 (4, 5).

Following a suggestion of Ian Stewart, we perturb the system, in an attempt to
force the two degenerate points to coalesce. We find that this can be done by varying
the value of the average sodium permeability gia" A topological explanation for the
bifurcation diagrams described in [19] is obtained by computing some of Golubitsky
and Langford’s invariants for the perturbed system, and studying its unfolding. We
show that the two periodic solution branches first described in [6] join into a single
loop, and we obtain evidence for the existence of bifurcation diagrams not previously
described.

2. Nerve impulse equations. The Hodgkin and Huxley equations [10] relate the
difference of electric potential across the cell membrane (F) and the ionic conduc-
tances (M,N, and H), to the stimulus intensity (I), and temperature (T), as follows:

H1

dV -G(V,M,N,H)-I,dt
dM
at =q)(T)[(1 --MlaM(VI--MBM(Vll,
dN
dt -,(T) [(1 N)aN(VI--NBN ( V)],
dH
dt =(h(T)[(1 H ) aH(V ) HflH( V )

or, writing U=(V,M,N,H), dU/dt= F(U,I, T).
Temperature enters the equations as q,(T)= 3(T-6"3)/1, and the function G is given

by

G(V,M,N,H)=gyaM3H(V VNa)+gKN4(V VK)+gL(V-- VL).
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The constants

gNa 120, ’K 36, ’a 0.3,

VNa= 115, VK= 12, Va= 10.599

were obtained from experimental data, and have the dimensions of conductance/cm2
for the ,s, and millivolts for the V’s. The functions aj and fls, J= M, N, H, are given
by

aM(V) =q (V+.25)10

aN(V) =q 10 0.1,

aH ( V ) 0.007e (v/2o),

BM(V ) 4e (v/18),

N (V ) O.125e (V/8),

fill(V)=(1 + e(V+)/l) -1

where p(0)= 1, and q(x)= x/ex- 1 for x :g 0. Notice that as(V)+ fls(V):/: 0 for all V
and J.

For any choice of the parameters I and T, a steady-state solution,
(V,,M,,N,,H,,I, T), of H1 must satisfy

S,-as(V,)+s(V,) =jo(V,),
j=M,N,H

as well as f(V,)--G(V,,moo(V,),noo(V,),hoo(V,))= -I. For the vlues of I, gion, Vion
used in this paper, f is monotonically increasing (see [13]) and therefore invertible. It is
convenient to change coordinates in H1 so as to have the origin of R 4 as the steady-state.
The new variables are:

k--f-l(-I)--- V,,
m=M-rnoo(X ),

v=V-X,
n=N-noo(X ),

u=(v,rn,n,h),
h=n-h(X).

In these coordinates the equations become du/dt= 3,(u, ?, T) or

HH
dt-C(v,m,n h )- q(T)[(1-j-j(X))ay(v+ X)-(j-j(;k))fls(v+

withj m, n, h and

C(u,,)=Na[rn(.)hc(.)(;k- VNa)-(rn+m(.))(h+h(X))(;k+v VNa)]

This change of variables reduces the problem to the form used in [2] for the
classification of degenerate Hopf bifurcations (see 4). It also has the advantage of
eliminating one error factor in numerical computations, as it is no longer necessary to
compute f-1, but, since 2 decreases when I grows, all our pictures are mirror images of
those obtained by other authors.
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3. Preliminary results. The eigenvalues of dy(0,k, T)/du were computed numeri-
cally for several values of k and T within physiologically significant range, using
analytical expressions for the partial derivatives of y and NAG subroutines for the
linear algebra. For each value of T we found two real eigenvalues and a complex
conjugate pair,

For temperatures greater than 29C the complex eigenvalues have strictly negative real
parts (see Fig. 1), while below 28.5C the complex pair crosses the imaginary axis twice,
transversely, confirming the findings of Hassard [6] for temperatures 6.3C and 0C.

T= 30.C

-o

T=20C
.5

-3.

T= 2 8.9 C

-z5 -5 .,

FIG. 1. The real part o(X, T) of the complex eigenvalues of d7(O,,, T)/du plotted against

Therefore, for T<28.5C, the equations HH satisfy the hypotheses of the Hopf
theorem [15]. This establishes the existence of two families of periodic solutions bifur-
cating from the equilibrium (0,, T) at the points where the eigenvalues are purely
imaginary. The direction of bifurcation can be decided from the sign of a coefficient
(/2 in the Hopf theorem) computed using the derivatives of 3’ at the bifurcation points.
Hassard [6] showed that for temperatures T=6.3C and 0C,/2 is negative at both
bifurcation points (see Fig. 2). Rinzel and Miller [19] obtained numerically a single
periodic solution branch (Fig. 2) that contains the two local bifurcations described by
Hassard.

National Algorithm Library.
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120.

> 80

40

1.5 2 2.5

LOG(CURRENT)

FIG. 2. Amplitude (V) ofperiodic solutions of H1 as functions of applied current (i) for three temperatures.
Dashedportions correspond to unstable limit cycles. Points of Hopf bifurcation and knees on amplitude curves are

indicated by x. Reproducedfrom [19].

For some temperature T,. between 28.5C and 29C, the curves of Fig. 1 must have
zero as their maximum value, since the maximum changes sign between those tempera-
tures. In other words, one ofthe X-parametrized curves of eigenvalues on the complex
plane is tangent to the imaginary axis. At this temperature Hopf’s hypothesis of
transverse crossing is violated, but a generalization of the Hopf theorem can be used to
describe what happens for T> TC.

4. Generalized Hopf bifurcation. In the remaining sections, we study the local
behaviour of parametrized families of differential equations satisfying some (but not
all) of the hypotheses in the Hopf theorem. The equivalence class of all maps that agree
on some neighbourhood of a point p is called a germ at p. Operations like addition,
composition, and differentiation, are defined on germs by performing the analogous
operation on their representatives. In what follows we shall often make no distinction
between a germ and its representatives.

We call the germ at (0,;k c) of a parametrized family of differential equations
+/- F(x,) a generalized Hopf bifurcation germ when F(0, X) 0 and the derivative
dxF(O,X) has a pair of simple complex eigenvalues o(X)+i0(X) crossing the imaginary
axis at )t, i.e. o(X,.)= 0 and 0(c)4:0. We also require the derivative dxF(O, Xc) to have
no other eigenvalues of the form ikO(X .) for k integer (nonresonance condition). This is
part of the hypotheses in the Hopf theorem. When no ambiguity can arise, we call such
germs Hopf bifurcations.

Two generalized Hopf bifurcation germs 2=F(x,X) and .9 G(x,?) at (0,Xl) and
(0,X2) respectively, are contact equivalent if there are smooth germs of changes of
coordinates X(x,X) and of parameter A(X) deforming G into F, up to multiplication
by an invertible matrix T(x,X):

(4.1) F(x,;k) T(x,X).G(X(x,X),A(X)).
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The coordinate changes X and A must also satisfy:

(4.2) X(0,)) =- 0, A()I) =):,
and

dA(4.3) detDxX(0, hi) :: 0, dX ()tl) > 0.

Locally, two contact equivalent Hopf bifurcation germs have the same number of
periodic orbits for corresponding values of the parameter X. Moreover, their amplitude
graphs (like those of Fig. 2) have the same qualitative features. A discussion of the
adequacy of this equivalence relation for the study of bifurcation problems can be
found in [3] or in [21].

Golubitsky and Langford [2] use singularity theory techniques to classify and
characterize (i.e., give conditions for occurrence of) generalized Hopf bifurcation germs
under this equivalence. The problem is reduced to the study of zeros of a function g:
R R of the form g(x,h)=xa(x2,X). Contact equivalent Hopf bifurcation germs
are transformed into contact equivalent functions of this form, and periodic solutions
into zeros of g. All the derivatives of a(z,X), with z=x 2, can be computed from those
of F, in the original problem, and explicit formulae are given in [2] for some of them.

In the reduced form, the classical Hopf theorem becomes the case when both
partial derivatives:

Oa
(0,X,.) with z x -Oa(o,x.) and a -z(4.4) ax=-

are nonzero. The coefficient 2, that describes the direction of bifurcation in the Hopf
theorem, is given by

-a
(4.5) ax
These germs belong to the two contact equivalence classes represented by

(4.6) g(x,X ) xa( x2,)t ) x(x 2 + e2t )

with e

___
1. The germs g are structurally stable in the sense that any small perturba-

tion by a smooth function is contact equivalent to g. Using results of [4], it can be seen
that this property reflects the structural stability of the family of differential equations
2= F(x,t).

Bifurcation problems where either az or ax vanish are called degenerate--these are
the cases when one of the hypotheses in the classical Hopf theorem fails. If the only
degeneracy is a nontransverse crossing of the imaginary axis, i.e."

(4.7) o’()k,.)=-ax=0 and azO4=axx,

then the problem is contact equivalent, after reduction, to"

(4.8) e( X, X ) X -t- eX2X with e 1.

The problems are not structurally stable. For fixed a + 0, the germs

(4.9) e( X, X, a ) X -I" eX2X -t- eaX
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are not contact equivalent to , as can be seen in Fig. 3, where we show all the
bifurcation problems associated to each of the (. A Hopf bifurcation equivalent to /

can be perturbed into one that has periodic solutions near the origin, or into one having
no small amplitude periodic solutions at all.

a<0 a=0 a>0

x

x

FIG. 3. The least degenerate model of two Hopf bifurcations coalescing, redrawn from [2]. The ordinate x
stands for amplitude, and dashed lines represent the periodic solutions, obtained rotating the picture around the
rest state (solid lines).

A parametrized family of perturbations, like G, of a germ g(x,X), is called an
unfolding of g. The dimension of an unfolding is the number of real parameters used. in
example (4.6), the addition of the term eax stabilizes the germ , in the sense that any
smooth perturbation of is contact equivalent to a germ (x, X)= (x,X, a), for fixed
a. In general, an n-dimensional unfolding G(x,X,a) of a germ g that stabilizes g in this
sense, is called versal. The codimension of g is the least integer n for which a n-dimen-
sional versal unfolding of g exists. The codimension of a germ can be computed without
recourse to stability arguments (see [21], [2], [3]). When G is a versal unfolding of g,
whose dimension equals the codimension of g, we say that G is a universal unfolding
of g.

5. Another codimension 1 problem. We have computed az(0,Xc, T ) at the two
bifurcation points of HH for several values of T between 0C and 29C. This was done
with a FORTRAN program that used Golubitsky and Langford’s [2] formulae, and
analytical expressions for the derivatives of 3,(u,X). Some of the results are shown in
Table 4.

Around the temperature T where the bifurcation points coalesce, az is positive.
For the first bifurcation we have

-a a
(5.1) /_ >0

ax cg(X)

whereas at the second one/2 < 0, and therefore the behaviour is described by the germs
(4.9)--see Fig. 5. At the temperature T,., HH is contact equivalent to +, and the point
(0,X,., T,.) is called an organizing centre [21], [22] for the system HHmthe local dy-
namics at this point determines the behaviour of the periodic solution branch, with the
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TABLE 4

X I(X) T(X) az104
12.07 39.08 26.322 42.59
14.40 56.43 28.288 20.59
15.56 67.00 28.763 7.16
16.14 72.80 28.851 -0.33
16.16 73.00 28.853 -0.10
16.22 73.62 28.855 0.60
16.26 74.04 28.8566 1.06

-16.32 74.67 28.8579 1.75
16.38 75.30 28.8580 2.44
16.46 76.15 28.8566 3.61
18.08 95.03 28.399 20.11
20.02 122.14 26.085 32.17

T( temperature where there is a Hopf bifurcation at 2. a az (0, ?,, T(k ))

temperature T playing the role of an unfolding parameter. From the discussion of the
preceding section we know that for T in some interval (TC, T’) there will be no small
amplitude periodic solutions near the constant solution u=0. For T in some interval
(T", Tc) we have something similar to the findings of Rinzel and Miller [19]: a single
periodic solution branch bifurcating from equilibrium and rejoining it.

The analysis above does not apply at a lower temperature T1, where one of the
bifurcation points satisfies az(0,X1, T)=0. The problem HH at (,1, T1) is contact
equivalent to:

_+a

a) b)

T

FIG. 5. Bifurcation diagrams for the Hodgkin and Huxley equations, a) Schematic representation of
T(,)=temperature where there is a Hopf bifurcation at , (solid line), and az(O,,, T(X)) (dashed line), b)
Corresponding bifurcation diagrams, with x standing for amplitude. Dashed lines correspond to hypothetical
joining.
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a representative of the class of generalized Hopf bifurcation germs satisfying:

(5.3) az=0 a,0, azz4=0 with e=-sign(ax).

The codimension off is I and it unfolds as

(5.4) F(x,X,) x + 2ax + eXx.

The bifurcation diagrams associated to F are shown in Fig. 6, where it can be seen that

F always has a single periodic solution branch. For a < 0, a characteristic knee appears
in this branch, following the change in the sign of/ 2.

a<0 ix=0
x

ax <0 f. t s;

X

FIG. 6. Bifurcation diagrams present on the codimension i problems F,. Conventions as in Fig. 3.

The point (0,1, T1) is thus a second organizing centre for HH--the change of sign
of a helps to explain why a similar knee appears in Rinzel and Miller’s picture (cf. Fig.
2). This analysis, however, applies only to a neighbourhood of (0,X1, T1) not containing
the second (nondegenerate) Hopf bifurcation point present at the same temperature. If
we could put the two analyses together, as in Fig. 5, the result would be remarkably
similar to Fig. 2.

6. The perturbed Hodgkin and Huxley equations. In an attempt to bring the two
organizing centres together into a highly degenerate point, we perturbed the equations
HH, by varying the values of the average ion permeabilities ’Na and ’i- The numerical
proximity of the two points in question suggests this procedure as a natural way of
studying the transition from one local behavior to the other. The more degenerate
organizing centre thus obtained is called a hidden organizing centre, since the local
dynamics of the perturbed equations around this point contains all the information
about the change in the direction of bifurcation discussed in the preceding sectionS.
Hidden organizing centres are discussed in [20] and [22].

Variations in the average ion permeabilities ’ion did not change the pattern of two
Hopf bifurcations below a critical temperature Tc(’ion) and a single one at T, as in
Fig. 1. Figure 7 shows az(0,),.(,Na), T(’Na)) for several values of the average sodium
permeability. A search by the golden section [17] was carried out to determine the
critical point (X(,ya), T(,)) with increasing precision, until the computed values of

a agreed to within four significant figures in successive computations. The result is that
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az 105

50

40

30

20-

|0-

0

-10

90 100 110 120 130 ,Na

FIG. 7. az(0, tc(gNa), Tc(Na) for the perturbed Hodgkin and Huxley equations.

for some value g of gNa between 105 and 110, i.e. within 10% of the original value of 120,
there is a single generalized Hopf bifurcation at (0, ,.( g), T,.( g)), with

This is the hidden organizing centre.
If, in the process of bringing the two points together, we have not introduced any

further degeneracy into the problem, the result is contact equivalent to some member of
a one-parameter family of topologically equivalent codimension three germs, rep-
resented by:

(6.1) h(x,,,b)=xS+2bXx3+eX:Zx, e= +_1, b4:0, +_1.

The family as a whole has codimension 2, universal unfolding

(6.2) H,( x,X,b, a, fl ) h,( x,X, b ) + x [sign( b ) flX + a]
and is defined by the conditions:

az=0=ax, azz4:O4:axx,

(6.3) b= azx 4: 0, + 1, e= sign(azzaxx).
[azz.axx[ x/:z

The bifurcation diagrams for H, are shown in Figs. 8 and 9, together with the regions in
(a,/3, b)-space where they appear. See also [16].
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a) b)

-I< b<O c: O<b<1

’0" o F’2

c) d)

b<-I b>l

FIG. 8. Universal unfolding of h+, showing the regions of (a, fl)-space corresponding to each bifurcation
diagram. These regions are delimited by the curves: a=0, a= 2/4(b- 1), a=//2/4.

a)
:13:0

b>oxl \v,-
2 3 4 5

b)

FIG. 9. Bifurcation diagrams for H_, redrawn from [2]. a) Conventions as in Fig. 3. b) Regions in

a, #)-space, corresponding to the diagrams in a).

7. Conclusion. By perturbing the Hodgkin and Huxley equations we can establish
that the original equations are contact equivalent to members of the family of germs
H(..., b, a, fl) of (6.2). In this way, HH can be represented as a T-parametrized curve
in one of the components of a-fl-b-space. Changes in the values of the parameters
deform this curve, and when we set gNa"-g it goes through a point (a, fl, b)= (0, O,b)
corresponding to the hidden organizing centre.
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We can check the nondegeneracy conditions for contact equivalence to h , using
numerical estimates of the paremters b and e, and of the second order derivatives of a.
This is currently being done.

it is easy to predict from the results of [19] and from the bifurcation diagrams of
Figs. 8 and 9, that the value of b has to be negative, since it determines the direction of
bifurcation. The actual value of b is not irrelevant, because the germs (6.2) are not
contact equivalent. Nevertheless, from a topological point of view (i.e. if we allow
changes of coordinates that are continuous, but not necessarily differentiable) germs
(6.2) can be grouped in four cases, two of them with b negative:

Case 1. -1 < b < 0. All the tree bifurcation diagrams discussed in 5 are present,
thus providing a topological explanation of Fig. 2. The curve corresponding to HH
should lie outside the shaded area in Fig. 10a. The perturbed curve (gNa=g) goes
through the origin of the (a, fl)-plane, and further perturbation could make it cross the
shaded area, introducing two new bifurcation diagrams.

a) b)

FIG. 10. The system HH can be represented as a curve parametrized by T in (a, fl)-space. Shaded areas

correspond to diagrams notfound by Rinzel [19], a) -1 < b< 0, b) b< -1.

Case 2. b <- 1. All the bifurcation diagrams of 5 are present, followed by a
branch of periodic solutions whose amplitude is bounded away from zero. Such a
branch cannot be found using the classical Hopf theorem, and for this reason it would
easily be missed in a numerical tracing of the periodic solutions. The set of values of X
for which these periodic solutions exist, must contain an interval of infinite length for
all choices of T and gNa (cf. Fig. 8c). This last feature, however, might be an artifact of
the local analysis.

8. Discussion. The two cases outlined in the last section correspond to very differ-
ent experimental results. If b is less than -1, the presence of the isolated solution
branch implies that the linearly stable solution u=0 loses asymptotic stability. In this
case, small perturbations of the equilibrium solution can have marked consequences,
even if it is impossible to reach the stable periodic orbits. For a discussion of an
analogous case, see the first chapter of [7].

The average permeabilities gion would be our target for experiments, if b is found
to be in the interval (-1, 0). Although they are expected to vary from cell to cell, and
between different species, these permeabilities are difficult to Control experimentally
without introducing unknown factors. The experimental consequences of variations in
gi are discussed in [14]. The test, in our case, would be to find cells with the behaviour
that corresponds to the shaded area in Fig. 10a.

No matter what the value of b is, we have obtained a topological explanation of
the results in [19]. Moreover, we can expect to find periodic solutions not described in



DEGENERATE HOPF BIFURCATION AND NERVE IMPULSE 1133

[19], like the isola in Fig. 8a, and the mushroom shape corresponding to part of the
shaded area in Fig. 10b. The last diagram appears to be present in current clamp
experiments with low Ca++ concentrations ([18] and references therein). However, in
neither case is the second knee in Fig. 2 explained. This suggests the presence of an
even more degenerate germ nearby.
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NONGENERIC HOPF BIFURCATIONS IN FUNCTIONAL
DIFFERENTIAL EQUATIONS*

HARLAN W. STECHf

Abstract. An algorithm is presented to prove the existence and determine stability of Hopf bifurcations
in systems of functional differential equations. It is then applied to equations with "small" higher order terms

and a study of bifurcations simultaneous to critical linear parts. The paper concludes with a thorough
treatment of scalar integro-differential equations.

1. Introduction. In recent papers [9], [10] the author has considered the problem of
determining the stability type of generic and particular nongeneric Hopf bifurcations in
functional differential equations. The technique derived is based on the method of
Lyapunov-Schmidt and reduces this problem to the evaluation of certain coefficients
in an associated scalar bifurcation equation. Explicit formulae sufficient for resolving
generic and first order nongeneric Hopf bifurcations are presented.

Our goal here is to consider the case of nongeneric Hopf bifurcations in further
detail. In 2, we distill from [10] an algorithm for the computation of the bifurcation
equation to any finite order. We then consider two situations in which the results of
[10] provide no useful information. Section 3 is devoted to equations with "small"
nonlinearities, while [}4 presents a technique for proving the existence and stability of
Hopf bifurcations existing simultaneously with a "center" for the linearized problem.
This section also presents an elementary method for deciding the local stability proper-
ties of an equilibrium given that the linearization is critical. Section 4 provides a
complete classification of all first order nongeneric Hopf bifurcations in a class of
scalar integro-differential equations.

2. The method of Lyapunov-Schmidt. For n>= 1, R and C denote the usual
Euclidean n-spaces of real and complex column vectors with norm I’1. If =
CO1(1,2,"" ",n) and --(1,2,"" ",n)[cn]T we define ’=Eiii. The space C=
C[-1,0] is the usual Banach space of continuous Rn-valued functions under the
supremum norm I1" II- C*[- 1, 0] is its dual. For y" 1, a) ---> C n, a > 0 and 0 =< < a we
define Yt’[- 1, 0]---> C by yt(s)=y(t + s), s [- 1, 0].

The system under study is

(2.1)
-1

where a is a parameter in some real Banach space z’(e.g., see 5). Here, y is N n-valued
and r/(a; ) is a real n x n matrix-valued function whose rows are in C*. The function-
als L and H are assumed sufficiently smooth so as to allow the computations that
follow. This requires that L and H be continuous in (a,)zeex C and, for fixed
H(a; ) be k times continuously Fr6chet differentiable in ; k 7. Accordingly, we

*Received by the editors june 22, 1984.
tDepartment of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia

24061.
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have the expansion

k-1

(2.2) H(a;
j= 2

where Hj. are a-dependent, symmetric, boundedj-linear forms on C. Following [10], for

kC with derivatives +(i)C; i=2,.-.,k-2, we assume L(a)b, H(a; p), and

Hi(a; kj) are Ck-2 functions of a ae’.
The linearized stability of the zero solution is determined by the zeros of the

characteristic equation 0 det A(a; 2,), where

(2.3) A(a; x)=xi-f drl(a; s)e xs.
-1

We assume that at a= ao there is a pair of simple complex-conjugate characteristic
values + wo, oo > 0. All other characteristic values are assumed to satisfy Re( ) < -for some 8 > 0, for all a in a neighborhood of ao. (Equivalently, _+ ioo are simple, and
the only characteristic values with Re( ) >= 0 at a ao.) It follows that there is a unique
family of characteristic values (simple) (a)=/(a)+io(a) defined for all a near ao
satisfying X(ao)= ioo. We denote by =(a) and * =*(a) any nonzero solutions of
A(a; ,(a))=*A(a; h(a))=0, respectively. Both are unique up to scalar multiples.
Furthermore, for N(a; h)=(O/O,)A(a; ), one has I*(a)N(a; k(a))j(a)4: 0. Accord-
ingly, we may define */[*A’].

The fundamental solution r=r(a; .) associated with the linearization of (2.1)
solves r(t) 0 for < 0, r(0) 1 and

*(t)= fldrt(a;_ s)r(t+s)

for >0. Moreover, the Laplace transform of r is given by e(r)()= A-l(a; X), where
A is given by (2.3). Associated with the characteristic roots X(a), (a) is a decom-
position of r(t) as r(t)=ra(t)+re(t ), where Iro( )l <_ Me-t for t>=0 and rp(t).h=
2Re{[;(a).h](a)ex(’)t} for all t and h".

This decomposition induces a decomposition in the variation of constants formula
for (2.1). When the method of Lyapunov-Schmidt is applied to the limiting equations
obtained from this decomposition, one obtains the following. See [10] for details.

LEMMA 2.1. Let y be any 2or/v-periodic solution of (2.1) and define

(2.4) z(s) =" y(s)+ -x()u 0

-1

P f2/Ve-ViSz(s)ds

and w(s)= z(s)-ce vis. Then (y, w, c) solves the system

(2.6a)

(2.6b)

(2.6c)
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where qg(s)=(a)e vis, and

1’ fo2r/Ve Vi(o

Conversely, if(y, w,c) is a solution of (2.6) with (y,w) 2r/p-periodic, then y solves (2.1).
We remark that the smallness and smoothness hypotheses on H are not used in the

proof of this lemma. In fact, the result holds for continuous H’a/: R C R with
H(-; t + 2r/v, .)= H(.; t,.). However, if the regularity and smallness hypotheses are
satisfied, then, for fixed c sufficiently small there is a unique 2rr/v-periodic solution
(y, w) of (2.6a, b). Both y and w are c- functions of a, c, v, and s. Substituting y into
(2.6c), the problem of finding small periodic solutions is equivalent to finding small
c 4= 0 solving (2.6c). Without loss of generality, we may take c real and positive, as other
solutions correspond to shifts in phase. It is not difficult to show that the function
defined by the right side of (2.6c) is an odd function of c. Thus, the real and imaginary
parts may be written as

(2.7a)

(2.7b)

The implicit function theorem (or simple iteration) shows that (2.7b) has a unique
solution v=v(a; c) for all (a,c) near (a0,0). The resulting "reduced" bifurcation
equation

(2.8) +

obtained by substituting into (2.7a) is then a real, a-dependent equation in c whose
small roots correspond in a 1-1 manner with small periodic solutions y(t)= 2Re(cq(t))
+ (.0(c 2) of (2.1) with period near 2rr/co0. (In the case of "classical" Hopf bifurcation,
a, and it is assumed that ’(a0)4=0. The implicit function theorem shows there
exists a unique family of periodic solutions bifurcating from y 0 at a a0.)

The following theorem (see [10]) relates the stability type of any such periodic
solution to the real equation

(2.9) e= g(a; c).

THEOREM 2.2. There exists e > 0 such that for all a near a0, and each c(a) solving
(2.8) with [c(a)[<e, the associated periodic solution of (2.1) is orbitally asymptotically
stable (unstable) if c= c(a) is asymptotically stable (unstable) as an equilibrium solution

of (2.9).
In fact, a more precise result holds: There is a local two-dimensional, a-dependent,

center manifold invariant for and containing all small periodic solutions of (2.1). Any
small equilibrium c(a) of (2.9) and the associated periodic solution of (2.1) share the
same semistability properties (see [3] and [10]).

This theorem shows the importance of being able to approximate g(a; c) for c near
zero. As shown above, this may be accomplished by computing the coefficients in the
expansion G(co; c,v)=((a)-iv)c+ Ma(a; 1*) q- Ms(c0; v)c + .’., where G denotes
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the right side of (2.6c). To calculate these through order cm+ 1, one first computes the
coefficients in the expansion y(t)=2Re{cp(t))+Fm=2y(O(t)c by alternately using
(2.6a) and (2.6b). It is not difficult to show that y(O(t) has the form

y(O(t) =At, re tvit +At, t_2e(t-2)"it + +At,_te -tvit,

where A,s=At,_j. (We define y(1)(t)=2Re(cqg(t))=Al,levit+,le-"it with A1,1=
(a).) These coefficients can be obtained through repeated application of the following
lemma. (Recall At,- A z, 1.)

LEMMA 2.3. For >= 2, if the coefficient of c in

; Ey]m)cm
m=l

is Y’.jBt, j( a; v)ejvit, then

(2.10) IA(-l(a;j’i)Bt’j(a; ’)
At,j(a; v)=

A-(a; vi)- vi ’,(a)’[’l nl’l(;

forj#= +_1,

forj= 1.

Note that the singularity in the expression A-t(a; X)-(1/(X-X(a)))li[.h] at
X=X(a) is removable. In fact, for he", A-l(a; X)h-(1/(X-X(a)))li[.h] is ana-
lytic in X in a neighborhood of X(a), with expansion

1a-t(a; X)h- X-X(a) [.hl

1

where d C" is any solution of

See [10] for details.
Through order c, one accordingly obtains M(a; v)= . Nk(a; v), where

N(a; v)=3H3(a; (p2,)+2H2(a; gp,A2,2e2Vi’)+2H2(a; (p,A2,0),

with A 2,2, A 2,0 the unique solutions of

A(a; 2vi)A2,2=H2(ot; (p2)

and

A(a; O)A2,o=2H2(a; p,).
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Similarly, at a ao,

Ns("; v)=2H2(a; (p,A4,o)+2H2(a; 7T,A4,2e2’i)+2H2(a; A2,2e2"i’,Y3,1e-"i )

+2U:(a;:,:e-2i’,A3,,e’i)+2n(a;A:,o,A3,ei)+3H3(a; T:,3,e -"i’)

+6n(a; T,,A,ie"i)+3n(a; 2,A,e"i)+6H(a; ,A:,:ei,A2,o)

+6m(; ,A,",,-)+(; , (Aa,o)a)+lZH4(;,,A,ae
+<(; ,e,,o)+4<(; ,&,e-)+0s(; ,e),

with A,, A,, A4, and A<o the unique solutions of

(; i,=(;)+(;,e,),
1

Aa,=d [a’el- 5 ["1,
where d is any solution of (; X())d=N-(N)M,

(; 2i)A4,=2H(; ,A,lei’)+2H(; e,,e)
+(;,e,,o)+(; ,e,,e)
+(; ,,o)+4<(;

and

Finally,

(2.11)

and

(2.12)

K3 (a) Re( M(a;

Ks(a0) Re{ Ms(ao; COo)) + -3-TRe{ Ms(ao; o)) ’Im{ Ms(ao; o)}.

2vi.)

3. Small nonlinearities. If H in (2.1) has the expansion

(3.1) H(a; ")--He(, .)+H<+l(a; .)+

for d’ > 5, then K K 0, and the reduced bifurcation equation must be computed to
higher accuracy before the bifurcation structure of (2.1) can be understood. In this
section, we use the algorithm of the previous section to compute (2.9) through order
c2e 1. Our results are then applied to a class of integro-differential equations.
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Assume (3.1) with g’>__ 3. More precisely, we define" to be the smallest odd indexj
and to be the smallest even index j for which Hj.(a0; .)0, and assume that (3.1)
holds for all a near a0, with g’-min{ ’, }. Forj>_ 3 odd, we definej* (j-1)/2.

Observe from (2.6a, b) and (3.1) that y(t)=cyl)(t)+cey)(t)+(9(c+l), and there-
fore H(a; yt)=H(a; cyt(1))+(9(C2d-1). Thus y(J) for j=g’,g’+2,..-,2g’-2 can be ob-
tained from the expansion of H(a; cyt)). For g’_<j =<2g’- 2,

O<__m<__j,

and the associated Aj, j_2m can be computed by Lemma 2.3. To obtain the required
expansion of G, we substitute into (2.6c):

’ fo2/"e-"lusH a; CYu1) + cJyuj) du + (_9 (c3e-2)0 [)(a)- i,1 c +--
[X()--i]C+’,xC+’+x,lC+I+ +’2g_2,1c2-2

+. Be_,+ g 1 He(; ,e--,Ae,e_e(e-i- ce-1

2-1

E

In fact, based on our knowledge of y through order c2e-2, one can compute (2.6c)
through order c3e- 3. We omit the calculations since they are similar to that of calculat-
ing M2e_ 1-only more complicated.

From the imaginary part of (3.2),

(3.3)
2--1

,(a; c)=w(a)+ ] Im(.B,,(a; w(a)))cm-+(_9(c2’-2),

allowing an expansion of (2.8) through order c3- 3. Through order c2- 1, this reads

2g’-i

(3.4) 0=#(a)c+ Y’ Re(M,,,(a; o3(ot)))c
m=

[tu ,,l(a,u) -Im(-Be,l(a" 0)(0)))C27-1-1-(-0(2’)

( C ) -+- gcn ( Ol ) C" -l-g+ 2 ( Ol ) Cn+ 2 -+ ...-[-g2_l(ol)c2-lq-((c2 g’ )

c),

where n=min(’,2g-1}. Observe that v(-) is a smooth function into

C([-1,0]; C n), with (d/d,)[q(.)](s)=isq(s). The partial derivative in (3.4) is easily
computed.
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THEOREM 3.1. Assume that at least one of the terms Kj(ao); m _<j __< 2g’- 1 is nonzero.
Denote by i the smallest such index. Then (2.1) (with (3.1)) has no more than 1 + ((i-m)/2)
distinct families of periodic orbits bifurcating from y=0 at a=ao. Moreover, if
g( a; c( a)) 0 and c(a) 0 as a --* ao, then either

or

c( o,)
i-+6

i-m+6c( ") <= 2

for somej (,+2,...,i-2)./fi=, then (a)c(a)a-" K,.(ao) as aao.
Proof. The first assertion follows by the mean value theorem. The growth estimates

on c(a) are obtained by minor modifications of the proof of [1, Lemma 7.2.1].
The following example illustrates these results.
Example 3.2. Consider the scalar integrodifferential equation

io(3.5) 9(t) -a g(y(t+s))dvl(s),
-1

where a > 0, /is of bounded variation on [-1, 0], and g has the expansion g(y)=-y +
h(y)=y + gye+ g+ ly+ + .... The linearized equation has characteristic function
A(a; ))-X+ af x,

-1 e drt(s). We assume that at a=ao>0 there are simple characteris-
tic values X-- +_ ioo, 0% > 0, with all other values having negative real parts. In particu-
lar, this implies fO_l d(s)> 0 since otherwise there is a real, nonnegative characteristic
value for all a > 0. Let X(a) be as in 2.

The cosine transform of d is defined for v N by

f(n; flcos( s)dn(s)._
Then f(; 0)>0 and, from the real part of A(ao; ioo)=0, f(,]; o0)=0. The following
lemma shows that the orders of the zeros of/(a) at ao andf(/; v) at oo are the same.

LEMMA 3.3. Let f(,/; v)=fp.(v-too)P+(O((v-%)P+) and X(a)=l(a)+io(a)=
q’(Ol-- OlO)qnt- (-O((Ol-- OlO)q+ l)"b i[tOO nt- COl(q-- Olo)nt-(O((Ol-- Oo)2)], where p, q >= l and fp
and I q are not zero. Then p q. Moreover (set p q m),

(i) Ifm= 1, then tz -toofl/lN(ao; itoo)[ 2,

al [1 +af-xcs(s)sdl(s)
(ii)/fm > 1, then Im -(aoO)"+ fm/O0, where

O/oOj tO0/ 1 + aofo cos(tOoS) s dr/(s )

Proof. For (i), simply expand’ (d/da)(A(a; X(a)))--O. For (ii), substitute
the indicated expansion for k(a) into A(a; k(a))=O. (Observe that for m>l,
A’(ao; icoo)=[1 +aofl cos(oos)sdl(s)] is nonzero by the simplicity of icoo.) Details
are omitted. D

To calculate g(a; c), we take =*= 1 and obtain = 1/N(a; X(a)). The bifurca-
tion equation (2.6c) is most directly treated by substituting the higher order terms from
(3.5) into (2.6c), reversing the order of integration, and using the 2r/v-periodicity of y.
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One obtains the bifurcation equation

(3.6) 0 (,(a)-iv)c- f v 2/
e (y(s))dsa o

e,,,dr(s ) [ _,,,sh

By our previous discussions, y(t)=y(1)(t)c +y(e)(t)ce+ (9(ce+ 1) with coefficients of
given by

Al, l-2m(a; v)

A-l(a; (g’- 2m)vi), g’- 2m:= +_ 1,

m gl[(e--2m)vi-A(a (g’-2m)vi)]
A l(a;vi)

1
g-2m=l.

(vi-3t(a))X(a;

From (3.6),

(3.7)
iv-k(a;iv) [( j ) (j+2)0 [,(a)-iv]c + ;(d7i) J* gecj+ J* + 1 gj+ 2cj+ 2+...

-1

( f17 ) ?-1 (1) (a Wo)C+ 2 1
g2- c2 + ge A, e-2m 0’

2t--1

Recall that 2j*+ 1 =j. Note that if j> 2-1 =2’-1 then the terms preceding the
summation symbol are all (.0(c21). We proceed under the assumption j</’; the case,<j is similar.

Observe that [iw(a)-A(a; X(a))]/A’(a; X(a))=[X(a)+(.0(/x(a))]/A’(a; *(a))=
aX’(a) + (9(/,(a)). Thus, through order c2- the reduced bifurcation equation reads

(3.8) 0 =/(a)c+ a/x,(a)[( j ) (2j-3) ]j*
g,ec’i+ +

j-1 g2j-3C2j-3

+ 1).

Case 1" /z’(a0)4= 0. The implied function theorem implies that there is a unique
family y(a; .) of periodic orbits bifurcating from y=0 at a= a0. For g.<0 (> 0) the
bifurcation is supercritical (subcritical). Theorem 2.2 shows that the orbits are orbitally
asymptotically stable (unstable) for/z’(a0)g.< 0 (> 0). The family grows at the rate

[[Yt(a; )[[ const-[a ao[1/(- 1). If the coefficients gj,. ",g2j- are allowed to depend
on a, one can construct for each j, 1 __<j__<(j+ 1)/2, an equation (3.5) with precisely j
bifurcating families.

Case 2" /z’(ao)=0. Equation (3.8) must be computed through order c2’-1. By
Lemma 3.3, A’(ao; iwo) is real. This implies (a/av)Re{Me.(ao; Wo)}=0, and the
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reduced bifurcation equation reads

(3.9)
0--/(0)’+" [0’(0)’(.0((0))] j< g+ + 2_1C-1

+Re "g -1 "o) c2-t
a’(ao; io) m=o m 4’J-2m ( R’

+ (c) +(c=-l-ol)

=.()c+.’() g’-’(0; io

1 f o)
)

C +

}+ E (-m
mo I(0; (-o)1

+(.( +(c*.’()+(c- ol)+(.
We assume K_(o)0 and write ()=q’(--o)q+((--O)q+l) for some
q2.

If q=2, we scale -o=B-c- according to Theorem 3.1. One sees that if

0=B+2oa(,)gB+K_(0) has no real solution, then no bifurcation takes
place. If two distinct real roots exist, then two families of periodic orbits bifurcate from
y 0 at o- Stabilities can be determined via Theorem 2.2.

If q > 2 is odd, Newton’s diagram [1] and the implicit function theorem imply the
existence of a unique family of bifurcations defined supercritically (subcritically) if

K_ (o)< 0 ( > 0). If q is even and q.K_ (o)> 0 there is no bifurcation, whiler q.K_(o)<0 there is a unique family of nontrivial periodic orbits passing
through y= 0 at o- TNs family is defined in a full neighborhood of o- For q > 2
odd or even, any such periodic solution is orbitNly asymptoticNly stable (unstable) for

K_(o)< 0 (> 0).

4. Bureafins sRneusR a critical leadafim The Mgorithm of 2 and
Theorem 2.2 lead to a rather direct means toward determining the stability type of the
zero solution of (2.1) in the case when the linearized equation has characteristic values
with zero real part. In particular, we assume (2.1) satisfies the regularity hypotheses of
2 and at =o the linearized equation has simple characteristic values io,

o> 0; all others have negative real parts. For a sufficiently smN1 neighborhoodof o
we define the disjoint union=uuo, where +(_= {g()>0 (<0)}
ando { K()=0}. We may assume X() as defined in 2 is defined over.
ToN 4.1. Assume X()=()+i(), with ()> 0 and()Ofor all .
(i) Ifo, then the zero solution of (2.1) is locally asymptotically stable.
(ii) Ifo+, then the zero solution of (2.1) is unstable.
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(iii)/f ao{"o and Ks(a0)<0 (>0) then for each a+ (_) near ao there is a
unique nontrivial periodic solution y(a; .) to (2.1). The periodic solution is orbitally
asymptotically stable (unstable) and, as a function of a, is continuous, with y( ao; ) 0.

Proof. The reduced bifurcation equation reads

(4.1) 0= K3( a)c + Ks(a)c + (9( c7)
for a g. Parts (i) and (ii) are immediate from Theorem 2.2. The assertions of (iii) are
proved by dividing by c 3. For Ks(a0)<0 (>0) the function p(p)=K3(a)+Ks(a)p+
g0(p2) is decreasing (increasing) in p near p 0. The existence of a positive zero follows
immediately from the given hypotheses, rq

We remark that if_R and Ka(ao)= 0, (O/Oa)K3(ao)4:0, theno is a submani-
fold of codimension 1 and both

_
and )U+ are nonempty. In determining the influence

of the nonlinearities on the stability of the zero solution .9 Yyt + H(yt), H(O)=DH(O)
0 when the linearized problem has simple characteristic values + i0o, oo > 0, we may

consider a H as an element of a suitable function space’.
As an application, we consider an equation from the theory of viscoelasticity [2].

See also the discussion in [4].
Example 4.2. Consider the second order scalar equation

(4.2)  +=g(xl=f h(x(t+s))a(s)ds,
-1

where a > 0. We assume g, h are smooth with expansions g(x)=x + g2x2+ g3x3-1
and h(x)= h2X2 + h3X3 + ..., respectively. The "relaxation function" a is assumed to
be C2 and nonnegative, with f 0

-1 a(s)ds= 1.
The two-dimensional system derived from (4.1) is of the form (2.1). For y=

(yl,y2)T=(x,k)rwe have

and

Clearly,

L(a)yt= 0
a -1]0

y(t)

H(a; yt) _a[g(yl(t))_yl(t) + h(yl(t+s))a(s)ds
-1

[ 0 ]H(a; [y, lJ)= _agjy[(t)+f hjy[(t+s)a(s)ds
-1

The only characteristic values are h(a)= + iv/-d. The required characteristic vectors
are easily determined and, after a somewhat tedious calculation, one obtains from the
formulae of 2 that the bifurcation equation (2.6c) through order c reads

(4.3)

0= [V-i- ,i]c+
2i-g

3 -g3 +h -e
e (s)ds+ c+(9(c’).+2-g+h e (s)ds -g --1
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The value of K3(a) is therefore given by

(4.4) aK3(a)--- 3h3---h g2 v sin(v/--ds)a(s)ds
-1

0sin(2s 2hi 0sin(s
1 .2 )a(s)ds+ )a(s)ds+ g2h2

2a lsi (2 *) a(,)
l flsin(s)a(s)ds’cos(2s)a(s)ds+

Note that lim,,__,0+aK3(a)=hf _1 sa(s)ds. Thus, if h2g:0 the zero solution of (4.1) is
locally asymptotically stable for all small a > 0.

Unfortunately, the expression for K3(a) suggests no intuitive criterion for the
stability/instability of the zero solution. However, in the special case of odd nonlineari-
ties more specific results are possible. Here,

(4.5)
3h

K3(a)=2 f_lsin(v/--ds)a(s)ds
and we conclude that for all a _< rr 2 the zero solution is locally asymptotically stable
(unstable) for h > 0 ( < 0).

With increasing a, the zero solution may or may not change stability depending on
the choice of a. For example, if a is nondecreasing and nonlinear on [-1, 0], then
h 3 K3(a)< 0 for all a>0 provided h 34:0. In general, integrating by parts we obtain

(4.6) K3 (a) =---d-a a(-1)cos(v/--d)-a(O)+f_lCOS(v/-ds)a’(s)ds
If h34:0 and a(0)>a(-1), then integration by parts shows the integral is (1) as
a + oe and, therefore, h3.K3(a)<O for all sufficiently large a. There are at most
finitely many values of a at which a change in stability can occur.

If a(0)< a(- 1), there exists an infinite number of zeros of K3(a) at a=an--* +
These values are asymptotic to the roots fin of a(-1)cos(v-)-a(0)=0 as

One computes K(an)"3h3a(-1)sin(V-n)/(4(-n)3)4:0 as n +oe. Thus, for all
large n there is a unique family of periodic solutions to (4.1) bifurcating from y 0 at
a an--fin" By direct calculation from the formulae of {}2, then integrating by parts,
one obtains that at a an,

9 o cos(/-s)a(s)ds+ 3 o sin(3v/-ds)a(s)ds]Ks(a)= -h3 f-I 16(V) f-1

9h3g3sin(ff-fi )a(-1)+( 1 )V- n

-ag3q-h3f-lCS(gc-s)a(s)
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as n --, + oe. Theorem 4.1 implies that bifurcates are subcritical (supercritical) for g3 > 0
( < 0). The sign of Ks(a,, ) determines their stability. On the other hand, if g3--0 then as

On "-" OO,

9Ks(a.) ,-.-[h3a(- 1)sin(v/-,) 2/fld +o(

and for all large n the bifurcations are unstable.

5. Nongenerie bifurcations in integrodifferential equations. In this section, we pre-
sent a description of certain nongeneric Hopf bifurcations for the scalar equation

(5.1) fo g(y(t+s))drl(s),
-1

where r/C* and fo_l d,/(s)> 0. The function g has the expansion g(y)=y+h(y)=y
+ g2y

2 + g3y
3 + . Our results complement those of 3 in that we do not assume the

problem has "small" nonlinearities. Rather, our goal is to understand the relationships
between / and h that make (5.1) generic or not. The choice of depends on the
variation of h, r/or both, and will be clear from the context.

This section is related to [4], [5], [6], [7], and [8] in that all consider certain aspects
of the asymptotic behavior of bounded solutions to equations of the type (5.1). The
cosine transform f(/; ,)=fo_l cos(us)dl(s) plays a central role in the work of
Staffans. In particular, if f(r/; u)>0 for all u, then g(y(t))O as t [7]. If
f(/; ,)>_ 0 and the zero set of f(,/; .) is bounded on R, then the existence of nontrivial
periodic solutions to (5.1) imposes severe restrictions on g [8].

Assume that at /=/o the usual spectral conditions hold for the linearization of
(5.1), and write X(,/)=/(r/)+ico(/) for the characteristic value near i0o, Oo>0 for ,/
near r/o. The bifurcation equation (2.6c) can again be obtained from (3.6), and consider-
ing the inductive nature of its construction, it has the form

fo c(5.2) 0= [x(nl-iulc-zx,(n; x(n)) -1
e drl (u, +cs(u,g ) +... 1,

where cj(u,g)=(,)gj-Gf(u, g2,g3,...,gj_l) and G* is a polynomial in gz,’",gj-1
whose coefficients depend on u and ,/. Since

ei’Sdrlo(s) =f *1o, Oo)/[A’(/o, ioo)l 2,Re
A,(/o i) -1

we first consider
Case 1.f’(r/; Oo)4: 0.
Note that this implies that the characteristic value ioo is simple. In a sufficiently

small neighborhood (9 of r/o in C * one can partition (.0= 60/U 600 U (9_, where 600 (/
(91/(/)=0}, (9+(_)= (l(9l(rl)>0 (<0)). By the implicit function theorem,/(l) is
smooth in /, and (9o is easily seen to be a submanifold of C* of codimension one. In
fact, considering the real and imaginary part of the characteristic equation, there is a
unique smooth function a (.0 R + with a(r/0)= 1 such that (9o ( a(r/)r/l (9 }. For (9

sufficiently small, f’(/; 0(/)) is of constant sign for l (9o-
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At any 7 (90, the reduced bifurcation equation reads

[3(g3-3(" g2)) c3+10(g5 5(/" g2 g3 g4)) cs

+
j,

(gj--j(; g2,’’’,gj-1)) cj+

where j. is a polynomial in g2,’",gj-1 whose coefficients depend on /. Clearly, for
each fixed g2, there is exactly one value of g3--3(/p; g2) at which (5.1) is nongeneric
(i.e., K3(/,g)--0). If g34=3(/; g2) and K3(/; g)<0 (>0), then.for each T(9+((9_)
there is a unique continuous family of small periodic solutions Y(T; ") of (5.1) with
y(/; )= 0. This periodic solution is orbitally asymptotically stable (unstable).

In general, if g2,ga,’’’,g2k are fixed, there are unique values g3=3,
,5,’’’,g2k+l--2k+1 for which (5.1) is degenerate of order k (i.e., K3=K
K2,+ =0). We now consider the bifurcation structure for (T,g) near a point (T,g*), of
k th order (but not k 4-1st order) degeneracy. Since 0K2k+ 3/092k+ is nonzero, the set
(glK2k+3}=0 can be viewed as a submanifold of codimension 1 of the usual Banach
space X of C2k+4 functions defined in a sufficiently small neighborhood lyl<=r of y=0
and vanishing at zero. Assume g* X satisfies g3(/, g*) Ks(/, g*)
Kg_k+l(/,g*)=0 and K2k+3(/,g*)4:0. (These relations define a manifold of codimen-
sion k in X.) By the mean value theorem, there can exist no more than k + 1 periodic
orbits bifurcating from y 0 at ,/= /. For any 0 <_j _< k + 1, by appropriate perturbation
of / and g3,gs,’",gg.k+, the reduced bifurcation equation can be made to have j
changes in sign for c near 0. By the continuity ,g3,. .,K2k+3 in (l,g), there are open
subsets of (9X containing (,g*) as a boundary point in which j small periodic
solutions of (5.1) exist. (Note that since g2,ga,’",g2k are arbitrary, there is no loss in
generality in assuming that g* (and its perturbations) are odd.)

The equation p=-ag(y(t-1)) is an example of equation that satisfies the hy-
potheses of this case. (Take a0 r/2 and Oo= rr/2.) The bifurcation diagram given in
[10] for this equation for g odd is representative of all first order degeneracies in case I.

Case 2. f’(/o; too)=0 andf"(/o; 00)4:0.
As in Case 1, define (9 and (9+, (9_, (90- Again, (90 is a submanifold of C* of

codimension 1. By the implicit function theorem there is for each/ (9 a value & &(T)
for whichf’(T; &(/))=0. Sincef"(/; &(/)) has the same sign as f"(/0; 0) for T(9,
there is a unique relative extreme value of f(/; .) in a neighborhood of o0. We can
write (9=OOI,..)Og’ll,-JOdg’2, where q/---(r/(_Olf(T; (/))--0}, ago(a)-(/(9]f(T; (/))-
f"(To; Oo)> 0 (<0)}- Note that q/;; i=0,1,2 are radial in the sense that if / ’; then
so is aT for a > 0 such that aT (9. Reducing (9 if necessary, one can find an open
interval containing oo such that f(/; .) has 0, 1 double, or 2 distinct simple zeros in
that interval if T o, ’1 and 0//2, respectively. The manifold (,0o can now be written as
the disjoint union (9o= ((9orq agx)tO(9- tO (9, where (9-(-)- (/ (9oN q/2lf’(r/; CO(T))> 0
( < 0)}. By the form of the characteristic equation, note that if T ’o then aT (9o for
all a > 0 such that aT (9. If T q/, then there exist exactly two values aI(T) < a2()
near a 1 (distinct by the simplicity of ioo) such that a, a2T (9o. Moreover, one of

OtlT azT lies in (gg, the other is in (9, and a, a2 depend continuously on T in ’2-
As in Case 1, the reduced bifurcation equation has the form

O=p,()c+K3(T,g)c3+Ks(T,g)cS+(9(c7)
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for r/ (9. Under the assumptions of this case, one computes (see Appendix)

(5.4) K3(o,g)
-4wgf(r/o; 2Oo)

A’(V/o; ioo)lA(lo; 2%i)12

for all g X. (Recall N(r/o; itoo) is real.)
Case 2a.f’(,/o; tOo)=0,f"(,/o; too)4:0 andf(/o; 2tOo)4:0.
Equation (5.1) is generic if and only if g24:0. For such g and f(/o; 2o)"

N(,/o; ioo)>0 (<0), then for every r/(.0+ ((9_) there is a unique nontrivial periodic
solution to (5.1). It is orbitally asymptotically stable (unstable).

To understand the bifurcation structure for *1 near rio for all small Ig2l, we compute

ie (s) 3g3+2922 A(/,2oi)

where ,0 o(r/) and ,(r/) =/(!) + io(), and

9o2 ( f(o; 3o) +(5.6) Ks(o, glg2=o) A,(lo; i) [Sinai 3ooi)12

We proceed assuming Ks(r/o, gig2=0)4: 0. In particular, g3 4= 0.
By direct computation, at a 1,

a__K3(arlo, glg=o)= 3g3f"(rlo; o)
3a (N(/o; io))

which is nonzero. Thus, for all small Ig2l, oYg’o(g) (/(glK3(/,g)--0} defines a sub-
manifold of codimension 1 in (9. Define cog+(_) (g) { r/ 01K (/, g) > 0 ( < 0)). From
(5.5), r/ (9

0 implies K3(rl, g[gz=o) 3o()g3f’(/; o(r/))/lA’(/; o(/)i)12. Hence
)Fo(glg=O)N(9ocagl, (9-ccU+(g]g2=o) and 60ff c-(g[g=o). Therefore, for all small
[g21, (9on+(g,) and (9on_(g) are nonempty. By the connectedness of (9o, so is

60o nffo(g) 4: .
If Ks(o, g lg=o) 4: 0, then the implicit function theorem implies that for all

near (/o, gg.=o) there is a unique relative extreme value at if= (,g) for

p ( p ) t ( l ) + K3 ( l, g)p + Ks rl, g) p2 + ....
By elementary arguments, tS= -K3/2K5 + (9(K) and p()=l(rt)-K/4Ks + (9(K).
Define o(g) { rt (glp (tS) 0 }, and _+, (g) { (91p (iS) > 0 ( < 0) }. Since (90 is a
manifold of codimension 1 and K3(rlo,g[gz=o)=O, .-@o(g) is for all small [g21 a sub-
manifold of (9 of codimension 1. Reducing (9 if needed, we may write (9=+u_uo-
Clearly the intersection in (9 of any two of the manifolds o(g), (90 and )go(g) must
occur at a point common to all three. Furthermore, if Ks(/o, gl=o)<O (>o), then
o(g)N((9+U (9_)c (9_(+) and (9+ c+(g) ((_9_co@_(g)).

To obtain more specific results, we choose f"(/o; Oo)>0 and Ks(/o, glg2=o)<0;
the other three cases are similar. Our previous discussion justifies Fig. 5.1, in which is
shown the three manifolds (9o, o(g), go(g)and their complements in (9.
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Let :)Uo(g)C3(9o be arbitrary. Considering the form of the reduced bifurcation
equation, subcritical bifurcations (i.e., small periodic solutions existing for y (9- near
/) exist if and only if p(tS)>=0 and >0. This last requirement is equivalent to
noU+(g). Accordingly, subcritical bifurcations exist if and only if n(gNoU+(g)C3
(o(g)to+(g)). For such no(g), (5.1) has a unique semistable periodic orbit
(unstable from within). Otherwise, for n +(g), (5.1) has two distinct periodic orbits
--the smaller of which (as measured by their corresponding roots of (5.3)) is unstable,
while the larger is orbitally asymptotically stable. In contrast, for every n (9+, there is
a unique periodic orbit near y 0 (orbitally asymptotically stable).

Case 2b. f’(no; too)=f(no; 2too)=0 and f"(no; too) 4:0- This case is remarkable in
that K3(no; .)-0: Equation (5.1) is nongeneric for all g X. A rather tedious calcula-
tion (see Appendix) reveals that for g X,

A,(no; itoo )
g3 +2g A(no; 2tooi) ]2 9toof(To; 3too)

1
IA(no; 3tooi)l:

+ 3g3+2922 A(no 2tooi)-3
toof To, too)
2(A’(no; too/)) 2

+ 2

FIG. 5.1. Intersections of the manifolds (9o, o(g) ando(g) for f"(’O; o) >0, Ks(r/o; g[g2=o)<0 and
Ig21 small. The number ofperiodic solutions is indicated in each region.
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If f(lo; 3Oo):f"(lo; Oo)>0, then (gX]Ks(to, g)=O)=(gXlg2=g3=O)--a
manifold of codimension two. Ks(rio,g) has constant sign off this manifold. If
f(Vlo; 30o)=0, then K(vio,g)>=0 or __<0 on X, and the set of g with K(o,g)=0
defines a submanifold of X of codimension one. If f(10; 30o)’f"(90; 0o)<0, then the
(g2, g2) plane is subdivided into regions on which K(lo,g) takes positive and negative
values. In fact, there are two distinct curves 1, 2 that intersect only at g2--g3--0.

--a 2One of these curves, say cgl, is the graph of a parabola g3 g2, a R. The other curve
=b 2is either another parabola g3 g2, b 4: a, or the curve g=0. Both cgx and define

submanifolds of X of codimension 1. Accordingly, the (gz,g3) plane is seen to be
subdivided into 4 unbounded sets. K(o,g is positive on two of these and negative on
the other two.

If g is such that Ks(o,g)4:0, the analysis of Case 2a applies without change. In
particular, if f"(o; Co)>0 and K(/o,g)<0, Fig. 5.1 describes the bifurcation struc-
ture in a small neighborhood (_9 of /o in C*.

The equation

(5.7) .9 -a (s+ 1)g(y(t+s))ds
-1

satisfies at a ao =4r
2 the hypotheses of Case 2b. The associated characteristic equa-

tion has simple roots + 2ri and all others have negative real parts. The cosine trans-
form satisfies f’(vto; 2r)=f(o; 4r)=0, where o=2’n’Z(s+ 1) 2. Moreover, f(/o; 6r)
=0 and f"(o; 2r)= 1. Since N(0; 2ri)= 3 and A(0; 4ri)= 3rci, we have Ks(o,g)
=-2r2(g3--g22) 2. For ga-g4:0, Fig. 5.1 applies. Using indirect arguments,
Hale [5] obtained a similar diagram for (5.7) based on certain special properties known
for (5.7).

It would be misleading to suggest that the results of this section completely resolve
all first order nongeneric bifurcations. In practice, arbitrary variation of v/ in a full
neighborhood of /0 is not allowed. For example, if /= (a; .) is a continuous function
of m independent parameters a (al, a2,. ",am); r/(0, ")= /0, then the bifurcation
structure for (5.1) is determined by how the range of the map a-,/(a; .) for a near 0
intersects (9. Moreover, it may be that g depends on a as well. The number and
stabilities of periodic solutions for (5.1) is obtained from (5.5) with ,/=,/(a; .) and
g= g(a). The resulting bifurcation surfaces are to be pictured in a neighborhood of
0R ".

Equation (5.7) illustrates this point well. Here, f(*/0; ,)>__0 for all . Observe that
for all a near 4r 2, /(a; .)=a/2(s+ 1)2=a/o/4r20k)_, since if ,/(a; .)+,
then ,/(; -)+e8o+ for all small e >0, where 80 denotes the unit mass measure at 0.
Since f(,/(; -)+e80, u)>0 for all ,N, this contradicts the stability of Staffans
mentioned earlier.

By the discussion of Hale [4, p. 112], any 1-periodic solution of

(5.8) y"+ag(y)-O,

a > 0, is a 1-periodic solution to (5.7). We apply (4.2) with h 0 in (4.1) and , 2 v. We
conclude from Theorem 2.2 that g(a; c)--0; thus (5.8) has a small nontrivial 1-periodic
solution if and only if there is a c > 0 satisfying

3
0 (v/--_ 2r) + v/--. - g3--1--g)c2-t (-0 (C4)
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If g3 !g22 < 0 ( > 0), a unique root c(a) > 0 exists for all et > 4rr2( < 4rr 2) with let 4rr 2

small. We conclude that for such a, /(a; .)0nag’/(0n_). Thus at a=4rr 2,
equation (5.7) exhibits a Hopf bifurcation to a unique 1-parameter family of periodic
orbits. Each is semistable.

Appendix. We briefly describe the computations for (5.3) in Case 2. Recall that
Ak,-a- The algorithm of {}2 yields

y(1)(l,)=eVi’+e-Vi’s,

2vi ) 2vi.Y(9-)(v)=g
A(rl; 2vi)

-1 e
2g2

Y(3}( v)= g3 +2922 A(/;2vi)
--1

A(r/;3vi)
-1 e 3vi

+ 3g3+2922
A(/;2vi)

-3 [vi-k(r/;vi)]

A(r/; vi)
1 eVi.q_

A’(r/;

Y(4)(v) + 494+69392 A(’0; 2vi)-2 -4923 A(r/; 2vi)--1 +292(A3,1+A3,3)

[6g4 + 693g2 Re A(vl;2vi)-2 +2g
A(I; 2vi)

-1 +2

+4g2Re{ A3,1}] + -...

The term A4,4 is not needed for our computation of (5.3) through order c 5. The terms
c3(v,g), cs(,,g ) in (5.2) are the coefficients of e is in

g [2 y’l’y ‘2’ +g3 [yml
and

g212yO)y’4) + 2y’2)y (3) + g313( y’l) )2yO)+ 3yO) (y’2)) 2]
+g414(YO,) {2)]+ [yO)]Y g

respectively. At v= 0(r/), the real part of

M3(r/; i)
-1 fo (s) c3(v

N(r/; X(r/)) -1
e d/ ,g)

is K3(r/,g ).
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To compute Ks(/o, g[g2=0) set g2=0 in the above. In Case 2, A’(,/o; ioo) is real,
ifo ,oois

-1 se dlo(S) is imaginary and c3(,, gl__o)= 3g3. Thus 3/O,M3(/o; 00) is imagin-
ary and 0/OvRe(M3(lo; 00)} 0. Therefore Ks(o, gl--o) is the real part of

A’(r/o; ioo)

Since N(/o; ioo) is real, all real terms in c5 can be ignored.
For Case 2b, we have f(rto; 2Oo)=0. As above, c3(oo,g ) is seen to be real and

/,Re{ M3(rto; Oo) } =0. Thus

600

A’( /o; io)
Im(cs(o,g)).
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STABLE EQUILIBRIA IN A SCALAR PARABOLIC EQUATION
WITH VARIABLE DIFFUSION*

G. FUSCO" AND J. K. HALE :I:

Abstract. A scalar parabolic equation with nonconstant diffusion and nonlinear source term is consid-
ered and some aspects of the influence of changing the diffusion on existence, stability and bifurcation
properties of the equilibria are discussed.

1. Introduction. We deal with existence, stability and bifurcation properties of
equilibria of the problem

ut=(cux)x+f(u), x(-1,1),
ux(-1,t)=ux(1,t)=O,

where c > 0 is a continuous function and f is C1.
The initial value problem for (1) is well-posed in the Sobolev space Hi( 1,1), [1],

and any bounded orbit approaches an equilibrium as [3], [5], [7]. Therefore a
basic problem in understanding the dynamics of (1) is the description of the set of
equilibria of (1) and of the way this set changes with the diffusion function c and with
the source term f. Related important problems are the characterization of the pairs
(c,f) such that (1) has stable nonconstant equilibria and to understand the role of
bifurcation in the appearance of stable equilibria.

For any nonlinear function f, Chafee [6] proved that when c is constant, no stable
nonconstant equilibrium exists. Chafee’s result was generalized by Hale and Chipot [2]
that showed that the same result holds true if c C 2 and c=< 0. Finally, Yanagida [10]
has shown that if c is written as c= a 2, a > 0, a necessary and sufficient condition for
the nonexistence of a function f such that (1) has a stable nonconstant equilibrium is
that ax =< 0. Other results concerning the existence of stable nonconstant equilibria are
due to Matano [8], [9] that has shown that, if f is a cubic polynomial as f= u-u and
c(x)>= 1 on intervals [-1, a], [fl, 1] and __< e on [7, ] a < 7 < < fl and e is sufficiently
small, then (1) has a stable nonconstant equilibrium. Fife and Peletier [13] have also
considered equations related to (1) which have stable nonconstant equilibria.

For the n dimensional version of problem (1) in a bounded domain f and with
constant diffusion, Casten and Holland [11] and Matano [8] have shown that, if ft is
convex, any stable equilibrium must be a constant. Matano has also shown that,
assuming f of the type f=u-u3, for some nonconvex domains, there exist stable
nonconstant equilibria. Hale and Vegas [4] have shown the existence of stable noncon-
stant equilibria for a large class of nonlinearities and for domains f] that can be
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considered as perturbations of a domain f0 which is the union of two disjoint convex
domains.

We assume that c is even and f is odd and such that

(2)

f(O) =f(1) =0,
f(u)>O forum(O,1),
f(u)<O foru(1,),
f’(O) O, f’(1) 0

(Fig. la)).
Under these assumptions we give an estimate of the number of equilibria of (1) in

terms of c and f. We prove that, for anyf of type (2), if c is sufficiently close to the step
function

1
(3) = c0>0

forx [-1,-/]k9 [/,1],
forx(-l,l), 0<l<1

(Fig. lb)) and co is sufficiently small, problem (1) has at least a pair of stable
nonconstant odd monotone equilibria. Finally, we show that, if c= c depends on a
parameter/ [0,1] and u is an equilibrium of (1) with exactly k zeros that bifurcates
at/ 0 from the zero equilibrium and becomes stable at/ 1, then, as/ goes from 0 to
1, u must go through at least k secondary bifurcations.

a)

1

b)

-1 -l

c

cO

FIG. 1
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2. Existence. We are interested in studying problem (1) for c in the set cg of
continuous and positive functions c: [-1,1] R. Nevertheless, for the analysis that
follows, in particular, for the discussion of stability where we consider functions c that
are "close" to the step function defined by (3), it is convenient to study problem (1)
for a wider class of diffusion functions c that are allowed to have jump discontinuities
at a finite number of fixed points in [-1,1]. To keep the notation simple and since we
suppose c even, we consider only the case of two points of discontinuity at x + l,
0 < l < 1. Everything we say extends to the case of any number of points of discontinu-
ity.

Let be the set of nonnegative even functions c: [-1,1] R which have continu-
ous restrictions to [0,/) and to [l, 1] and possess the left limit c(l-) of c(x) as x ---, 1. For

def
any c W, let Jc be the sete((x,y)]x +l,y[(l-),c(l)]) and C= Jw graph. We suppose that is endowed with the topology associated with the following notion
of convergence that allows a sequence of continuous functions to converge to a func-
tion that has a ump at x- +_ l: we say that c , n- 1,. ., converges to c if and
only if the Hausdorff distance between C and C approaches zero as n . The
Hausdorff distance (A,B) between two bounded subsets A, B of a metric space with
metric d is defined as (A,B)=max(p(A,B), p(B,A)) where p(A,B) is the distance
fromA to B, p(A,B)= sup infd(x,y) and p(B,A) is the distance from B to A.

The class of diffusion functions that we are going to consider is the subset & c
defined by the condition inf c > 0. Clearly, cg is a dense subset of c+ and, if we assume
in cg the topology of uniform convergence in [-1,1], then cg is continuously embedded
in . Henceforth, we allow in problem (1) to be a generic c c+. This requires that
(1) be complemented with theump conditions

c( +_ +_ 1/) c( _+ 1-) ( _+

Therefore, the equilibrium problem corresponding to (1) becomes

(4)
(CUx)x+f(u)=O,
ux(-1) =ux(1) =0,

_+ Z+) _+ Z+) c(
___
1-) ( _+ Z-),

and reduces to the standard problem for c cg.
By letting u u, v cux, problem (4) transforms into the equivalent system

Vx= -f(u),
v(-1) =v(1) =0.

Note that the jump conditions express just continuity of o at x + and, therefore, they
are included in the requirement that u, o be continuous in [- 1,1].

The hypothesis on f and a maximum principle argument imply that solutions of (4)
or (5) satisfy 1 <_ u(x)_< 1. Therefore, we can also assume that f is bounded so that the
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solution u(c, a, x), o(c, a,x) of the initial value problem

(6)

o
Ux= c

0(-1)=0

is defined for all (c,a,x) c+ [_ 1,1][-1,1].
LEMMA 1. u(c,a,x), v(c,a,x) are continuous functions of (c,a,x), continuous in

(c,a) uniformly in x and possess a continuous first derivative with respect to x, except
possibly at x +_ l.

The proof of this lemma is a standard application of the general theory of
differential equations.

To discuss the existence of space dependent equilibria of (1), i.e., the existence of
nonconstant solutions of (4), we note that these solutions are in one-to-one correspon-
dence with the a4:-1,0,1 such that o(c,a, 1)=0. If, for a4:0, we let 8(c,a,x) be the
angle (positive clockwise around the x-axis in ( u, v, x )-space) swept by the vector
u(c, a, x’) defined by

when x’ goes from -1 to x, then a necessary and sufficient condition in order that
v(c, a, 1)= 0 for some a 4: 1, 0,1 is that 8(c, a, 1) be equal to rk for some integer k 4: 0.

The angle (c, a,x) can be defined also for a= 0 so that 6(c, a,x) is continuous in
(c,a,x). In fact, by performing the polar coordinate transformation u= p cos, v=
-p sin, it is found that (c, a,-) is the solution of the problem

(7) 8z=
1 f(u(c,a x))

c(x)
Sin28+

u(c,a,x)
t(-1) =0.

COS2,

Moreover, since by Lemma 1, u(c,a,x) is continuous in (c,a) uniformly in x and
u(c, 0, x) 0, it follows that, if (c’, a) converges to (c, 0) in c+ 1,1], then
f(u(c’,a,x))/u(c’,a,x) converges uniformly to f’(0) in [-1,1]. This implies that, as
( c’, a) ( c, 0), 8(c’, a, x) converges uniformly to the solution 8(c, 0, ) of the problem

(8)
1

i sin- 8 +f’(0)cos2 8

8(-1)=0.

From (7), (8) and Lemma 1, it also follows that 8(c, a,x) is continuously differentiable
with respect to a. We also note that 6(c, + 1,x)=0 and that, for a(-1,1), 8(c,a,x) is
an increasing function of x because the right-hand sides of (7), (8) are > 0.

For later use, we also introduce the angle o(c,a,x) which is defined as 8(c,a,x)
with the vector u(c,a,x) replaced by its derivative u,(c,a,x) with respect to a. It may
be useful to note that, if Y. is the surface in the space of u, v, x defined by the solutions
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o

u(c,a,x)
x

FIG. 2

of (6), then U a(C,a,x) is tangent to the cross section of Y at x at the point (u(c, a,x),
v(c,a,x),x) (see Fig. 2).

It is easily seen that o(c, a,-) is the solution of the problem
1
sin9-0 +f’(u(c, a,x))cos2 o,

(9) x- c(x)
o(-1)=0.

Now consider an interval [-/,l]c[-1,1] and let ? be the supremum of c(x) in
1, l]. Then, for x l, l], (8) implies

1 sin +f,(O)cos2 8.(10) >__ -A simple computation shows that the solutions of (10) with the equality sisn
increase by r each time that X increases by r(f’(O)/)-1/. From (10) and the fact that
(c, a, x) is a nondecreasinB function of x, it follows that

This estimate, together with the continuity of 8(c,., 1) and the fact that 8(c, + 1,1)= 0
imply

THEOREM 1. The number N of nonconstant equilibria of (1) satisfies the condition

(11) N>2integerpar,_ of[2-J-( c )1/21"
Remark. In the proof of Theorem 1, no use was made of the evenness of c and

oddness of f. Thus Theorem 1 holds for generic c, f. We also note that the conclusion
of Theorem 1 is also true if [-l,l] is replaced by a measurable set Ec[-1,1] of
measure 2L

Let sk= ( alS(c,a, 1)= kcr }. The set sk can be identified with the set of equilibria of
(1) that have exactly k zeros. If the right-hand side of (11) is _>_ 2k, then s, is nonempty
and by means of equation (7), it is possible to obtain some information on the "shape"
of equilibria. To this aim, let 0 < fi < 1 and as be given and c [-1,1] be the set
where lu(c,a,x)l<t. To get a bound for the measure of 3(-l,l), we let (xl, x2) be

def
the smallest interval containing 93 (-l,l) and minlulzf(u)/u. Then, by applying
to (7) the same procedure used for deriving (10) from (8), we obtain

1x>= --sin2 + cos21, X ,..n (-- ], )
c
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and, therefore, since (c, a, x) is an increasing function of x,

ff(c,a,x) d3
meas (C(-],])) <

.,,x) (1/g)sin3+cos23

From this estimate, it follows that

(12)
., )1/2me s.( c g

because 8(c,a, x2)-8(c,a, xl)<kr._ The estimate (12) shows that infask{lu(c,a,x)l}
converges in measure to 1 in (-l,l) as g0. For k 4:1, nothing can be said on the
behavior of solutions in sk outside the interval (-l,l). Solutions in sk could be almost
trivial in the sense that they could be near zero outside (-l,l) and oscillate in (-l,l).
This cannot happen when k 1 because solutions in s are monotone and, therefore, if
there is a point (-l,l) where ]u(c,a,Y)] is near 1, the same is true in [- 1,ff] or in
[, 1].

In what follows, we are interested in solutions of (4) that are odd functions of x. It
is easily seen that, due to the assumption that c is even and f is odd, when on the basis
of (11), it is possible to conclude that s is nonempty, then it also contains at least a
pair of odd solutions that transform into each other under the transformation x -x.
Clearly, if u(c,a, .) is one of these odd solutions, and ]u(c,a,x)-T-l]<e in [-1,], then
]u(c,a,x)+ 1]< in [-, 1]. Therefore on the basis of (12), we have

THEOREM 2. For any c such that the right-hand side of (11) is >_ 2, problem (1) has an
equilibrium which is an odd and increasing function of x. If c is deformed so that g- O,
then all odd increasing equilibria of (1) converge to the function

-1 forx [-1,0),
z 0 for x 0,

1 for x (0,1],

and the convergence is uniform in compact sets in [-1,0)tO (0,1].
In the statement of Theorem 2 and in the following, we always refer to the

increasing equilibrium, with it being understood that there is also a decreasing equi-
librium that transforms into the other one under the transformation x --+ -x.

3. Stability. Let o Cbe the function defined by

0=(1, x[-1, -l)tO(l, 1],
0,

In this section, we prove the following
THEOREM 3. Let f be a continuously differentiable oddfunction that satisfies (2). Then

there is a set Wc Cgsuch that
(i) W is open and connected in ,
(ii) co belongs to the closure of W in ,
(iii) for any c W, problem (1) has an odd increasing (and an odd decreasing)

equilibrium which is stable.
Note that Theorem 3 implies the
COROLLARY. For any odd C-function f that satisfies (2), there is a c cg such that

problem (1) has a stable nonconstant equilibrium.
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To prove Theorem 3, we need a few lemmas.
LEMMA 2. If u(c,a, .) is an equilibrium of (1) and is the first eigenvalue of the

linear problem

(13)
(CWx) +f’(u(c, a,x))w=
Wx(-1)=Wx(1)=O,
c( +_ Z+)Wx( +_ Z+) c( _+ Z-) ( _+

then u( c, a, ) is stable if , < 0, unstable if ? > O.
The proof of this lemma is given in [1].
LEMMA 3. Let 67c c be the set offunctions c such that (1) has a stable nonconstant

equilibrium, the stability of which can be ascertained by the fact that the largest eigenvalue
of the linearproblem (13) is negative. Then STis open in c.

Proof. If 6 is empty, the lemma is obvious. Therefore, we assume that is
nonempty. Take any c in 5. Then there exist a (- 1,1)\{0) and k > 0 such that

8(c,a,1)=kr,

and the largest eigenvalue , of problem (13) is negative. If one lets w= rcosu, c%=
-rsinu in (13), it is found that r, u satisfy

( 1
(14) rx=sinvcosv f’(u(c,a,x)) c(x)

X r,

1--- sin2 v + ( f’( u( c, a,x))-X )cos v,(15) Vx= c(x)

with the boundary conditions u(-1)= 0, u(1)= ir for some integer i. But must be zero
because the eigenfunction w corresponding to the largest eigenvalue never vanishes.
Therefore, v must stay in the interval (-r/2, r/2). Since , is negative, it follows from
(9) and (15) that o(c,a,x)< v(1)= 0. On the other hand, equation (9) implies o(c,a,x)
>-r/2. It follows that sin(8(c,a, 1)-o(c,a,1))4:0. Since the derivative of 8 with
respect to a is related to o by

2 2P a sin2(3 o)(16)
p289_+p2

it results a(C,a, ])4: 0. The implicit function theorem implies there is a neighborhood U
of c such that, for any in U, there is an a(O) continuous in such that (, a(O), 1)= kr.
This proves existence of a solution for near c. The largest eigenvalue of the linear
variational equation about this solution is continuous in . This proves the lemma.

Remark. Lemma 3 is actually a special case of a general situation. In fact, the
largest eigenvalue being negative for an equilibrium point u0, implies the semigroup
generated by the linear variational equation is exponentially asymptotically stable.
Thus, a small perturbation in c will yield another exponentially asymptotically stable
equilibrium point near u0.

In the proof of Lemma 3, we have seen that o(c,a, 1)<O is a necessary condition
for ? to be negative. We note that this condition is also sufficient. This follows from the
fact the solution of (15) depends continuously on X, coincides with o(c,a,.) for 2=0,
and increases unboundedly as ? - for x 4: -1. Therefore, if o(c, a, 1) is negative,
there exists a unique negative ;k 0 such that the solution of (15) vanishes at 1. If r(.) is
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any nonzero solution of (14), then w(. )= r(. )cos v(. ) is an eigenfunction of (13) that
does not vanish in [-1,1]. Thus X 0 < 0 is the largest eigenvalue of (13). Therefore, we
can state

PROPOSITION 1. A necessary and sufficient condition that the largest eigenvalue of
problem (13) be negative is that o(c,a, 1) be negative.

LEMMA 4. Let c be a function of type (3) and (1) be problem (1) with c= .
Then, if co is sufficiently small, problem (1) has an odd increasing equilibrium u(&a,. )
such that the largest eigenvalue of the corresponding linear problem (13) is negative.

Proof. By Theorem 1, if co <(4l/r2)f’(O), there exists an ai G (-1,1)\(0) such
that u(,a,-) is an increasing equilibrium of (1). The same condition together with the
evenness of c and the oddness of f ensure that fi can also be chosen so that u(, ,. ) is
an odd function. To prove that the largest eigenvalue of the linearized problem at
u(O, h,. ) is negative if co is sufficiently small, we recall [12] that the eigenvalues of (13)
do not decrease iff’(u(c,a,x)) is replaced by a function q(x)>=f’(u(c,a,x)). It follows
that, if we let 71=maxu>=u(,a, of’(u), it suffices to show that for co small, the largest
eigenvalue of

(17)
Wxx+Ftw=Xw, x(-1,-/) (/,1),
CoWxx+f’(u(,h,x))w=Xw, x(-l,l),

Wx(-1)=Wx(1)=O,
(18) CoWx(-l+)=Wx(-l-),

Wx( +)= oWx(t-)
is negative.

From a result of Yanagida [10], it follows that the largest eigenvalue of this
problem is negative if there is a strictly positive function w0 that makes the left-hand
sides of (17) equal to zero, satisfies the last two equations (18) and moreover, is such
that

(19) Wox(- 1) <0, Wox(1) > 0.

We look for an even such w0 and, therefore, we may assume W0x(0)=0 and consider
only the interval [0,1]. Since f’(1)<0 and, by Theorem 2, u(O,a,l)-* 1 as c0-.0, is
negative for small values of c0. Therefore, if w0 exists, in the interval [l, 1], it must have
the expression

(20) Wo(X ) B sinh[( F/)/a(x- l)] +A cosh[( g/)l/(x-l)],
and the coefficients A, B must satisfy the conditions

B(21) A >0, - > tanh[(- q)/2(1 -/)]
ensuring that Wo(X) is positive in [/, 1] and W0x(1) > 0.

To compute Wo(X ) in the interval [0,/], we must solve the problem

(22) CoWoxx+f’( u( e, gt,x))wo=O,
wo(O) C, Wox(O) =0,

where C is a positive constant to be chosen later.
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From now on, we set for simplicity =u(,, .), =(l), =(1). In order to
solve this problem, we must overcome the difficulty lying in the fact that u is only
known to be an odd increasing solution of problem (4). To this end, we observe that,

def
since is increasing, we can perform the change of variable x=-(u)= (u). By
making this change of variable in (4) and by observing that the oddness of implies
(0)= 0, we see that satisfies

(23)
-Co.U +f(u)=0,

J" +/(u) 0, u (,),

(24)
(0) =0, (fi)=/,
lim (u) 1, lim ’(u) o.
u-o u-,

Note that u, Ou continuous imply continuous and ’(fi-)=.’(fi+)co. By using the fact
that d/dx=(1/l’)d/du, one sees that the same change of variables applied to (22)
yields

(25)
Wo Co- -S +f wo O,

Wo(0) C, w (0) =0,

where Wo has been identified with the function Wo((-)). For u in (0, fi), an integration
of (23) from u to fi yields

C0 fu def

,--5=2 f(s)ds+K= g(u),

where K>-2f-Xuf(s)ds is an integration constant. For u in (fi,), performing an
integration in (23) from fi to , using the fact that ()-(fi)= 1 and requiring that
’(fi-)= ’(fi+)co one observes that K, u, must satisfy the conditions

(26)

du

)1/2=1-l’(2fff(s)ds
cog( fi ) 2 r’f( s ) ds.

Since g’= -2f and the first equation (23) implies that the coefficient of w( in equation
(25) is equal to -f, equation (25) becomes

gw’-fw +f wo= ( gw +fwo )’ O.

Thus gw +fwo const 0 because w(0) 0 and f(0)= 0.
It follows that, with a proper choice of the constant C appearing in (25),

(27) Wo gl/2 (for u [0, fi ]).
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If the expressions (20) (27) are patched together at x (corresponding to u= fi) by
imposing the conditions

w0(Z+) w0(Z-),

it is found that

A ( g ( gt ) ) 1/2, B= Co/2 f()

Therefore, it follows that, if

(28)
(-- )l/2( g( t))1/2

< tanh[( /)1/2(1-/)],

then wo satisfies all the conditions ensuring that the largest eigenvalue of problem (17),
(18) is negative. We shall prove that this is the case for co sufficiently small. The proof
is a discussion of the asymptotic dependence of , g() on co defined by equations (26)
for co 0.

By the change of variables u + ( ), s u + ( u) o, the first of equations
(26) transforms as

(29) 1 fo (l-r) -1/2 lf(li_i)+(r’)) (-+(1-r)o)do dr=l-l,

where

(r,o) -[(1- )+(- fi)(1-)(1- o)],
1-fi=_ >1.
U--U

As fi, fi depend on c0, so_do 8 and K. Let a =_lim,.o_0 sup K. Since fi 1, fi 1 as co 0,
the above expression of 8(, o) implies that 8(,o) 0 uniformly as co 0. Therefore,
f(1)= 0 implies that the ratio f(1 + 8(, o))/8(, o) converges uniformly to f’(1)4 0 as
co 0. This and equation (29) imply that a < .

For the verification of the inequality (28) for co small enough, it is sufficient to
show that the quantity

is bounded for co small since f’(1) as co0 and g(fi) satisfies (26). Using the fact
that f(1)= 0 and Taylor’s theorem, we have

f(fi) f’(0(fi))(1 fi) f’(O(u))
/::( , ) ds

where O(u) is in the interval (fi, 1) and K=(1 fi)/(fi- fi). Sincef’ and K are uniformly
bounded, it remains to show that the denominator of this expression is bounded away
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from zero for co small. Note that

with 8’()=(-I)/(-)z. Since 8’(z)-->O uniformly as coO, the ratio
f(1 +8’())/8’()f’(1)<0 uniformly as Co0. From this and the fact that is > 1,
it follows that

f0if(1’(r)+’(’)) (r-)dr>= -f’(1)fol(1-r)dr= f’(1) >0.1

This proves the lemma.
Proof of Theorem 3. By Lemma 4, there is a number e > 0 such that, if 9 c c, is the

curve 9 de___.f { 510 < CO < e} and 5, then problem (1)e has an odd increasing equilibrium
which is stable. Since, by Lemma 3, is open in cg-, there exists an open neighborhood
1 of 9 in c- such that, for c .1, problem (1) has a stable equilibrium u,.. It is easy to
see that W can be chosen so that u,. is odd and increasing for any c W. In fact, from
the proof of Lemma 3, it follows that, for c in a neighborhood of 5 9, u,. is the only
equilibrium in a neighborhood of u e. On the other hand, the evenness of c and the
oddness of f imply that also v defined by v,.(x)=- u,.(-x) is also an equilibrium of
(1). Since u e is odd and u u as c e, it follows that v,. converges to ue as c e. This
contradicts uniqueness of u unless u,. is odd and therefore proves oddness. Since u is
close to ue., it vanishes only at x=0. From this and the fact that solutions of (4) with
only one zero are monotone, it follows that u is increasing. The mapping c0--+ is
continuous as a map from (0, e) into cg-. Therefore 5’ is locally compact as a subset of
c+. Thus, by standard arguments, there is a continuous function " (0,1) Tsuch that
the curve 3’= { clc=b(s), s (0,1)} is contained in 1 and 5 is in the closure of 3’ in c.
Since 1 is open and cg is continuously embedded in c-, l?n cg is open in cg. From this
and the continuity of , it follows that there is a subset Wc ln @which is open and
connected in cg and contains 3’. Since 5 is in the closure of 3’ in , the proof is
completed.

4. Secondary bifurcation. In this section, we consider a family (/,)/[_1,1]C ( of
diffusion functions c depending continuously on a parameter /,. We let
8(/,,a,x) df 8(c,a,x) and assume that c,=<C,l for/,2>/,x and that 8(0, 0,1)= krr for
some k>0. Then (8) implies that 8(/,,0,1)< kr for/z<0 and 8(,0,1)> kr for/,>0. If
we also assume that f satisfies the condition

(31) f(u)<f’(O)u, u(0,1],
then, from (7) (8), it follows that 8(/,,a, 1)< 8(/,,0,1) for a =/= 0,/,[-1,1]. Therefore s
is empty for/, =< 0, nonempty for/, > 0. Thus,/, =0 is a bifurcation point. It is easy to
see that, in this situation, for > 0 and small, s contains solutions that are small and
converge to zero as/, +0, i.e., solutions that bifurcate from the zero solution. These
solutions are unstable for/, mall because the largest eigenvalue of problem (13) with
u -= 0 is f’(0) > 0 and the eigenvalues of (13) are continuous functions of c cg. On the
other hand, we have seen in Theorem 3 that, if c is suitably chosen, then there exist
stable nonconstant equilibria of (1). Therefore, it can be expected that, if u is a
continuous function of/, [0,1] such that u0= 0, u is a solution of (4) in s for/, (0,1],
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and u is stable, some kind of secondary bifurcation takes place at some/z (0,1). This
conjecture is true. We have in fact the following

THEOREM 4. Suppose that c is as before, f satisfies (31), u is an equilibrium of (1),.
which is equal to zero for I O, has exactly k zeros for (0,1], depends continuously on

l and ul is stable (in the sense that the largest eigenvalue of the linearizedproblem at u is
negative), then there exist numbers 0</ < <k < 1 such that each i, i= 1,...,k is
a bifurcation point.

def

Proof. Let a, u,(- 1). Then a0= 0 and, therefore, (7), (9) imply that o(0, a0,1)=
8(0, a0,1). We also have 8(/,a,, 1)= kr for (0,1]. Thus, by the continuity of 8 with
respect to c, a and the continuity of c,, u, with respect to/, it follows that o(0, a0,1)=
kr. On the other hand, Proposition 1 and the stability of u imply o(1,a,l)<0.
Therefore, by continuity, there exist 0 </ < </k < 1 such that

o(i,a,,,!)=(k-i)rr, i=1,...,k.

Moreover, it is obvious that i, 1,.--,k can be chosen so that, in any neighborhood
of #i, there exist g</</ such that o(g, ar,,1)>=(k-i)r>o(g,a,l). This, on the
basis of the geometrical meaning of the angle o, implies that/is a bifurcation point.

l)

tt O, 8 a 2r

x=l

u u

0<g<l

o

=1 =ff 1 <<2

I)

/.t 2 o’=0 a=l

FIG. 3
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Theorem 4 says that going through k secondary bifurcations is a necessary condi-
tion in order that an equilibrium with k zeros that bifurcates from the zero solution
becomes stable. From the proof of the theorem and Proposition I it follows that if, as
goes from 0 to 1, u experiences exactly k bifurcations at 0 </1 < </< 1, each one
of which is simple in the sense that, at any i, two new solutions bi.furcating from
appear, then ul is stable (see Fig. 3 for the case k= 2). This observation shows that in a
certain sense the converse of Theorem 4 is also true.
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THE INITIAL BOUNDARY PROBLEM FOR THE
MAXWELL EQUATIONS IN THE PRESENCE OF A MOVING BODY*

JEFFERY COOPERt aND WALTER STRAUSS

Abstract. Existence and uniqueness of finite energy solutions of the Maxwell equations is proved in the
presence of a moving body which may be either a perfect conductor or a dielectric. For the perfect conductor,
it is assumed that the speed of the body is less than the speed of propagation in a vacuum, while for the
dielectric it is assumed that the speed of the body is less than the speed of propagation within the body when
at rest. The proof involves localization of the problem to a neighborhood of the moving boundary and a
change of coordinates using the techniques of general relativity. The Neumann problem for a moving body
and the scalar wave equation is also treated.

1. Introduction. We consider the problem of proving the existence and uniqueness
of a solution of Maxwell’s equations with given initial conditions at t=0 in the
presence of a moving body. We consider both a perfect conductor and a dielectric. It is
perhaps surprising that this problem has never before been treated in the mathematical
literature. Of course, stationary bodies have been treated many times. The only case of
which we are aware for a moving body is that of the scalar wave equation []u= 0 with
Dirichlet boundary conditions, which was treated by Cooper and Bardos [1] and by
Inoue [2]. In the engineering literature, Van Bladel [10] has constructed approximate
solutions for specific geometries.

More precisely, the problem considered here is the well-posedness in the energy
norm. Is the energy finite if it is finite initially? As for the body, we assume:

(i) it is compact, its boundary is smooth and its motion is smooth, and
(ii) it moves slower than the wave speed (the speed of light).
Our notation is as follows. The space-time region exterior to the body is denoted

by Q. It is an open set in spacetime R R 3. The region occupied by the body at time
is

0(t)-- (x31(t,x)Q).

Assumption (i) means that (,0(t) is compact for all and E= OQ is a Co hypersurface in
3. We denote by ’=(’/,’x) the unit space-time normal to E pointing into Q.

Assumption (ii) means that [’t[ < I1 at each point of E. It also means that E is timelike.
(We have taken units so that the speed of light in a vacuum is unity.)

The reader should note that whenever ,t 0, the boundary E is characteristic for
the hyperbolic part of the Maxwell’s equations, that is, the Maxwell’s equations with
the divergence equations removed. A standard local change of variables to a coordinate
system in which the body is at rest would still leave a boundary which is characteristic
at some points, but not others. To avoid this difficulty we make a covariant change of
variable involving the full Maxwell system which leads to a uniformly characteristic
boundary. We are then able to study the existence question for the hyperbolic part of

*Received by the editors March 15, 1984.
Department of Mathematics, University of Maryland, College Park, Maryland 20742. The research of

this author was supported by the National Science Foundation under grant MCS-82-00496.
*Department of Mathematics, Brown University, Providence, Rhode Island 02912. The research of this

author was supported by the National Science Foundation under grant MCS-81-21487.

1165



1166 JEFFERY COOPER AND WALTER STRAUSS

the transformed system, with the added complication that the constitutive relations
now have coefficients depending on time. In 2 and 3 we discuss the coordinate
changes and constitutive relations. We prove the well-posedness in 4 for the perfect
conductor and [}5 for the dielectric body. In both cases the problem is reduced to an
abstract evolution equation in Hilbert space with a time-dependent generator and a
general theorem of Kato [1] is applied. Explicit methods of partial differential equa-
tions could also have been used instead of the abstract approach (see [4]).

Finally in 6 we return to the scalar wave equation but we consider a general class
of boundary conditions of the Neumann type. However, the reader should be warned
that neither the classical Neumann condition Ou/OUx= 0 nor the condition Ou/O,= 0 is
well-posed in the energy norm! What is well-posed is the condition Ou/Ou* =0 where
u*= (- ut, + ’x) is the conormal derivative. Also allowed in the boundary condition is a
dissipative term and a Robin-type term. Our approach is much simpler that that of [1]
or [2], as well as more general.

2. Constitutive relations. Due to the nature of our problem, we are forced to write
the time variable explicitly. Therefore we write the Maxwell equations in their classical
form

(2.1a) )tD- V H= -J, V’ D q,

(2.1b) 3,B + X7 E 0, V B 0,

where the electric field E, the displacement D, the magnetic field H, the magnetic
induction B, the charge .density q and the current density J may be distributions. It is
convenient to introduce the field strength tensors

0 E E:z E 0 D D:z D
E 0 B -B D 0 H

(2.2) F--
E2 _n 0 BI

a--
_92

_n 0 n
E B:z Bx 0 D n:z n 0

The constitutive relations, which link the fields F and G, can be written in the
form

(2.3) F=gGg,

where g g(t, x) is a 4 4 symmetric matrix function such that

(2.4a) g00 < 0

and

(2.4b) ’= gij]i,j= 1,2,3 is positive definite.

For brevity, we shall call such a matrix function g a good metric. (More precisely, we
should call it the matrix of a given Lorentz metric in a "good" coordinate system.) For
instance, a homogeneous isotropic medium has g= diag(- 1/e/t, 1,1,1) and D eE,
B=/tH.

It is easy to see that the constitutive relations (2.3) always permit D and B to be
expressed in terms of E and H. This is the concern of the first proposition.
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PROPOSITION 2.1. If (2.3) holds for a good metric g, then there is a unique positioe
definite, real symmetric 6 6 matrix ’=’(t,x) such that

The first step in the proof is
LEMMA 2.2. The relation (2.3) implies that there is a real symmetric 6 6 matrix

such that

Proof. The mapping (D1, D2, D3, Hi, n2,n3)- G is an isomorphism o: R 6 _..)

where 5’is the space of 4 4 real skew matrices. The operation S gSg takes 5into
itself because g is symmetric, and thus defines a transformation 4on R 6 given by the
diagram

6 S

6 ._..) gSg

Thus ’a=o-lgo(a)g fora6 and,Asatisfies (2.6). We let .,-)6 denote the scalar
product on 6. Because

(a,b) 6 1/2Tr( o( a)o(b)),
we have

( 4a, b) 6 1/2Tr( go(a) go(b))

1/2Tr(o(a) go(b) g) =( a,’b)6

where we have used the fact that Tr(AB)= Tr(BA) for square matrices A and B. This
proves the lemma.

Proof of Proposition 2.1. We claim that the matrix for

(2.7)

where R and S are positive definite 3 3 symmetric matrics. To determine R, we
compute ,A/’a on vectors a=(aa, a2,a 3, 0, 0, 0). The first three components of V’a can be
read off from the first row of

go(a)g=g

0 a a a

--a 0 0 0

--a 2 0 0 0
g"

--a 0 0 0

This yields the matrix R=-goo,+[giogjo] i,j=1,2,3. But go0<0 and is positive
definite by assumption, while [gi0gjo] is always nonnegative.
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To show that S>0, we consider vectors aR6, a4:0, of the form (O,O,O, a4,as,a6).
If we calculate go(a)g for these a, we see that it involves only ,. Thus

(Sa,a) 6 (V’a,a) 6 1/2Tr(go(a) go(a))

1/2Tr(o(a) o(a))

-1/2Tr([x/2o(a)gl/212)>O.
By (2.6) and (2.7) we have

Therefore

so that

-E=-RD+QH and B=Q’D+SH.

D R-1E + R 1QH and B Q"R 1E + Q"R- IQH+ SH

Q*R -1 Q*R- XQ + S

Finally to show’ is positive definite, we will show (./R’a,a)6> 0 if a=(E,H)4O. If
H 0, then

<’a, a> 6 ( R-1E, E) > 0.

If H 4: 0, then

(./#’a,a)6= ( R-1E,E)3 +(R-1QH, QH)3 +(SH, H)3 + 2(R-1QH, E)3"

Since R- >0, 21(R-1QH, E)I<= (R-1QH, QH) + (R-1E,E) so that

(g’a,a)6 (SU, U)3>O.
Proposition 2.1 is thus proved.

3. Coordinate trans|ormations. We will call a coordinate transformation proper if
it is given by an equation

(3.1) x q (t, x’) where -- < 1

and is assumed to be smooth with nonvanishing Jacobian i)g,/i)x’. Writing x=
(Xl, X2,X3) and Xt-’(X,X2,X3), this means Xj’-tj(t, Xl, X2,X3) for j=1,2,3 and
remains unchanged.

Remark. If (3.1) is written in terms of the inverse mapping q, it takes a more
complicated form. Indeed, write the equation as x’=q(t,x). Then x’=ck(t,+(t,x’)).
Let us write (/t for the vector q/t and q for the Jacobian matrix (/x). Then
kt q,7q,t. To be proper means that this vector has length less than one. Simple linear
algebra shows that this is equivalent to the condition that the 3 x 3 matrix

(3.2) [= xi xq q’i q’a ] is positivedefinite.tt

This was the assumption of Inoue [2] who did not use the simpler statement (3.1).
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Our assumption can be interpreted very simply by saying that if x’ is fixed and x
depends on according to (3.1), then its speed Idx/dtl is less than the speed of wave
propagation which we have taken to be unity.

PROPOSITION 3.1. Let Y. be a (smooth) hypersurface in space-time 4. Then , is
timelike if and only if there exists a proper transformation (defined in a neighborhood of
any point on ,) x x’, x (t, x’), such that goes into a stationary hypersurface Y.’.

Proof. By a stationary hypersurface we mean a cylinder parallel to the t-axis.
Suppose first that is a proper transformation which takes Z into ’ where ’ is
stationary. Let us write u= (,/,,x) as a normal vector for Z, split into and x compo-
nents. Then ,’ (,’t, ux) is a normal vector for Y.’, split into and x’ components, where

Since Z’ is stationary, ut’ 0. Since q is proper, IOq/Otl < 1. Hence I,llOq/Otllxl<lxl
This means that , is a spacelike vector and Z is a timelike surface.

Conversely, let be timelike. Then we may assume Z is given locally by an
equation x l(t, xl, x2). This equation holds in a neighborhood of a point (t,x), at
which point we may assume l/x=l/x2=O. Since Y is timelike and a normal
vector is (Otl 1l, 02l 1), we have

(0tl)2 ((1/)2 + (02/)2 + 1.

Therefore in a smaller neighborhood of the point (t,x) we have ()/l)2< 1. In that
neighborhood we define the transformation

x3=q3 t,x’ =x3+l t,x,x_

Then t (0, 0, )tl) SO that IOtaPl < 1 and the transformation is proper. Furthermore, in
the new coordinates the surface Y’ is given (locally) by the equation x =0, which is
clearly stationary.

Next we investigate how Maxwell’s equations are affected by a change of coordi-
nates. The field tensor F and the metric g transform as cotensors, while G transforms as
a contratensor (see Moiler [6]). Thus F, G, and g in the (t,x) coordinates become F’, G’,
and g’ in the (t’, x’) coordinates given by

(3.3)
g’ Idet-I-/g’g,
F’ -’F7,
a,- IdetY-ly-- ta (y-) -

where Y-is the Jacobian matrix of the mapping (t’,x’)(t,x). For the mapping
(t,x’)(t,q(t,x’)) we have

-= 1 0
v T

where T is the 3 x 3 matrix (Oi/X) and v Oq/Ot is a column 3 vector.
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Remark 3.2. If g is the flat metric, g= diag(-1,1,1,1), and q is proper, then g’ is a
good metric (in the sense of (2.4)). Indeed, writing 4 x 4 matrices in blocks,- 0)( 0

g,=ldetTi /(lv 0)(0T I T’)
-Idet TI-’/2’ 1 + v’v v’T ]

T’o

so that g;o -l/lv12<O and = T’T is positive definite. More generally, if g
diag(-(eg)-l, 1,1,1), and I,1= < (eg) -, then g’ is a good metric.

In the new coordinates the constitutive relations take the same form:

g’G’g’ ’g-tG(’) ’g=’gGg= F’.

Furthermore, F’, G’ satisfy the Maxwell equations (2.1) with (q’,J’)= Idetl--1- l(q,j)
transformed as a 4-vector (see [6]).

4. e pedeet conductor. The conducting body occupies the region 0(t) at time
while the exterior region is a vacuum with e g 1. In a perfect conductor all the fields
are assumed to vanish so that the current and charge are distributions supported by the
boundary surface. Thus Maxwell’s equations (2.1) become:

(4.1) 0,E-VxH=0, V’E=0 inQ,

(4.2) 0,H+VxE=0, V’H=0 inN4

with E=H=0 in O(t). These equations are to hold in the sense of distributions. In
particular, (4.2) is to hold across E. Formally this implies the boundary conditions

(4.3) uH+uxXE=O G.H=0 onE.

(Note that when the body is stationary, v,=0 and ,,the boundary conditions reduce to
the usual conditions for a perfect conductor that E be normal to the boundary surface
and that H be tangential.)

We shall be considering vector fields f=(f,f,fa) on N3 with each component
square integrable. We write the norm in Lz(N 3)3 as

/2

Ilfll flf(x)l 2
dx

where (x)]2 (x)] 2 + (x)] 2 +.3(x)l 2 is the pointwise Euclidean norm. For vector
fields E and H we shall write

We let a(t) be the exterior region at time t" a(t)= N3O(t).
THeOreM 4.1 (well-posedness).Let e, h L2(N) with e=h=0 in (0), V .e=0 in

(0) and V .h=0 in N . Then there exists a unqiue solution E(t,x), H(t,x) to (4.1), (4.2)
with the initial condition E(O, x) e (x), H(O, x) h (x), and such that (E, H) is
continuous with values in L2(N 3) 6 with suP0, rll E(t), H(t)II crll e, h II.
TnOM 4.2 (causality). Let A be the backward cone A= {(t,x)" [x-ylNs- Ns }

with vertex at (s,y). Let (E,H) be a solution of (4.1), (4.2) in A which is continuous with
values in L2(N 3) 6. If E H) vanishes on A { 0 }, then (E H) 0 in A.

Theorems 4.1 and 4.2 are a consequence of the following result on local existence
and uniqueness.



MAXWELL EQUATIONS IN THE PRESENCE OF A MOVING BODY 1171

THEOREM 4.3. Let e,h be given as in Theorem 4.1. Let (0,x) be a point in the
boundary (0)3f(O). Then there exists a unique solution to Maxwell’s equations (4.1),
(4.2) in some space-time neighborhood Vof(O,x) with (i) E(0)= e, H(0)-h in VA ( t=0}
and (ii) t (E(t), H(t)) continuous with values in L2(w)6 for in a neighborhood of zero.
Here is an open neighborhood ofx o, c (x" (0, x) V ).

First we show how Theorems 4.1 and 4.2 follow from Theorem 4.3.
Proof of Theorem 4.1. Define K as the set of points (t,x) N 4 such that the ball

(ly-xl<=ltl}f(O). Kc Q by the timelike condition assumed for Z. Of course, in K
the desired solution will be equal to the usual free solution of Maxwell’s equation with
the same initial data. At each point (0,x) of (0} Of(0) Theorem 4.3 guarantees the
existence of a solution of (4.1), (4.2) in some neighborhood V of (0,x). The compact
set (0} Of(0) may be covered by a finite number of such neighborhoods. Where these
neighborhoods overlap, the local solutions will agree by the uniqueness part of Theo-
rem 4.3. In this way a unique solution is shown to exist in Q (Itl =< e } for some e > 0.
The e > 0 can be determined in a uniform fashion as we march ahead in time with steps
of length e.

Proof of Theorem 4.2. The result is clearly true if A t { t=0} c Q because then
A c Q by the timelike property of Z and we may use the well-known causality proper-
ties of the free Maxwell equations. Thus we assume A meets 5;. It suffices to show that
(E, H)= 0 in A s Q for each > 0 where A s is the slightly smaller cone with vertex at
(s-,y). By the local Theorem 4.3, (E,H)=0 in a neighborhood of A((0)}. It
follows that (E, H) 0 in A Q ( =< e } for some e > 0. Due to the compactness of
A E, we may repeat this argument a finite number of times to show that (E,H)=0
in At Q.

Now we turn to the proof of Theorem 4.3. We apply Proposition 3.1 to the
hypersurface Z =OQ in a neighborhood of the point (0,x). Thus there exists a proper
transformation (t,x)-(t,x’) which takes (0,x) into (0,0) and E into Z’=(x=0}.
That is, ’ is stationary. The flat metric g goes into a good metric g’ and the Maxwell
equations are satisfied for the fields E’, D’, H’, B’ in a neighborhood V’ of (0, 0) (see
Moiler [6]).

(4.4) to’- X7 H’= 0, X7-O’= 0 in V’ Q’,

tB’+ 7 E’=O, V .B’=O in V’

with initial conditions

D’(O,x’) d’( x ), B’(O,x’) b’( x

where XT. d’ 0 in V’ Q’ ( 0 } and ST. b’ 0 in V’ ( 0). The fields still vanish
on the body, that is, on V’\Q’. Since Z’ is stationary, the boundary condition has
become (formally) n E’= 0 and n-B’ 0 on Z’ where n (0, 0,1).

Let 2’ be the hemisphere (x’" [x’[ =< } Q’cq { t= 0}, and choose T, i > 0 so small
that (-T, T)f’c V’ Q’. By Proposition 2.1, D’ and B’ are expressible in terms of
E’ and H’. Therefore the evolution equations of (4.4) may be written

(4.5) t ’//
H’ + vE’

with initial conditions

E’]/4’ (0)=
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We shall in addition impose the boundary condition n E’= 0 on ’ where n is the
unit normal to ’.

The initial-boundary value problem (4.5) has a unique solution, continuous with
values in L2(’)6 by virtue of Proposition 4.4 to be proved shortly. Assuming the
existence and uniqueness of solutions of (4.5), it remains to check the auxiliary condi-
tions XT. D’ 0 and X7. B’= 0 of (4.4). But this follows immediately from the evolution
equations (4.4) and the fact that XT. d’= 0 and XT. b’= O. The solution thus constructed
on (- T, T) fl’ may be then transformed back into a solution of the original problem
(4.1), (4.2) in some neighborhood V of (0,x).

Remark. If Y, is a C hypersurface and the initial data are C, so is the unique
solution. We omit the proof, which is fairly standard.

Proposition 4.4. Let e’, h’ be given in L2(’) 3. Then the problem (4.5) has a unique
solution (E’, H’) continuous on It[ <__ T with values in L2(’)6.

Proof. We shall write (4.5) as an equation in the Hilbert space X’-L2(’)6. Let
u (E’, H’) and define the operator

A0=[ 0 V l-Vx 0

with domain D(Ao)=(u=(E’,H’)" u.C(t)6, nXE’=0 on 0’}. Define A as the
closure of A 0. It is not difficult to show that A is skew-adjoint in X: A*= -A (see
Schmidt [8, p. 313]). Furthermore let M(t) be the operator on X of multiplication by

’(t, x’). Then M(t) is a bounded self-adjoint operator on X which is (strictly) positive
and depends smoothly on t. It suffices to show that the initial value problem

d
(4.6) -[M(t)u(t)] =Au(t), u(O)=uoX

can be solved uniquely in X. This is true using only the abstract properties of A and
M(t) mentioned above.

To do so, we apply the theory of Kato [3]. We rewrite (4.6) in the form

(4.7) --dt --[M(t)]-1Au(t)-[M(t)]-1 dM u(t).

Let A(t) M(t)] [A M’(t)] with the constant domain D(A(t)) D(A). Here the
prime denotes the time-derivative. We claim that the family of operators { A(t)} is
stable in the sense of Kato.

Indeed, we apply [3, Prop. 3.4] with (u,v)t=(M(t)u,v)x. Then (for O<=t,s<= T)

II.II -II II ,l I(M(t) M(s ) u ,u )l

or

Ilull llull; k’lt- #l,

whence

exp( clt sl)<llull Ilull Zexp(clt-sl)
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for some constant c. Furthermore

([M(t)]-1Au,o)t--(Au,o)--O
so that [M(t)]-IA generates a contraction semigroup in Xt(= X with [] ]]t)- By Proposi-
tions 3.4 and 3.5, { A(t) } is stable.

Furthermore we define Y=D(A) so that tA(t) is a C map from R into
o(y, X). Now apply [3, Remark 6.2]. Thus all the conclusions of Kato’s Theorem 6.1
are valid. Therefore there exists a unique family of bounded operators U(t,s) on X
0 _< s _< _< T such that:

(a) U(t,s) is strongly continuous in t,s with values in&(X, X), U(t,t)=I and

U( t,s )ll.( x,x) <= Kexp( fl( t- s));

(b) U(t,r)= U(t,s)U(s,r);
(d) (d/ds)[U(t,s)f]-- U(t,s)A(s)f for allf Y;
(e) U(t,s)gc Ywith norm_</exp(/(t-s));
(f’) U(t,s) is strongly continuous with values in(Y, Y);
(h) (d/dr)[U(t, s)f] A(t) U(t, s)f for all f Y.

Since A is skew-adjoint, we may reverse time in (4.7) and apply the same results to
obtain the existence of U(t,s) for T<_s <=t <_ T.

5. The dielectric. In this section we assume that the body is a dielectric with
constants e and / which moves at a speed v which is less than the speed of light
(8)- 1/2 in the body:

1
(5.1) Iv[<

eV
<1.

The second inequality says that light travels at a slower speed in the body than in a
vacuum (c has been normalized to 1). As in the introduction, let (9(t) be the region
occupied by the body at time t. Let (.0’ be a fixed compact set in R with smooth
boundary. We assume that the motion is described by a function q(t,x’) defined on a

neighborhood, of N x 0’. For each reference point x’ (9’, the point /(t,x’) is the
position at time of the corresponding material point. Thus x’ --, q (t, x’) carries (9’ onto
(9(t). A particular point x=/(t,x’) moves with the velocity v-)q/)t. We assume that
q is smooth, has nonvanishing Jacobian ()//3x’) and satisfies (5.1). In particular it is
a proper transformation in the sense of 3 so that 5? OQ is timelike.

Since the moving body is a dielectric, the Maxwell equations (2.1) and (2.2) are
valid in 4 with J= q=0. However, the four fields have jumps across the boundary.
Denote by [D] the jump of D across , etc. Then (2.1), (2.2) imply the jump conditions

,t[DI-,x[H]=O, ,x" [D] =0,

on , at least if the solutions are piecewise smooth. (When the body is stationary, these
reduce to the usual conditions that the tangential components of H and E and the
normal components of D and B,be continuous across E.)

In the vacuum, occupying the region Q, the constitutive relations are D-E and
B E. When the body is at rest, the fields in the body satisfy D eE and B -/H where
e and t are the assumed dielectric constant and permeability. However when the body
is in motion, the constitutive relations must be modified. Their exact nature is a matter
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of some controversy [7] but their most widely accepted formulation, called the Minkow-
ski formulation or the "instantaneous rest frame hypothesis" [10], is as follows. The
constitutive relations at a point (t,x) in the body are taken to be those of a body
moving with constant velocity equal to the instantaneous velocity of the body at that
point, ignoring acceleration. Thus they are given in [9] as

B-vE=I[H-vD]

where v=v(t,x)=O/Ot is the velocity of the body at that point.
Relations (5.2) can be written in the standard form

(5.3) F=gGg

if we use the notation of 2. Indeed, fix the point (t,x) and let L denote the Lorentz
transformation corresponding to velocity v. That is,

L=
-’Iv I+(’l-1)vv’lvl -

a 44 matrix with the lower right corner a 33 block where "[=(1-1vl)-=
(1- vv) -. (This matrix transforms a point moving with velocity v into a stationary
point.) Let

g=Lfff[- (e/)10 0]L’I
Then an easy calculation shows that inside the body,

r

where F is the 3 3 matrix

1

Because of (5.1), g00 < 0 and F is positive definite. So g is a good metric in the sense of
2. By Proposition 2.1 we can write

where ’=(t,x) is a positive definite symmetric 6 6 matrix. Of course for this very
simple transformation it is easy to write (5.4) explicitly. The result is (see [9])

D, eE,, B, H,,

(5.5) (a-etxlvl)D+/-=e(1-lvl2)E_ +(el-l)(vH.),
(1-e.lvl2)B+/- =/,(1- 1/312) H.I -(E.-- 1)(V

where the fields are resolved into their components parallel and normal to the velocity.
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We set (x,t)=I in Q. Then Maxwell’s equations and the constitutive relations
(5.4) may be combined in the set of equations

(5.6) Ot(t)[E]= VXE
H -VH’

(5.7) V.B=V.D=0 where[D]=[ E]B H"

Both sets of equations are to hold in the sense of distributions on N 4.
THEOREM 5.1. Assume (5.2). Let e, h L2(II 3) 6 such that [d, bl’=(O)[e,h]" satisfy

V" d= V" b= 0 in 3. Then there exists a unique solution E,H of (5.6), (5.7) such that-- (E(t), H( )) is continuous with values in L ( )6 with E(0, x) e(x) and H(O, x)
h (x). For any T> 0 we have

sup IIE(t),H(t)ll <= Crlle,hll.
O<t<T

Furthermore the causality principle holds as in Theorem 4.2.
Proof. As in [}4, Theorem 5.1 can be shown to be a consequence of a local

existence theorem. Thus it suffices to construct a solution in a space-time neighborhood
of (0} (_9(0). We transform to new spatial coordinates x’ by the equation x (t,x’),
thereby mapping 5; into a stationary surface N’= R 0(9’. The metric g given by (5.3)
transforms to a new metric g’. We claim that g’ is again a good metric. Indeed let us
use the previous notation v= )//Ot and T=(Oi/Ox). Then in (9’,

g’=lT’-l/2gY-=[gw" ,’w]
where oq-is as in 3 and g is given by (5.3). A direct calculation shows

go- -(/I Zl)1/2( 8)-1(1 iol2) < 0

and

N’ (//ITI)1/2-./ T’FT
is positive definite since F > 0. Therefore g’ satisfies (2.4) inside (9’. Outside of (9’, g’ is
given by (3.3), and is also a good metric. Thus by Proposition 2.1 there is a positive
definite symmetric 6 6 matrix t’=’(t,x’) such that [D’,B’]’=[E’,H’]’, and the
Maxwell equations in the (t,x’) coordinates may be written in the form (4.5) in a
neighborhood of (9’. Note that x’ (t,x’) has a jump discontinuity across (9’. With
an appropriate use of cut-off functions we can consider the equation to hold in all of
R 4, with the addition of an inhomogeneous term. We can again apply Kato’s theorem
as in Proposition 4.4 to prove existence and uniqueness of solutions for the evolution
equations. The conditions V" D’= V" B’= 0 then follow in the standard manner from
the initial conditions.

6. The scalar wave equation. For a function u(t,x), x, we consider the
problem

(6.1) utt-Au=O in Q,
u u

(6.2) Ova-; + a- + fl u O on Z
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where ct >__ 0 and fl are smooth real functions on X. Here as before v=(vt, Vx) is the
space-time normal to X, v* (- vt, Vx) the conormal, and " (’t, ’x) is a fixed tangential
vector field on X with ’t > 0 and [’xl < ’t.

Let (t) denote the exterior region in R n" (t)= R n\(9(t).
We define L(t) to be the closure of C((t)) C(2(t)) in the energy norm

+lf l

for a pair of functions f-[fl,f2]- For a solution of (6.1), the energy norm is

THEOREM 6.1. Letf L(O). Then there is a unique solution u(t,x) of (6.1) and (6.2)
such that

(i) u(t, .)L(t)for each t;
(ii) when extended by zero inside (9(t), ut(t, .) and t- X7u(t, .) are continuous

with values in L2(
(iii) u(O,x)=fl(x) and ut(O,x)=f2(x ).
For each T> 0

(6.3) sup ]lu(t)ll
O<t<T

where c7 does not depend on f
Before proving Theorem 6.1, we make a brief digression to show that the boundary

condition (6.2) is the "natural" one which yields an energy estimate (6.3).
PROPOSITION 6.2. Let u(t,x) be a smooth solution of (6.1), (6.2) with u(O,x), ut(O,x

having compact support. Then (6.3) holds.
Proof. We may assume the vector field ’= (1,h) where h is a smooth vector field

on X with values in with ]h]< 1. We extend h to a neighborhood of and then
smoothly cut off so that we have h defined on Q with [h[ < 1. It suffices to consider only
real solutions. We multiply (6.1) by ut+ h. Vu. There results

(6.4) O=(u.-Au)(u,+h.vu)

a 2) u

V" -h ut- + Vu(ut+h. vu) -q

where q is quadratic in ut and X7 u. If we integrate the identity (6.4) over Q N (0 < < T ),
we find

(6.5) - (T) O{O<t<=T}

(u +lvul +2u,h. u)ax+2 (o) (t)
q dx dt.
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Since hl< 1, the energy form

-(ut / lvul /u,h. vuZ -is positive definite, and, of course, also bounded above by a constant times the energy
norm of u. It remains to show that the boundary integral f BdS is bounded below.
Now

+ 2uth" X7u)
1/2(. h){ ut- vul=)-( vu)( u,+ h. vu).

Since (1, h) is tangent to E, v + v h 0. Therefore

=,(u+u,h. vu)-(, vu(u,+h, vu

(Ou)(O (o) 1 o- = +(u ).

The first term is nonnegative since a >= 0. The second term can be integrated to get a
lower bound. Then an application of Gronwall’s lemma to (6.5) shows that the energy
is bounded over the interval [0, T].

To prove Theorem 6.1, we first localize the problem and then transform E into a
fixed boundary, thereby introducing variable coefficients into the equation as we did
for Maxwell’s equations. Without loss of generality we assume that in a neighborhood
of a point (0,x),x 3f(0), E is given by

Xn’-’I(t,X1,X2," ",Xn_I)
where Iltl < 1 and lj= 3l/3x=O at (O,x). We change variables

yj Xj forj 1,2,..., n 1,

Z=Xn--I(t,Xl," ",Xn_l).

Thereby the wave equation (6.1) transforms into

(6.6) bltt-- 2aUzt- b2uzz Ayu + 2c" ’TyUz + Uz= O

for z > 0 where A and Vy are taken with respect to Yl," ",Y,-I- Keeping in mind that v
is the normal exterior to Q, we see that the boundary condition (6.2) becomes

(6.7) b2uz-C VyU-[-aut--ol(ut+h’. VyU)--Iu=O onz=0.

in terms of the function l, we have

a=lt, C--(/1,"" ",In_l)

b2__l_a2+[cl
2

d=321
0t2 nl 021

j=l

The tangent vector ’=(1,h) goes into (1,h’,0) where h’=(h,...,hn_l). This kind of
problem has been studied by Miyatake [5]. We shall verify Miyatake’s condition for the
well-posedness in energy norm of (6.6), (6.7). By the localization procedure we have
used earlier, this will prove Theorem 6.1.
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We write r,,’0 for the dual variables to t,z,y where r=o-i3’C, R and
’0 R 1. The principal symbol of the operator (6.6) is P(, , ’0) where

b2p(r ,) r 2 2ar b22 I1 = +2c-.
The principal symbol of the boundary operator is

B(r,,)=bZ-c.+ az-a( + h’.).

The root +(,) of P(z, ,)= 0 with positive imaginary part is

+(,)=b-2[c.-ar+]
where is the root with positive imaginary part of

D= (.):- b=ll-2(.)+(+b:).
To verify Miyatake’s condition, we only have to prove

LEMMA 6.3. IB(r,+(r,),V Igconst/2 or (y,t) in a neighborhood of (0,0) and

or 2+ o2 + [[2= 1, > 0.
Proof. We see that

B(,+(,,),,) -,(+h’-,).

Here r o- i is complex, but a, b, c, h’, and a are real. Writing D D + iD2, we have

D1 D=(.)- b=ll=- 2o. + (1 + I1=)(- 1 + 2= + I1),
and

First suppose a > 0 and O 2 q-1’012 -’[- 3’2__ 1, 3’ >__ 0. We claim that in this case B 4= 0 at
(y, t)-- (0,0). At (y, t)= (0,0), we have c=0, and a 2 + b2= 1, which yields

D (a 2 1)[nl -+o -3’ and D2=-23’o.
In case ’0=0, D=- and v/ =- so that IBl-lv/--al-1 + a0. Thus we may
assume ’0 0. Since D2 has the opposite sign to o, so does Rev. Therefore

IRenl >__ IRe-ao[- c[h’[ l[ >__ a(Iol- [h’l 1[).
Suppose now that ReB=0 at (y, t)= (0,0). Then Io1=< Ih’lll. Hence

because a=l,=lt-c.h’=h at (0,0) and a2-1+lh’12=lh12-1 <0. Since D < _3’2,
we must have Imv > 3’. Therefore

ImB Im v- +a3’> (1 +)v>__0

whence ImB 4= 0. In any case B 4= 0 at (y, t) (0, 0), which establishes the claim. But this
implies that B is bounded away from zero for (y, t) in a neighborhood of (0, 0) so that
the lemma is proved when a > 0.
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Next we consider the case a 0, but do not restrict our attention just to the point
(0, 0). We note that we can write

)2 2 2 2O (c. /a=lnl-1-1el-o, 1D2<_a-1-o7 1D2
because Il 1. This inequality implies that when o >0, D lies below the line with
negative slope D: 3’o-1(D1 + 1- a2). When o <0, D lies above the line with positive
slope D2=3"lo-11(D1+l-a2). Both lines pass through (a2-1,0) where a2-1 <0
because lal--Iltl< 1. When o=0, D >= a 9-- 1 <0. In any case, ID[ >= const3’, so that when
O 0

[B(,t+ (,), n)l--Iv[>= const y1/2

for o 2 _+_ 3’
2 q_ I12= 1, 3, > 0. The lemma is proved.
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A NONLINEAR INTEGRAL OPERATOR ARISING FROM A MODEL
IN POPULATION GENETICS III. HETEROZYGOTE INFERIOR CASE*

ROGER LUIf

Abstract. We study asymptotic behavior of the solutions to the recursion un+ Q[un] for n>=0. Here
Q[u]=K,(go u) acts on functions bounded between 0 and 1, K is a probability density, gC2[0,1] is
increasing, g(0) 0, g’(0) < 1, g(1) 1, g’(1) < 1 and there exists a (0,1) such that g(u) < u in (0, a), g(u) > u
in (a, 1). It is known that a nonincreasing travelling wave w facing right with speed c exists for one value of
c=c* and a nondecreasing travelling wave facing left exists for c=c* We prove here that if c* < c*+,
Uo + )< a and uo is superthreshold, then given w, , u,, is trapped by suitable translations of the function
w(x- nc_)+ (x-nc*)-1 as n . If in addition, K is the normal density and u0 has compact support,
then u,, converges exponentially to the above function for some w and .

1. Introduction. This is the fourth in a series of papers (see [23], [24], [25]) concern-
ing the long-term behavior of a discrete time population genetics model in which the
individuals are assumed to be living in a homogeneous one-dimensional habitat. The
model, proposed by Weinberger [36] to describe the spread of an advantageous gene, is
actually an improvement of a similar model proposed by R. A. Fisher in his classic
paper [11].

In Fisher’s model, the fraction u(x, t) of the advantageous genes in the population,
at time and at point x, is governed by a partial differential equation of the form

(1.1) Ou O2u
Ot Ox- +f( u )’

where f(u) satisfies the conditionsf C1[0,1], f(0)= 0, f(1)= 0.
We are interested in how the advantageous genes spread through the population in

the long run. Mathematically, this corresponds to describing the limiting behavior of
the solution u(x, t) of (1.1) with the initial condition u(x, 0)= Uo(X ).

Many far reaching results have been obtained over the years on this problem, [1],
[3], [4], [6]-[8], [12], [17], [18], [21], [26], [29], [30], [33]. Extensions have also been made.
For example, the case when the habitat is no longer homogeneous and f depends on
both u and x has been considered in [9], [10], [12], [28]. Partial results for the fully
nonlinear case, u,=f(uxx, ux, u ), where (0/0c)f(a,/3,)_> 1, are obtained in [13] and
[14] and for the quarter-space problem in [34], [35]. However, if we allow more
interactions between the species in the population, then we have to consider a system
rather than a single equation, or if we assume that the habitat is multi-dimensional,
then 2U/X2 in (1.1) must be replaced by the Laplace operator Au. These problems
are substantially more difficult than (1.1) and so far very little is known, [2], [16], [20].

The purpose of this series of papers is to show that most of the results obtained for
Fisher’s equations are also valid for Weinberger’s model. We begin by briefly describ-
ing the model itself. Further details may be found in [36] and [38].
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Consider a diploid population whose members carry a certain type of gene that
occurs in two variant forms labeled as A and a. There are then three genotypes: the
homozygotes AA and aa and the heterozygote Aa. Individuals from this population are
classified according to genotype. We shall make simplifying assumptions in order to
work with a single equation involving the gene fraction instead of a system of equations
relating the frequencies of the genotypes. The gene fraction u(x) here is defined as the
ratio of the number of alleles of type A to the total number of alleles of type A and a at
the point x.

We assume the habitat is the entire R S(N 1, 2 or 3) and that time is divided into
discrete nonoverlapping generations. The life cycle of a new (say n th) generation begins
when the parent generation randomly mate without regard to genotype, produce off-
spring and die. These offspring undergo various hazards for a period of time before
they are mature and migrate. The ability of an individual to survive these hazards
depends only on its genotypes. Let the fitnesses of the three genotypes AA, Aa and aa
be in the constant ratios 1 + s 1 1 + o and let un(x ) denote the gene fraction of the nth
generation right after birth. Then, assuming the Hardy-Weinberg Law holds, the gene
fraction of the population just before migration is given by g(Un(X)) where

(1.2) g(u)= SU2 -[- U

1 + su 2 + o(1 u) 2

We assume the total number of individuals that survive to migrate is of a constant
carrying capacity and that migration occurs randomly, independently of time or geno-
type. Since the habitat is homogeneous, the fraction of the population that migrates
from the point y to the point x depends only on x-y and is given by K(x-y)dy,
where K(x)>=O. Since every individual must go somewhere, fK(x)dx= 1, i.e., K is a
probability density.

After the migration, the species mate randomly, produce offspring and die, thus
completing one life-cycle. Under these assumptions, the gene fraction of the (n + 1)st
generation immediately after birth is equal to the gene fraction of the n th generation
after migration. We have therefore arrived at the following formula,

(1.3) f K(x-y)g(un(Y))dy.

Equation (1.3) is an example of a recursion of the kind

(1.4) u,+x=Q[u,],

where

Q[u](x)=f K(x-y)g(u(y))dy.

It is clear from (1.2) that g(u) increases from 0 to 1 on the interval [0,1]. Since K is a
probability density, we see from (1.5) that if 0 __< u 0 __< 1, then 0 <_ u, __< 1 for all n.

Without loss of generality, we may always assume that A is the advantageous gene
so that o =< s. From (1.2), there are then three cases to consider.

(i) o < 0 < s. This is the heterozygote intermediate case meaning that AA is the
most fit to survive and aa is the least fit to survive. We note that g(u)>u if 0 < u < 1.

(ii) o __< s < 0. This is the heterozygote superior case with Aa most fit to survive. We
note that g(u) > u if 0 < u < o/(s + o ) and g(u) < u if o/(s + o ) < u < 1.
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(iii) 0 < o __< s. This is the heterozygote inferior case with Aa least fit to survive. We
note that g(u)<uifO<u<o/(s+o) and g(u)> u if o/(s+o)<u<l.

The model described above is of course very simple, and situations when one or
more of the assumptions are not satisfied are of much biological interest. Some of these
situations are discussed in [27] and [37].

We now turn to the question of examining how the advantageous gene A advances
through the population after many generations. Mathematically, this is equivalent to
determining the limiting behavior of the function u,(x) as n- . The most important
concept involved here is the wave speed, c*(), defined for every unit vector R N. It
is, in an asymptotic sense, the speed with which initial disturbances are propagated in
the direction of the vector . The precise definition of c*() is given in [38, 5].

Consider for the moment, the one-dimensional heterozygote intermediate case. Let
u 0 have compact support in R and define u, recursively by (1.4). Then under ap-
propriate conditions on K and g, we have

lim max u. (x) 0 for every c < c* ( 1) < *(1) < c2
n x[ncl,nc2]

and

lim min u.(x) 1 forevery-c*(-1)<c<c’2<c*(1)
,0 [,’, ’l

(see [38]). This indicates that c*(1) and c*(-1) are the asymptotic speeds of propaga-
tion for initial data with compact support in the positive and negative directions
respectively. However, on the intervals [ncl, nc’x] and [nc’, nc2] we have no information
about the function u,. It is proved in [24] (with more assumptions on K and g), that
u,(x) actually develops uniformly in x, as n o, into a pair of diverging waves, with
speed c*(1) and c*(- 1), facing opposite directions.

A nonconstant solution of the recursion (1.4) which is of the form u,(x)=
w(x.- nc), where is a fixed unit vector in R N, is called a travelling wave of speed c.
For the heterozygote intermediate case, nonincreasing travelling waves of speed c are
known to exist if and only if c_>_ c*(), [38]. For the heterozygote inferior case, mono-
tone travelling waves exist if and only if c= c*( _+ 1), [25]. We shall return to this in {}2.

Consider now the behavior of u, in the one-dimensional heterozygote inferior case.
As in the intermediate case, if we assume that -c*(-1)<c*(1) and that u0(x)>
o/(s + o) in a sufficiently large interval, then

(1.6)

and

(1.7)

lim max //n(X)--O for any c < -c*(-1)<c*(1)<c2
o x Cli c c

lim min u.(x)=l for any -c*(-1)<c<c<c*(1).
" x [,,’.,’.1

The main purpose of this paper is to describe the behavior of u in the rest of
We are able to show that under very general conditions on K and g, if u0(x)> o/(s +
on a sufficiently large interval and if Uo(X)<O/(s+o ) for x near _+0, then u. is
trapped in between two translations of the function w(x-nc_)+,(x-nc*)-I as
n---, . Here c=c*(1), c*= -c*(-1), w is a nonincreasing travelling wave of speed
c_, and is a nondecreasing travelling wave of speed c*. Furthermore, if K is the
normal density and if c_>0, then u, converges exponentially to a pair of diverging
waves w(x nc_- Xo)+(x- nc*_- xl)- 1 as n
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The results we obtained here are quite similar to those obtained in [23], [24] except
that there, K only needed to be in PF (see {}2) while here, K must be the normal
density. On the other hand, results here are true for a wider class of u 0, and the rate of
convergence is exponential.

The rest of this section contains the hypotheses on K and g. Section 2 contains the
mathematical preliminaries. Section 3 contains the statement of the results while the
proofs are presented in 4, 5, and 6.

The following assumptions on K are identical to those listed in (1.3) of [25]. They
are assumed to hold throughout the rest of this paper.

(i) K(x)>=O. If Bl=inf(x:K(x)>O), Bz=sup{x:K(x)>O), then K(x)> 0 in
(BI,B2). We allow B - or B2= so that K need not have compact
support.

(ii) K(x) is continuous in R except possibly at B1, B, where lim B1K(x)=pl,
limx, B2K(x)=p2. Also K may be written in the form

/() =/o()-p-,-p,,
where K is absolutely continuous and Xs is the indicator function of the set

(1.8) S.

(iii)
(iv)
(v)

fK(x)dx=l,
fK(x)edx is finite for every real/z,

fK(y) dy <_ const. K(x) for large x and f

_
K(y) dy

__< const. K(x) for small x.

Remark 1.1. If K is the normal density, then all of the above assumptions hold.
The constant in (v) may be replaced by 1/x. See [5, Chap. 7]. Instead of assuming that
g has the form (1.2) in the heterozygote inferior case, we assume the following about g
throughout the entire paper:

(vi)
(vii)
(viii)

(ix)
(x)
(xi)

(xii)

gc[0,a].
g(0)=0, g(a)=.
There exists a constant a (0,1) such that g(u) <u in (O,a)
andg(u)>uin (a, 1).
g’(u) >0 in [0,1].
g’(O) < 1, g’(1) < 1.

g(u)>=g’(a)(u-a)+ain [O,a] and

g(u)<__g’(a)(u-a)+ain [,,,1].
’(O)-<S()__<’()(u-)+ in [0,1].

Remark 1.2. Conditions (vi), (vii), (viii), (ix), and (x) are obviously satisfied when g
has the form (1.2) with a=o/(s+o), g’(0)=l/(l+o) and g’(1)=1/(1+s) (s, o are
positive). Also condition (xii) is valid. The right-hand inequality reduces to showing
that the polynomial dp(u)=(s+o)u3+(os-2o-s)uZ+(o-2os-s)u+(s+os) is
nonnegative in the interval [0,1]. This is accomplished by observing that ff(O)>O and
q(1) 0 is a local minimum.
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Remark 1.3. It is easy to prove that (xi) implies

1-g(1-u)
max

g(u)<g(a) and max <g’(a),
[0,1] U [0,1] U

which is sufficient for the results in [25] to hold. In [25, (1.4)] it was assumed that
g’(u) __< g’(a), which holds if and only if s a.

2. Mathematical preliminaries. Let 0 < , < 1 and define m / (7) sup ( x" un(x) >
7}, m-(7)=inf{x’u,,(x)>-_7) whenever possible. The following theorem, which is a
special case of [38, Thins. 6.1 and 6.2], implies that m,+(7) and m-(7) will be defined
on every compact subset of (0,1) for sufficiently large n.

THEOREM 2.1 (asymptotic speed of propagation). Let uo have compact support and
c* < c*+. Then for any *l > O, there exists an L > 0 such that if uo(x) > a + *l on an interval
of length greater than L, then (1.6) and (1.7) hold. In particular, for any 0 < , < 1,

(2.1a)
and

(2.1b)

m+(r)
lim c_

m-(?)
lira ---v- c*

A similar statement holds if uo vanishes for sufficiently large x and liminfx__, Uo(X)> a.
Remark 2.1. If uo satisfies the assumptions in Theorem 2.1, then un propagates as

n ---> c. In the future, we shall say uo is superthreshold.
THEOREM 2.2 (existence of travelling waves). There exists a nonincreasing function

w(x ), w( o) 1, w(o) 0 and a nondecreasing function (x), () 1, ( ) O,
such that if u,(x)= w(x- nc_) or u,(x)= (x- nc*), then u, satisfies the recursion (1.4).

Proof. [25, Thm. 5].
Remark 2.2. w, are of course determined only up to translations. From now on,

w, will denote travelling waves with speeds c_ and c*_ respectively.
THEOREM 2.3. Let u o satisfy the conditions liminfx__oUo(X)>a and

lim supx_, Uo(X)< a. Then given a travelling wave w, there exist constants x1, x 2, qo and, the last two positive, such that

(2.2) w(x-xl)-qoe-’n<=un(x+nc_)<=w(x-x2)+qoe-" foralln.

A similar statement holds ifliminfx_o u0(x)> a and lim sup, Uo(X)< a when w and
c_ are replaced by and c*, respectively.

Proof. [25, Thm. 4].
LEMMA 2.4. Suppose uo satisfies the hypotheses of Theorem 2.3, then given e > O,

there exists a 8>0 such that if Uo(X)-W(x)l<8 for some travelling wave w, then
lu,(x + nc*+)- w(x)l <e for all n.

Proof. Theorem 2.3 is proved by first choosing zo, q0 such that w(x-zo)-qo<
Uo(X ) and a < 1 qo < liminf Uo(X ). Then by defining z,+ kqoe-" + z, re-
cursively, where k, #>0 depend only on w and g, we can show that w(x-z,)-qoe-""
<=u,(x+nc) for all n. Since zn=zo-kqo((1-(e-")’)/(1-e-")) decreases to the
limit x =zo- k’qo as n---> oe and since w is nonincreasing, we may replace z, in the
above inequality by x to obtain the left side of (2.2). Having recalled all these, we note
that our hypotheses imply that w(x)-8 <Uo(X for all x. Letting Zo=0 and qo=6 in
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the above argument, we have from (2.2)

w(x)-u,(x + nc) <_ w(x)-w(x-xl)+qoe-" <__ (Mk’ +

where according to (ii) of (1.8), we may take M=llK’[ll+Pl +p2>=llw’ll. n similar
argument will prove the opposite inequality.

LEMMA 2.5 (uniqueness of travelling waves). Let w satisfy the conditions
liminfx__,. w(x)>a, limsupx_.Wl(X)<a and let u,(x)=w(x-nc) be a solution to
the recursion (1.4). Then c=c_. Furthermore, if K is the normal density, then wl(x)=
w(x ) for some constant .

Proof. Letting uo=w in Theorem 2.3, we have w(x-xl)-qoe-"n<=
wl(x+n(c_--c))<_w(x--xE)+qoe-"" for all n. If c4c, then by letting nm we
arrive at a contradiction. Thus c=c and w(X-Xl)<=Wl(X)<=w(x-xE). Let x*=
inf{x2"w(x)<__w(x-xE) on N} and define w2(x)=w(x-x* ). If w(xo)=WE(Xo)
then

O=Wl(xo)-W2(Xo)=f K(xo+c-y)[g(wl(y))-g(w2(y))] dy.

Since g is increasing and wt(x) =< w2 (X ), the above inequality implies that w(x) w2(x)
on an interval containing x0 (note that B1 < c*+ < BE). Thus the set where Wl(X)= wE(x )
is open and is obviously closed. To show that it is nonempty, we need the techniques in
{}6. The case when K is the normal density is shown in the appendix. The theorem is
true under (1.8) but the proof will be published elsewhere.

LEMMA 2.6. Let 0 < fl < 1 and q)(#,fl)=(1//)ln( flfK(x)eXdx }. Let I* be the
unique positive root of (I, g’(0))= c*+ and -* be the unique negative root of (l, g’(1))

c_. Then

(2.3a) w(x) e -"*x as x ,
(2.3b) 1 w(x) e r’*x as x .
Similarly, let -g, be the unique negative root of (l,g’(O))=c* and t, the unique
positive root of (,g’(1))= c*, then

(2.4a) V(x ) e*x as x oe,

(2.4b) 1 (x) e-"*x as x oe.

Proof. [25, Prop. 5].
In this paper, f(x)-- g(x) as x + oe means that f(x)/g(x) converges to a

positive constant as x --, + m.
LEMMA 2.7. Suppose that K changes signs a finite number of times; then w’(x)--
* ft*e*I*e as x --, and w’(x)-- as x . Similar results holdfor V.

Proof. The proof of [23, Lemma 7] is valid here to show that w’(x)-- -I*w(x) as
x m. We simply replace wc,/,.,/3 in the proof by w,/* and g’(0) respectively and
then make use of (2.3a) and q(/*,g’(0))=c_. This result and (2.3a) obviously imply
our lemma.

Remark 2.3. Using the facts that w’(x)= fg(x + c-y)g’(w(y))w’(y)dy and g’>
0, we see that w’(x)< 0 in . In particular, on every compact subset of N, w’ < -e < 0
for some e > 0.

Remark 2.4. If K(x)= K(-x), then (-x) is a nonincreasing travelling wave with
speed -c*. From Lemma 2.5., c=-c*. Thus c_>0 if and only if c_>c*. It is
conjectured that if g is even, then c> 0 if and only if fg(x)dx > 1/2.
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Remark 2.5. Let K(x)=(2r)-X/2exp(-x2/2} so that fK(x)e’Xdx=exp(l2/2}.
From Lemma 2.6 and the facts that g’(0)< 1, g’(1)< 1, we have

(2.5a) 2c_-/* < 0, 2c_-* < 0,

(2.5b) 2c*-, < 0, 2c*_-/, < 0.

LEMMA 2.8 (comparison principle). Let 0 <= o <= 1 and 0 <= w <= 1 be two sequences of
functions such that 0,+ >= Q[on] and wn+ <= Q[wn] for all n. Suppose further that Oo> wo,

then o w for all n.

Proof. This follows from an inductive argument.
We close this section by introducing the class of PF functions. They will be

needed later on for a result like Lemma 2.4 but with u0 having compact support.
A PF function is just a nonnegative function in R. A functionfPF iffPF

and if for every q with no more than r- 1 number of sign changes in R, f q also has
no more than r 1 number of sign changes in . Iff PFr for every r > 0, thenfPF.
The normal density belongs to PF.

We remark that the hypothesis in Lemma 2.7 is satisfied if K PF2. Furthermore,
ifKPF3, then px =p2= 0 in (ii) of (1.8) so that K is absolutely continuous.

LEMMA 2.9. Let KPF and c_ > O. Suppose uo has compact support and is super-
threshold. Suppose also that for some e > O, the line u crosses uo exactly twice for every
a e <= <_ a + e. Then the line u crosses u exactly twice for every g.(a e) < <
g"(et + e), n0.

Proof. The argument is the same as [24, Lemma 2]. Note that g"(ct-e)$ 0 and
g"(a+e)$1 as n o.

LEnA 2.10. Suppose KPF2, u0(x)=0 for x>=A. Then there exist w and L such
that u, (x + nc_) <_ w(x L) for x >= L.

Proof. Let f0(x)=l for x=<0 and f0(x)=0 for x>0. Define f recursively by
f + Q[ f, ]. Then for any 0 < 3’ < 1, f(x +f- 1(7)) increases uniformly to the travelling
wave w(x + w- 1(,)) for x 0 and decreases uniformly to w(x + w- 1(7)) for x =< 0. This
assertion is proved in [23, Lemma 13] assuming that K has compact support and g is in
the heterozygote intermediate case. But the proof only makes use of the fact that
K PFa and g is nondecreasing; hence it is also valid here.

By our hypothesis, we may assume without loss of generality that A =0. Thus
Uo<_fo and from Lemma 2.8, un(x+nc_)<__f,(x+nc_). From (2.2) with un=f, and
x =f-1(7 ) nc_, we see that [/’-1(3,)- nc_l <= L for all n. Thus f(x + nc) <=
f,, (x +f- 1( y ) L ) __< w(x + w- 1( 7 ) L ) whenever x >__ L. We may choose y small so that
w-1(7 ) >= 0; this and the previous inequality imply our lemma.

3. Statement of the results. For the convenience of the reader, we summarize our
theorems in this section. Their proofs will be presented in the subsequent sections.

THEOREI 3.1. Let c* < c*+, and let uo be superthreshold and satisfy the condition
lim suPlxl__, Uo(X)<a. Then given w and , there exist constants x1, Y.1, x2, Y2, qo and I,
the last two positive, such that

w(x-nc_-Xl)+(x-nc*-l)-l-qoe-tn. bl X ) .,W( X nc_ x2 ) + g( x nc* 2 ) 1 + qoe-t*n

for all n.
THEOREM 3.2. Let Kl(x)=(Zr)-l/exp(-x/2} and K(x)= Kl((X-Z)/o ) for

some and o > O. Suppose u0(x)=0 for large x, liminfx_,_ u0(x)> a if c_> and
uo(x) 1 for small x, lira SUpx_ uo(x) < a if c*+ <= , then there exists a travelling wave w



NONLINEAR INTEGRAL OPERATOR IN POPULATION GENETICS lII 1187

and constants C, e >0 such that lu(x + nc_)-w(x)l <= Ce for all n. Similar results hold
for the negative direction with w and c_ replaced by and c* respectively.

THEOREM 3.3. Let K satisfy the same hypothesis as in Theorem 3.2. Suppose c*__ < <
c_, and that uo has compact support and is superthreshold; then there exist travelling
waves w and and constants C, e>0 such that lun(x)-w(x-nc_)-(x-nc*)+ll
Ce for all n.

Remark 3.1. Theorem 3.3 is probably still true if we replace the condition that u 0

have compact support by the condition lim suplxl_ u0(x)< c. Theorem 3.2 is probably
true if uo satisfies the conditions limsupx_ u0(x)<a and liminf__ u0(x)> c re-
gardless of the sign of c*+-.

Remark 3.2. Theorem 3.1 is like Theorem 2.3 and so is its proof. Observe that if
c* < 0 < c_ and x >__ 0, then for large n, (x- nc*- 1) and (x- nc*- Y2. are close to
1 so that the inequalities in Theorem 3.1 look exactly like (2.2). As me :oned in
Theorem 2.3, (2.2) has a counterpart involving , c* and u facing left which looV.s like
the inequalities in Theorem 3.1 for large n and x =< 0.

Remark 3.3. Theorems 3.1 and 2.3 are stronger than Theorem 2.1. For example,
the former two theorems would imply that for any q, ,2(0,1), m+,(yl)-m+(,) is
bounded as n . However, (2.1a) could hold even if m+(q,1)-m+(3,2)=, O(logn).

4. Proof of Theorem 3.1.
LEMMA 4.1. Let the hypotheses of Theorem 3.1 be satisfied. Then there exist two

sequences of real numbers (a }, (b ), both decreasing and bounded, and positive con-
stants qo, z, such that if vn(x) w(x nc_- an)+(x nc* + bn)- 1 qoe-n, then vn+
<= Q[ vn] for all n.

Proof. The proof is rather long and will be given in several steps. We first assume
that c*_ < 0 < c$.

Step 1. Choose q such that 0 < q < 1 a; then there exist constants 8 > 0; 0 (0,1)
such that

(4.1) g(w-q)-g(w)>=

for all 0 =< w =< i or 1 i =< w _< 1 and 0 =< q =< q. To see this, let

g(w)-g(w-q)
if q4:0

q(w,q) q

g’(w) if q=0

on the interval 0 =< q _< q), a =< w =< 1. We shall define g(u) 0 if u < 0. From the assump-
tions on g, we see that q(w,q) is uniformly continuous, and there exists 01 such that
q(w, q)< 01 < 1 for 0 =< q =< q and w 1. Therefore the same inequality also holds if w is
in a left neighborhood of 1. This implies (4.1) when 1- =< w N 1. If w is near 0 and
w-q>=0, then (4.1) follows from the mean value theorem provided; if necessary, we
increase 01 so that g’(0)<01 <1. If w-q<O, then since limwo(g(w)/w)=g’(O)<O1,

we have g(w)/q <= g(w)/w _<_ O for sufficiently small w. This completes the proof of
(4.1).

We remark here that once (4.1) is established it continues to hold if we decrease
q > 0 with no change in 1 and 8.

Step 2. After having chosen 01, i and q, we define all other constants necessary
for the rest of the proof in this step. The order of their dependence is important.
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Let maxto.llg’(u)=M> 1. According to (2.3) and (2.4), there exist A, v>0 such
that

(4.2) 1-w(x) <=Ae "x and 1-(x) <=Ae for all x.

Let c* max(c*, -c*+) and > 0 be sufficiently small that

(4.3) vc*+/<0
and

(4.4) 01 < e-.
From (4.4) we choose e > 0 such that

(4.5) eM+ 01 < e-.
Choose sufficiently large that

(4.6) -’ K(x)dx <= - and K(x)dx <= -.
For any 0 < , < 1, we introduce the notation Er= w-l(y) and r= -1(3,). Then since
w’ < 0 in R, there exist 02, 3 > 0 such that

(4.7)
w(x)-w(y)<= -e2(x-y)
,(y)-(x)<= -O3(x-y )

if E
_

c_- 2l <_y < x =<E c_ + 2l,

if E- c*_- 21_<y < x _< E _- c*_ + 2l.

Choose q0 < q0 such that, for sufficiently large m,

(4.8) (eM+ 01 M)(Ae-’m + qo) <=/min(02,03).

Fix m large so that (4.8) holds together with the following:

(4.9)
and

(4.10)

eM+ O1)
Ae-"m + q

<

Ae-"m + qo < q).

Finally we define the sequences ( a, }, { b, recursively by

(4.11)
(4.12)

an+ l=a,,+ 02-1(eM+ 01 M)(he + qo)e -’’,

bn+ b + 0;1( eM+ 01 M)( Ae-"m + qo)e -’’.

Then

(4.13) an--" ao4 E (ak+l ak) ao+C E (e-)k =a0+ C
1- (e-’)"

k=o ,=o 1 -e-
where C= 0- l(eM + 01 M)(Ae-"" + qo) is negative. Similarly

(4.14)
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where C’=Ofl(eM+O1-M)(Ae-m+qo) is also negative. It is clear from (4.11) and
(4.12) that a,, b, are decreasing. If we choose a 0, b0 sufficiently large such that

-C -C’
ao>_

l_e_+m and bo>_ l_e_+m,
then from (4.13) and (4.14), we have

(4.15) a,>__m, b. >= m for every n.

Step 3. For every n, define the intervals

In [El_ + l"lC_ -1- an, Ea + nc_ + a. ],
F;= [EI_ + nc_+ a.-1, E+ nc_+ a. + l],
rn-- ff,-l- nc*__- bn, ff_,l_-l- l,lC*_- bn]
r; ff, + nc*- b,- l, E-_ + ,c*- b, +

The relation v,+ <= Q[v,] is equivalent to showing that the following expression is
bounded above by q,+ qoe--("+ 1):

(4.16)

w(x--(n+ 1)c*+--an+l)--w(x--(n+ 1)c_--an)
+ (x--(n + 1)c*+ bn+l)-’(x-(n + 1)c* + b.)

K(x-y){ g[w(y-nc:-a.)-(1-,(y-nc*__+b.)+qoe-")]

-g(w( y-nc_-a.)) } dy
K(x-y){ g[w(y-nc*+-a.)-(1-,(y-nc*_+b)+qoe-’")]

-g(w(y-nc_-a.))}dy

K(x-y) { g[,( y- nc* + b.)- (1- w( y- nc_- a.) + qoe-’)]

-g(,(y-nc*_+b.)))dy
K(x-y) ( g[,( y- nc* + b.)- (1- w( y- nc*+- a.) +qoe-")]

+

_
K(x-y)[g(w(y-nc_-a.))-l] dy

+ + K(x-y)[g(N(y-nc*_+b))-l] dy.

We shall call the first four integrals 11, 12, 13 and 14 respectively. Since the last two
integrals are negative, it suffices to show that all but the last two integrals are bounded
above by q,+ 1. We do this in two steps.
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Step 4. Here x F,’ u F. We have according to (4.2), (4.6), (4.3) and (4.15) that

K(x-y)g’(li)[1-V(y-nc*_+b,)+qoe-""] dy

<_ Mfr"c" K(x-y)[Ae-’(y-nc*+b")+ qoe-tn dy

<=M[Ae"’*-"-"b,,+ qoe-"] fr.cn K(x-y)dy

<= -M Ae I)n- +qo e <= -M[Ae-m+qo]e-’"
For 12, if y Fc, then y <= El_ + nc + a or y >= E + nc_ + a,, in both cases
w(y-nc*+-a,) [0,8]u[1-8,1]. Also, since y >= 0, we have from (4.2), (4.3), (4.15) and
(4.10),

l-(y- nc*_+ b.) + qoe-""

<--Ae-’(y-nc*+b")+qoe-tn<= Ae(’c*+t)n-’b"q- qo] e-tn<= Ae-’m-k- qo] e-tn <=q"

Therefore according to step 1,

K(x-y)[1-V( y-nc* + b,)+qoe-"] dy

Similarly,

<01[Ae-m+qo]e-nfR K(x-y)dy.

13= fP, cR- K(x-y)g’(li)[1-w(y-nc_-an)+qoe-"’] dy

<-Mfr. n- K(x-y)[Ae(Y-"’-a")+qoe-tn]dy

< -M[Ae-"m+qo]e-tn.

For 14, ify F2’C N-, then V(y-nc*+b,,)[O,8]u[1-8,1] and

1-w(y-nc_-a,,)+qoe-"’<=[Ae(-"ct+’)"-"a"+qo]e-’"
<= Ae-m + qo] e-"" <= q).

Thus

I4<_O[Ae-"m+qole-"’_ K(x-y)dy.

Since a,, b,, are decreasing, the sum of the first four terms in (4.16) are nonpositive so
that altogether, if xF’L)F (4.16) is bounded above by (eM+O1)(Ae-m+qo)e tzn

which according to (4.9) is less than q,/ 1-
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Step 5. To treat the case when x F or x Fn’, we combine 11, 12 and 13, 14. As in
step 4,

11 +12"-" f.+ K(x-y)g’(li)[1-V(y-nc*_+bn)+qoe-’"] dy

and

<=M[Ae-m+qo]e-’nfa K(x-y)dy,

13 + I4

_
K(x-y)g’()[1- w(y-nc_-a,)+qoe-’"] dy

<__M[Ae-"m+qole-tn_ K(x-y)dy.

Hence 11 + 12 + 13 + 14 <= M[Ae- ._[_ qo]e-,n.
Now if x F’, then

E_- c_- <_x- (n + 1)c_- an<__E- c_+ l.

Since a is decreasing, we have from (4.8) and (4.11) that x-(n + 1)c*-+ an +1=< E- c_
+ 2l. Hence according to (4.7) w(x-(n+ 1)c_-an+l)-W(x-(n+ 1)c*+-an)__<
-O(an-a,+l ). Therefore, if x F,, (4.16) is bounded above, according to (4.11) and
(4.9), by

-02(an- a,,+ 1) -[- M[Ae-’m + qo] e-"n= (eM+ 01) Ae-"" + qo] e-’" -< qoe-’(n+ 1).

Similarly, if x F,, then

E--- c*- <__x- (n + 1)c* + b,<= ff’l-- c* + l.

Since b is decreasing we have, from (4.8) and (4.12), x-(n + 1)c* + bn+ => E- c*- 2l.
Hence

W(x-(n+ 1)c*+ bn+l)-V(x-(n+ 1)c*+ bn) <__ -O,(bn- bn+l).
Therefore, if x F,, (4.16) is bounded above, according to (4.12) and (4.9), by

-0 (bn- b,+ 1) +M[Ae-m + qo] e-"n= (eM+ O1)[Ae + qo] e-"" qoe-"(n+ 1).

This completes the proof of the lemma in the case c* < 0 < c* In general, since+o

c*<c*+, there exists such that 0*<0<0_ where 0*_+ c*_+ + ,. Let KI(X)=K(x-)
and Ql[u]= K g(u), then w, are travelling waves for the operator Q1 with speeds
0*+ and *__ respectively. What we have proved for this case plus a simple change of
variables will prove the lemma in the general case.

To prove Theorem 3.1, we let o be as defined in Lemma 4.1. Recall q0, q; are only
required to satisfy the conditions 0 < q0 < q), qo small and 0 < q< 1 a in Lemma 4.1.
It is therefore possible to choose them so that

(4.17) a < 1 q) < 1 qo < a + l

for some r/> 0.
According to our hypotheses, u propagates and hence there exists k such that

uk>__a+r on the interval [-l(q0)-b0, w-l(qo)+ao]. On this interval v0(x)=
w(x ao) + (x + bo) 1 q0 -< u k(x) by (4.17). On the complement of this interval,
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Vo=<0, so that Vo(X)<=u,(x for all x. According to Lemma 4.1 and Lemma 2.8
Vn<Un+, for all n. Let n’=n+k, then w(x-n’c_+kc_-an)+(x-n’c*_+kc*+bn)-
1- qoe’’e-’n’_<un,(x) for n’>_k. It is also clear from the monotonicity of w, , a and
b,, that we may replace an, bn by their limits in the above inequality. Doing so and
renaming the constants, we obtain the inequality,

W( X-- g/C*+-- X1)-b(X-- g/C*_-- "1)-- 1 ?/oe-’n __< Un(X )

for n k. Finally we increase 0 so that 1- 0e-"k __< 0. This completes the proof for the
left inequality in Theorem 3.1.

For the right inequality, choose fi0 that satisfies the hypotheses of Theorem 2,3
with UoNfio. Then from Lemma 2.8 and Theorem 2.3, Un(X)< W(X--nc_--x2)+qle-1"
for all x. Similarly, Un(X)<=(x-nc*_-,z)+q2e-t2n for all x. If x>=0, then 1-
V(x- nc*_- 2)_Ae-"(x-nc*--2) <__ C1euc*-n so that

Un ( X ) :( W( X glC_-- X2 ) -- ;( X HC*__-- 2 ) 1 + Cle"C*--n + qle-tl

w(x--nc_--x2)+;(x--nc*_--2)--I +1e-fn,

where g= min(-PC*_, .ll) 1 C nt- ql" A similar argument holds for x __<0. The proof of
Theorem 3.1 is now complete.

LEMMA 4.2. Let uo satisfy the hypotheses of Theorem 3.2. Suppose that some
subsequence unj(x + n./c_) converges to a travelling wave w uniformly in ,
then lim u (x + nc_) w(x) uniformly in .

Proof. For any e>0, there exists j such that Uo(X)=Un(x+nc_) satisfies the
condition of Lemma 2.4 which implies Lemma 4.2.

LEMMA 4.3. Let K PF3, c*_ < 0 < c_, w, V be given and uo satisfy the hypotheses of
Theorem 3.3. Suppose that every subsequence un.(x + nc_) contains a further subsequence
u,,}(x + nc_) converging to a travelling wave w(x- Xo) uniformly for x >_ -nc*+ (xo may
depend on the final subsequence). Suppose also that the same is true for (x + nc*) on the
interval x <__ nc*. Then lim,, un(x + nc_)= w(x Xo) uniformly for x >= nc_ and
lim U (X + nc*) V(x x) uniformly for x <= nc*_.

Proof. Step 1. By our hypotheses, there exists a subsequence n./ such that

Unj_I(X +(n--1)c)converges to w(X--Xo) uniformly for x_>_ -(n--1)c*+. From (2.1),
u converges to 1 uniformly on [ng,0] for every c*<g<0. Thus un_x(x+(nj-1)c_)
converges to w(x- Xo) uniformly for x >__ (n/- 1)(- c). From (1.3),

(4.18) u,,.(x +n2c_)-w(x-xo)

f K(x+c_-y)[g(u,b_l(Y+(nj-1)c_))--g(w(y--Xo))]
It is clear that the integral over the region y >= (n-1)(-c_) goes to 0 uniformly in x.
On the rest of , if x >= nc_, we have

f ( )(nj-1)(O-c_) K x+c_-y dy<__
-oe -(nj-1)

K(z)dz ---0 as j--*

Therefore u (x + nc_)o w(x- Xo) uniformly for x > nc+. Differentiating (4,18)
and using th fact that K’ is integrable, we see by the s-me argument that u’,,.(x + n/c_)

w’(x-xo) uniformly for x>_ -n./c_. Now apply the second part of the hypotheses
to the sequence u n.;- (X + (n 1) c*_) an,d as above select a subsequencej n.} of n such
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that us(x +jc*) (x- xl), u(x +jc*) ’(x- xl) uniformly for x <= -jc*_. Since w’,

’ do not vanish in R, the above assertions imply that there exists an integer N and a
e > 0 such that every line u l, where a- e _< l_< ct + e, crosses uN(S) twice in R. From
Lemma 2.9, u is nondecreasing in the interval [m(gn(a-e)), m(gn(a+e))] and

+(g"(a+e)), m+(gn(a e))] for all n>=N.nonincreasing in the interval [m,
Step 2. Let 8>0 be arbitrarily small and let un,(x+njc)converge to w(x)

uniformly for x >= -njc. We may assume x0 =0 as lor/g as we work with one subse-
quence. There exists an integer J such that ns>=N and u,j(x) w(x-nsc_)- for x >= 0
andj>__J.

Now in analogy to Lemma 4.1, there exists a decreasing sequence (zn) and
positive constants 0,/ such that vn(x) w(x- nc*+- zn)-qoe-"’n satisfies vn+ <__ Q[G]
for all n. It is clear that this inequality still holds if we replace w(x) by w(x- ). From
the way the zn’s are defined (see the proof of Lemma 2.4), the inequality holds
independently of the exact choice of z o. Let z* lim,_ Zn= kTlo + Zo. Finally, ?/0,
1 only need to be sufficiently small, like the constants qo and # in (4.5), (4.8)-(4.10).

Choose 1 3 < < 1 andj >= J large enough that

(4.19) a<w(-nsc_-z*)-< and gn(a+e)>.

From Theorem 3.1, there exist constants Xl, "1’ q0, / such that w(x-nc*+-x)+
(x- nc*-)- 1 qoe-n <= un(x ) for all n. From (4.2), we have

(4.20a)

(4.20b)
and

1- w( (n + ns.+ 1)c_- X1) =< g’(51)i v’*

1 (- (n + n+ 1)c*-)_ =<
g’(1)5 e*’-n,

(4.21) qe-n;+<-- 2’

for sufficiently largej. We then fix such aj( _>_ J) and define n.j.
We replace w(x) by w(x- c+) Wl(X) in the above definition of On(X) and note

that On+l<= Q[vn] for all n. As remarked earlier, we may let z0--0, ?/0= and choose

/1 > 0 small enough that

(4.22) 0 </ < min (/, vc* vc_ }

Step 3. We establish some properties of the sequence un. First,

(4.23) On<=gn() for all n.

This is obvious when n 0. Assuming that it is true up to n, then

f K(x-Y)g(On(Y))dy gn+l( )

Thus (4.23) is proved. Next, we claim that

(4.24) Q[on](O)<u+n+l(O) for alln.
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We have from condition (xii) of (1.9),

Q[v,,](O)= f K(-y)g[wl( y-nc_-z,,)-Se-’’’] dy

__<g(1 -Be-’’") __< 1 g’(1) 8e -’".

On the other hand, according to (4.20),

U+n+l(O) >__ W(-- (+ n+ 1)c_-- xl) +(-- ( + n+ 1)c*_--.l)--l--qoe-v’(r+n+l)

>
g’(1)8 ...+._ (1)Se... +l-qoe-’"+"+-e

From (4.21) and (4.22),

g,(1) 8e-,#_ qoe-,(r,+,,+ 1)> g,(1) 8e-,,._ e
2

>
g’(1)

8e_, >
g’(1)8 c_n g’(1)8 eVCe- +

2 5 5

Combining this with the previous two inequalities we obtain (4.24).
Finally, we claim that Vo(X)=W(X)- crosses u(x) once in R- We know from

the beginning of step 2 that u,(x)gw(x-c)-8 for x0. On R-, however, (4.19)
and (4.23) imply that avo(O)vo(x)<. Thus v0 and u, can be equal only in the
interval m (a), m (R)]. This interval is part of m (a), m (g(a + e))] by (4.19) and
on the larger interval, u is nondecreasing according to step 1. Thus v0 and u, must
cross exactly once in R-

Step 4. We now prove that v, and u+, cross once in R- for all n. The proof is by
induction and the case n 0 has just been proved. Assuming that this is true up to n,
then since K is PF and g is increasing, we see that Q[v,] crosses Q[u+,]=U,+n+
once. From (4.24), this crossing must occur in R- Hence v,+ Q[v,]u,+,+ in R +.
If x*<0 and V,+l(X*)=u+,+(x* ), then from (4.19) and (4.23), a<v,+(O)
v,+(x*)g"+(R) and hence x* lies in the interval [m,+,+l(a),m,+,+l(g"+t())].
This interval is contained in [m+,+(a),m+,+(g’+"+(a + e))] by (4.19). According
to step 1, u,+,+ is nondecreasing there and hence v,+ crosses u,+,+ exactly once in
R This completes our induction.

Step 5. Since v,+(O)Q[v,](O)<u+,+(O) for all n, we have v,(x)u+,(x) for
all n and x g 0, or what is the same,

w(-(+,)c:-z,)-e-"u,+,() foxa0,.a0.

Since z,, -k’8 as n m, and since k’, as in the proof of Lemma 2.4, is independent
of 8, we have Oliminf,+[u,(x)-w(x-nc)] uniformly for x0. The opposite
inequality is proved similarly and the proof of the first half of Lemma 4.3 is complete.
The proof of the second half is the same.

Remark 4.1. Steps 3, 4, and 5 of the above proof are similar to comparing two
functions u and v which satisfy a parabolic equation in the positive quadrant. If
u(x,O)v(x,O) for xg0, and u(O,t)v(O,t) for t&0, then the maximum principle
implies that u(x,t)go(x,t) for x0, tg0.

5. Proot ot Theorems 3.2 and 3.3 (unitorm convergence). We may assume in the
statements of Theorems 3.2 and 3.3. that =0 and o= 1. For let ri0(x) Uo(OX ) and
define recursively fi,+= Q[fi,] for all n where. Q[fi](x)= fK(x-y)g(fi(y))@. Then
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a simple inductive argument shows that ,(x)=Un(OX+nr ). If w and are the
travelling waves of the operator Q with speed c and c* respectively, then wl(x)= w(ox),
l(x)=(ox) are the travelling waves of the operator Q with speed O*+=(c_-r)/o
and p*_=(c*_-r)/o. Furthermore, p*_<0<p_. If we can prove Theorem 3.3 for the
case r=0, o=1, then [n(X)-W(x-no*+)-q(x-np*_)+li<=Ce-n for all n and x.
Changing back to the original variables, Theorem 3.3 follows. A similar remark holds
for Theorem 3.2.

From now on, we assume that K-K1. We give the details of the proof only for
Theorem 3.3 and indicate at the end how to modify the proof to suit Theorem 3.2. The
following notation will be used for the rest of this paper" oYt--L2(), f12__
exp(-(c)/2) and if a function G(x,y) defines a linear operator fG(x,y)q(y)dy on
a subspace of 0’, then the operator will also be denoted by G. Recall the operator norm
IIGII-- supllq,ll2=<ll]Gll2 for G defined on f’. G* denotes the adjoint of G and we shall
use the inequality ]]f,qll2__<llflllllq]]2 frequently without drawing attention to it.
Finally, we let vn(x)= Un(X + nc_) satisfy the recursion

On+l(X)-- f K(x+c_-y)g(Vn(Y))dy.

To begin the proof, we rearrange the above so that

(5.) e*+-+ x(X) B’f K(x-y)e’-Yg(vn(Y))dy.

Let K2(x)-flr-/exp(-x). It is easily verified that flK-K, K).. Since K is
even and integrable, it defines a self-adjoint bounded operator from Jfinto Jg. Also, the
Fourier transform of K is nonvanishing so that the operator K is one-to-one.

Write (5.1) as

(5.2) eCXvn+x(X)--K2 * K[ec-yg(vn)](x).
From the fact that c*+>0, Lemma 2.10, (2.3a) and (2.5a), we see that e’*+xg(vn)"
for every n. We write (5.2) in the form

(5.3) e.x(K: IK; 1[ eel_YOn+ 1] (X)-- e2C-Xg( On ( X ) )

Let A S"be the linear operator A Kl[e ’*+ x] defined on the subspace
S= (q" e’*+x K2tk for some q o,f }. Then (5.3) becomes

(5.4) A*A[ On+11 e2’*+xg( on),

where A* e"*+X[K]-l. A direct calculation using (5.2) will show that

f(AVn+ -Ao,)Av,,+I dx=f on+ 1- vn)A*Avn+ dx.

We define the functional

(5.5) I[q] f { (Aq’)22 e2"xfq’(x)
g(s)ds dx

"0

on the set S. The second term in (5.5) is finite beause g,(s)<_ Cs for some constant C if
s>=0, and g(s)= 0 if s<0. Also qS implies that eCXq,,’andAq.
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From (5.2), v, S for all n > 1. Therefore,

I[o,,+]-[v.]

)2 2

f (A"+I -(Avn)
2

e2"*+fv"+l{x) }"v.(x)

f (AUn+AUn)2

2

f fe2.,+2
dx+

<=- f (Ao’+TAG)2dx.
The last equality follows from (5.4) and the last inequality follows from the fact that
the term inside the square bracket is nonpositive.

Summing this inequality from I to n- 1, we have

(5.6) I[v.]--I[Ol] < . (AOk+l-AOk)2dx.
k=l

Suppose we can show that I[G]>-M for some M> 0; then the series in (5.6) con-
verges and in particular lim,..oof(Av,+l-Av,)2dx=O. Since K2 is bounded on ore, we
have from the definition of A, Ile’*+x[G+a-G]l]2O as n-o o. This implies that the
hypotheses of Lemma 4.3 are satisfied. To see this, let (v,,} be given. Then since
0 < v, < 1 and I(%)’1_<11K’111, ( o. } is equicontinuous and there exists a subsequence

j.

(o, } such that o,, converges uniformly on compact sets to a continuous functxon q,.
The same is also true for the functions v,5 + which converge uniformly on compact sets, 2c+x 2to Q[O](x+c+). Since lamj_ofoe [G;+l(X)-V,(x)] dx=O on any bounded lnter-

valo, we see that Q[l(x + c*+)=q(x). From Theorem 3.1, (-oo)> t, q,()<a and
from Lemma 2.5 q,(x)=w(x-xo), for some constant x0. If we substitute x + nc_ for x
in Theorem 3.1, we see that u,(x + ncY) is near 0 for x sufficiently large independent of
n, and is near 1 for nc_ + n <= x <= L, where c* < =< 0 and L depends only on
the constant x in Theorem 3.1. Thus limj_.oU,(x+nj.c_)=w(X-Xo) uniformly for
x >= -njc+’ * + n’g and Lemma 4.3 implies that lim,_.ou,(x+nc_)=w(x-x0)
uniformly for x>=-ncY. A similar argument applies to u,(x+nc*). Finally, since
lim,oo[1 w(x- nc_- x0)]= 0 uniformly for x__<0, and lim,_, oo[1 (x- nc*_- xx)]

0, uniformly for x 0, the uniform convergence part of Theorem 3.3 follows.
It remains to show that I[o,]> -M for all n. Since the normal density is in PF2,

we have from Lemma 2.10, u,(x + ne_)<_ w(x-L) for x>L. From (2.3a), (2.5a) and
the fact that c_>0, we see that the LLnorm of the function e2’f,,)g(s)ds<=
e2"*+G(x ) is bounded by some constant M>0. Thus -M<=I[o,]<=I[o] for all n> 1.
The proof for the functions u,(x + nc*) in the negative direction, assuming that c*_ < 0
and Uo(X)= 0 for x small, is similar. This completes the proof of that part of Theorem
3.3, on the uniform converence to a pair of diverging waves.
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The above argument is equally valid for Theorem 3.2 provided c_ > 0. The dif-
ference is we need to prove that the hypotheses of Lemma 4.2 (instead of Lemma 4.3)
are satisfied and after we have shown that vn,. converges uniformly on compact subsets
of , we deduce the uniform convergence in from Theorem 2.3.

If c_ < 0, then the easiest way to obtain Theorem 3.2 is by using the dual wave
speed introduced in [25, 2]. If we let (u)=l-g(1-u) and Q[u]=K (u), then
satisfies a list of hypotheses similar to (1.9) with a replaced by 1- a. The wave speed in
the positive and negative directions from Q are c* and c respectively and the corre-
sponding travelling waves are 1 w and 1 . Let z0 1 u0, and define zn recursively
by z,+l=[z,]. From an inductive argument, z,= 1-u, for all n. Since z0=0 for x
sufficiently small and c* < 0, the analogue of the above proof in the negative direction+
will imply that z,(x + nc*+) converges to 1- w(x-Xo) uniformly in N. This proves our
result when c. < 0.

If c_=0, then (5.4) becomes A*A[v,+]=g(v,) and fl=l. We replace (5.5) by the
functional

(5.7) ][q] f ( (Aq)22 g(s)ds+aX(x<O) dx,

where a= fog(s)ds 1/2. From Lemma 2.10, the integral in (5.7) over + with q= v, is
uniformly bounded. On the other hand,

1
K 1 and

2 2 sds<=l-K2 * g(Vn_l)=K2 [1--g(On_)

Since Uo(X)= 1 for small x, a result like Lemma 2.10 implies that v,(x)>= w(x-L’) if
x __< L’. From (viii) of (1.9), (2.3b) and the above inequality, we see that 1/2-(Av,)/2
is dominated for all n by a function which is integrable near -c. A similar argument
shows that the same is true for the function fol. g(s)ds. Thus/7[ Vn is bounded below for
all n. The rest of the proof parallels the case c_ > 0. We note that v,+- vn is square
integrable even though v, gff. This completes the proof of the uniform convergence
part of Theorem 3.2.

6. Proof of Theorems 3.2 and 3.3 (exponential rate of convergence). In 5, we
showed that u. converges to a pair of diverging waves facing opposite directions as
n--* uniformly in . We now show that the rate of convergence is actually exponen-
tial. The proof relies on spectral properties of positive linear operators. We begin by
summarizing the ideas of the proof.

Recall that K is the standard normal density and w is a travelling wave with speed
c*+ facing right. Let G*(x,y)=g(x-y)h(y), where h(x)=fl2g’(w(x)). The linear
integral operator G* is positive (order-preserving) and has 1 as an eigenvalue with the
nonpositive eigenfunction e"*+Xw ’.

Suppose we can show that IIG*II 1, I is a simple eigenvalue and in the orthogonal
complement of etXw the norm of G* is less than 1. Then linearizing Q about w, we
obtain by letting v,(x)= u,(x + nc_),

e’*+x[ v,,+(x)-w(x)] f G*(x,y)e:Y[ v,,(y)-w(y)] dy+ O(][v,- w][).
However, e’*+x[ v,,- w] is not orthogonal to e’*+Xw’. To achieve this, we must replace
w(x) by w,,(x)=w(x-z,,) in the above formula where [z,[--*O as noe. Then we
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obtain (essentially) the estimate,

where 0 < 3’ < 1. This proves the exponential decay of o,,-w,, in a weighted L2-norm.
The final result follows from showing that ]znl converges to 0 exponentially and
estimating the supremum norm of vn- w by its L2-norm.

We mention in passing that there is a lot of interest in the topic of wave stability
for nonlinear parabolic equations, especially on when and how stability may be de-
duced from the stability of the linearized equations. See [31] and [32] in relation to (1.1)
and also [15] for further references.

We shall only present the proof for Theorem 3.3, it being the more difficult. In
fact, we only show that u,,(x + nc*+) converges to w(x- Xo) exponentially for x >= nc*+.
The proof for the negative direction is the same. Theorem 3.3 then follows from these
and (4.2).

Let u,,(x + nc_) w(x) uniformly for x >= -nc*+ and let ft, be defined for the rest
of this section by

{ u.(x), x>=O.

Let .(x)= .(x + nc_); then .(x) w(x) uniformly in
LEMMA 6.1. There exists a sequence ( z, n >= N ) such that [zn[ 0 andfor n > N,

(6.1a) f e2C-X[g(W(X--Zn))--g(W(X--Zn+l))] [b’n+l(X)-W(X-Zn+,) dx--O

if Zn =/: Zn+ 1, and

(6.1b) f e=’:g’(w(x-z.))w’(x-z.)[.+l(x)-w(x-z.)] dx=O

fZn-- Zn+ 1.

Proof. Let

ez=e-2’: f e’g’(w(x))[w’(x)]2dx>O,

M= -ll[go w e e [w

and 0 <e <e2. From Lemma 2.10, u,(x + nc_)<= w(x-L) for x near o independently
of n. Thus, there exist e > 0 and Nl(e) such that if 11 < e < 1 and n >= N1,

(6.2) ll[go w,] e n+I(X)--W(X--)]dX

We choose e small enough so that

(6.3) e*= -el-2eM+e2>O.
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Consider the function

(6.4)
f e2C*+X[g(w(X--Zn))--g(w(x--))][n+l(X)--W(X--)] dx

,,() _.
if 4= z and define

f dx.

By the mean value theorem, [qn(0)l--,0 as n independently of how we define z n-
Let I,n(0)l<ee* if n>=N2 and define N=max(Nx, N2). We now choose (zn’n>=N }
inductively.

Let Zu(--e,e) and assume that z (-e,e), n> N, has been chosen so that (6.1)
holds with n replaced by n-1. Define g(x,l)=g(w(x-zn))-g(w(x-l)) and v(x,l)

o- + l(x)- w(x ) on I1 < e. From (6.4),

f eZ’*+x[(l-zn)g(x,l)-g(x,l)] v(x,l)dx
4’.()

(_z,):
+

11 + 12
From the mean value theorem,

g(,)= [g(,)-g(,0)(- z.)] (- .) +

Inequality (6.2) then implies that Illl =< e if I] < e < 1. To estimate 12, we use g(x,)=
g’(w(x- l))w’(x- l)(l- zn)+ 1/2[g w]"(O)(l- zn) 2. Therefore,

12= f e-’txg’(w(x-I))[w’(x-t)] dx + (-z.) f :.:
2

e [gow] (O)w’(x-l)dx.

The second term above is bounded in absolute value by Mlt-znl<= 2eM since Izl < e
and Il<e<l. From (6.3) we have q’n()>__-el-2eM+e2=e*>O if ]l<e<l. From
this and the fact that ]qn(0)] < ee*, qn() must have a unique zero in the interval (- e, e)
which we shall call zn+ 1. This completes our induction step. Since ]qn(0)l--, 0 as n o,
the same is true for ]zn]. The proof of the lemma is complete.

Remark 6.1. The above proof does not prevent some of the zn’s from being equal.
From the definitions of fin and n, it is clear that

where on(x)= un(x + nc_) and H(x) is the Heaviside function. Looking at

Un+I(X) f K(x+c--Y)g(on(Y))dY

f K(x+c*+-Y){g(n(Y))+g’(O)[vn(Y)-n(Y)]}dY,
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we have

v;+l(x) f K(x+c+-y)g(<(y))dy

+H(-x-(n+ 1)c_)[w(x)-Vn+(x)] +An(x )

where

(6.6) A.(x) f K(x+c*+-y)g’(O)[v.(y)-G(y)] dy.

Define w.(x) w(x z.) and

E.(x)=H(-x-(n+ 1)c_)[w(x)-v.+l(X)] +An(x)+ [Wn(X)--Wn+I(X)] for n>_N.

From (6.5),

(6.7) n+l(X)--W.+l(X)= f K(x+c_-y)[g(.(y))-g(w,,(y))] dy+E.(x).

Define the functions,

h 2 (x)=" { fl2[g(w"-l(x))-g(w"(x))]/[w"-t(x)-w"(x)]flg’(w.(x)) if Zn_ Zn,

if Zn_ --Zn,

and

k,(x)
fl2[g(,,(x))-g(w.(x)) g(w_.:._!x))-g(w,,(x)) ]n(X)--Wn(X) W (X)--Wn(X)

/2 [g(n(X))--g(Wn( _gt(Wn(X))]
if Zn_ =/= Zn,

if Z Zn"

We then rewrite (6.7) as

(6.8) e’x[o,+l(X)-W,+,(x)] f K(x-y)h](y)eC*+Y[n(Y)-W,(y)] dy

+ f K(x-y)kn(Y)ec*+Y[(Y)-Wn(Y)] dy+eC*+XEn(X ).

Again define the functions p.(x)=h.(x)e"x[.(x)-w.(x)], r(x)=k.(x)/h.(x) and
G,,(x,y)=h.(x)K(x-y)h.(y) and rewrite (6.8) as

(6.9) p, (x)= h,+,(x)
+ L-(c5 f G.(x’y)P.(y)dy+h.+l(x)f K(x-Y)G(Y)Pn(Y)dY

+hn+l(X)ec-XEn(x).
We now prove several lemmas concerning the terms on the right side of. (6.9).

LEMMA 6.2. Ilhn+l[K (r,p,)]ll2 =< ClllGIlllp, llzfor large n and lim,_llGIl=O.
Proof. The inequality is clear because Ilh,ll is uniformly bounded and fK= 1. To

prove the rest, it suffices to show that IIk,llo0 as n--* m. This is clear from the
definition and the fact that w, and g, converge to w uniformly in R as n m.
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LEMMA 6.3. There exists 1 > 0 such that

e"*+xH( x (n+l)c:)h,,+[w o+] 2=

for large n.

Proof. This follows from the calculation

f-(,,+ 1),,: e2C,+X[w(x)_On+l(X)]2dx<C:e_281n

where 81 ( C _) 2.
LEMMA 6.4. There exists 82> 0 such that ]lh+ e"*+Mll 2 < C3e-2nfor large n.

Proof. From (6.6) and the fact that %(x)=n(x) if x>= -nc, we have IA(x)l=<
C3fx+(,,+),.:K(z)dz<__C. Choose 8<0 such that c_+?>O. Using C3 as a generic
constant, we have

f ,f<n+ 1)? e2C_X f(o 2c.+XlAn(x)12dx.(6.10) e2"*+XlA x )12dx <_ C dx + e
-oe n+l)e

From condition (iv) of (1.8) there exists 6>c such that K(x)<=Ce-x for x>__0. If
x >= (n + 1)g, we have

x+(n+l)c_
K(z)dz <= C;8 -8[x+(n+l)c:]

so that

OO

(n + 1)e
eg-,’*+X[A,,(x)ldx<_C,

n+l)?
e 2C*+ Xe 23[x +(n+ 1)c] dX

(n+l)?
e- 2(a-c_)X dx

C;-26c*+(n+ 1)e- 2(6- c_)e(n + )

C;e-26(c*++?)(n+ 1)e 2c_(n + 1).

Since < 0, the first integral in (6.10) decays exponentially and since c+ > 0, the
above estimate implies the same is true of the second integral. This completes the proof
of our lemma.

LEMMA 6.5. For sufficiently large n,

(i) e’*+xh n+l [Wn--Wn + 11 pn + 1) 0 ifZn=/:Zn+ and

(ii) e’*+xh n+ ,w...,_n+’ )=0 ifzn=z+

Proof. This lemma follows from Lemma 6.1.
We now take the L2-inner product of (6.9) with the function p,+ 1. From Lemmas

6.2 to 6.5, we obtain for large n, with the obvious change of notations, the estimate

(6.11) Ilp,,+lll
2

2=< ) + Clllrllllp.ll=llp+ 112 + c=llp + 111.’n,
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where 0 < 7 < 1 is some constant. At this point, in order not to interrupt the flow of
ideas, we state a lemma and defer its proof until the end of this section.

LEMMA 6.6. For large n, there exist constants 0<Tn < l such that ]]G, pn]]2_< Yn]]Pn]]2
and lim sup, 7n 7" < 1.

Let 0>0 be such that for large n, 7n__<(1-v0) and Ilhn+l/hnllo<=(1 + vO).
Therefore, from (6.11), Lemmas 6.2 and 6.6,

(6.12) l]Pn+1112----< (1 --o)llp.ll= + cv" for large n.

LEMMA 6.7. Let { an’n >= N } be a sequence of positive numbers such that an+l<=
(1 0) a + C27 for some C2, 0 > 0 and 0 < < 1. Then there exist C, e > 0 such that
a,, <= Ce-n for n >= N.

Proof. Since the inequality is satisfied if we decrease 0, we may assume that
7e

0 (0,1). For n >= N, we have

eO(n+l)an+l-enan < (1-O)e(n+l)an+ Czyne(n+l)-enan

=(e-Oe- l)e"a,+ C".
For small 0>0, e_<l+0e and hence e(n+l)an+l-enan<=Cn. Summing the left
side from N to n-1 and on the right from N to m, we obtain ehan-eNan<=
C[u(1 _)-1 for n >__N. This last inequality implies our lemma.

Summarizing our results so far, we have from Lemma 6.7, (ix) of (1.9) and (6.12),

< Ce for large n(6.13) IleCX[n w,, 112
We now show that (6.13) implies that vn(x)= un(x + nc) converges to a travelling wave
facing right exponentially for x >= -nc and then give the proof of Lemma 6.6.

LEMMA 6.8. Let f(x) be continuously differentiable on [L, ) and let f0
sUP[L, )[f(X)], fl sUPtL, )[f’(X)] be finite. Then

f0__< (3)1/3 f2(x)dx fl/3.

Proof. Given O<8<fo, there exists xo such that ff(Xo)]>fo-6. Without loss of
generality, we assume thatf(xo)> O. For x > L,

Let (fo )/fl; then

go+,’- ( ) >= f ( >= ( X Xo ) ’dx -5 f
Letting 8 $ 0, we obtain our lemma.

Consider for a fixed and sufficiently large n, the function n-w on the interval
x >__ nS. Here 8 is chosen so that 0 < < c_ and c_6- e < 0. The constant e is taken
from (6.13). Then from (6.13),

[On(X)-Wn(X)]2dx <=e 2’:an e2’:X[vn(X)-Wn(X)]dx <__Ce
-ngi -na

andfor large n and a different e > 0. Since v w are bounded independently .of n
Lemma 6.8 implies, again with a different C and e, that [v,(x)-wn(x)l< Ce for large
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n and x>__ -n. On [-nc_,- n6], the same inequality holds because of Theorem 3.1,
(2.3b) and (2.4b). The first finite number of terms can be handled by increasing the
constant C. Thus the above inequality holds for all n and x >__ -nc_.

It remains to show that ]zn] converges to 0 exponentially. To this end, we rearrange
(6.9), when Zn4=Zn+l, leaving only the term hn+eC*+X[Wn-Wn+l] on one side and
then take the L-norm of both sides. From Lemmas 6.2 to 6.4, Lemma 6.6 and
(6.13), we have ][e"*+X[w,, w,,+ 1][[ _-< Ce-" for large n and some e > 0. Since
[W,(X)--W,,+(X)I/(Zn/t--Z,,)oW’(X as no, we have from Fatou’s lemma,
liminf,,_,o[[e’X[(w,,-w,,+x)/(z,,+-z,,)][[>=[[e’tXw’[[2>O. Thus for large n,
z,] __< Ce-". This implies that the [z,[ decay exponentially as n--* o.

In the last part of this section, we are concerned with the spectral properties of the
operator G,, and in particular the proof of Lemma 6.6. G, as a bounded linear operator
from ’into ’is positive, in the sense that q >__ 0 implies that Gq__> 0. A lot has been
done on the spectral properties of positive operators, beginning with the fundamental
paper of Krein and Rutman [22]. After verifying Lemma 6.9, Lemma 6.10 may be
proved by using some powerful results on irreducible operators (consult the work by H.
H. Schaefer). However, a simple proof can be given here. We assume that n is
sufficiently large in the following lemmas and that z. 4= zn+ 1- The case zn- z.+ may be
dealt with similarly.

LEMMA 6.9. Let e.=e’Xh.[Wn_l wn]. Then
(i) G."-o is a self-adjoint positive linear operator.
(ii) G.e. e. and e. is of one sign.
(iii) Let T.O(x) fK(x -y)h](y)O(y)dy; then T.:-o is positive and

quasi-compact, i.e., there exists a compact operator V and an integer m > 0 such
that [[T- V[[ < 1.

(iv) Let r(T.) be the spectral radius of T.; then r(T.) is an eigenvalue of Tn with a
positive eigenfunction.

(v) k is an eigenvalue of T. if and only if is an eigenvalue of G..
(vi) (I- T.) is onto if and only if (I-G.) is onto.
(vii) r(Tn)= r(G.)= 1.
Proof. G. is self-adjoint because G.(x,y)=G.(y,x) and is positive because

G.(x,y) > 0. (ii) follows from a direct calculation and the fact that w is nonincreasing.
To show that T. is quasi-compact, we choose a bounded interval oCsuch that ono’,
[hZ(y)[<fl2<l This is possible because g’(0)<l, g’(1)<l and fl2<1. Let gl(y)
h](Y)Xo(Y), g2(y)=hZ.(Y)-gl(Y) and V’f-o be the operator Vq,(x)=
fK(x-y)g(y)O(y)dy. Then V is a compact operator since ffKZ(x-y)gZ(y)dy dx <
o. Also [IT.- V[[ < 1 since [[(T.- V)O[[2=[[fK(x-y)g2(y)O(y)dy[[<__flZ[[K[[l[[O[[. < 1
if [[[[ 2 1. Thus from [19, Cor. 1 of Thm. 5], (iv) is valid. Note that 1 is an eigenvalue
of T. with eigenfunction e’*+X[W._l w.]. (v) follows from the obvious fact that Tnq,=
if and only if G.[h.O]=X[h.O]. To prove (vi), let fbe given and suppose that
XI-T. is onto; then there exists u’such that (I-Tn)u=f/h. and hence (XI-
G.)[h,,u]=f. Conversely, let f be given and (XI-G.) be onto; then there exists u
such that ()I-G.)u=h.f, and hence (I-T.)[u/h.]=f. Finally, since 1 is an eigen-
value of Tn, r(T.)>= 1. If r(T.)> 1 is an eigenvalue of T. with positive eigenfunction e*,
then r(T.) is an eigenvalue of G. with eigenfunction h.e*>= O. Since G. is self-adjoint,
h.e* is orthogonal to e. which is impossible because e.>0. Thus r(Tn)= 1. Since G. is a
positive operator, [19, Thm. 4] implies that r(G.) is in the spectrum of G.. Also from

The author is grateful to the referee for pointing out this reference.
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(ii), r(G,)>= 1 and from (v) and (vi), r(G,) is in the spectrum of T so that r( Gn) <= r( Tn)
1. Therefore r(G,)= 1 and this completes the proof of Lemma 6.9.

Let H, be the one-dimensional subspace spanned by en and let ’= H, + Hn’ where

H.’= {b: (q,e.)=O}. Define V,,= sup([lGnb[[2:
LEMMA 6.10.7, < 1.
Proof. Suppose ,,= 1; then G, "H’ H,’ since G,, is self-adjoint and e, is an

eigenfunction of Gn corresponding to the eigenvalue 1. We claim that (I- G,)" H’ H,
is onto so that 1 is an eigenvalue for Gn’H H,. To this end, letf H’ and consider
(I- T,)"WW. Since T, is quasicompact, the result in the last section of [39] implies
that f/h, belongs to the range of I- T, if and only if f/h, is orthogonal to all members
of the null-space of I- T,*. Let (!- Tn*) + 0; then p h 2[K p]= 0 so that (1-
G,)[ +/hn]=0. We shall show later on that this implies q/h, H,. Assuming this for
the moment, we then have (f,/hn)= (f/hn,)--O and f/h, belongs to the range of
(I-T,). Let (I-Tn)[q]=f/h and q* be the projection of hnq into H’; then (I-
G,)[h,q]=f q* H is nontrivial and (I-Gn)[q*]=f Thus I-G," H, H, is onto.

Finally, if 1 is an eigenvalue of G, "H’ --* H’, let e* H’ be such that (1- G,)[e*]
0. Since (e*, en) 0, the set { e* > 0} and { e* < 0} must be of positive measure and

le*l--lGe*l < Gnle*l. Therefore, (e,le*l)<(en, Gle*l)--(Ge,le*l)=(e,le*l) which is
a contradiction,z The only way out is to accept that ,, < 1. This last argument may be
used to show that +/h H,. For let +/h ,e -b 0 where 0 H’; then (I- Gn)[ 0] 0
and (0,e,)=0 which we have seen to be impossible. This completes the proof of
Lemma 6.10.

LEMMA 6.11. Let h2(x)=fl2g’(w(x)), e*=eChw’, G(x,y)=h(x)K(x-y)h(y)
and ,*-- sup(llGq, ll2: (q,e*)=0, ll,/,ll2 =< 1). Then"

(i) lim,_oh,(x)= h(x) uniformly in N.
(ii) IIG GII--" 0 as n o.
(iii) G has 1 as an eigenvalue with the negative eigenfunction e*.
(iv) If= e,/(z,- Zn_l) then lim,_ ll,- e*ll9.= 0.
(v) lim "/n "/* < 1.
Proof. (i) follows from the mean value theorem and the fact that w, converges to w

uniformly in R. (ii) is a consequence of (i) and (iii) follows from a direct, calculation. To
prove (iv), we first observe that

w"(o)W(X Zn_I)--W(X--Zn) __Wt(X)=Wt(X__Zn)__Wt(X)._l 2 (Zn--Zn-X)"
Zn--Zn_

Since Iw"l is bounded in R, we have (w(x-z,_a)-w(x-z,))/(zn-z,_l) converges to

w’(x) uniformly in R. This together with (i), Lemma 2.7 and the dominated con-
vergence theorem imply (iv). Finally the methods of proof in Lemmas 6.9 and 6.10 are
also applicable to the operator G so that 3’* < 1. Let Pn and P be the projection operator
from of’into the orthogonal complement of , and e*; then ",= [[GPnI[, -* =[[GP[[ and
[[IG,,P,,[[- [[GPII[ _< [[G,P,- GPI[ <= lIP,- PI[ + [IGn- GI[ [[PI[. From (ii), it suffices to show
that IIP-PI[0 and this follows from (iv). Thus (v) is proved and so is Lemma 6.11.

Lemma 6.6 follows from Lemmas 6.5, 6.10 and 6.11 (v). If z,_=z,, we replace e,
by e"*+Xh,w’,; then Lemmas 6.0, 6.10 and 6.11 are still valid. In Lemma 6.11, we may
take ,, e,,. The proof of Theorems 3.2 and 3.3 is finally complete.

The author is grateful to Professor John W. Lee for showing him this argument.
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Appendix (proof of Lemma 2.5, conclusion). Without loss of generality, we may
assume that the following situation has occurred and derive from it a contradiction. Let
e*=e’*X[w2-wl]>O and p(x)=e’*X[w2(x+e)-w(x)] becomes negative infinitely
often near for every e>0. Let h2(x)=fl2(g(wa(x+e))-g(w(x)))/(w2(x+e)
w(x)), G be defined like G right before (6.9) and T be defined like Tn in Lemma 6.9.
Then T=K+ V, where K is compact, IIVll < 1 and both K, V converge. Also G is
self-adjoint and T=) if and only if G[h]=)[h]. Since T= and changes
sign, we must have r(T)=r(G)=)> 1()--> 1) and there exists e>=0, Ilell2-1 such
that Te=ke. Thus (h,he)=O for e>0. On the other hand, h converges in L2

to a positive function. It remains to show that e has a strong limit to arrive at a
contradiction. This is obvious from writing e=()I- V)-IKe. The proof of Lemrna
2.5 is complete.

Acknowledgment. Many of the ideas in this paper grew out of reading [7]. The
author would like to acknowledge his enjoyment in reading that paper.
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TRAVELING WAVE SOLUTIONS TO COMBUSTION MODELS
AND THEIR SINGULAR LIMITS*

HENRI BERESTYCKI, BASIL NICOLAENKO AND BRUNO SCHEURER

Abstract. We consider the deflagration wave problem for a compressible reacting gas, with species
involved in a single step chemical reaction. In the limit of small Mach numbers, the one-dimensional traveling
wave problem reduces to a system of reaction-diffusion equations. Existence is proved by first considering the
problem in a bounded domain, and taking an infinite domain limit. In the singular limit of high activation
energy within the Arrhenius exponential reaction term, we prove strong convergence to a limiting free
boundary problem; the latter is characterized by a jump of the derivatives, which we determine.

Introduction. We consider the deflagration wave problem for a compressible react-
ing gas, with one reactant involved in a single step chemical reaction. In the limit of
small Mach numbers, the one-dimensional traveling wave problem reduces to a system
of two reaction-diffusion equations (cf. 1 for review of the basic flame equations). We
assume both heat conductivity and diffusion coefficients are temperature-dependent.
For the sake of clarity, we will first develop our methods on a simpler scalar case
(corresponding to a Lewis number equal to one). The renormalized model is"

-(k(u)u’)’+cu’=g(u) onR,
(0.1) u(- )=0, u(+ 0)=1

where u is the renormalized temperature, 0 =< u =< 1; k(u) is a C function of u, which is
strictly positive; g(u) is a renormalized reaction term such that g(u)--O on [0,0) and
g(u)> 0 on (0,1) where 0 is some ignition temperature (0 < 0 < 1). Moreover, g(1)= 0. c
is the unknown mass flux of the wave. Next, we investigate the system

-u"+cu’=f(u)v onlY,
-Av" +cv’= -f(u)v one,

(0.2)

where u is again the renormalized temperature (0 __< u =< 1), o is a renormalized reactant
concentration (0=<o__< 1), and f(u) has the same properties of g(u), except that now
f(1) > 0. In (0.2), A is taken to be constant for simplicity.

The above equations (0.1), (0.2) are nonlinear eigenvalue problems for c. Existence
for the systems is proved by first considering the problem on a bounded domain. This
allows the reduction of the corresponding problem to a fixed point formulation w.r.t.
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the triplet (u,v,c). Then the usual Leray-Schauder degree gives the existence in a
bounded domain. Taking an infinite domain limit completes the proof. Obtaining
strictly positive lower and upper bounds for c, independent of the size of the domain, is
essential for the above.

A considerable amount of work has been performed on the above equations in the
asymptotic limit of infinite activation energy in the Arrhenius reaction term (see [4] and
the bibliography there). Equivalently, f in (0.2) is now allowed to depend on e (propor-
tional to the reciprocal of the activation energy); f(u)v, in (0.2), formally behaves as
(u-1) when e 0, where is the Dirac distribution centered at zero. Such formal
asymptotic limits have not been rigorously established from a mathematical point of
view. In this paper, we prove strong convergence of the traveling waves, both for (0.1)
and (0.2), to singular limit free boundary solutions, with discontinuous derivatives.
Again, obtaining strictly positive lower and upper bounds for c independent of e, is
crucial for this analysis. The plan of the paper is as follows.

Introduction
1. The basic equations of the premixed one-dimensional laminar flame
2. Main results and summary
3. Existence of a solution in the scalar case
4. Uniqueness of the solution in the scalar case
5. Asymptotic analysis for large activation energy
6. Some remarks related to the numerical approximation of the scalar case
7. The system case: existence of a solution on a bounded domain [-a, + a]
8. Existence of a solution on R for the system
9. High activation energy values: asymptotic analysis

10. Remarks on the case of n th order reaction
11. The precise value of c= lim__. 0 c; rigorous internal layer analysis
Appendix

The main theorems of the paper are summarized in 2.
I. The basic equations of the premixed one-dimensional laminar flame.
I.I. Reactive flow equations in one dimension. We summarize the equations of a

chemically reacting mixture; this is essentially a compressible, heat-conducting viscous
fluid with the added complexity of species diffusion and source terms representing the
chemical reaction [4], [7]. Let 0 be the total mass density, T the temperature, p the
hydrostatic pressure, and v the mass-average velocity. The reacting mixture is consid-
ered to be made of N fluids whose separate densities are oY (i= 1,2,...,N); here the Y
are mass fractions of species i, with molecular mass rn ;:

N

(1.1) E Y= 1.
i=1

In what follows, we will investigate in detail the case of a single reactant A which
yields a global product P, in a one-dimensional geometry:

(1.2) A -+P.

The total mass density satisfies the equation

(1 3) DO
Dt
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where D/Dt O/Ot + v O/Ox is the convective derivative. The balance law for momen-
tum is the same as for nonreactive flows, that is,

Dv )p 4 (3v)(1.4) 0--)-+ )x 3 )x X-x
where x is the dynamic viscosity coefficient and external forces on the mixture have
been neglected. Energy conservation is expressed by

(1.5) 0% D )x -x =Q+-+3x x
where cp is the specific heat at constant pressure, X(T) the coefficient of thermal
conductivity, Q the chemical heat release of the reaction (1.2), 0 measures the rate at
which reaction (1.2) is proceeding:

(1.6) o=B(T) OYexp(_ E )
where E is the activation energy of the reaction (a constant); in some sense, E/R is the
temperature below which the reaction is negligible; R is the perfect gas constant, and
B(T) has a weak dependence on T. Equation (1.6) encompasses both the law of mass
action and Arrhenius kinetics [4], [17].

The continuity equation for the mass fraction Y of reactant A with molecular mass
rn is

(1.7) O D )x l-x rno

where/(T, Y) is the diffusion coefficient. From (1.1), the mass concentration of the
combustion product P is 1- Y, which enables its elimination. Finally, the equation of
state for a perfect gas yields a supplementary constitutive law:

(1.8) p=RpT.

1.2. Classical approximation of combustion. A flame is a low-speed wave whose
Mach number M0 is << 1. As a consequence (see [4], [19] for details) the variations in
pressure are also small, i.e.,

p=pc+6p, 6p=O(M),

so that we may set

p =p,, const

everywhere except in the momentum equation (1.4). The momentum equation now only
controls small "flow-induced" variations ip in pressure [4] and uncouples from the
remaining equations. Similarly, in the energy equation (1.5), one can neglect Dp/Dt =-
D,3p/Dt and (v/19x)= O(M). Finally, in the combustion approximation, (1.3)-(1.7)
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reduce to

(1.9)

Dp
D--7 + p O,

DT O (xOT)PCl Dt x -x + Q’

O DT Ox p-x Y m

together with the equation of state (1.8). Note that the combustion approximation does
not imply a constant density approximation in one dimension.

1.3. The flame front equations for a single reactant. To study a one-dimensional
flame moving with constant velocity V0 > 0 to the left, it is appropriate to write (1.9) in
the frame of reference of an observer moving at this same speed. Let =x + Vot be the
observer’s space variable, and "prime" denote the differentiation with respect to , then
(1.9) becomes:

(1.10a)
(1.10b)
(1.10c)

v0o’+
% pVo + pv ) T’ ( XT’)’ Qoa,

(pVo+ pv)Y’-(lzY’)’= -moo.

Equation (1.10a) integrates to yield

(1.11a) p ( Vo + v) const c,

where c is the mass flux; then the energy and species equations uncouple from the rest
of the system:

(1.11b)
(1.11c)

ccpT’- ()T’)’ + Qoa,

cY’- (ptY’)’= m6o.

The following boundary conditions apply to (1.11): at = c, the mixture is cold and
unburned:

(1.12a) T= T( m), Y= Y( oo);

at + c the reactant is burned out and

(1.12b) Y( + oo)=O,

T( + o) is determined through Rankine-Hugoniot-like conditions obtained by integrat-
ing (1.11) from o to / o and using (1.2a-b):

(1.12c) T(+ oo)= T(- m) +--Q--Q Y(-
%m

where we have assumed cp independentfrom T.
Starting in {}7 of the paper, we shall consider a renormalized version of (1.11-1.12):

(1.13) cu’- u"= vf(u), cv’- Av"= vf(u)
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where u (resp. o) is the renormalized temperature (resp. concentration of reactant):

T- r(- oo) Y
/2-- U---

T(+ )-T(-) Y(- )

f(u) is the renormalized formulation of o/Y. For simplification, )t,/ and Cp are
assumed constant. The renormalized boundary conditions are

u(-)=0, v(-)=l,
u(+)=l, v(+)=0.

1.4. The case of Lewis number equal to 1. Consider again the (unnormalized)
single reactant system (1.11). If the Lewis number

(1.14) Le=

is such that Le--1, VT, .we can eliminate the concentration Y, through the use of the
"Shvab-Zeldovich variable" [4]

Y
W+CpTm(1.15) Z Q

Z satisfies a purely convective-diffusive equation

(1.16) cZ’ ( lZ’)’ O,

whose only bounded solution is

(1.17a) Z= const Z( + );

since the reactant Y is depleted at + z, Y (+ m)=0 and

(1.17b) Z=-cpT(+m),

where T( + ) is the adiabatic flame temperature

(1.18) T( + oe)= Q Y(- )
cp m

Injecting the identity

(1.19)
mCp

Y----o-(T(+)-T)
into (1.11b), we obtain the reduced scalar equation

(1.20) cT’-( ---T’)’=oB(T)(T( + o)-T)expCp

In {}3-6 we will investigate the normalized version of (1.20)

(1.21) cu’- ( k( u)u’) g( u),

where g(u)= (1 u)f(u), and f(u) is defined in (1.13).
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1.5. Considerations of the. ignition temperature. Consider the flame equations
(1.11). If we fix boundary conditions at =-, i.e., T(-) and Y(-), then the
problem is improperly posed, since

exp
RT( o)

4 0

and there exist no bounded solutions to (1.11). The origin of the difficulty is clear: this
formulation requires the mixture to react all the way in from = -z, so that by the
time finite is reached, the combustion would be complete [4]; this is the "cold-
boundary" difficulty, on which a considerable amount of ingenuity has been spent [10],
[17], [19]. To resolve it, we classically modify the reaction term 0 through the introduc-
tion of an ignition temperature 0 ’, such that 0--0, IT<O; this is equivalent to
replacing 0 by H(T-O)o, where H is the Heaviside function. It has been proven [9]
that if one takes a sequence 0{ such that 0{ T(-o), cg converges to some limit
from below. However, this lack of universal significance for c disappears as the activa-
tion energy E becomes large; the high activation energy asymptotics investigated in 5
and 9 completely circumvent this difficulty by yielding unique limiting formulas for c
independent of 0 [4].

Moreover, the results of [10] have recently been (see [14]) well defined and ex-
tended to the full system (1.13), without ignition cut-off temperature. There, the limit

co from [10] is shown to be the universal limit of sequences c obtained by considering
(1.13) on finite truncated domains [-a, + a]; in some sense co is the unique numeri-
cally stable limit.

1.6. The high activation energy limit. A remarkable limit in (0.1)-(0.2), (1.5)-(1.7)
is the asymptotic limit of infinite activation energy in the Arrhenius term (1.6). Specifi-
cally, one defines a small parameter as the reciprocal of the Zeldovich number [19]:

(1.22) 1 E T( + o)- T(- o)
>> 1.

e RT(+) r(+)

Then, in terms of e and the renormalized temperature and concentration u and v, we
can transform the exponential term in (1.6), as:

(1.23) exp----=exp RT(+m)
.exp

T(+m) T

(E) (u-I 1 ))=exp -RT(+) -exp
e l+e(u-1)/e

where --(T(+ )-T(-m))/T(+ ) is the thermal expansion coefficient. The ex-
pression (1.23) is the starting point for the abstract setting leading to the rigorous
asymptotic analysis of {}{}5 and 9. As e 0, the exponential is very small, except for u
such that u- 1 O(e).

2. Main results and summary. First, we study the scalar equation (0.1), where c is
an unknown nonlinear eigenvalue. Many earlier works have assessed the question of
existence for problems of the type (0.1). A good survey of the question with a discus-
sion of the literature can be found in the articles of P. C. Fife [5], [6] and the
monograph by J. Smoller [15]. In the context of population genetics, the paper of D. G.
Aronson and H. F. Weinberger [1] is also relevant. The works of Ya. I Kanel’ [12], [13]
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and Ya. Zeldovich [18], [19] are specifically devoted to combustion with an ignition
cut-off hypothesis. All these papers use a "phase plane" approach to solve (0.1). Here
we use a more general analytical technique, namely a shooting method, together with
more general hypothesis on the reaction term g(u). In particular, we do not assume any
differentiability on g(u), but only piecewise Lipschitz continuity.

The main existence and uniqueness result in Theorem 3.1 of 3, which also
contains the full shooting argument. Uniqueness is established up to a translation of
the origin (4) via hodograph transformation. In 5, we address the question of
asymptotic analysis as e goes to 0 (see (1.22)); under abstract conditions (5.1)-(5.3) on
g(u), we prove the main Theorem 5.2. The main step in the proof consists in using
energy estimates; this approach is very flexible and extends to more general situations,
especially to higher order systems of complex chemical reactions. We show that the
limit problem associated with (0.1) is the free boundary problem

u ) u’)’ +  oU’
u(-oo)=0, u(+)=l, u(0)=0

where 8= is the Dirac measure at the point ff and ff is uniquely determined by the
condition u(0)= 0 (the latter removes the translational invariance). In 6, we conclude
the scalar case study with some remarks on approximating (0.1) by a problem on a
finite truncated domain [-a, + a]. Second, we study similar questions for the system
(0.2). To our knowledge, the only work in this direction is that of Ya. I. Kanel’ [13],
who uses formal phase plane arguments. Here, in 7, following the point of view of 6,
we approximate the problem through a truncated domain [-a, + a] reducing transla-
tional invariance by fixing u(0)= 0. This closely follows actual numerical steady state
schemes currently developed for the computation of traveling waves in systems with
complex chemistry [16]. The general energy estimates, which we develop, enable us to
demonstrate the existence Theorem 8.11 of 8; the latter is, in fact, a numerical scheme
convergence result. We combine the energy estimates with a general comparison result
(Proposition 8.4) which bounds the concentration v from above and below in terms of
1- u. The above tools are also essential in studying the asymptotic limit e0 for
system (0.2) in 9. Indeed, they enable us to show that the sequence c is bounded from
above and below: this singular perturbation problem is definitely not of a classical
type. We prove the equivalent of Theorem 5.2, that is, Theorem 9.4. Now, the limit free
boundary problem is

U" + 0u COx=
Au" + CoU’ c0=,

u(-)=O, u(+)=, u(O)=O
(- )=, (+ )=0,

where ff is defined as before.
In 10, we extend our results to the more general case of a single step, nth order

reaction; there of(u) in (0.2) is replaced by o"f(u), n > 0. In 11, we give (Theorem
11.1) the exact formula for the unique limiting co in the system case. In 5, the limiting
co for the scalar case was automatically obtained through sharp a priori estimates. For
the system case, the latter gives only a permissible band for c0. Then, we need to
establish rigorously the existence of a local Shvab-Zeldovich variable u + Au- 1 inside
the reaction zone (see 1.4).

We hope to use the techniques developed in this paper to investigate deflagration
waves with complex chemical networks [5]-[9].
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3. Existence ,of a solution in the scalar case. In this first part, up to 7, we study
the following problem"

(3.1)
To find a function u: R --> [0,1] and c R satisfying

-(k(u)u’)’+cu’=g(u)inN, u(-oe)=O, u(+oe)=l.

We recall that this equation corresponds to the model of premixed laminar flames with
a single reaction A B, in the particular case that the Lewis number A 1. Since there
is no physical ground to make such an assumption, it should be kept in mind that we
study (3.1) as a model for the more complex systems to be investigated in the forthcom-
ing sections of this paper. Let us emphasize that the number c is an unknown of the
problem.

The function g verifies the following hypotheses"

(3.2)
(3.3)
(3.4)

g" [0,1]+, (i.e.,g>_0) andg(1)=0;
there is some0 (0,1) such that g=0 on [0,0) and g>0 on (0,1);
g is Lipschitz continuous on 0,1 ].

We recall that whenever g is strictly positive on (0,1) 0 represents a (reduced) ignition
temperature, k(u) is a (possibly) nonlinear diffusion coefficient. It will be assumed that
it verifies"

(3.5) k" [0,1] isa cl-function, k(s)>=a>O Vs[0, l].

The smoothness assumption on k could be weakened but we impose it here as we are
looking for classical solutions. Note, however, that since g is allowed to be discontinuous
at u 0, u is not necessarily of class C 2 at the points where u 0.

In this and the next section we will prove the following
THEOREM 3.1. Under conditions (3.2)-(3.5), there exists a solution u: [0,1] and

c > 0 of problem (3.1). u is of class C 1, and of class C 2 on - (xo } for some x0; u is
monotone increasing on . Furthermore, u and c are uniquely determinedfrom (3.1) (up to
a translation of the origin). There are positive constants A and i such that 0 < u(x)<=Aex,
Vx < O. Lastly, if g’(1) exists and g’(1)< 0, then 0 < 1 u(x)<__Ae-x, Vx > 0 for some
positive constants A, .

Remark 3.2. Existence results for problems of the type (3.1) have been obtained in
many earlier works (see the references and the discussion of the literature in 2 above).
Nevertheless, the hypotheses of Theorem 3.1 seem to be more general than those in all
the works we know of. Moreover, the proof of existence and uniqueness which we
present here are quite simple. To start with, let us extend g and k to be defined on by
setting

(3.6) g(s)=0 Vs<=O, g(s)=g(1)=O Vs>=l,
(3.7) k(s)=k(O) Vs<=O, k(s)=k(1) Vs>=l.

Indeed, we wish to consider functions which do not necessarily verify 0 __< u <_ 1. Observe
that k verifies

(3.8) O<a<_k(s)<=<

In the sequel g and k will always be required to verify (3,2)-(3.8). By a solution to (3.1)
we mean a pair (u, c) such that u is a C function.
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LEMMA 3.3. Suppose u,c is a solution of (3.1). Then, c>0, 0<u< 1 and u is
monotone increasing, u’ > O, and lim + u’(x) 0.

Proof ofLemma 3.3. Let a < b and let us integrate the equation on a, b] to obtain

(3.9) k(u(b))u’(b)+k(u(a))u’(a)+c(u(b) u(a))

We take a=0 and let b + o in (3.9). Since g>=0, the integral fg(u(s))ds con-
verges (possibly to +). Since u(b) 1 as b +, (3.9) shows (using (3.8)) that
u’(b) has a limit and, hence, this limit must be 0 to ensure u(+ )= 1. Similarly, by
taking b , we show that

(3.10) lim u’(x) 0.

Now, letting b + m and a m in (3.9), we have

Hence, c is positive. Let us now show that u is monotone increasing. We argue by
contradiction. In view of the limits of u as x , we may assume, if u is not
monotone increasing, that there exist a<b such that u(a)> u(b) with u’(a)=u’(b)=O.
From (3.9), we then derive

(3.a2) O>c(u(b) u(a))

a contradiction.
It remains to show that u’>0 on . Suppose that x0R with u’(x0)=0. Let us

first assume U(Xo)O. In this case from the equation we have -k(u(xo))U"(Xo)
g(u(xo)). Now, if g(U(Xo))= 0, then by the uniqueness in the initial value problem, we
would have u(x)=U(Xo), VxR, which is impossible. On the other hand, if g(u(xo))
>0, then u"(Xo)<0 which is also impossible for u is monotone. Suppose now that
U(Xo)=O. This case is singled out as g may be discontinuous at 0. If g(0)= 0, then g is
Lipschitz continuous on [0,1] and the above argument shows u(x)=O, VxR. There-
fore, we assume g(0)> 0. In this case, since u(x)>O, Vx> xo, we know by letting x + x0

in (3.1) that u"(xo + 0)< 0, which is again a contradiction.
COROLLARY 3.4. Let u,c be a solution of(3.1). Then after a shift of the origin (if need

be) u, c verify

o.n+, -1

Conversely, if u, c is a solution of (3.13), then u can be extended on R in such a way that

u, c is a solution to problem (3.1).
Proof. If u is a solution of (3.1), then u(x + a) is also a solution with the same c

((3.1) is translation invariant). Therefore, after translating the origin if need be, there is

no loss in generality to assume that u(0)= 0. We then know that u(x)< 0 for x < 0 while

u(x)>O for x>0. Hence, -k(u)u’+cu is constant Vx=<0 which shows u’(0)=
cOk(O) -1. Conversely, let u,c be a solution of (3.13). Let us consider the backward
initial value problem:

-k(v)v’+cv=O for x_<0,
(3.14) =0.
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It is straightforward to show that (3.14) has a unique solution defined on

_
satisfying

0<o<0, o’>0 on

_
and limx_,o(x)=0. (It suffices to observe that if Xo<0 with

O(Xo)=0, then o’(x0)=0 and v=0. Hence, 0<o<0 and o’>0. Since limx__,_ v’(x)=
lim v/k(v), we have limx_ v(x) 0).

Now extending u by setting u(x)= v(x) /x <= 0 we have a solution of (3.1).
Remark 3.5. From (3.14) it is clear that

v(x) <=Oe cx/’e lx <_0.

If g’(1) exists and g’(1) < 0 then it is classical that 1 u has exponential decay as x
This is shown by using the "linearized equation" in w 1 u as x -o / oc, namely"

-k(1)w"+cw’-g’(1)w--O.

The proof will be omitted here. Note also that since u 0 only at x 0, u is of class C 2

on - {0}.
In view of the preceding results it remains to show existence and uniqueness of a

solution for (3.13). The proof of uniqueness will be delayed to 4. Existence of a
solution is derived here by a shooting argument in the same spirit as the one used in H.
Berestycki, P. L. Lions and L. A. Peletier [2].

We consider the initial value problem associated with (3.13)"

(3.15) u(0) =0,

Since g is bounded and by (3.2)-(3.8) it is clear that for any c > 0, (3.15) has a
unique solution defined on all of +.

LEMMA 3.6. Let c > 0 and u be the solution of (3.15). Then
i) Ifx >0 with U(Xl)= 1, then u’(xa)>O for x> x (whence u> 1).
ii)/fx >0 with u(xx)=O, then u’(xl)< 0 and u’ <O forfor x> x (whence u<O).
Proof of i). If u’(xl)=0, then since g(1)=0, from uniqueness for the initial value

problem (IVP) we would have u 1, which is impossible. So let us assume that
u’(xl)<0. In this case, there exists , 0<2<x with u()=l, u’(ff)>0 and u> 1 on
(:, xx). In (3.9) we set a=, b= xl to get

-k(1)[ut(xl)-U(,)] =0,

which is obviously impossible. Thus, u’(x)> 0. The same type of argument using (3.9)
shows that u’ cannot vanish for x >_ x.

Proof of ii). If Xl>0 with U(Xl)=O, there must exist , 0<ff<x1, with u(2)>0
and u’()= 0. Set a=ff, b=x in (3.9) to obtain

(3.16) k( O )l,lt( Xl)-+-C( O b/(Xl) ) >0,

which shows Ut(Xl) " O. Should there exist x 2 > X with U(X2) < U(Xl)--" 0 and u’(x2)= 0,
we may assume u(x)<O, ’qx(xl, x2], and we would then obtain from (3.9) (using
(3.3) and (3.6)) that

0 c( 0) =0,

which is impossible. Hence u’ < 0, ’x >= x1.
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Remark 3.7. It is straightforward to show that in case i) limx_+ + u(x)= + and
in case ii) lim u(x) m.

COROLLARY 3.7. Let c > 0 and u be a corresponding solution of (3.15). Suppose that
there exists Xo>0 with u’(x0)=0. Then O<u(xo)<l and there exists x >x0 such that
u(x)=O.

Proof. From Lemma 3.6 we know that if u’(xo)=O then 0 < u(xo)< 1. Using (3.16)
it is clear that u’(x)<O, Vx> xo.

Hence, if u > 0 for all x > xo, l= limx_+ + u(x) verifies 0 __< < U(Xo) and from (3.9)
(where a=xo and b + m) we find that limx_+ + u’(x)=O and

fx
which is impossible.

For c>0, let us denote by u. the solution to the IVP (3.15). We consider two
subsets of Nt ( c > 0}"

F += { c > 0; xl > 0 with u,.(Xl) 1 },
F_= {c>0; x>0 with uc(x)=O}.

LEMMA 3.8. F + and F_ are open disjoint subsets of R +.

Proof. That F+N F_= follows from Lemma 3.6. The fact that F+ and F_ are
open sets is a consequence of the continuous dependence of u with respect to c (at least
for the values of x such that u(x)>= 0 since g might have a discontinuity at 0). Indeed,
let cF/. Then, :txx >0 with u.(Xl) 1. By Lemma 3.6 we know that u.(x)> 0, hence
u,.(x +e)> 1 for some e>0. Therefore, for c’ close to c we also have u,.,(Xl+e)> 1
which shows that c’ F /. The proof is similar for F_.

LEMMA 3.9. F+ is nonempty. More precisely, [c+, +c)c F+, where c+=
(1/O)(2fok(s)g(s)ds }/2.

Proof. Let us set K(z)=fk(s)g(s)ds. Multiply the equation by k(u)u’ and
integrate by parts between 0 _< a < b. This yields

x---b1 )2 21x=b fab 2(3.17) 2 k(u(x) u (x) =
Now let c>=c+. Suppose cF+, that is Uo(X)<l, Vx>0. Then, either x0>0 with

u’(xo)= 0 or u’ > 0, Vx > 0 and l= limx_-+o u(x) verifies 0 < =< 1. In the first case, for
a 0, b x 0, (3-17) reads:

1 20 2 foXO t2 ))-K(O)<K(1)a:(u)u dx=I (u(xo

for K(0)=0 and K is nondecreasing. Therefore, we have C20 2 < 2K(1), i.e., c<c+. In
the second case, when u’>0, Vx>0, it is seen from (3.9) that limx_,+u’(x)=O. Set
a 0 and b--+ + m in (3.17). We obtain

1 20 2 =K(1)<

that is, again, c < c /.

Thus, for all c > c +, c must be in F +.

LEMMA 3.10. F_ is nonempty. More precisely, [0,c_]c F_, where c_= {2K(1)}1/2.
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Proof. Let c =< c_; if c F_, then by Lemma 3.6 and Corollary 3.7, we know that
u’ > 0 for all x > 0. There are two possibilities: either ff > 0 with u(ff)= 1 or u < 1,
Vx > 0. In the latter case, limx_ / u(x)= verifies 0 < =< 1. In view of (3.9) we have
lim x--, / u’(x)= 0 and from the equation we derive

lim u"(x)=- g(l)

Hence for u to remain bounded, we must have g(/)=0, whence I= 1. In this situation
we set + . Thus, if c F_ one has for , 0 < ff =< + "
(3.18) u’>0 Vx [0,1, u(2) 1, u’() >_ 0.

Now multiply the equation by u and integrate by parts on [a, b]"

(3.19) -k(u)uu’ + k(u)u’2dx+ - g(u)udx.

Let us evaluate (3.9), (3.19), and (3.17) for a 0 and b ft. We obtain, respectively,

(3.21)

g(.)

-k(1)u’() + (1 +02)+ k(u)u’2dx g(u)udx

1 1 fo2 (1)2u’()2 + "c202+c k(u)u’2ax=K(1)"

Now we subtract (3.20) from (3.21) and we use that u < 1 on (0,if) to obtain,

(3.23) [ c
(1_0k(u)u 2dx < - ).

"o

Thus, combining (3.22) and (3.23) we derive

17
2

(3.24) K(1) < --,
that is, c > c_. Therefore, any c =< c_ must belong to F_. rn

Conclusion. We are now ready to prove the existence of a solution to (3.13),
whence by Corollary 3.4, the existence of a solution to (3.1). Since F/ and F_ are
nonempty disjoint open subsets of (0, + ), there must exist a c > 0 such that

(3.25) cF+UF_.

Observe that such a c verifies the bounds

(3.26) c_<c<c/.

Now if u= u,. denotes the corresponding solution of (3.15), we know that u’> 0 and
0 < u < 1, Vx > 0. We have already seen that this implies lim / u(x) 1. Clearly u is
a solution of (3.13), hence of (3.1).

Therefore, apart from the uniqueness, the proof of Theorem 3.1 is complete, rn



TRAVELING WAVES IN COMBUSTION MODELS 1219

4. Uniqueness of the solution in the scalar case. We will now show that the
solution u, c of problem (3.1) is unique. In view of Corollary 3.4, it suffices to show that
the solution to problem (3.13) is unique. Notice that for this range of values of u, that is
0,1), g is locally Lipschitz, whence there is a uniqueness for the IVP.

Let u, c be a solution of (3.13). Since u is increasing, we may define a function
x(s) u- l(s) ( u(x(s))= s). Then, x: 0,1) --> R / is continuous, increasing and verifies
x(0)=0, x(1)= +

Set dx(s)/ds= z(s). The function z: 0,1) -> R + is continuous, and it verifies

1 cO
(4.1) -u’(0).- z(1)=+ z(s)>0 Vs[O 1).

The equation (3.1) translates into

(4.2) ds z(s) +c=g (s

Now, suppose there are two solutions (Cl, U), (c,u) of problem (3.13). We
denote by xi(s)=ul(s) and zi(s)=dx(s)/ds, the corresponding functions defined
above.

By the uniqueness to the IVP it suffices to show that c -2. So let us argue by
contradiction and assume that c <c_. Then, by (4.1), one has zl(0)> z2(0), whence by
continuity for some o > 0:

(4.3) Zl(S)>Z2(s )
We claim that o 1. Indeed, if not, 0 < o < 1 and

(4.4) zl(o)=z(o ).

Then, using the difference of the equations (4.2) for z and z, respectively, we obtain

=C2--C1>0.(4.5) ds 7-, z2

That is, letting w= k/z -k/z gives w’(o)< 0. This, however, is impossible since by
(4.3), (4.4), w verifies w < 0 for s < o and w(o) 0. Therefore, one has o 1.

Let us now integrate the equations (4.2) for z and z2, respectively, over 0,1). This
yields

(4.6) cl-c_= g(s)(zl(s)-z_(s))ds.

This is an obvious contradiction since c < c and z > z 2, and the condition (3.3) on g.
The proof of uniqueness is thereby complete, which concludes the proof of Theo-

rem 3.1.
Remark 4.1. The preceding uniqueness theorem extends a result of Kanel’ [12] by

allowing more general hypotheses on g and a variable diffusion coefficient. Further-
more, the proof above is much simpler than the one in [12], [18], [19].

5. Asymptotic analysis for large activation energy. In this section, we assume that g
depends on a parameter e > 0 and we let g= g. The corresponding (unique) solution of
(3.1) will be denoted by u, c. We set
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The following conditions will be assumed here on the family of functions g:

(5.1) For each e > 0, g verifies conditions (3.2)-(3.4) with a fixed 0 (0,1);
(5.2) 9 0,, 0 =< 0 < 1 such that lim ’ 0 1 and lim max g,(u) 0;

,o 0 u[O,O]

(5.3) limK(1) m > 0, m < + .
Remark 5.1. The typical example in the applications is the function g(u)=

f(u)(1-u) with f(u)=0 for O<_u<O and f(u)=(1/e)q)((u-1)/e,) for O<=u<=l,
where q) is some fixed positive function satisfying

lim fo -oo(o, )do<

and, for instance, limy _lylpq)(y, 0)=0, with p > 2 and 4) is nondecreasing near .
Notice that (5.1)-(5.3) are satisfied in this case. The prototype of such a function q) is
the exponential (/)(o)= e (cf. {}1.6). This gives rise to the Arrhenius term (3.1). In scaled
variables, the parameter e repesents the inverse of an activation energy E. In this
section we are deriving in a rigorous fashion the asymptotic limits as E becomes
infinite.

Our main result is the following:
THEOREM 5.2. Under conditions (5.1)-(5.3), the unique solution u, c to (3.1) such

that u(0)= 0 has the following behavior when e $ 0:

c= yam co,

and u converges to u o in the sense that

max {u(x)-uo(x)l-+0 as e--+O,

[[u- Uol]n,()- 0 as e --+ O,

where uo is uniquely determined by u0(x)= 1, Vx > if,

--0-k(uo)Uo+CoUo Vx<__,

and Y is uniquely determined by the condition u0(0)= 0.
Proof. First, from 3, by (3.26), we know that c is bounded from above and from

below (away from zero) independently of e:

1 1/2(5.4) 0<{2K(1)}I/2<c<{2K,(1)} and K(1)-m>0 ase$0.

From the relations (3.9), (3.19) and (3.17) respectively, for each e>0, for a=0,
b x, we obtain

1 ) )2 l c02 k(u) ’dx K(u(x))(5.7) -k(u(x) u(x + - +G u
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For each e > 0, we let x> 0 be defined by u(x)= 0. From (5.7) we get, for all x,
O < x <=x,

f12 )2 1 e20 2 Ke(Oe)(5.8) T;(x + __<

for K is nondecreasing. Using the lower bound on c in (5.4), we see from (5.8) that

(s.9) (1)0-(0) z Tu;(x
The hypotheses on g, (5.2) and (5.3), imply that K(O) 0 and K(1)m > 0 as e 0.
Hence, for e small enough, say 0 < e N e0, (5.9) shows that there is a constant a > 0 with

(5.10) u’(x) Z a > 0 Vx [0,x].
Therefore, for all

(5.11) 1 u’(,)dsax

This shows that x is bounded from above by (1-O)a- independently of e (eeo).
Hence, by (5.2)"

(5.1a) o< g(u(s))dsN(1-O) max g(u)O ase0.
ue[O,Ol

Then (5.5), read at the point x x, implies

(5.13) lim { k(O)u’(x )-cfl} =0.

From (3.17) written at a=x and b + m we know that

(5.14) gk(<) u’(x) zr(1)-(o).

Thus, combining (5.13) and (5.14) yields

(5.15) limc =< /m.

On the other hand, (5.4) shows that

(5.16)

and therefore

limc >= 2v/2v/2V,
e$O

(5.17) limc= -= co.
e,l,O

It is straightforward to show from the equation (see (3.14)) that on R_, u
converge in the C2(R_) and H2(_) topologies to the unique solution u 0 of the
equation

-(k(uo)U’o)+CoU’o=O onR_,
(s.a8)

Uo (o) o, U’o (o) coo a: (o)] -x.
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We also know that x<_Xo=(1-O)a -1, /e<=e. Hence, for all eeo, and for all x>__x o,

one has O<=u(x)<l which shows that uuo in the sup-norm on Ix o, +) where
Uo(X)= 1, ’’x >__ xo. It remains to study the limit of u on the bounded interval [0,Xo].

Letting x + oo in (5.7) shows that

+ lc20"c k(u)u’2dx=K(1)- -Hence, f- u’(x)2dx is bounded independently of e. In particular, u remains bounded
in Hi([0, xo]). Using the bound on x and the compact embedding Hl([0,Xo]) c C[0, x0],
we may extract a subsequence ej. $ 0 such that

(5.19) x.; __< x o,

(5.20) u;Uo in C[0,Xo].

Since 0 ’1, we know that Uo(X)=l, X/x>_. On the other hand, by (5.3), g (u(x))
converges uniformly to 0 on any interval0,2-8] with 8 > 0. Therefore, the equation
shows that uo is of class C 2 on R { } and

We claim that this determines uniquely. Indeed, since u0(0)=O and u(0)=
CoO[k(O)]- 1, it is easily checked by the uniqueness in the IVP (5.21) that is uniquely
determined. One could use, for instance, the argument in {}4 to show that the solution
of (5.21) together with the initial condition at x--0 is monotonous (pointwise) with
respect to co

Now, since :g is unique, (5.19) holds for any subsequence ej. $ 0, which shows that

(5.22) limx=.

Consequently, since u 0 is also unique, (5.20) holds for any subsequence and therefore

(5.23) lim max [u(x)-uo(x)l=O.
e$0

It is then straightforward to show that

(5.24) lim [{u- Uo[[n(n)= 0.

The proof of Theorem 5.2 is thereby complete.
Remark 5.3. Theorem 5.2 and its proof give a rigorous justification for the heuristic

"internal layer analysis" by which this type of asymptotic limit was usually obtained
[4]. It is of interest to observe that the limiting solution u 0 verifies the, equation

(5.25) (k( u0) u;)’+ CoU’o COSx=
where 8x= x is the Dirac measure at x-ff and co . It is an open question whether
one can pass to the limit in the equation in order to derive (5.25) in some more direct
fashion.

6. Some remarks related to the numerical approximation of the scalar equation.
From the viewpoint of the numerical approximation, it is desirable to study the
analogous problem to (3.1) on a bounded interval and how a solution of the latter
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converges to a solution of (3.1). For a>0 we let Ia=[-a,a and we consider the
problem:

To find u C2(Ia, [0, 1]) and c > 0 satisfying

-(k(u)u’)’+cu’=g(u) on/a
(6.1) u(0)=0.

The purpose of this section is to show under conditions (3.2)-(3.8) the following:
PROPOSITION 6.1. For any a > O, there exists a unique solution ua, ca to problem (6.1)

with the following properties" ca > O, 0 < u < 1 and u is increasing. As a function of a, ca
is decreasing. When a + , c converges to c, and u converges to u in the sense that

lim max luo(x)-u(x)l-o, lim [[u ul[gl(n)-O
a--- + x[ a-- +

where u is extended by u x 1, Vs >= a and u x ) u a ), Vx <= a. Further ( u, c) is
the solution to problem (3.1).

Proof. The existence of u and c are actually consequences of the more general
Theorem 7.6 concerning systems in the next section. Indeed, it will be seen that (6.1) is
obtained in system (7.1), when the Lewis number A is made equal to 1. From the next
section, we also know (cf. Proposition 8.1) that for any solution u,c of (6.1) one has u
increasing and c > 0.

Let us now prove the uniqueness of this solution. For a solution u, since u is
increasing, it verifies u < 0 on (- a, 0) whence k(u)u’ + cu=O on(- a, 0). Therefore,
it suffices to prove uniqueness of the solution c, u to the IVP:

-(k(u)u’)’+cu’=g(u) on(O,a),
(6.2)

u(0) =0, -1

together with the boundary condition

(6.3) u(+a)=l.
Let u be a solution to the IVP (6.2). Let x(s)=u-l(s) and z(s)=dx(s)/ds. Then z
satisfies equation (4.2) on s[0,1]. Now let 0<c1<c2 and denote by u1, u 2 the
corresponding solutions of (6.2), xi(s)=uFl(s), zi(s)--dxi(s)/ds, i=1,2, s[0,1].
Following the same argument as in 4 we obtain that

(6.4) Zl(S)>Z2(S ) Vs [0,1],
whence it follows that

(6.5) xl(s)>x2(s Vs (0,1].
In particular,

(6.6) x1(1) >x2(1
This shows the solution to (6.2)-(6.3) to be unique. Indeed if u(+ a)= 1 and if < c
(resp., > c) then the solution fi of the IVP (6.2) corresponding to O verifies fi(+a)< 1
(resp., fi( + a)> 1). This, of course, also proves that c is a decreasing function of a > 0.

Therefore, c decreases toward a limit c. That Ua, Ca converge to u, c (in the sense
of the proposition) and that u,c is the solution of (3.1) follow from the more general
results of 8 (again corresponding to the particular case of a Lewis number equal to 1).
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Remark 6.2. Prescribing u(0)= 0 is essential in Proposition 6.1. Indeed, c is a priori
an unknown of the problem and is determined by imposing a constraint. The condition
u(0)-0 is adequate since the limiting problem is translation invariant; indeed, if one
wants to avoid weak convergences to u 0, c + of the solution of (6.1) as a + ,
it is necessary to fix u at some point. Current numerical steady states (on a truncated
domain) use the same centering condition [16].

7. The system case: existence of a solution on a bounded domain a, + a ]. In this
section, we construct a problem similar to the system introduced in (0.3), (1.13), but
posed on a bounded domain [-a, + a]. On a bounded domain, this problem is then
equivalent to a fixed point equation which we can solve with Leray-Schauder degree
theory. The existence result obtained will be used in the next section. We should also
point out its interest in numerical applications.

7.1. The boundary value problem and the hypothesis on the reaction term. In what
follows a will be a fixed real number, strictly positive. We now consider the following
boundary value problem posed on [-a, + a]: Find the triplet (u, v, c) satisfying

-u"+cu’=f(u)v on(-a,+a),
-Av"+cv’= -f(u)v on(-a,+a),

and the boundary conditions

-u’(-a)+cu(-a)=O, u(a)=l,
(7.2) -Av’(-a)+cv(-a)=c, v(a)=0.

In what follows, 0 is a given real number such that 0 < 0 < 1. We are assuming on the
nonlinear termf the following:

(7.3)

(7.4)

f: [0,1 + is continuous, locally Lipschitz on

0,1], possibly discontinuous at u 0;

f(u)=0 on[0,0[, f(u)>0 on]0,1].

Remark 7.1. The real number 0 will refer to the ignition temperature and the
hypothesis (7.4) is made in order to circumvent the so-called "cold boundary difficulty."
The hypothesis (7.3) is nearly optimal and corresponds to all known reaction terms.

Remark 7.2. Thanks to the hypothesis (7.4), the solution u, for x < 0, is explicit:
u(x)=Oe and moreover -?v’(O)+cv(O)=c. (We are anticipating the result u’>0
proved in 8.) The boundary conditions (7.2) are therefore equivalent to

u(O) 0 u’(O) Oc, u(a) 1,

Av’(0) + cv (0) c, v(a)=0.

We point out the analogy with the boundary conditions used in steady state numerical
schemes [16]. Loosely speaking, when a- + , u’(-a) and v’(-a) are going to 0;
taking the limit a + in (7.2), we, therefore, recover (0.2) and (1.13). [2

7.2. Equivalence with a fixed point problem. The transformation of a nonlinear
equation into a fixed point problem is by now classical. The interest of the transforma-
tion performed here lies in the fact that we are solving a nonlinear eigenvalue problem.
Indeed, not only u, v but also the parameter c (representing the mass flux, see 1.3)
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must be found to satisfy (7.1) and (7.2). We will denote Ia=(-a, +a) and set by
definition

(7.5)
This is a Banach space equipped with the II(u,v,c)llx--max(llullc,(zo, Ilvllcl(zo,lcl). Let
us consider the mapping sending each element (u,v,c) of X to the unique solution
(U, V) of the following linear system, indexed by the parameter r with 0 __< z < 1"

-U"+cU’=f(u)v on/.(7.6) -AV"+cV’=-’rf(u)v On/a;

(7.7)
-U’(-a)+cU(-a)=O, U(a) =1,

-AV’(-a)+cV(-a)=c, V(a) =0.

We can easily check that U and V are in the Sobolev space H2(I,) and even in
W2’(I,), if u and v are given in cX(fa). If the space dimension is one, the space
H2(Ia) is embedded into Cl(a), the embedding being compact. Therefore, we can
define a compact mapping K,, indexed by [0,1], from X into X:

(7.8) K," XX: (u,v,c)(U,V,c-u(O)+O).

Similarly, the mapping K: XX[0,1]--.X defined by (u,o,c,’r)--,K,(u,v,c) is compact
and uniformly continuous with respect to ,. Let us then notice that every solution of
(7.1), (7.2) is a fixed point of K, and conversely" setting F,--I-K, (I is the identity
mapping in X), solving (7.1), (7.2) is therefore, equivalent to proving existence of
(u,v,c) such that F,( u, v, c)= O. Thanks to the property of K,, it suffices then to
compute the degree of F, at 0. It will remain to prove that the degree is indeed well
defined and nonzero. Let us introduce the open bounded set 2 c X:

(7.9) f={(u,v,c)X
where 0 <M< + , 0 < c < < + . The degree of F, in f at 0 will be defined if there
exist M,c,g such that F,(Of)4:0. This is demonstrated in the next section, where we
will also compute the degree of F, in f at 0, using both the invariance by homotopy and
the multiplicative property of the degree.

7.3. Justification of the degree and existence of one solution. Let us state"
PaoeoslxlO 7.3. Let K, and fl be defined by (7.8) and (7.9). Then there exist finite

constants M, c, , independent of a, such that

(7.10) F,(Oa)=(I-K,)(Oa),O, 0_<r=< 1.

Remark 7.4. It is not necesary to have M, c_, independent of a in order to prove
(7.10). The result is indeed a consequence of stronger estimates, proved in {}8, allowing
it to pass to the limit a-- +

XActually, if f(s) has a discontinuity at the point s-O (i.e. f(0)>0), the operator K, will not be
continuous. To overcome this problem, one more technical step is required" To approximate f by a continu-

ous f =fX with X(s)=0 if s<=O, if s>=O+e, and (s-O)/e if O<s<O+e. Now, the solution u we find is

montonically increasing. Then, in view of the a priori estimates derived in 7.3. below, the limiting procedure
as e0 is fairly straightforward. Details will be omitted here. This yields the existence result for a

discontinuous f as well. The authors are indebted to V. Giovangigli for pointing out to them that this point
was overlooked in a first draft.
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Proof. It is sufficient to prove the existence of M, c_, g, independent of a, such that

(F(u,v,c)=O,V’r[O,1]} =* ((u,o,c) f] }.

The existence of c_ is given by Proposition 8.7. The existence of g is given by Proposition
8.10. From Proposition 8.1 we deduce suPtolu(x)l<= 1, supt, lo(x)__< 1 and supz.lu’(x)__<
c, suptolo’(x)l<=c/A; therefore, Ilullc(o)<max(1,c), Ilollcl(o) <=max(1,c/A) the ex-
istence of M is then again a consequence of Proposition 8.10. []

The value of deg (F,, f, 0) is then given by
PROPOSITION 7.5. Let K, and be defined by (7.8) and (7.9). Then the mapping

F, I- K, satisfies

(7.11) deg(F,, , 0) deg(Fo, f,0) -1, 0__< __< 1.

Proof. The homotopy invariance property of the degree proves the first equality in
(7.11). When =0, a straightforward computation gives U and V solutions of (7.6),
(7.7):

Go(c ) x-->e c(x-a), Vo(c ) x--> 1 +e ‘’(x-")/a.

Therefore, Fo is known explicitly:

x-,x: Vo(c),u(O)-O)

and this mapping is homotopic to

dp. S---- g’. (u,o,c)---(u-Uo(c),o-Vo(c),e-ca-o).

Using the multiplicative property of the degree, we find that the degree of is -1
(note that the function c- e-c"- 0 is decreasing.) [3

The main result of this section is a direct consequence of Propositions 7.3 and 7.5.
THEOREM 7.6. Under assumptions (7.3) and (7.4), the problem (7.1), (7.2) does have

at least one solution ( u, o, c ).
Remark 7.7. Uniqueness for the problem (7.1), (7.2) is an open question for A > 1

[19].

8. Existence of a solution on R for the system. Existence of one solution (u, o, c)
for the problem

(8.1)

-u" +cu’=uf(u) onU,
-Av" +cv’= -of(u) onR,
u(- )=0, u(+)=l,

u(0) =0

is a consequence of Theorem 7.6. More precisely, for each a > 0, the problem (7.2) does
have at least one solution (u,,o,,c,). In this section we show that, for a going to + ,
the sequence (u,,o,c) (or an extracted subsequence) converges to one solution of
(8.1). The proof is based mainly on qualitative properties of a solution (Ua, Oa, C)
(defined on Ia) and a priori estimates, independent of a, of Ca, then of u, %.
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8.1. Qualitative properties of (Ua, l)a, Ca). For the sake of simplicity, we will drop
the explicit dependency on a. We consider the problem

-u"+cu’=f(u)v on(-a,+a),
-Av"+cv’= -f(u)v on(-a,+a),
+u’(-a)+cu(-a)=O, u(a)=l,
-Av’(-a)+cv(-a)=c, v(a)=0,
u(0) =o,

where A > 0.
PROPOSITION 8.1. For every solution (u,v,c) of the problem (8.2) with c>__0, the

following holds"

(8.3)
(8.4)

c>0,

0<u__<l, 0v<l on[-a,+a],
(8.5) 0<u’<=c, -c/A_<_v’ <O on [-a, +a].

Remark 8.2. In particular, u > 0 on (0, + a] and u < 0 on [-a, 0). As f satisfies for
hypothesis (7.4), for x [- a, 0], one has:

u(x)=Oe "x, v(x)=l-ae"X/,
where a is a positive (unknown) constant.

Proof. A. To prove (8.3), we show that c=0 is impossible. If c=0, since u’(-a)=
v’(-a)=0 and u(a)=l, v(a)=0, every solution (u,v) satisfies u+Av-l=O on
(- a, a). Therefore, u is a solution of the problem

(8.6) -u"--f(u)(1-u)=O,
u’(-a)=0, u(0)=0, u(a)=l.

Necessarily, u =< 1 on [-a, + a]; if not, some x0 would exist with -ax0 < a such that
u’(xo)=0 and U(Xo)=maX_azx<_u(x)> 1, u"(x0)>0 and that is impossible in view
of (8.6). Let us now define w=u’; as f(u)(1-u)>O on [-a, +a] and w(-a)=0, we
deduce from (8.6)

w(x)= f(u(y)(1-u(y))dy<_O

for x [-a, + a]. The function u is, therefore, decreasing on [-a, + a]. In particular,
0= u(0)>= u(a)= 1, which is in contradiction with the hypothesis 0 < 1. Thus, c=0 is
impossible.

B. Let us show that v >= 0 on [-a, + a], again arguing by contradiction. Suppose
min_<_x<_v(x)<O; then either there exists x such that U(Xl)<O and v’(x)=O, or
v =< 0 and v’ > 0 on [- a, + a]. In the first case, there exist a,/3 such that a __< c </3 =< + a
and

o’(a)=0, v(fl)=0, v’>=0 on[a,fll.

In particular v=<0 on [a, fl], and as v is solution of +Av"-cv’=f(u)v, v satisfies
(v’exp-cx/A)’=(1/A)exp(-c/A)f(u)v<O on [a, fl]. Integrating this inequality
from c to x, a =< x =< fl we obtain v’ =< 0 on [a, ]3 ], for v’(c)= 0. Thus, v’= 0 on [a,/3] and
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o 0 on [a, fl] since o(fl)= 0. Therefore, o 0 on [- a, + a]; but At)’(- a)+ co( a)= c
and so c 0, which contradicts the conclusion of A.

In the second case, as Av’(- a)= c(1 v(- a)), the hypothesis c >= 0 and v =< 0
show that t)’(-a)=<0 which contradicts t)’>0. In conclusion, min_u_<x_<+at)<0 is
impossible, therefore t) >= 0 on [- a, + a ].

C. Let us remark that the system (8.2) is equivalent to a first order system. This
remark is crucial in order to prove (8.4) knowing that t)_> 0. Let us introduce a new
dependent variable w (mass flux fraction) defined by

(8.7) w At)’ + co.

Then, for (u,t),c) a solution of (8.2), w’=-t)f(u) and o’=co/A-w/A; moreover,
-(u+ At))" + c(u+ v)’ 0, after integration between -a and x, yields u’=c(u- 1)+w,
thanks to (8.7) and w(-a)-c. The system (8.2) is therefore equivalent to

u’=c(u-1)+w,
c 1

(8.8) w’= -f(u)v,
-u’(-a)+cu(-a)=O, u(a)=l,
w(-a)=c, t)(a) =0,
u(0) =0.

Since f(u) _>_ 0, t) >= 0, the function w is decreasing from c to w(a) )t)’(a) > 0 (neces-
sarily t)’(a) < 0 if t) >_ 0)" 0 _< w _< c. But u’ cu w c; we thus obtain ce- < (e- u)’
__<0. By integration of these two inequalities from x to +a (u(a)= 1), we get u(x)>=
e-"a-> 0 and e-"(u(x)- 1)< 0 and so 0 < u =< 1. Similarly, from t)’- ct)/A w/A,
we get ( c/A) exp( cx/A) <_ (t) exp( cx/A))’ <_ 0 and by integration from x to + a

(o(a)= 0), we obtain 0=<v< 1.
D. The function u satisfies u" + cu’=f(u)o > 0 and, therefore, -(e-"u’) >= O.

By integration from x to + a, we have e- au,(a)__< e- ’Xu’(x). But, integrating the
relation (u + At))" + c(u + t))’ 0 from a to + a, we get u’(a) + At)’(a) 0 and thus
u’(a) > 0 since t)’(a)< 0. Therefore, u’> 0. In the same way, as o satisfies -Av"+ co’=
-f(u) t) __< 0, the inequality (t)’ exp cx/A)’ >__ 0 provides, after integration from x to
+a, v’<0. In particular, 0<v<l on I-a, +a[. Similarly, as u’>0, 0<u<l on

a, + a[. Finally, from the first equation in (8.8), as 0 < u =< 1 and 0 < w =< c, we
immediately obtain u’(x)<=c on I-a, +a]. The second equation in (8.8) also gives
c/A <= v’(x) on [- a, +a]. t3

Remark 8.3. The former qualitative properties have been obtained under the sole
assumption of positivity of f. The functionf is possibly discontinuous.

8.2. A priori estimates on (u,v, c). A priori estimates from above and below for c
will be obtained (using the conservation laws satisfied by u) by comparison of v to
1 u. So we will prove the simple, but very useful for the sequel, following"

PROPOSITION 8.4. Every solution (u, v, c) of the problem (8.2), with c >= O, satisfies on

[-a, +a]"

lu(x)/o(x)-ll<_ IA- alo(x),
(8.9.1) lu(x)+v(x)-l[<=] A-1 (1- u(x))"A
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(8.9.2)
[u(x) + Av(x)-1[__< ]A- llv(x),
]u(x)+ Av(x)-ll=< IA- 1](1 u(x)).

In particular,

(8.10.1) -1 (1-u(x))<v(x)<_(1-u(x))= ifA>l,

1 (1-u(x)) ifO<A<l.(8.10.2) (1-u(x))<__v(x)<=-

Remark 8.5. u + v- 1 and u + Av- 1 are the only linear relations possible between
u and v. (The constant -1 comes from the boundary condition u(a)= 1.) The physical
meaning of u + v- 1 is the enthalpy.

Remark 8.6. If A 1, then u + v 1 0 and we verify the conservation of enthalpy
[4]. In particular, u(x0)= 0 if and only if v(x0)= 0.

Proof. It is a simple differential inequality. Setting z u + v- 1, where u and v are
solutions of (8.2), the function z satisfies -z" + cz’ (A- 1) v". By integration between

a and x for a __< x =< + a, we get:

-z’(x)+cz(x)-(A-1)v’(x)= -z’(-a)+cz(-a)-(A-1)v’(-a).

The right-hand side of this equality is 0 because u’( a) + cu( a) At)’( a) +
cv(-a)=O. Therefore, -z’(x)+cz(x)=(A-1)v’(x) and integrating again, now be-
tween x and + a (z(a) 0)"

e-Xz(x)=(A-1) e-%’(s)ds.

From Proposition 8.1, we know that o’ < 0 and thus:

e [z(x)l<=lA-1le Jx (-v’(s))ds.

The first inequality (8.9.1) follows as o(+ a)=0. To prove the second, we remark that
z --u+ v- 1 does also satisfy Az" + cz’ =(1 A)u". Integrating between -a and x,
using the left boundary condition, we obtain

-Az’(x)+cz(x)= (1 A) u’(x).

A new integration between x and + a(z(a)= 0) gives

e-cx/Az(x)--------1 A f’x -.,/A
A e u’(s)ds

and as (Proposition 8.1) u’>0 and u(a)=l, we get ]z(x)l<_l((A-1)/A)l(1-u(x)).
The two inequalities (8.9.2) are obtained in a similar way introducing y-= u + Av-1,
that satisfy -y" + cy’=(A- 1)cv’ and Ay" + cy’-- (1 A)cu’. The two inequalities
(8.10) follow directly from (8.9.1) and (8.9.2). []

Now we state the main result of this section.



1230 H. BERESTYCKI, B. NICOLAENKO AND B. SCHEURER

PROPOSITION 8.7. Let g(s)=-(1-s)f(s) and assume that G(1) fg(s)ds< +oo.
Then, if u, o, c) is any solution of (8.2), c satisfies:

1 c 2 1 lu’(a)121(8.11) -< G(1) <7 1 +7-J ifA > 1
2

(8.12) 1 < < + 2G(-2G(1)= X ifA<l.

Remark 8.8. Let us recall that the function s f(s) is identically 0 for s < 0(0 < 0 <
1)" therefore G(1)

The proposition will result from Proposition 8.4 and the following one, which
make precise L2 estimates for u’ and v’.

PROPOSITION 8.8. For any solution ( u, v, c) of (8.2) with c O"

c (1 02(8.13) lu’(x)12dxN ),

(8.14) lu(-a) + lu’(x)[ dxN,

(8.15) lv(-a) +A Io’(x)l dxNc.

Proof. By integration, between 0 and +a, of the equation -u"+cu’=vf(u)
multiplied by u, we get as u(0)= 0"

c
(1 + 0 2 ,(

2

-u’(a)+g )+ lu x)] dx= f(u(x))v(x)u(x)dx.

The right-hand side is bounded from above (f(u)vuO and u N 1) by ff(u(x))v(x)&;
but this integral is equal to c-u’(a), as easily seen by integrating -u" +cu’=f(u)v
between 0 and +a. As a result we get (8.13). Now, we integrate -u" +cu’=f(u)v,
between a and + a, after multiplication by 1 and u. We get two identities:

+a
c-u’(a)=f f((x))o(x)dx,

12
+a

c-u’(a)-5(lu(a)] -lu(-a)l +f [u’(x) dx=f f(u(x))v(x)u(x)dx.

The right-hand side of the second identity is bounded from above by c-u’(a). From
the first identity and lu(a)[2< 1 we get (8.14). Finally, we integrate between -a and
+ a, the equation Av" + cv’ -f(u)v multiplied by v and obtain (f(u) 0)"

fa+ (-ao"(x)+o’(x))(x)ax=- /(u(x))o(x)axo.
a

The inequality (8.15) follows, integrating by parts since v(-a) 1.
Now we can give the
Proof of Proposition 8.7. Let us prove (8.11), the proof of (8.12) being identical. We

start with the identity obtained by intgration of -u" + cu’=f(u)v between 0 and + a,
after multiplication by u’,

(8.16) 2 lu’(a)] +02c2+c lu’(x){2ds= f(u(x))v(x)u’(x)dx
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(u’(O)=Oc, see Remark 8.2). As f(u)>O and u’>0 (Proposition 8.1), we obtain from
(8.10.1)

1 2C2 f0a 12 l f0- 1(8.17) -0 +c lu’(x) dx>=x f(u(x))(1-u(x))u’(x)dx=--G(1).
From (8.13) (Proposition 8.8), the left-hand side of this inequality is bounded above by

0 2C2 C 2
C
2

---+ (1- 02) T=T
and so we get the first part of (8.11). Now from (8.16), we can also deduce:

1 02c2<foaf(u(x))v(x)u,(x)dx+ lu’(a)l
2

(8.18) - 2

(note that lu’(a)l<=c using (8.5), Proposition 8:1). Using again (8.10.1), we get from
(8.18) and the definition of (7(1):

L02C2 < G(1) q- lu’(a)l
2 2

which completes the proof of (8.11).
Proposition 8.7 will play a key role to bound c when passing to the limit a +

For a finite a, the necessary upper bound for c (independent of a) is obtained by
constructing an appropriate upper solution.

PROPOSITION 8.10. Let M= suPo<_s<__lf(s ) and a0> 0 is fixed. Then, for each a> a o,

if u, o, c) is any solution of (8.2), c satisfies

(8.19) c<max -,max 2M,
a0 0

Proof. Let us define the function as the unique solution of:

-"+c’=MH on(-a,+a),
(8.20) -’(-a)+c(-a)=O, fi(a)=l,

where H is the Heaviside function at x=0. From Proposition 8.1, we know that
u(x) < 0 for x < 0, u < 1 and 0 __< < 1. Thus a simple comparison principle shows that
u(x)<=(x) on (-a, +a). In particular, 0=u(0)__<fi(0); but an explicit computation
gives fi(0):

a4) a4
(S.21) ___+-Set Co= max(2M, //0); then either c<=co and the proof is complete or c>= co. In
this latter case, 0__< 1/2e-’a+o//2, due to (8.21), and then c<__ -(logO)/a<_ -(logO)/ao
since 0 < 0 < 1, a >= a 0 which gives an upper bound for c. The proof is complete.

8.3. The passage to the limit a= + m. By passing to the limit a + z, we shall
obtain, using the a priori estimates of former sections, existence of one solution for the
problem (8.1). More precisely"

THEOREM 8.11. Let O, a o suchthat 0<0 < 1, a0>0. Assuming the conditions (7.3),
(7.4) on F, there exists an increasing sequence (a,},e N with a,,>ao, lim,_+a,,= +
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such that (Ua,,,Van, Ca,,) solution of (8.2) on (--a,, + a,) converges, for the topology of
Cloc(R) Coc(R) R, to one solution of(u,v,c) of (8.1). Moreover"

(8.22) O<=u, v<=l on.R,
C

Vt(8.23) O<=u’ <=c, - <= <0 on R,

(8.24) u, v wz’(R)
(8.25) 0<c__<c=<e< + .

Remark 8.9. It can be proved that the problem (8.1) has in fact only one solution if
A < 1. This uniqueness result will be made more precise 11.

Proof. Let us take a solution (Ua, Va, Ca) of (8.2). Using Propositions 8.7 and 8.10,
there exist two constants _c,?, independent of a, with 0<c_<?+ and such that

_- <ca<? and -?/A< -c/Ac_ < c, < c. Using (8.4) and (8.5), we have 0 < u < 1, 0 < u

v’ <0. As O<=f(s)<=M for 0__<s=<1, we then deduce that Ua=CaUa--f(Ua)V and

v’= cv’/A +f(u)va/A are bounded independently of a. Therefore, u, v are bounded
independently of a in W2’( a, + a). As a consequence, we obtain the convergence, in
the topology of Coc(R) Cloc(R) R, of the sequence (Ua.,Va.,C,) to (U,V,C) satisfying"

(8.26) u" + cu’ =f(u) o on R,
(8.27) Ao" + co’= -f(u) v on R.

Properties (8.23)-(8.25) are clearly satisfied. From Remark 8.2, we get u(-m)=0 and
o(-m)=l. Moreover, u(0)=0, since u(0)=0. Let us find l=limx_+u(x) and
l’ limx_, + v(x). Since v’ and v are bounded on R, v’(+ m) is finite and v’(+ m)=0;
similarly v"(+ m)=0. But v does satisfy (8.27) and therefore f(u(+ m))v(+ m)=f(l)l’
=0. Since l> 0 (u is strictly increasing), with the assumption (7.3) we deduce that
f(l)4:0 and thus l’=0. Proposition 8.4 and Remark 8.6 give finally l=1. This proves
u(+ m)= 1, v(+ z)=0 and (8.22). []

9. High activation energy values: asymptotic analysis.
9.1. Setting of the problem. Section 5 has shown the interest of the asymptotic

analysis for high activation energy valhes. Until now, the only assumptions on f have
been hypotheses (7.3) and (7.4). We will now make precise the singular behavior of
f(u) v (reaction rate) with respect to the "small" parameter e > 0 (inverse of the reduced
activation energy). We will always write f instead of f in order to emphasize the
dependency on e. In practical cases (see Remark 5.1), f often takes the form:

1 u-1 )(9.1) e u>O

(f(u) 0 for u < 0), where q satisfies

(9.2) lim
ls-1 (s-1 --0

e-0
t

(9.3)

0<S<1,

fom lim -o_.o,e.) < + .
Remark 9.1. Hypotheses (7.3) and (7.4) being still satisfied, g, is a function defined

on with values into R /.
Remark 9.2. One typical example of function q is the exponential o expo that

corresponds to the Arrhenius Law (see 1.6).
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The main result of this section will be stated under hypotheses that generalize
(9.1)-(9.3). More precisely, (f)>0 satisfy (7.3), (7.4). Moreover, if we set by definition,

there exists 0, 0 =< 0 < 1, such that

(9.4)

(9.5)

lim 0 1 and lim max L(s)(1 s) 0,
eO eO O <s <O

lim f(s)(1-s)ds-- lim a(1)m< +m.
e---, 0 e--,0

Remark 9.3. The function sf(s)(1-s) will play the role of the function g of
Part I.

9.2. The main result and its proof. Let us consider problem (8.1). For e > 0 fixed,
there exists one solution (u,,c) (in fact, unique if A < 1, see 11) and we will study
its behavior as e goes to 0. The main result is:

THEOREM 9.4. Under the hypotheses (7.3), (7.4) and (9.4), (9.5)for f, there exists one
sequence (en)nN, decreasing to O, such that (u,,,v,,,c,), a solution of (8.1), converge
(strongly)for the topology H()H() to (u,v,c). Moreover, (u,v) is a solution of
the problem

(9.7)
(9.8)
(9.9)

U" q" CO x=,
Ao" + co’ Cx=,

u(-)=O, u(O)=O, u(+)=l
o(-oo)=1, c(+)=0

for =-log0/e (Sx= is the Dirac function at Y.).
Remark 9.5. The condition u(0)= 0 fixes the value of .
Remark 9.6. The theorem justifies the so called "model of Dirac" commonly used

in combustion [4].
Remark 9.7. The precise value of c will be given in {}11.
Proof. First of all, let us remark that inequalities (8.10) of Proposition 8.4 are still

satisfied on R:

(9.10) min(1,A-1)(1-u(x))<__c(x)<_max(1,A-1)(1-u(x)) on I.

Also, inequalities (8.11) and (8.12) are satisfied on R; since u’( + oo)= lima__, + u’(a)= 0,
we get a more precise result:

(9.11)
2 1

min(1 A -I) < ce < max(1 A -x
2G(1) b-S )"

These two inequalities allow us to generalize the proof of Theorem 5.2 to the case of
this system. As before, let us define x, such that u(x)=O (u’> 0 and 0< 1). We start
with the three familiar identities obtained in integration, between 0 and x, of the
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equation u + cu=.(u)o successively multiplied by 1, u, u’"

fo
(9.13) -u.(x)u.(x)+ lug(x) +02) Xlu(y)12

(u(y))v(y)u(y)dy,

(9 14)
l lu,(x)[2 1 2 2 dy
2 +cO +c [u:(y}

2

SinceL(u)u’>O,f(u)(1-u)u’>__O, we get from (9.14) and (9.10):

1 [u:(x)[2 1 c2O 2 max(1,A_.
2 +- < )G(0), O<xxe.

Using (9.11), we obtain for 0 < x < x .:
1 2

min(1,A-1)G(1)O2-max(1,A-1)G(O) <= lu;(x)l
The assumptions (9.4), (9.5) allow us to find a constant a > 0, independent of e, such
that for each e =< e0"

’(u x >=o, O<xx.
Integration of this inequality between 0 and x gives (note that 0 =< 0):

1-0
(9.15) 0<x< =x0.

From (9.12), written at x x, and (9.10) we deduce

0< -u’(x)+cfl<_max(1,A -1) f(u(y))(1-u(y))dy,

and, therefore, with (9.15):

0 < u(x) + cfl <= max(l, A -1 )

With assumption (9.4), we then obtain

max f(s)(1- s).
O<_s<_O

(9.16) lim (-u:(x)+cfl)=O.

Integration from x to + oe of -u’’+ cu’=f(u) multiplied by u’ and use of (9.10)
gives"

1 2

(9.17) -[u’(x)[ <=max(1,A-1)(G(1)-G(O)).

From (9.17), (9.4), and (9.16), we deduce

(9.18) lim c < (2 max(1, A -1) m
e-+0
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and from (9.11)

(9.19) lim c>__ 2 min(1, A-l) m.
e--+0

We have proven that there exists a sequence en, decreasing such that

(9.20) c,,c.

Let us now look at the convergence of u,,, v,,; it will be convenient to distinguish three
cases x <=0, O<=x <=xo, x>=xo, where Xo=(1-O)/a. As u is strictly increasing (Theo-
rem 8.11), u(x)<O for x__<0 and u, v satisfy -u +cu=-Av +cv=0 for x=<0
and u(- m)=0, u(+ oo)= 1, u(0)= 0, u’(O)=Oc. Therefore, thanks to (9.20), u, and

v,, converges, for the H-topology, to u and v satisfying u" + cu’ Av" + cv’ 0 for
x __<0 and u(- m)=0, v(- m)= 1, v(0)= 0, v’(O)=Oc.

If 0=<x_<xo we may apply Proposition 8.8, still true if a= + m, to prove with
(9.18) that u’ and v[ are bounded in L2((0,Xo)) independently of e. Truly, we also have
0__<u, v__< 1. Therefore, u and v are bounded in Hl((0,Xo)), independently of e. By
compactness, eventually taking a new sequence en, we deduce with (9.75)

(9.21) x,,2<=xo,

(9.22) u,,, v,,u, v in C([O,xo]).

Since O,,<=u,,(x)<l for 2=<x, then u(x)=l and ((9.10)) V(x)=0. On the other hand,
from (9.10), we get that the function x .,,(u,(x))v,(x) is bounded from above from

max(1,A-t)f,(u,,(x))(1-u,,(x)), and, using (9.4), converge to 0 uniformly over any
compact set of [0,Y]. Therefore -u"+cu’=-Av"+cv’=O for x<2. Finally, for
x >__ x0 we have 0, __< u,(x) < 1 and using (9.10) we obtain

(9.23) u,,l in C([Xo, z)),
(9.24) v,,0 in C([Xo, + m)).

To summarize, the functions u,v are of class C2 except at the point 2" if x < 2, they
satisfy -u"+cu’= -Av"q-co’=0 and u(x)=e ’(x-), o(x)=l--e’(x-)/A; if x_>_
u(x)-- 1, v(x)= 0. The proof is complete.

We now address the questions of uniqueness. The relevant result is as follows (see
[13], [19], and [14] for a rigorous proof)"

THEOREM 9.8. Let the assumptions (7.3), (7.4) be satisfied. If, in addition, 0 < A <
then the solution (u,v, c) of (8.1) is unique. As a consequence, we may precise the result of
Theorem 9.4.

COROLLARY 9.9. Let the assumptions of Theorem 9.4 be satisfied; moreover, assume
0 < A < 1. Then, for any sequence (en}nN, decreasing to (u,,,v,,,c,,) converge (strongly)
for the topology HI(N)HI(R)N to the unique (u,v,c) solution of (9.6)-.(9.9).

The proof of Theorem 9.8 has been sketched first by Kanel’ [13]. A precise form of
it can be found in the book of Zeldovich [19] and in Marion [14].

10. Remarks on the case of nth order reaction. In this section we mention the
extension of the previous results to the case of a single step reaction of order n, where n
is an integer greater than 1. Precisely, we are looking for (u,v,c) solution to the
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following problem"

-u"+cu’=f(u)v" on ,
(10.1) -Av"+cv’=-f(u)v" one;

u(- o)=0, u(+)=l,
(10.2) v(-)=l, v(+)=O

u(0) =0.

The function f always satisfies the assumptions (7.3), (7.4). Indeed, it depends also
on e and we address the question of the asymptotic behavior of (u, v, c) as in 9. The
relevant assumptions that generalize (9.4), (9.5) are now:

there exists O, O _< 0 < 1, with lim 0- 1, such that
e--0

(10.3) lim max f(s)(1-s)"=0
eO O<_s<O

(10.4) lim fo--,o f(s)(1-s)ds=lima(1)=m<--,o +"

We can now state:
THORF.N 10.1. Under assumptions (7.3), (7.4), there exists one solution of problem

(10.1), (10.2)such that

O<__u, v<__l on N
c

0<o’=<c, A __<o’<0 on R

u,vW2,e(R).

Moreover, there exist two constants c, , independent of e, for which 0 < c <= c <= <
+.

THEOREM 10.2. Under assumptions (7.3), (7.4) and (10.3), (10.4), the conclusion of
Theorem 10.1 still holds for problem (10.1), (10.2).

The proofs follow arguments similar to those found in the preceding sections. The
only new argument is the distinction between n odd or even in proving Proposition 8.1.

11. The precise value of c=lim_.oCJ rigorous internal layer analysis. Here we
address the question left open in 9, that is, the value of c= lim_oG. For simplicity,
we will consider the case where

(11.1) u>O

for q satisfying (9.2), (9.3). We have seen (Remark 9.1) that this choice of f is the most
important in practice.

THEOREM 11.1. Set f(u)=(1/ez)(u l/e) if u>O and f(u)=-O if u<O. Assume
(9.2), (9.3) and local Lipschitz continuity as previously discussed. Moreover, assume that
on some bounded interval [-L, 0], q(o)possesses a finite number of extrema; L is some

positive constant defined in (A.5) of the Appendix. Then, the conclusion of Theorem 9.4
holds, and specifically

(11.2) c lim c v/2rn/A,
0
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where (see (9.3))
o

m

For the proof, we will need the following lemma, proved in the Appendix.
LEMMA 11.2. Let 0, 0 <= O < 1 such that

lim 0,= 1, -O(e- ),

0 < "/< 1/2. Then there exists 0 < 3 < 1 2y, such that as e --) 0:

(1. (1 .()--o(/,X

f* (le o(*.(11.3) bis

Moreover, the local Shvab-Zeldovich variable is bounded as

(11.4) ]u(x) + Ave(x)- 11 o(1 +6),

uniformly for x >= x.
Commentary. The spirit of the proof can be better understood if we switch to the

usual internal layer rescaled variables

u-I G

Then the choice of 0 corresponds to a 0 going to - as e-L To center the internal
layer, we choose a point r/ such that u(y)--q, with lim_+o((1-)/e)=L. Equiva-
lently, lim__,0=-L, where L>0 is defined in (A.5). This leads to the following
specific stretching:

_x-y,
where is the finite limit of the monotone sequence (y)>0. Then, the proof relies
heavily on the uniform boundedness for >=(x-y)/e of the local Shvab-Zeldovich
variable"

I(h+ Ab)()[ O(e).

This type of estimate has been taken for granted in formal internal layer analysis [4].
The demonstration of Lemma 11.2 corresponds to a nonclassical singular perturbation
analysis; indeed, in terms of rescaled variables and coordinates the system read as"

-()+(u)=(u),
A() +()= ().

Interestingly, to obtain the sup norm estimates for the local Shvab-Zeldovich variable,
we must distinguish between =< -L and -L =< =< + m. In his thesis, Joulin [11] made
some formal remarks along the same lines. 1
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(11.5)

Proof of Theorem 11.1. We start with the identity

1 2 f-oa 9_

1 +A x
( ))()) ’()--u(x---1-U(X--U--x-dx

T1 f+ k(u (x)(. (x)+Av(x)-l)u’(x)&
X

which is obtained by integration between x and + of -u’’+Gu’=f(u)G multi-
plied by u’. Using (9.16), we have by definition of c:

(11.6) lim
1 2 1 2

and thereforeTaking u as independent variables, we set p(u’)= u,

lu:(x)l dx=G p(u)du<=lGl(1-O) sup Ip(u)l.
x, 0< u<l

But c and p(u)= u’ and bounded independently of e (see (9.11) and (8.5)). Hence"

lUe(X)I
2

(11.7) lim c dx <__ C lim (1 O) O.
e---, 0 x e--+0

Using u again as an independent variable, we have:

lf+ lfo--A x,
f,(u,(x))(1-u,(x))u’,(x)dx= X 0-l)/e

-o(o)do.

Hence, with the assumption on 0 and the definition of rn

lf+(11.8) lim - f(u(x))(1-u (x))u’(x)dx= m__
-o x, A

It remains to handle the last term of (11.5). Clearly, if u, G are solutions of (8.1), then
u’(x)+ AG’(x)= c(u+ G(x)-1) and integrating this relation we get"

u(x)+AG(x)-l= -Gfx (u(Y)+G(Y)-I)dy.

From the former identity and (8.9), we deduce:

[u(x)+Ao(x)-ll -< Gf (1-u(y))dy.

Consequently, since f( u(x)) u’(x) > O"

lf+"- x.
f(u(x))(u(x)+AG(x)-l)u(x)dx

z IA-11
A2

[cl f(u(x))u;(x) (1-u(y))dy dx.
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But c is bounded using (9.18), (9.19) and fx+(1-u.(y))dy is decreasing, so there
exists C, independent of e such that"

II l<=cf (1-u(y))dy. f(u,(x))u:(x)dx.
X

And so finally, with (11.1)"

c f,0(11.9) II} < @(o)do. (1-u(y))dy.
e 0,-i)/ x

One easily verified by using (9.2), (9,3), that

f(o O(o)do <= c,fo
0,- 1)/e v(O- 1)/e

-o(o)do,

where the constant C’ depends only on @. Hence, as lim_0((0- 1)/e)=-oo, and
with (9.8):

(11.10) lim II l < CC’m lim
1 f+ (1- u(y))dy

0 e0 g
Xe

The conclusion (11.2) of the theorem follows then from (11.5) with (11.6)-(11.8) and
(11.10) using (11.3). []

Appendix. Here we prove Lemma 11.2, keeping the notation of 11.
LEMMA. Let 0t, 0 <= O < 1 such that

lim 0= 1, 0- 1
O(e-),

e0 E

0 < /< 1/2. Then there exists 0 < 8 < 1 2y such that, as e O"

(A.1) fx (1-u(x))dx=O(et+e)’

(A.2) f v(x)dx=O(el+),
X

where (u,u) is a solution of(8.1) andx is defined by u(x)=Oe
Proof. The proof is lengthy; it consists of breaking the integral in (A.1) into two

parts that are estimated separately. Precisely we write

f/(A.3) (1- u( y)) dy= (1- u( y)) dy + (1- u( y)) dy,
Ye

where we specifically choose y such that i) u(y)=rl, ii) lim+o= 1,
iii) lim_+o((l- 1)/e) L where L > 0 is chosen below. We can find e0 > 0, such that,
for each 0<e=<%, 0<; therefore, as u’(x)>0, we have x<y for e__<e0. Now we
prove that y is bounded independently of e. We proceed as for the proof of (9.15),
starting from the identity (9.14), where now x __<y. with (9.10), we get"

lju:(x)l 2 lc20 2 max(1,A-12 +- =< )G(T/), O<x <_y
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or, using (9.11)"

(A.4) min(1,A-)G(1)O-max(1,A-1)G(n)<= - O<x <=y.

Now there exists ao, independent of e, with 0 < ao < 1/2 such that

(A.5) G(r)__< min(l’A-1) oG(1).
max(l, A -1 )

Note that min(1, A 1)/max(i, A 1) < 1, if A 4= 1, and that

f(u-1)/ oq,(o) doGe(u)=
.,(O_l)/e

is strictly increasing; it suffices to choose the constant L=-lim_0((/- 1)/e) large
enough. Therefore, from (A.4), we deduce

1 2
min(1,A-)G(1)(02-0) _< - lu:( x ) O<x <=y.

Taking L eventually larger, we can keep a0 such that 0 2- O/0 > 0, and therefore for e
small enough there exists a’ > 0, independent of e, such that

(A.6) u;(x)>=a’, O<x<=y.

Integration between 0 andy gives (/< 1)

1-0
(A.7) y=< a,

Now we come back to (A.3); for the first term in the right-hand side we have

fv(1-u(y))dy<=(y-x) sup (1-u(y))
x<y<y

<_(y-x)(1-O)

1
=< -7 (/- 0)(1 O)

1
(1 0)2,=<7

where we use (A.6) and the definitions of x, y. By the choice of 0, we have 1- 0=
O(d-r), with 0 < < 1/2, so there exists 8, 0 < < 1 27 such that:

(A.8) fxv (1-u(y))dy=O(d+).
For the second term in the right-hand side of (A.3) we will show, using (9.10), that
fG(x)dx= O(d +n) (indeed (A.1) and (A.2) are equivalent through (9.10)). This will
be achieved by using an appropriate energy identity. We multiply u’/+ cu’=f(u)G
by 1/f(u) and integrate from y to + (note that u(x) > 0 for y < x =< + m; so
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fa(ua(x))> 0 by assumption). The computation is straightforward; we get

+ C 1
(A.9) f G(x)dx= (U’(y)--CaUa(ya))

fa(1) L(u+Cy+))

+G(F(1)-F(u(y)))-
( fa(ua(x)))2

where, by definition, F’(u)=uf’(u)/f(u) 2. We shall bound the four terms in the
right-hand side of (A.9). Recall first thatf(u)= (1/ez)q)((u- 1)/e). So

(A.10)
C

/() O(2),

since c is bounded using (9.11). Similarly

1 e2

f(u(y)) q ((rt- 1)/e)
2

(-L)

and using (8.22), (8.23), and (9.11):

(A.11)
1

f(u(G)) (u:(Y)-Gu(Y)) 0(l2).

Now, by a single computation, we get the expression of F(u):

(A.12) Fa(1)-Fa()=ef( do" _l2 u-1

r/.-1/e) qb(o’) qb((U-- 1)/e)

So, using the choice of /a and (9.11), we get again

I(FI)-r( Y)))I O).
Now, we bound from above the last term, using

f u;(x)x=- f
precisely

[N 1 1 ]((u()) 0 =o ,(+1) *(5)
where fo (n-1)/e -L, fN=0, and f, i NjN N-1, are the extrema of . (We

restrict ourselves to (o) with a finite number of extrema, for -LN o < 0.) Therefore,
using (8.23) and (9.11), we get finally

(1.13) I=O(e).
From (A.9)-(A.13), we deduce

f+(1.14) G(x dx O(e ).
Y

We complete the proof using (9.10) with (A.8) and (A.14). El
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AN INTRODUCTION TO THE TECHNIQUE OF RECONSTITUTION*

A. I. ROBERTS

Abstract. In many physical problems it is recognised that the solution is dominated by a particular
structure. It is usually possible to derive a differential equation which approximately describes the spatial

and/or temporal evolution of this dominant structure. Such an evolution equation is valid only for a limited
range of the parameters. The technique of reconstitution provides a rationale and a mechanistic method for
correcting such evolution equations by including terms representing higher-order physical interactions and
thus to significantly extend the parameter range in which the equation is valid. To obtain some feel for how
this technique works it is applied to a simple pair of coupled nonlinear differential equations. The results
show clearly how the solutions to the approximate evolution equations, of varying accuracy, relate to the
exact solution of the full problem.

1. Introduction. In slowly varying wave theory the oscillations on the scale of a
wavelength are explicitly known and then asymptotic theory gives an equation which
describes the evolution of the wave’s amplitude and phase on a longer scale. This
derivation of an equation governing the evolution over a long scale of the bulk
properties (the wave envelope) of a known structure (periodic progressive waves) is
typical of many problems. Shallow water theory expresses the velocities in the fluid as a
polynomial in the vertical coordinate and the asymptotic theory then gives a wave
equation for the approximate evolution of the (relatively long scale) horizontal struc-
ture. Convection with boundary conditions of fixed heat flux, discussed by Chapman
and Proctor (1980), also evolves on a long horizontal scale with a known vertical
structure. In all these cases assumptions are made which enable part of the solution’s
structure to be explicitly calculated while the evolution of this structure over space
and/or time is governed by some relatively simple differential equations, called an
evolution equation. The assumptions typically invoked are those of long-space and/or
slow-time scales upon which the known structure (usually of small amplitude) varies.
The resulting leading-order evolution equation can only approximate the dynamics that
are present in the exact solutions of the original problem. The aim of this section is to
illustrate and extend a method, proposed by Spiegel (1981), for correcting such evolu-
tion equations by adding extra terms which bring new physics into the equation.

Such corrections are by no means unknown in fluid mechanics. The Navier-Stokes
equation itself may either be derived by making plausible assumptions about the
stress-strain relationship, or from the kinetic theory of gases (see Vincenti and Kruger
(1965)). If the latter course is taken then the first approximation, which assumes that
the properties of the gas are in equilibrium, is just the Euler equation. In deriving the
second approximation one assumes that the properties are nearly in equilibrium and we
find a viscous dissipation term which provides the nontrivial correction to obtain the
Navier-Stokes equation. The equations governing the propagation of shallow water
waves is another example (Peregrine (1972, {]3, 4)). The first approximation results in a
nonlinear nondispersive wave equation which essentially rests on the assumption that
the horizontal velocity is uniform in the vertical. The second approximation allows for
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some vertical variation of horizontal velocity and results in the more realistic nonlinear
dispersive Boussinesq shallow water equations. In a similar vein, Dysthe (1979) has
modified the nonlinear Schr/Sdinger equation which governs the evolution of modula-
tions to a uniform train of water waves. He added terms to produce an equation which
is of fourth order accuracy in the wave slope. Stuart (1960) and Watson (1960)
investigated the stability of plane Poiseuille and Couette flow by deriving a differential
equation for the time dependence of a specific spatial perturbation to the flow. The
differential equations they derived contain nonlinear terms of higher asymptotic order
than the linear terms which form the equation usually used in a stability analysis. The
derivations of the appropriate corrections in these examples have relied upon heuristic
arguments. Based on the assumptions made to derive the leading order evolution
equation, the technique of reconstitution (which is examined here) provides a rationale
for systematically making corrections to this first approximation.

The procedure we adopt is as follows (details can be clarified by reading 3, 4, 5).
We expand the unknowns in a perturbation expansion in some small parameter (for
example, the wave steepness), introducing slow space-time scales if appropriate, and
then substitute the expansion into the full equation and group terms with like powers of
the small parameter (see {}3). Considering in turn increasing powers of the small
parameter, we can find the dependence upon some of the independent "fast" variables,
leaving the dependence upon the other "slow" variables arbitrary. In the calculation of
the fast dependence at higher orders, we typically find a solvability condition that gives
an equation which governs the evolution of the previously found structure over the slow
scales. Conventionally the solutions to each solvability condition are then multiplied by
appropriate powers of the small parameter, and added up to give an approximate
answer ({}3). Instead, reconstitution takes the solvability conditions, multiplies them by
appropriate powers of the small parameter, adds them together and writes the resultant
equation solely in terms of the original unscaled, unexpanded variables (4, 5). Hence
we form just one equation which contains all the information that was previously
contained separately in the different solvability conditions. The advantage of the
procedure of reconstitution is that the physical processes which previously could only
slightly modify the leading-order solution can now interact with the dominant dy-
namics of the leading-order evolution equation.

The guiding principle of reconstitution can now be stated. A reconstituted equa-
tion is one which, upon substitution of a scaling and an expansion, gives a set of
equations which are exactly equivalent to the solvability conditions derived from the
original equations through the same scaling and expansion. Due to algebraic complex-
ity we are restricted in practice to requiring that this equivalence only hold up to some
finite order (usually a low order).

The above principle is akin to that embodied in the use of Pad6 approximates to
sum a Taylor’s series where a rational function is calculated which has exactly the same
Taylor’s series (to some order) as the derived series (see Bender and Orszag (1978,
Chap. 8)). However, there is a far greater degree of freedom in the use of reconstitution
than there is in Pad6 approximates. In the derivation of the reconstituted equation a
choice has to be made between the plethora of permissible forms. Unless other forms
can be justified we only consider reconstituted equations which are in the form of the
derived solvability conditions. Moreover, only those terms which are forced to be
present due to their appearance in the solvability conditions are included in the
equation. The only justification of this choice is the idea that this produces a re-
constituted equation with the advantage of having the most direct connection to the
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original full equations (Occam’s razor also favours this criterion). But, as we shall see,
this still permits a choice from a variety of equations.

Our task here is to elucidate the properties of reconstituted equations by applying
the technique to a simple nonlinear problem. The full equations are introduced in {}2
together with their exact solutions which may be used later for comparison with the
approximate solutions. In [}3 the unknowns are expanded in a power series in a small
parameter and the first few solvability conditions are derived. These equations are then
solved directly to give the conventional solution which is briefly discussed. We then
move on to discuss the two principal types of reconstitution. The first type (which was
the original proposal of Spiegel (1981)) additionally requires that the reconstituted
equation is of the same differential order as the leading-order solvability condition and
is examined in 4 via two examples. The higher order derivatives in the higher order
solvability conditions are eliminated by using derivatives of the lower order solvability
conditions. However, if the solvability conditions are partial differential equations then
in general we cannot eliminate higher derivatives in all independent variables. So in 5
we investigate the nature of the second type of reconstitution which allows equations of
higher differential order than the leading-order solvability condition.

2. Properties of the model equation. We want to look at an equation where the
dependence of the solution can be separated between two disparate scales. One way of
achieving this is to look at an equation which possesses a simple bifurcation. Near the
bifurcation one component in the solution will be of marginal stability and hence its
evolution will take place over a time scale much longer than that of the other compo-
nents. We consider the following pair of coupled, nonlinear ordinary differential equa-
tions

(2.1a) d--- ra- ab,

db
(2.1b) -= b + a 2,

where r is a parameter of the problem. Near the bifurcation and for small amplitudes
the b component evolves to zero on a fast time scale of order 1, while the a component
evolves on the much slower time scale of order 1/r.

We first investigate the behaviour of the exact solutions to equations (2.1). Since it
is a second order autonomous system the nature of the solutions can be easily under-
stood by looking at the fixed points, their stability and at the trajectories in the (a, b)
plane. For r <_ 0 there exists exactly one fixed point at (a, b)= (0, 0), which is stable. For
r > 0 there exists three fixed points: an unstable one at (a,b)=(0, 0) and two stable
fixed points at (a,b)= (+ V-, r).

The detailed nature of the solutions near the fixed points is of interest and so we
look at the behaviour of small perturbations to (a, b) away from the fixed points. The
time dependence of perturbations have the form e xt where for the fixed point at the
origin the two values of X are

(2.2) X=r and X=-I;

while for the two finite amplitude fixed points

X (1 + v/1 8r )/2.
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From (2.3) we see that the finite amplitude fixed points are always stable. However, at
finite r the asymptotic nature of the fixed point changes from being a node for r < 1/8
to being a focus for r > 1/8. This is an important qualitative change in behaviour which
will be referred to in the following analysis.

The above information about the exact solutions is shown in Fig. 1 which displays
the trajectories in the (a, b) plane for some sample values of r.

3. The solvability conditions and their direct solution. We now proceed to find
approximate solutions to equation (2.1) which may then be compared with the exact
solutions. To do this we treat r as a small parameter and define the parameter e (also
small) such that

(3.1) e2=r, r,e>=O.

We then expand the unknowns in the following Taylor’s series in e

(3.2a)
(3.2b)

0.4

0.2

0

-0.2

-0.4

a( ) eAo( s) + e3Al s ) + eSA = ( s ) +
b(t)=e2Bo(s)-k-e4Bl(S)+e6B2(s)-+

(a) r=O.O (b) r=0.0625

_
0.4

0.2

b 0

-0.2

-0.4

0

(c) r=0.125

0.2 0.4 0.6 0.8 1.0

(d) r =0.25

0 0.2 0.4 0.6 0.8 1.0
Cl

FIG. 1. Trajectories in the (a,b) plane of the exact solutions (2.1) for four different values of r.



INTRODUCTION TO THE TECHNIQUE OF RECONSTITUTION 1247

where s is a slow time scale defined by

(3.3) s=et.
There are two ways of motivating the above scalings. The first is to observe that

the finite amplitude fixed points are located at (+ e,e-) and so we expect interesting
effects to occur on this scale over an appropriate time scale. The second is to expand
the solution vector in ascending powers of e, say

(a,b)=e(a,b)o+e2(a,b)x + ...,
then at the first order we derive an equation whose general solution is (a, b)l (A0(s), 0).
Thus, in the terminology used in the introduction, (1, 0) is a first approximation of the
fast structure in the solution and Ao(s ) allows for variations on the slow time. At
higher orders in this more general scheme we find that the expansion (3.2) is sufficient.

After substituting the expansions into (2.1) the solvability conditions appear very
simply. Alternate powers of e give alternately an explicit equation for B in terms of
Ao,-.-,A, and a first order differential equation for A n. The first three members of the
set of equations for A are

(3.4a) -A’o+Ao-A3o=O,
(3.4b) -A +A 3AA +2AA 0,

2 2AoA,o ,A,,= O,(3.4c) -Az+A-3A2oA2+4AoAxAo+2AoA1
where ( )’ denotes differentiation with respect to the slow time, i.e. d/ds. Equation
(3.4a) is graced with the title of an evolution equation, while equation (3.4b) and (3.4c)
merely describe corrections to the evolution equation’s solution. The first three equa-
tions for B are correspondingly

(3.5a) Bo=A,
(3.5b) B 2AoA 2AoA’o,
(3.5c) B2-- 2AoA +A- 2AoA’ 2AlAmo + 2A’o + 2AoA’o’.
Equations (3.4) govern the dynamics of the approximate solutions while equations (3.5)
fill out the structure of the solution by giving the forced mode b in terms of the An.

Equations (3.4) and (3.5) will form the basis for the reconstitution technique used
in the next few sections. But for later comparison we should look first at the direct
solutions of (3.4) and (3.5). It is easy to find explicit solutions for A0 and A1. Because
the equations are autonomous a constant of integration can be absorbed by a suitable
choice of the time origin. The solution for A 0 may then be written in one of the two
forms

(3.6a) A= 1/(1 + e-2S), 0<A0<l,

(3.6b) A20 1/(1 e-S), 1 <A0.

The corresponding general solutions for A1 are

(3.7a) A=A’olog(e2S+ a)+,A’o,
(3.7b) Al=A’olog(e 2s- 1) +aA,

0<A0<l,
I<A0,

where c is an arbitrary constant of integration. These solutions are illustrated in Fig. 2.
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(e) A o (s)

-1 0 2

0.8

(b) A (s)

-2 -1 0 1 2

FIG. 2. Graphs of the direct solutions of the solvability conditions (3.4a) and (3.4b) as given by (3.6) and
(3.7). --, 0 < A o < 1" ---, < A o. The graph of A is a particular solution, the general solution is obtained by
adding an arbitrary multiple of Ao

We now observe some of the problems associated with directly solving a recursive
set of equations like equation (3.4). First, if a singularity exists in the leading-order
solution then the singularity is compounded in the corrections. From equation (3.6b)
Ao--S -1/2 for small s, while from equation. (3.7b) AI’" s-3/21og(s) which is far more
singular. Second it is usual for the solution’s partial sums to be nonuniformly conver-
gent in time. From equations (3.6) and (3.7) we have at large times A0+ eA--1 +
(1/2)(1-4rs)e --s which illustrates the nonuniform convergence (no matter how small
r is chosen) by possessing a nonmonotonic approach to 1 occurring on a s-time scale of
1/r. To avoid the first problem we may use the technique of strained coordinates (see
Cole (1968)); while to avoid the second problem we may introduce super-slow time
scales (see Jeffrey and Kawahara (1982, 6.2.1)). However, if we wish to calculate
higher orders then such techniques have to be compounded ad nauseam.

Another feature of these solutions is that not all initial conditions in the (a,b)
plane can be accommodated in the general solutions. Because of the scaling introduced
by (3.2) and (3.3) we are restricted to considering a subspace of the (a, b) plane, called
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the centre manifold. To first order, (3.5a) gives the shape of the manifold to be

(3.8) b=a.
From equations (3.5), (3.6) and (3.7) the next approximation to the centre manifold is

(3.9) b= (1 2r)a 2 + 2a 4 + O(e6)
here the detailed evolution along the centre manifold (3.9) is given by a=eA0+ e3A1
from equations (3.6) and (3.7), and b--eZBo + e4B given from equations (3.5). The
O(e6) term in equation (3.9) does not represent any new dynamics in the approach of
solutions to the centre manifold. Being the same order of magnitude as the corrections
due to A, unknown to this order, it represents uncertainty in the precise location of the
centre manifold.

Thus we conclude that directly solving the recursive set of equations (3.4) can
result in solutions with very large singularities, a nonuniform (qualitatively wrong)
convergence and restricts the solution to a somewhat "fuzzy" centre manifold.

4. Type I reeonstitution. The technique of reconstitution allows the user many
degrees of freedom. In this section we consider two significantly different examples of
one type of reconstitution. The reconstitutions considered are restricted by being
required to give a differential equation of the same order (here first order) as the
leading-order evolution (3.4a).

4.1. Substitute for all known derivatives. Here we use the principle of reconstitu-
tion to derive a sequence of more and more accurate evolution equations of the
simplest possible form. The first step is to transform equations (3.4) to some exactly
equivalent form. We use (3.4a) to eliminate all occurrences of A) and A’ in (3.4b) and
(3.4c); then use the transformed (3.4b) to eliminate all occurrences of A in (3.4c). The
transformed equations are

(4.1a) Ao=Ao-Ao,

(4.1b) A =A 3AA + 2A3o 2Ao,
(4.1c) A’=A-3AA-3AoA1+6AA1-lOAA1-4A3o+16Ao-12A7o.
Any set of direct solutions to these equations are also solutions to (3.4).

The second step is to use the transformed equations (4.1) to derive successively
more accurate evolution equations. As a leading-order approximation we just rewrite
(4.1a) in terms of the original variables. Substituting a eA 0 and s ezt equation (4.1a)
becomes

(4.2) (t= ra- a

where operator (’)denotes d/dt. The first reconstituted equation introduces higher
order corrections to this equation. Consider e3(4.1a)+ es(4.1b)+ O(e7) which is just

e2( eA 0 -- e3A)’ e( eAo + e3A ) e3A 30 + 3eSA A1) + 2eSA 3o 2 eAo + O(e7),
where the O(e7) term, as yet unspecified, is introduced for the next step. We now write
the equation solely in terms of a=eAo+e3A1, t=s/e and r=e2, incorporating all
generated terms of order E7 and higher in the O(e7) term, to give the more accurate
evolution equation

(4.3) = ra-(1 2r)a3- 2a s.
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The second reconstituted equation is derived in a similar manner. Consider

e3 (4.aa)+ e(4.1b)+ e7(4.1c) + O(e9)
and write it solely in terms of a eAo + e3A1 + eSA 2, s/e2 and r to give the equation

(4.4) = ra-(1 2r + 4rZ)a3- 2(1 8r)a5- lZa7.

The justification for considering equations (4.3) and (4.4) is that if the scalings and
expansions used for the original problem ((3.2a) and (3.3)) are now applied to these
equations then the resultant set of equations are (to some order) identical to equations
(4.1) which in turn is exactly equivalent to (3.4). The choice of form for the right-hand
sides of equations (4.3) and (4.4) is fairly arbitrary. If enough orders of equations are
known then it may be appropriate to use heuristic arguments to pick a more exotic
form for the right-hand sides.

An interesting question to ask at this point is whether all problems will produce a
set of equations which can be reconstituted? The answer appears to be yes. However, a
little care may be needed in the transformation from the original solvability conditions
to the equivalent set of equations that are to be combined. Not all transformations are
acceptable, for example the set of equations (3.4a), (3.4b) and (4.1c) are not directly
reconstitutable. An alternative method to systematically derive improvements to evolu-
tion equations, proposed by Coullet and Spiegel (1983), has a bearing on the answer to
this question. During the process of reconstitution we carry along some algebraic detail
which is lost in the final reconstituted equation. For example, the terms involving A1
and A 2 in equations (4.1b) and (4.1c) are redundant because they are forced to occur
(for reconstitution to work) in combinations dictated by purely A0 terms in the lower
order equations. The method proposed by Coullet and Spiegel avoids this detail by
going directly from the original system of equations to the approximate evolution
equations which are, of course, the same as the reconstituted equations. However,
because their method makes more initial assumptions about the forms of the evolution
equation the generalisation of the method to partial differential equations is not trivial
and has not yet been worked out, whereas with reconstitution it is simple.

Finding a more accurate evolution equation for a is only part of the reconstitution.
To complete the reconstitution an equation giving b in terms of a is also needed; to
derive such an equation we proceed much as before. Use (3.4) to eliminate all deriva-
tives from (3.5) to give

(4.5a) Bo=A2o,
(4.5b) B 2AoA 2A+ 2A,
(4.5c) B2=2AoAz+AZ-4AoA +8A3oA +4A)-16A+12A6o.
Then we write ez(4.5a)+ O(e4), e2(4.5a)+ e4(4.5b) + O(e6) and

e2 (4.5a) + e4 (4.5b) + e6 (4.5c) + O(e8)
solely in terms of r, t= s/e2 and respectively b= e2Bo and a= eA o, b= eZBo + e4B and
a=eAo+e3A, and b=e2Bo+e4B +e6B2 and a=eAo+e3A +eSA. to give the succes-
sively better approximations

(4.6a) b=a 2,
(4.6b) b= (1 2r)a 2 + 2a 4,
(4.6c) b=(1-2r+4rZ)aZ+Z(1-8r)a4+12a 6.
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These equations describe nothing more than the centre manifold upon which the
evolution takes place and are the same as those found in the previous section, compare
(4.6b) with (3.9). Here however, once the form of the expressions in (4.6) are chosen,
the centre manifold is some definite curve upon which the initial conditions must be
chosen; in the previous section it unsatisfactorily depended upon the initial conditions.
In Fig. 3 these approximate manifolds are plotted and they can be directly compared to
the trajectories of the exact solutions which are plotted in Fig. 1.

0.2

b 0

(a) r =0.0

i.i
(b) r=0.0625

...;,

0.4

0.2

b 0

(c) r=0.125 (d) r =0.25

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
Cl a

FIG. 3. Successioe approximations to the centre manifolds for the reconstituted equations discussed in 4.1,
for four different values of r. The curves are: --, indicates the leading order approximation (4.6a) is the
approximation (4.6b); ..., is the approximation (4.6c).

The dynamics of the solutions to the reconstituted equations (4.3) and (4.4) can be
easily understood by looking at the fixed points and their stability. Equation (4.3) has
the fixed points a=0 for all r and a= +_e for r>0. (Throughout this work the
simplicity of the original equations (2.1) means that the location of the finite amplitude
fixed point is always given exactly, independent of the approximation used). As we
would expect, the fixed point a=0 is stable if r < 0 and unstable if r > 0. The fixed
points a +_ e are stable with the growth rate of small disturbances being

X= -2r(1 +2r).
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Equation (4.4) also has only the fixed points a 0 for all r and a-- _+ e for r > 0. The
same qualitative results hold with the growth rate of small disturbances from the fixed
points a _+ e now being the more accurate expression

= -2r(l+2r+8r2).

The above expressions are just the first few terms of the expansion in small r of the
exact growth rate (2.3). They show that the solutions of the reconstituted equation do
not have the problem of a nonuniform approach to the stable fixed point which is
(wrongly) predicted by the direct solutions of equation (3.4).

Also, these reconstituted equations have solutions that are not as singular as the
previous direct solutions (3.6) and (3.7). For large a we find that (4.3) gives a--t -1/4,
and equation (4.4) gives a- t-1/6; compare these with the t-3/21og(t) singularity which
occurs for A1. In a few lines of trivial algebra we have produced equations that
completely bypass the problems observed in the direction solution of the solvability
conditions. Thus we see that the above reconstituted equations clarify the centre
manifold on which the solutions are valid and refines the accuracy of the evolution
uniformly in time (providing there are no singularities).

4.2. Substitute for second derivatives. We now investigate another possible form
for the reconstituted equations while still requiring them to be first order differential
equation in time. The difference between the approach taken here and that taken in
4.1 is that here we transform the solvability conditions (3.4) by only substituting for
second and higher derivatives. The only change to equations (3.4) is the substitution
from the derivative of equation (3.4) for A)’ in equation (3.4c), thus the transformed
equations are

(4.7a)
(4.7b)
(4.7c)

A’o-Ao +Ao= O,
2 t__A1-A + 3AoA1-2AoA0 0,

2 A,o2A2-A2+ 3AoA21 + 3A)A 2 4AoAoA1 2AoAI + 2Ao
2 4+2AoA0 =0.-6AoA0

Proceeding as in 4.1, we can form the following sequence of progressively more
accurate reconstituted equations

(4.8a) gt- ra + a3=O,
(4.8b) (1-2a2)gt-ra+a3=O,
(4.8c) 2aa2+ [1-2(1-r)a2-6a4]dt-ra+a’=O.

Before investigating the nature of the solutions to these equations we should again
find expressions for b in terms of a. As before, we transform (3.5) by substituting
appropriate expressions for all occurrences of second or higher derivatives of A,. The
resultant set of equations are

(4.9a) B0

(4.9b) Bx
(4.9c) B

=A,
=2AoA1-2AoA’O,
2AoA 2 +A- 2AA’o- 2AoA’ + 2AoA’o- 6A3oA’o + 2A2.
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Combining the above equations we form the following, successively more accurate,
reconstituted equations for the centre manifold

(4.10a) b=a=,
(4.10b) b=a-2aa,
(4.10c) b=a2- [2(1-r)a+6a3]t+ 2d 2,

0.4

0.2

b 0

(a) r=O.O

!; ,/’,"
(b) r=0.0625

"1/

0.4

0.2

(c) r =0.125
1’ "1 /" ’1

0.4 0.6 0.80 0.2 1.0 0 0.2 0.4 0.6 0.8 1.0
Cl Cl

FIG. 4. Successive approximations to the centre manifolds for the reconstituted equations discussed in 4.2,
for four different oalues of r. The curves are" --, indicates the curve given by (4.10a); ---, is given by (4.8b) and

(4.10b)" and ..., from (4.8c) and (4.10c).

(Fig. 4). The main feature of the solutions of the first reconstituted equation is the
presence of a singularity at a= _+ 1/v- which changes the nature of the fixed points
a +_ v/ for r > 1/2. The breakdown of this approximate solution may be interpreted as
an indication that at these sorts of amplitudes the exact solutions of equation (2.1)
change their qualitative behaviour. The behaviour of the solutions to the second
reconstituted equation (4.8c) are more interesting. The centre manifold is now a double
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valued function of a (Fig. 4) and for r> (Vr -1)/4 the finite amplitude fixed point
moves up onto the upper branch. This curving back of the centre manifold towards the
fixed point is perhaps an indication of the fully developed spiral structure which should
be present at these large values of r. However, for r>(Vc -1)/4 the fixed point is
unstable and for r larger than another critical value not much bigger than (v-- 1)/4
the branch of the centre manifold passing through the origin no longer passes through
the fixed point, again indicating the breakdown of the approximate solutions. Such a
breakdown appears to be a usual feature of reconstituted equations and may be
attributed to the mutual interaction between terms in the equations. These terms would
originally have occurred in different orders in the perturbation expansion. It is this very
interaction that makes reconstitution so effective, the breakdown of the solutions
usefully indicating the extent of validity of the reconstituted equations.

5. Type II reconstitution. In 4 we required that the reconstitution equations be of
the same order as the leading-order evolution equation (3.4a). This is usually desirable
because appropriate boundary/initial conditions should be known for an equation of
that order. However, it does strongly tie the reconstituted equations to the form of the
leading-order evolution equation. In this section we widen the scope of the reconstitu-
tion equations by allowing second and higher order derivatives in the equivalent
transformed version of equations (3.4). In use, this type of reconstitution produces an
equation for which boundary layer approximations are often appropriate, rather like
the Navier-Stokes equation at high Reynold’s number where the Euler equation is a
good approximation throughout most of the flow.

The simplest (and presumably soundest) way to include higher derivatives in the
evolution equation is not to transform (3.4) at all, but to use them as they are. The first
reconstituted equation is identical to (4.8b) discussed in 4.2. The second reconstituted
equation is drived by writing

e- (3.4a) + e4 (3.4b)+ e6 (3.4c) + O(e8)
solely in terms of a eA o + E3A1 -- e5a 2, s/e2 and r. It is

2a2//+ 2a 2 + (1 2a)d ra + a3=0.

The corresponding reconstituted equation for b drived directly from equation (3.5) is

b a- 2ad + 2a/ + 2t 2.

At this point we notice that the reconstituted equation (5.1) can be obtained in a very
simple manner. Write (2.1b) as

b= 1 +- a=a2-2a(t-(2aft+2t2)-(2a?i+6ti)+

then we can substitute some finite truncation of this sum into (2.1a). Truncating after
one term we obtain the leading-order evolution equation (4.2), truncating after two
terms we get (4.8b) and after three terms we arrive at equation (5.1).

It appears that we have gone to a great deal of trouble to transform our second
order differential equation (2.1) to an approximate second order differential (5.1) which
will be just as complicated to solve. This apparent fiasco only applies to simple model
systems such as (2.1). In more complex, physically interesting, systems this type of
reconstitution will produce an equation that is considerably simpler to solve than the
original system.
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The reconstituted,equation (5.1) has the same fixed points with, for r <1/2, the same
stability as the original problem. The growth rates for small disturbances away from the
finite amplitude fixed point is given by

X (1 2r_+ V/1 4r- 12r 2 )/4r,
which has the property that for r < the asymptotic,approach monotonic, while - < r <. 1/2
the asymptotic approach is oscillatory. This is qualitatively the same as the exact
system, the transition occurring at a critical value of r which differs by only 25%. At r -there is a Hopf bifurcation and so for r> 1/2 the finite amplitude fixed point, of the
reconstituted equation is unstable and all the solutions tend to a stable limit cycle. The
trajectories in the (a,b) plane of the solutions to equation (5.1) and equation (5,.2) are
plotted in Fig. 5. Comparison between the trajectories of the exact solution (Fig. 1) and
the approximate ones (Fig. 5) show a very good qualitative agreement, even far away
from where the approximation is valid. A quantitative comparison is most easily made
by comparing the two versions of the decay rates of small disturbances to the finite
amplitude fixed point (Fig. 6).

(c) r=O.O

b 0 -I

(b) r =0.0625

1, ,//_/, / l/i
(c) r=0.125 (d) r=0.25

0.2 0.4 0.6 0.8 1.0
Q

FIG. 5. Trajectories in the (a,b) plane of the type II reconstituted equation (5.1) for four values of r.
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The important result of this section is that type II reconstitution produces an
equation that is no longer restricted to the original centre manifold. It increases the
dimension of the manifold and can produce an equation that is qualitatively correct on
the new extended solution space for a wider range of parameter values.

6. Conclusion. We have seen that the technique of reconstitution can significantly
improve approximatesolutions to differential equations using exactly the same degree
of information as other techniques. This is achieved by correcting the leading-order
approximate equation itself rather than the more conventional approach of correcting
solutions to the equations. The resultant equations describe the evolution of the solu-
tion uniformly in time and on a refined centre manifold.

In such a basic system as the simple equation (2.1) reconstitution mainly modifies
the quantitative results but in a more complex system it can have a more profound
effect (for example, convection with fixed heat flux boundary conditions, see Roberts
(1982)). This occurs because reconstitution brings into one equation processes which
previously occurred at different orders in an expansion of a set of equations. Hence,
instead of higher order processes merely modifying the solution obtained at the lowest
order, reconstitution allows all the effects to interact and thus produces an equation
that is valid over a wider range of parameter values.

0 0.4 0.50.1 0.2 0.3

FIG. 6. The real part of the growth rate of small disturbances to the finite amplitude fixed points of the

reconstituted equation (5.1) (--) compared with that of the original system (---).
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A QUASI-LINEAR, SINGULAR PERTURBATION
PROBLEM OF HYPERBOLIC TYPE*

A. VAN HARTEN" AND R. R. VAN HASSELt

Abstrael. Using matched asymptotic expansions, a formal approximation can be constructed for an
initial value problem of singularly perturbed, hyperbolic type in two independent variables. Under a time-like
condition for the subcharacteristics of the unperturbed operator the correctness of the formal approximation
is shown. Because of the nonlinearity of the perturbing hyperbolic operator, this work generalizes Geel [4].
The correctness proof is based on Schauder’s fixed point theorem; it uses existence, uniqueness and regularity
theory for hyperbolic systems and a priori estimates for a .solution analogous to Geel [4] as ingredients.

1. Introduction. In this paper we consider an initial-value problem for a quasi-
linear, second order, partial differential equation of hyperbolic type for an unknown
function u(x, t), where x denotes the space variable and the time variable, >= 0;

with

and

Le(bl) EL2(H)- - Ml(b/)--- h(x,t),
u(x,0;e)=f(x) and u,(x,0;e)--g(x),

L2(b)
02/’/ 02u
Ot 2 X 2

c>0

Ou OuMl(U)-- a(x,t,bt)-q- b(x,t,u)-x + d(x,t,bt)u.

In a situation where e > 0 is a small parameter the problem is of a singularly perturbed
type, because e multiplies the highest order derivatives in the equation. We shall show,
how under certain conditions a formal approximation of the solution of (1.1) can be
constructed and its correctness can be proven. Our work is a generalization of Geel [4]
and de Jager [5].

In [4] Geel considers a subclass of (1.1), where the main difference is that in his
case the coefficient c is independent of u. Hence in his work the second order perturba-
tion operator L2 is linear and only the first order operator Ml(U) contains nonlineari-
ties, while for our problem nonlinearities are also present in the second order terms of
the equation. This does not make a dramatic difference for the construction of a formal
approximation of the solution. In both cases the method of matched asymptotic
expansions (Eckhaus [2]) will do the job if the coefficients are sufficiently regular and
a>0. See {}2. The formal approximation will then consist of a regular expansion
corrected with an initial layer at t= 0 in the variable r- t/e. However, for the proof of
the correctness of the formal approximation a difficulty arises for the following reason.
If u is the formal approximation and z the error u- fi then z has to satisfy a problem of
the following type:

(1.2) L( t + z)-L( t) r,

Z--Zt--O,
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where r= -h + L(fi) is small (say O(EN+ 1)) in some sense. Now Geel uses a coritrac-
tion argument in a suitable Banach space to solve the problem for z to estimate its
magnitude. In order to do this one writes L(t + z) L(t) DLz + +(z), where DL is
the linearization of the operator L’(u) at u= fi and +(z) contains the nonlinear terms.
In Geel’s situation + is an operator, which maps C functions onto C o functions in a
continuous way, for the nonlinearities are only present in at most first order derivative
terms. On the other hand DL with homogeneous initial conditions is invertible and
(DL) -1 has the property of mapping Co functions onto C functions, continuously.
Therefore, if the problem is reformulated for z=(DL)-(r-q(z)) a contraction
principle can indeed be used.

In our case with a nonlinearity also in the second order derivative terms this idea
fails for a simple but fundamental reason. Now, + maps C2 onto C o functions, but
(DL) -1 does not map Co onto C2 functions. The latter fact is clearly illustrated with
the following example: utt- uxx (x t)H(x t), u u 0 at 0, H the Heaviside
function, has as its solution: u(x,t)=O for x <= -t, u(x,t)=(x + t)3/24 for [xl<t and
u(x,t)=tZ(x-t/3)/2 for x>=t. The conclusion is that a new scheme for the proof of
correctness is necessary.

In [1], Douglis proves existence and uniqueness theorems for hyperbolic systems of
linear and quasi-linear equations using a different technique than [4], which also yields
an estimate for the solution. However, an application of Douglis’ method to prove
correctness of our formal approximation is not possible. The reason is, that Douglis’
method is, from a point of view of singular perturbations, rather rough. No distinction
is made between the problems e(vtt- Vxx ) -- V exp( 2t), v v 0 at 0 with the
solution v(x,t)=e(1T-2e)-exp(-Y-t/e)+(1-T-2e) -x. exp(-2t)+ 1/2. Note, that in the
case of a sign the solution grows exponentially as exp(t/e). Even, in the case where
the subcharacteristics of Ml(U ) are correctly located with respect to the characteristics
of L2(u ), [4], Douglis’ method provides us with an exponential estimate exp(t/e),
based on the worst case.

Nevertheless, in 3 we prove the correctness of the formal approximation. This is
done by a method based on Schauder’s fixed point theorem, where a rather delicate
combination of techniques and results from [4] and [1] are used as ingredients.

2. Construction of a formal approximation. For simplicity we consider the case
where all coefficients and data are smooth, i.e. a,b,c,dC ([0, oo)),h
C([0, oo) ) andf,g C(B). Further we suppose

(2.1) a>O on I X [O, oo)Xl.
Our formal approximation will have the following form:

N N+I

(2.2) fi(x,t’, E) E ’nWn(X, t) "3r- E ’nOn(X, ’r)--.N+XoN+I(X,O)
n=0 n=l

with -= t/e. The first part of this expansion is of regular type and the second part
describes the correction by an initial layer at 0. The last term is introduced in order
to satisfy the initial conditions exactly.

We shall now require that fi satisfy the equation in (1.1) up to o(EN), i.e. L(t)-h
O(EN/ 1). Hence w0 has to satisfy the reduced equation

(2.3) a(x,t,Wo)----+ b(x,t,Wo)---x + d(x,t,Wo)Wo=h
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and we provide it with the initial condition

w0-f at t- 0.

Because of (2.1) this problem for w0 has a unique, smooth solution in some domain
D= ((x,t)lO<__t<s(x)} with sC(R), s>O. For several reasons (such as intersecting
characteristics corresponding to (2.3)), it can occur that D cannot be taken equal to
R x [0, ). The first order correction term V in the layer is necessary to satisfy the
initial condition for the time derivative. Substitution of Wo(X, er)/eVl(X,r) in (1.1)
leads us to

v(x+o() "1") 0
T2

(2.4) vl w0 at r=O,Or =g Ot
lira v(x,r)=O,

with ao(X) a(x, 0, w0(x, 0)).
The decay condition for r m can be considered as a matching condition between

the regular expansion outside the layer and the sum of the regular expansion and the
layer correction inside the layer. The solution of (2.4) is given by

a (x).[a0(x)]-xp(-a0(x)).(2.5) (x,)=
=o

For the higher order terms w,, n 1, 2,... we proceed as follows. The equation for w,
is found by putting

N x,, w =o;
0

it is of the following form

(2.6) ao---+ bo--x + ow,= k.
Here ao(x,t ) and bo(x,t ) are the functions found from a and b by substituting
u= Wo(X,t ). The coefficient do is given by a ui)Wo/)t + buiWo/i)x + d+ duwo with u re-
placed by Wo(X, t). The right-hand side k, depends only on Wo,..-, w,_ .

The equations for the higher order correction terms in the layer are derived from

[( d )n-X ( N N+I

e v. O.
n=O n=l

The structure of these equations is

(2.7) a2 a 0]Or 2 o
where kn depends on Wo,’",Wn_ 2 and V,’’’,Vn_ . NOW we provide (2.6) with the
initial condition

(2.8) Wn(X,O)= --On(X,O).
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In addition to (2.7) we require

(2.9) o,(x 0)= 3wn-1 (x,O), lim Vn(X,’r)=O.

We observe that the higher order terms can now be calculated in a unique way by the
following scheme:

n =0" (2.3) w0 ,,,.4,>’tz )

n= 1" 1 (2.6), (’8 Wl (2.7), (2.9)
>

n=2: v2

n=k w, (2.7), (2.9
n k--I-- 1" Ok+l (2.8), (2.8

Using induction with respect to n it is not difficult to show that

(2.10) Wn C(Z ).
It is also a nice exercise to verify that

(2.11) o,(x,r)= Pj.,,(x,r)exp(-jao(x)r )
j-- 1

with p.,, a polynomial in r with coefficients C(R), i.e., each of the layer terms o,
vanishes exponentially for r m.

The conclusion is that as a result of this construction we obtain a formal ap-
proximation fi as in (2.2), which satisfies

(2.12)
fi=f, fit=g att=0.

where r C(D) and for each e-independent, compact subset Kc D:

(2.13) sup rl= O(eu+) for e + 0.

In this sense the construction yields a result which approximately satisfies the equation
and which satisfies the correct initial conditions.

The question is whether this will imply that (1.1) has a solution u such that u- fi is
small in some sense. Without additional assumptions we cannot hope that this will be
the case. The construction is such that (Xo, to) depends only on the data along the
characteristic k of the unperturbed, first order operator M through (Xo, to), whereas
the solution U(Xo, to) is determined by the data is the domain of influence I at (Xo, to)
of the second order, hyperbolic operator L2, which is a contradiction, if k lies outside I
(cf. Geel [4, pp. 45-50]). Therefore in our proof of correctness in the next section we
have to require time-likeness of the characteristics of M with respect to those of the
operator L2.
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If the characteristics of M are space-like w.r.t, those of L2, we encounter here a
natural class of singular perturbations problems, for which a formal approximation can
be constructed with an arbitrary fractional order, O(e"), of accuracy, but without any
relation to the genuine solution, compare Eckhaus [2, p. 198, 2] and Geel [4, p. 45].

(Xo,t @

timelike /[ X kl: spacelike

Fa. 1. a, b, c constant a,c>O"
C(to- t)}

3. Correctness of the formal approximation. In addition to the smoothness of the
coefficients and data and the positivity of a (2.1), we assume that a time-likeness
condition is satisfied for the characteristics of M w.r.t, those of L2 at the Oth order
term of the approximation w0:

(3.1) Iboaffll<co onD

with Co(X,t)=c(x,t, Wo(X,t)); a0, b0 are defined in an analogous way, see (2.6).
Let us also introduce some terminology. A point (Xo, to)e D is called Lz,0-regular,

if the trajectories of dx/dt= +Co(X,t); X(to)=Xo exist and stay in D for O<=t<_to.
These trajectories are the characteristics through (Xo, to) of the linear, hyperbolic
operator Lz,o=Z/}tZ-c2o}Z/}x2 and we denote them by x=l(t; Xo, to). For a

L2,o-regular point (Xo, to) the domain of dependence w.r.t. L2, o, Io(xo, to)-
{(x,t)lO<=t<__to, l(t; Xoto)<=x<__l-(t; Xo, to) }, is well-defined and cD. A subset
Kc D will be called L2,o-regular, if each point K is L2,o-regular.

We shall now formulate our correctness result.
THEOREM 3.1. Consider a compact, L2,o-regular subset Kc D. If the coefficients and

data are smooth and (2.1), (3.1) hoM, then there is an eo> 0 such that for 0 < e < eo the
problem (1.1) has a unique, smooth solution u on some neighbourhood of

K*-- U Io(xo,to)
(Xo,to)K

in D and the formal approximation fi in (2.2) is correct in the following sense

(3.2) sup lU- ll MEN+1

with M> 0 and e independent constants (but dependent on f, N >= O, eo, f, g, h, a, b, c, d ).
In order to prove this result we consider the problem for the remainder term

z u-ft..Using (1.1) and (2.12) we find

L( ?z + z ) L( fi ) r,
(33) z=O, zt=O att=O.
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Instead of attacking (3.3) directly it is more convenient to consider a problem with
coefficients and data which are also defined for (x,t)g [0, o) and which coincide
with a, b, c, d and r for (x,t) in a neighbourhood of K*. Since K is compact and
L2,o-regular, it is easy to check that K* is a compact subset of D with the property
(Xo, to) K * Io(xo, to)CK*. Now let ’1 be a bounded open neighbourhood of K*
in D, such that x c D and take X C(R [0, o)), such that X--1 on a neighbour-
hood rio of K * in D with f0 c 1 and X 0 outside fx. We define new coefficients by

O(x,t,z; e)=(1-X)+XC(X,t,t(x,t; e)+z) >0,

(3.4)
gt(x,t,z; e)=l-x+xa(x,t,t+z)>O,
b(x,t,z; e)=xb(x,t,fi+z),

with

d(x,t z; e)=(e(c2(x,t,ft)-c2(x,t t+z)).
X2

+ d(x,t,ft+ z).z + (a(x,t,ft+ z)-a(x,t,t)).-

+(b(x,t,ft+z)-b(x,t,fi)).-x+(d(x,t,fi+z)-d(x,t,fi))’fi l/Z,
where we interpret xa, xb, XC, Xd as =0 outside fl- As a consequence of (3.1) the
constant , > 0 can be chosen in such a way that

Ib - l< e on [0,
for suitable constants, > 0, 0 > 0 and with a constant V (0,1). Now we consider the
following problem, which for (x,t) 2oD K * coincides with (3.3):

(3.6)
L( e ) rX dee--’
2=0, 2t=0 at t=0,

with

L(z)=e{z,,-O(x,t,z; e)z}+&(x,t,z; e)z,+b(x,t,z; e)z+d(x,t,z; e)z
and C(R [0, )), support ()C1.

For (3.6) we can prove an existence result together with an estimate of the solution
2 on a strip Sr= R [0, T] with T> 0 an arbitrary constant independent of

LEMMA 3.2. For given T> 0, there are constants > 0 and e0> 0 such that for e
sufficiently small, 0 < e <__ eo andfor sufficiently small:

(3.7) sup Il__<e,
Sr

the problem (3.6) has a solution C(Sr) which satisfies the estimate

(3.8) sup [l-- E3/4(Ixlq-re,t) _-< R -1/4 sup
ST ST

with a constant R > 0 independent of e and
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This lemma shows that if the order N of the formal approximation in (2.2), (2.9),
(2.10) is sufficiently high, N_> 1, then (3.3) has a solution z on 20, z C(f]0) and

sUPaolZl<=ReS/3/4. Since augmenting the order of the formal approximation form N to
K> N adds only terms to the formal approximation of order N of order es/ uniformly
on 20, it follows that given with N0 there is a solution u C(20) for which (3.2)
holds. The proof of uniqueness of such a solution on a suitable subset c fl0, 2 a
neighbourhood of K * is a rather subtle matter, which is postponed till after the proof
of Lemma 3.2.

Proof of Lemma 3.2. a" First we study the linear equation obtained from (3.6) by
freezing the coefficients 4, ,, , of L(z) at z=to(x,t; ), where to(-, .; e) for each e

(0, eo] is in CI(Sr). Hence we define

^2L() ( ,,-C.xx ) +a.+ ,.x + a.
with ,o(x,t; e) (x,t, to(x,t; e); e), etc. Now we consider the following problem"

def

(3.9) L()=,
=0, t=0 at t=0,

with as in (3.6). We introduce on CI(Sr) the norm I1 with for s CI(Sr)

and we suppose

(3.10)

sup[[sl+e3/4(ISxl+lst[)]

Ito(’, "; e)11<--me3/4
with a constant m>0. This implies that Ixl and ]tot] are bounded by m on Sr.
Therefore the coefficients ’o, &,, b and d, and their derivatives with respect to x and
are absolutely bounded by a constant m > 0, independent of e and to. Further there are
constants ao > 0, 3’0 > 0 and p > 0, independent of e and to, such that

&,o>Oto>O on ST,

(3.11) ,>= 3’o> 0 on ST,

,o--Ia- l]>=p > 0 on St.
For the last inequality we use (3.5). This is allowed, if e0 is sufficiently small, so that

o <= o, m3o/ <-- .
ai. Let us investigate the existence, uniqueness and regularity of a solution of (3.9).
This can be done by writing (3.9) as an equivalent system in its normal form

P2 + AP2 + Q; k,
(3.12) 2=0 at t=O,
with

0

d/

0 0
1 +
1

1

tlk= /.
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Using Douglis [1, Thm. 5] we find, that (3.12) has a unique solution {CI(ST)) 3.
Furthermore, there are constants A < B, independent of e and , such that Z=0 on

((x,t). SrIx[A,B]). In addition this theorem also provides us with an estimate for
Z, Z and Zt. The transcription of these results in terms of (3.9) yields: there exists a
unique solution of (3.9) in C2(Sr) for all e (0, e0). This solution satisfies

(3.13) =0 on {(x,t)STIXq[A,BI},

(3.14)
sup max(ll, Ixl, I,l, Ixxl, Ix,I, exp
ST E

sup max(ll, I xl,
Sr

with constants A, B, m2 and m > 0 independent of e, o and P. However, the estimate in
(3.14) can be considerably improved.

aii. An improved estimate for the solution of (3.9) is obtained by using Geel’s
method [4]. Though in our case the coefficient ,0 depends on e a calculation analogous
to [4, Chap. III, 2] yields

(3.15) I(., .; e)l<=m-g 1/4 sup IP{,
Sr

with a constant m4 > 0 independent of e, w and . In this calculation the properties of
the coefficients &,, o, , d as specified in and just above (3.11) are used in an
essential way. Geel’s method is based on the method of energy integrals, the essence of
which can be found in [5].

b. Our next step is to rewrite the problem (3.6) for 2 as a search for a fixed point of
a nonlinear operator F. Here F is defined as follows: if o Cl(Sr) and I1=< me3/4,
then

(3.16) F(o)=
with the solution of (3.9).

Now a solution of (3.6) is found by solving the equation

(3.17) F(2) =2.

In order to show the existence of a solution of (3.17) we shall use Schauder’s fixed point
theorem (Fucik [3]). The nonlinear operator F is defined on Boo= { o CI(Sr)I I1 _-<
0o }, if 0o =< me3 Because of (3.15) F maps Boo into itself, if suPsTl =< m 2 1d/400. The
conclusion is if

(3.18) sup Irl<=e with =mm-,
Sr

then

(3.19) F(Bo)c Bo with p--m48-1/4 sup I1.
Sr

Next, an application of Douglis [1, Thm. 4] to the system (3.12) shows that F is a
continuous operator from B

0
into Bo. If (on; n N} is a sequence in Bo, then (F(wn);

n N} has the following properties: (i) 3 compact subset Vc Sr such that Vn N
F(o,)=0 outside V, (ii) :IE>0 such that ’n F(,) and its derivatives up to the
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second order are absolutely bounded by E. The first property follows from (3.13) and
the second one from (3.14). As a consequence of the Arzela-Ascoli theorem [6] the
sequence { F(w,); n N } has a converging subsequence in the sense of 11-

The conclusion is that F is a continuous, compact operator from Bp into Bp.
Schauder’s fixed point theorem implies that (3.17) possesses a solution 2 F(Bp).

Hence, (3.6) possesses a solution C2(Sr) with I1 _-< p m 4E-
1/4 suPsT Il.

c. The derivatives D2 with lal k, k-1,2, satisfy linear systems of equations
analogous to (3.12) with 0=2. Using Douglis’ results [1] and induction with respect to
k it is not difficult to prove the smoothness of 2.

This completes the proof of Lemma 3.2. []

As for the proof of the correctness result given in Theorem 3.1 we still have to
demonstrate the uniqueness of the solution u on some suitable neighbourhood 2 of K *
in D, where f c f0- This neighbourhood 2 is constructed in the following way. Let
be a neighbourhood of K * in D, such that

(i) f0c0

and

(ii) ;=Ui=1 (J (Xo, to)J Io(xo, to)}

withJi=((Xo, to)[to=Ti, x(i)<xo<x)}_= TI<T2__ =...< -<TN andN N. Next,we define

(3.20) f= U I,(Xo,to).
(Xo, t0)

Here, I(xo, to) is defined analogous to Io(xo, to), but with +_Co(Xo, to) replaced by
+_ (Co(Xo, to)-I } with a constant #>0. Note, that for/ sufficiently small f fo-A
sketch of the situation is given in Fig. 2.

/
/

/ \
/ \

/ / \. \
/ \ \I ./ \ \

./K* * ’\
/ K \

FIG 2. 2 is the interior of the set:

The uniqueness of the solution can now be guaranteed on f.
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LEMMA 3.3. Suppose > 0 is, such that c o. Then the solution ofproblem (1.1) is
unique on .

Proof of Lernma 3.3. Suppose z and 2, with 2 as in (3.8), are different solutions of
problem (3.3) in C2(2). Define: T=inf{t>O[Zl(x,t), z(x,t)2(x,t)). If z is not
identically equal to 2 on 2, then T< Tu. Choose ,>0 in such a way, that /z0

,
IZol=<’: Co(X,t)- 1/2#<=O(x,t, Zo; e)<=Co(X,t)+ 1/2t for (x,t) and e (0,e,].

Because of (3.8) and the continuity of z, :i T’ > T such that ’(x, t) fl, T< < T"
[z(x,t)[<=, and 12(x,t)[_<,. Now, take (xo, T) such that 3((x,,t,); nN) such that"
lim,_ oo(x,, t,)= (x0, T) and z(x,, t,) 2(x,, t,). We consider

R= [.J I( y, T’),
(y, T’), y_<y<=y+

where y_ and y + are chosen in such a way, that R c 2 and (x0, T) R. An application
of Douglis [1, Thm. 1] to (3.3) written in system form shows, that z 2 on R, which is a
contradiction with our assumption. Therefore we have to have uniqueness on all of
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A NONLINEAR EIGENVALUE PROBLEM MODELLING THE
AVALANCHE EFFECT IN SEMICONDUCTOR DIODES*

PETER A. MARKOWICH"
Abstract. This paper is concerned with the analysis of the solution set of the two-point boundary value

problem modelling the avalanche effect in semiconductor diodes for negative applied voltage. This effect is
represented by a large increase of the absolute value of the current starting at a certain reverse basis. We
interpret the avalanche model as a nonlinear eigenvalue problem (with the current as eigenparameter) and
show (using a priori estimates and a well-known theorem on the structure of solution sets of nonlinear
eigenvalue problems for compact operators) that there exists an unbounded continuum of solutions which
contains a solution for every negative voltage. Therefore, the solution branch does not "break down" at a
certain threshold voltage (as expected on physical grounds). We discuss the current-voltage characteristic and
prove that the absolute value of the current increases at most (and at least) exponentially in the avalanche
case as the voltage decreases to minus infinity.

AMS-MOS subject classifications (1980). Primary 34B15, 58C40, 78A25

Key words, nonlinear eigenvalue problems, unbounded solution continua, two-point boundary-value
problems, impact ionization, semiconductors

1. Introduction. We investigate the (one-dimensional) boundary-value problem
which describes the performance of a semiconductor diode in the case of avalanche
generation. The physical situation is as follows. A semiconductor is doped with donor
atoms on the right side (n-side) and with acceptor atoms on the left side (p-side) and a
bias is applied to the Ohmic contacts (see Fig. 1).

pn-junction

FIG. 1. Diode.

For simplicity we assume that the pn-junction is in the middle of the device, that
the doping profile (that is the difference of the the concentrations of donors and
acceptors) is constant in the n-side as well as in the p-side and odd about the pn-junc-
tion.

A well-known phenomenon is the "breakdown" of the diode due to impact
ionization (avalanche generation, see Sze (1981)) under sufficiently large negative bias.
This "breakdown" is based on a "sudden" increase of the current (as a function of the
applied bias).

*Received by the editors November 7, 1983, and in revised form April 2, 1984. The work of this author
was sponsored by the United States Army under contract DAAG29-80-C00041.

Technische Universittt Wien, Institut fur Angewandte und Numerische Mathematik, Gusshausstrasse
27-29, A-1040 Wien, Austria.
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To study the current-voltage (J- V) characteristic of the device we investigate the
basic semiconductor device equations describing potential and carrier distributions in
the diode (see Van Roosbroeck (1950), Sze (1981));

(1.1)
(1.2)
(1.3)

?2b" n -p- D Poisson’s equation,
n’ n+’ + J,, electron continuity equation,
p’ =p4,’-Jp hole continuity equation,

-1<x<1.

p denotes the electrostatic potential, p’ is the electric field, n(p) the electron (hole)
density, J,,(Jp) the electron (hole) current density and D the doping profile. The
equations (1.1)-(1.3) are already in dimensionless form, the doping profile is scaled to
maximally one and the independent variable x to [-1,1]. In our symmetric and
piecewise constant case

(1.4) D ( 1, 0 __< x =< 1 (n-side),
1, -1 =< x < 0 (p-side)

holds. The pn-junction is at x 0. 2( << 1) is a scaling parameter.
Generally the current relations are given by

(1.5) (a) J’ R, (b) Jp’ R,

where the recombination-generation term R is a nonlinear function of n,p, J,,, Jp and
+’. We assume that R is given by the avalanche-generation term (see Sze (1981), Schiatz
(1982));

(1.6) R=R(J,Jp,4,’) -( q,’)(lJnl/ IJp[),
where a>__ 0 is the electron-hole ionization rate. a is strongly field-dependent. Com-
monly used a’s are a(r)=ye -/1’1, a(r)= 3lrle -/1"1, 7, o >= 0. For simplicity we assume
that a" C([0,1]) [0, V], Y >_- 0 is the nonnegative functional

(1.7) o(f)=B(l[fllt-,u), B" [0, m][0,v], flc([0, o]) andnondecreasing

(llfllI.bl := supzxzb[f(x)l). We will later on remark on the extension of results to more
realistic ionization rates.

The total current J is given by

(a.8) J J,, + 4,

Note that J is a constant in [- 1,1] because of (1.5).
The boundary conditions (at the Ohmic contacts) for (1.1)-(1.5) are

(1.8a) np 8 4, n p D 0 at x _+ 1

where 8 2( <_ 1) also originates from the scaling and

(1.8b) + (1) In n(1)_ V, +(-1) =ln
p(-1)

62, 82
+V.

VR is the (scaled) voltage applied to the diode (details on the scaling can be found in
Markowich and Ringhofer (1984) and Markowich (1983)).
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Because of our symmetry assumptions we restrain the investigation to "symmetric"
solutions, i.e. solutions which fulfill

(1.9) P(x)=-k(-x), n(x)=p(-x), J,,(x)=Jp(-X), x[-1,1].

Another simplification is accomplished by employing the substitution

(1.10) n=2e4‘u, p=2e-4‘v, Jn=2e4‘u ’, Jp=-2e-4‘v’.
The system of equations obtained from (1.1)-(1.8) by using (1.9), (1.10) is

(1.11)
(1.12)
(1.13)

2,, 2e 4’ U 32e -+V 1,

(e4’u’)’ -a(q,’)(le+u’l/ le-+o’l),
(e-o’)’ (q,’)(leWu’l/ le-+o’l),

O__<x__<l,

subject to the boundary conditions"

(1.14a) q,, (0) O, q,, (1) ln( 1+ v/1 +434 )232
-V,

(1.14b) u(O) v(O), u(1) e v,
(1.14c) v’(0) u’(0), v(1)=e-v.
The boundary conditions for u and v at x=-1 are u(-1)=e-v, v(-1)=e v. The
maximum principle (see Protter and Weinberger (1967)) applied to (1.12), (1.13) gives

(1.15) u>=e -Ivl, v>__e -Ivl on[-1,1].
Therefore n and p are positive (as physically required for densities). A solution for
V= 0 is given by u 1, v-= 1 and by solving

(1.16a) X:z4,,, 2e 4’ 2e 4’ 1, 0 __< x __< 1,

(1.16b) 4,(0)=0, (1) =ln( 1+ /1 +484 )
The solution (V, q., U, V)=(O, +e, I,1) where 1//e is the unique solution of (1.6) (existence
and uniquenss of qe will be proved later on) is called equilibrium solution. It implies
J= 0 (the whole diode is in thermal equilibrium).

The two-point boundary-value problem (1.11)-(1.14) models the bias-controlled
diode. In some cases it is more convenient to investigate the current-controlled device
represented by the equations (1.11)-(1.13) subject to the boundary conditions:

(1.17a) q (0) 0, q (1) ln( 1 + /1+434 )232
-lnu(1),

(1.17b) u(0) v(0), u(1) v(1) 1, u(1) > 0,
J J

(1.17c) u’(0) v’(O)282’ 282"
Note that (1.17c) follows from

J=J(0) +Jp (0) 82e 4‘() u’(0)- 82e- 4‘()v’(0) 282u’(0) 282/)t(0).
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The problems (1.11)-(1.14) and (1.11)-(1.13), (1.17) are equivalent in the following
sense. A solution (Vl, g,x, Ux, Vl) of (1.11)-(1.14) yields the solution (J,/,u,vx) of
(1.11)-(1.13), (1.17) where J=,2e/lu.-,2e-*lv’ and a solution (J2,2,u2,v2) of
(1.11)-(1.13), (1.17) yields the solution (Va,/2,u, v2) of (1.11)-(1.14) where V2--
In u2(1).

There are numerous analytical and numerical investigations of the (even multi-di-
mensional) semiconductor device equations in the nonavalanche case (i.e. the recombi-
nation-generation rate R only depends on n and p) (see Mock (1983) for a rather
complete presentation of the results as well as for a collection of references). For the
avalanche problem, however, there are (to the author’s knowledge) only a few numeri-
cal studies (see Schgtz (1982); Schi)tz, Selberherr and PiStzl (1982)).

In this paper we regard (1.11)-(1.14) and (1.11)-(1.13), (1.17) as nonlinear eigen-
value problems (in the sense of Rabinowitz (1971), Krasnoselskii (1964) and investi-
gate the solution set for nonpositive current"

(1.18) C-= ((I,/,u,v)(-,O](C2([O,1])31(,u,v) solves

(1.11)-(1.13), (1.17) with J= I }

and the properties of the current-voltage (J- V) characteristic:

(1.19) J-= ((V,J)n X (- m,0l)lthere is (g,,u,v)
such that J, q,u ,v ) C- and V= In u (1) }.

The main theorem of this paper states that C-contains an unbounded continuum (i.e. a
closed and connected set (in the (-m,0] (C-([0,1]))3-topology) emanating from the
equilibrium solution (0,pe, 1,1) wose projection into (-z,0] equals (-m,0] (that
means C-contains solutions for all J =< 0) and that the voltage V-m as J---,- m.
Therefore (1.11)-(1.14) has a solution (g,,u,v) for every V=<0.

This result holds independently of the upper bound 3’ of the ionization rate a and
carries over to more realistic a’s than given by (1.7). Therefore the conjecture that the
branch of solutions of (1.11)-(1.14) breaks down if , > 1/2 holds (see Sze (1981)) is
mathematically rejected at least for this model problem. We show, however, that the
magnitude of 3’ has a decisive impact on the J-V-characteristic. For a=0 (non-
avalanche case) the current fulfills czVJ <= ClV for V<_0 while IJ] increases exponen-
tially as V-m for ,>1/2. (cl, c>0 only depend on and i). The exponential
growth of the current represents the "avalanche effect" and the diode "breaks down"
in real life when the current gets too large. We also show nonuniqueness for V= 0 for
all a for which a(q/e) is sufficiently large.

The paper is organized as follows. Section 2 deals with the a priori estimates
needed to prove existence for all J__< 0 and {}3 contains the existence proof and conclu-
sions.

2. A priori estimates. For the following we take J <_ 0.
At first we solve the continuity equations (1.12)-(1.13) for fixed C1([0,1]). We

rewrite them as

(2.1a)

(2.1b)
0__<x__<l,
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with the initial values

J J
(2.2c) Jn(0) =, Jp(0) =.
(2.1a) implies that Jn is nonincreasing; since J,(0)=<0, we get J,=<0 on [0,1]. Jp(0)__<0
holds and therefore we (initially) solve

(we, often drop the argument q’ of a) and get

J,,=-IJ---[ (2ax + 1)2 Ju IJ---L ( 2ax + 1)2

1
x [0,1] if 0_<ct <,

for

[1] 1x O, ifa>-g.

For a > 1/2 we have to solve

J/ a( J, Jp ) J a ( J, Jp )
1 1

and obtain

(2.3b) J,,= _/lJ__L(e2X_a + 1)2 Jp= [J--L(-eZx-a+ 1)2
for x

1

u and v are computed from (1.10), (1.14b, c)"

u e V+ ]22

(2.4a)

1
ifc>

2’

v--e

1le(’)(-2as+l)ds forx[O,1] ifO<_a<_,

fx 2as-1 1 1

_v_ ijI e(’)(-e + l)ds forx -a,1 ifa>__,
2t2 fx1/2a fl )(--e +l)dse+()(- 2as + 1)ds+ e+( 2as-1

for x
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We use the condition u(0)= o(0) to relate V and J and get

(2.5) V area sinh(J.I(q))42 J<0=

where the functional I: C1([0,1])--, R is given by

(2.6a) I(tk) =f01 [e(S)g,(s)+e-q"’)f(s)] ds

with

(2.6b)

2ax+l forx [0,1]

[1e2"-X+l forx

if0_<a_<-- andforx 0,

1
,1 if a>-

2’

1
if a>-

2’

1 [112ax+l forx[0,1] if0=<a__< andforx 0,a-a
e2X-l+l forx a,1 ifa>-.

1
if a>-

2’

I C(CI([0,1]) R) holds. For the estimates of the current J in terms of the voltage V
we use

(2 7) j
482 sinh,V
i(q) if I(q)4:0.

We collect, the properties of u, v, Jn, Jp and J in"
LEMMA 2.1. Assume that 0 <__ a( +’) <__ 1/2 holds. Then

(i) I(/)>=(1-2a)fe*(S)ds+ fe-+(S)ds>O;
(ii) J<O** V<O, J=O* V=O**u---v=l.

Let V< 0 hoM. Then
(iii) J < O, J, < 0 on [0,1];
(iv) u is decreasing on [0,1], e v =< u =< e- v;
(v) v is increasing on [0,1], e v =< v _< e- v.
LEMMA 2.2. Assume that a(tk’) > 1/2 is fixed. Then
(i) there is / C1([0,1]) such that I(+) < 0;
(ii) J=O(V=O**u=-o--1),J<O**(V<O,I(+)>O or

V> 0, I(q) < 0);
(iii) V=0**J=0 or I(+)=0.

Let J < 0 hold. Then
(iv) J<=O on [0,11; J;_O on [0,1/2),J >= 0 on (/2, 1],
(v) u is decreasing on [0,1], u >= e v,
(vi) v is increasing on [0,1/2a] and decreasing on [1/2a, 1], v >= e v.

Therefore,for any solution (V= O, /*, u*, v*) 4: V= O, qe, 1,1) of(1.11)-(1.14) (with V > )
I(q*)= 0 has to hold.

We now turn to Poisson’s equation (1.11) subject to the boundary conditions
(1.14a). Differentiating (!.11) gives

(2.8a) Xz(/’)"=(n+p)’+J, 0=<x=<l
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and (1.14) implies

1(2.8b) (’(0))’ (q’(1))’ 0.

The maximum principle (see Protter and Weinberger (1967)) yields
LEMMA 2.3. J <__ 0 implies /’ >= 0 on [0,1] and V<_ b(1). Thus the a priori bound

(2.9) O<=(x)<_q(1)=C/(1)-V, x [0,1]

follows from J <= O.
Differentiating (2.8a) and using (1.11a) implies

(2.10a) Xz(q/’)"=[(n+p)+Xz+’z]+"+(+’)z+(J,-Jp)q/, 0=<x=<l,
1(2.10b) q"(0)
X (1) =0.

From (2.3) we conclude that Jn--Jp<= 0 in [0,1] for J =< 0. Since +’ _> 0, we obtain
LEMMA 2.4. J <= 0 implies " >= 1/X2 on [0,1], and therefore

(2.11) n(x)>=p(x), 0_<x__<l

holds.
Proof. z= -(1/X2) is a lower solution of (2.10) and (2.11) follows from (1.1) (with

D =- 1 on [0,1]).
We now derive upper bounds for n.
LEMMA 2.5. Let J <_ 0 hold. Then

1+1+484(2.12) n(x)=< 2

(2a + 1)(1-x) forx[O,1]

[1(e2’-t+l)(1-x) forx -f-d ,l

1 - 1) 1---a)--2x+ (e + 1

1] 1
forx O, if a>-.

1

1
ifa> 2

Proof. We multiply (2.4a) by 82e+ (getting n) and estimate e(X)-+(s)<= 1 for s>__x
(q is nondecreasing). (2.12) is then obtained by integration and estimating

1 (l_e-Z(1-x))<l_x.2a

In the case of zero generation (a--0) we obtain upper bounds for n and p which are
independent of J and V.

LEMMh 2.6. Let a =-0 andJ <= 0 hoM. Then b <= 0 on [0,1] and

(2.13) p(x)<_n(x)<=p(x)+l, 0_<x=<l,

(2.14) O<n(x)+p(x)<_x/l+484, O_<x__<l

hold.
Proof. a 0 implies Jn--Jp =J/2 and therefore 5= 0 is an upper solution of (2.10).

(2.13) follows from (1.1a). Also (n+p)’=q/(n-p) holds. Thus n +p is nondecreasing
and n +p __< n(1)+p(1)= v/i + 4( 4 follows.
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(2.15)

We now derive lower and upper bounds for p using the estimates of n and p.
LEMMA 2.7. Let J < 0 hold. Then

2A
"1 ) x 2

(x)< (1)+-:-:-;.. x O<x<l

follows. If 0
2

(2.16) q(x) >= +q(1)x

holds.
Proof. (x)= ((1)+ 1/2kZ)x x2j/22 solves

Xzk"=-l, (0)=0, k(1)=q(1).
Lemma 2.4 implies that q is an upper solution of (1.11a). For a---0 we obtain by
integrating +" _< 0" +(1)=< +’(0) and from +" 1/,2

X 2 X 2

k(x) > +q’(0) x > --p (1)x.
2,2 2,2

To get a lower bound for q in the avalanche case we prove
LEMMA 2.8. Let J <__ O, J] >= K hoM. Also let 0 < e < 1 be such that IJle >= K2 where

K1, K2 only depend on ,, 8 and . Then

1 1(2.17) q’(x) > +o(x) 0<x<l
 lJl ’

holds where IIolli0a =<K2 (K2 only depends on ,,8 and y) and

1
(2a+l)(1-x) forx[O,11 ifO<__a<=-,

[1 1
(2.18) g(x)= (e2a-lw1)(1-x) forx --d,1 if a>-,

1-2x+(e’-l+l) 1 forx 0,-- if>2.
Proof. Lemmas 2.4 and 2.5 imply

n+p 2n 1+/i+484
<< +g(x).

IJI ---[JI- IJI
We now choose e such that 1+v/i+484 lJle. Thus (n+p)/IJl<=e+g(x) holds.
Obviously the solution y( >= 0) of

72(2.19a) - y"= ( e + g,,( x)) y-1,

1
(2.19b) y’(0) ,2’ y’(1) =0

is a lower solution of (2.8), which means that 0 =<y __< +’ holds on [0,1]. For large IJI the
problem constitutes a linear singularly perturbed (Neumann-type) boundary value
problem with the reduced solution (obtained by setting ,2/IJ to zero)"

1
yr  +go(x)
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A standard singular perturbation analysis (see Howes (1978)) which takes the possible
smallness of e into account (yr(1) l/e!!) gives

1
Ily-yrlllO,ll<ga

whenever IJl>__ K1, [Jle5 _>_ K2. This implies (2.17).
A lower bound for q follows by integrating (2.17)"
LEMMA 2.9. Let the assumption of Lemma 2.7 hold. Then

1
(2.20) q(x)>_(x)’ +

1 ( 1 )LI+ 2’a4iln e+(2a+l)(1-x)
1forx[O,1] ifO<=a<__-

L2 forx 0, ga>
1 ( 1 )L + In

e-l+ 1 (e-+)(1-x)+e

[1 1
iI >g

holds where IIllto,1] K2 and tl, L2, t only depend on y.
Since e can be made arbitrarily small when J-oo (still keeping IJle large),

Lemmas 2.8 and 2.9 imply that IIq’llt0,11 (>=’(1)>=K4(1/e)) and q,,(1) (_>Ksln(1/e))
become unbounded as J --+ o.

We also need an upper bound of 4":
LEMMA 2.10. J <= 0 implies

(2.21) (0 =<)’ <=K6elVl(lJ + 1)
where K6 only depends on ) and 8.

Proof. (2.4a) implies n +p > n >= 2e v. Thus the solution w of

1)k2w"--2eVw-IJI, w’(0) k2, W’(1) 0

is an upper solution of (2.8). Therefore

’(x)Zw(x)=e-V2 +

and (2,21) follows since V=< be(1).

)Se V/2 sinh(( 8/k )e g/2)

We now employ the derived bounds to get a priori estimates on the current-voltage
characteristic.

THEOREM 2.1. Assume that ( J, p, u, v) C and ( V, J ) J Then

(2.22) CIIV[ Z IJI Z c=lvl ifa(q/)=0,

1(2.23) CxlVl <= lJl <= C3elVl(1- e -21vl) if O < a( q/) Z -holds. If a(p’) > 1/2 then

(2.24) (74(1 -e-2lVI)elVl(1-1/2a)Z [JI __< D exp((5 + )(e2a-1 + 1) gl)
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holds for 1/2 < s(b’) < so with some so < 1 and every t > O. If s(’) >= so then

(2.25) Cs(l--e--IVl)elVl<=lJl<=Oexp((5+l)(e--l+l)lV]).
The constants C1,..., C only depend on ), and /. D depends on ), , y and i.

Proof. O<=s<_ 1/2 and p_0 implyO<I(q)<=2fcoshO/(s)ds and (2.15), (2.7) yield:

2 sinh( p (1) + 1/2)2)0<I(+)=< p (1) + 1/2)2

Thus

3 2(1 e- 21vl) ( k (1) + 1/2,2)
e-lVl sinh( p (1)+ 1/22)

and the lower bounds for IJI in (2.22), (2.23) follows, s=0 implies I(+)=
2f coshOz(s)ds and the estimate (2.16) gives

I( q ) >= 2 sinh( q (1)- 1/2),2)
k (1)- 1/2,2

when II/I is so large that k(1)- 1/22 > 0. We derive (using (2.7))"

3 2(1 e- 21vl)( k (1)- 1/2,2)
e- Ivl sin( k (1) 1/222)

and (2.22) is proven. For 0 < s =< 1/2 we estimate

fOI(g,) (-2ss+l)ds=l-s.

Thus

282elVl(1 e-21vl)

and the upper bound in (2.23) follows. Now let s(k’) > 1/2. Then, since k is nondecreas-
ing and since g,(x) is positive in [0,1/2a) and negative in (1/2a, 1]:

I()N L(s)ds+e(/ .(s)ds
1 1 2a-1 eff(l/2a) ( 1 1 2a-1)e-1-+e + 1+

4a

.(f0 in [0,1]) hold. The function h(a)=l + 1/4a-(1/2a)e2- has a unique zero
ao (, 1). Thus

2, o,
I()< 1 +

1 e._ 1 1
1- +e(/, -2 < <

holds. If i(q)> 0, the lower bound in (2.25) follows and the lower bound in (2.24) (also
for 1(q,) > 0) is implied by (2.15) which gives

1
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Lemma 2.9 implies V as J ’ and therefore I(q) < 0 can (for J =< 0) only
hold for ]J] _<_ F, where F depends on k, 6 and 3’. This proves the lower bounds in (2.24),
(2.25).

(2.20) yields +(1)=Pe(1)- V>= L + (1/(e 2’-1 + 1))In(I/e). We set
for 0 < o < -} and obtain the upper bounds in (2.24), (2.25) for [J[ sufficiently large since
V<_ +e(1) holds.

Since Lemma 2.8 implies that a(p’) 3’ as J--+ - (or as V--+ -oo), the theorem
proves the current J increases (in absolute value) at least (and at most) exponentially as
V in the avalanche case , > 1/2. For zero generation (3, 0) the increase is at most

(and at least) linear. For the intermediate case 0 < 3’ < 1/2 the increase is at least linear
and at most exponential. The author conjectures that the distinction of the cases
1/2 =<-1 < a0 and , >= a0 only comes in for technical reasons and that (2.25) holds for all

3. Existence theorems. We need the following:
LEMMA 3.1. Assume that a,b,fC([0,1]) and a, b>0 on [0,1]. Then the two point

boundary value problem

(3.1a) w"=a(x)eW+"-b(x)e-W-"-f(x), 0<_x<_l,

(3.1b) w(0) =/0 w(1) =/1
has a unique solution w= w(rt, lo,l,f,x) for all rt,/0, 1 ’f C([0,1]). The map

( w(n. ).
w"

N3XC([0,1])C([0,1])
is completely continuous.

Proof. To prove existence of a solution of (3.1) we consider the operator M:
C([0,1]) x[0,1] C[0,1] defined by M(z,o)=y where y is the solution of

y(0) =o0, y(1) =o1
with aa(x)=a(x)e, bl(X)=b(x)e -n. Every fixed point of M(.,1) is a solution of (3.1)
and vice versa.

Clearly, M is completely continuous. Also M(z,0)=0 for all z C([0,1]). We
denote

1 :- max a(x), %" min a(x)(>0),
0x_<l 0_<x_<l

1 :-- max b(x), _b := min bl(X)(>O)
O<x<l O<x<l

Yl- min(- I/ol, y- max(lol, It, ll,Y)
where y,y are the (unique) solution of the equations

0 ale-y b_le--y "+- [Ifll[o,1],

0 aley -b_ e-y- Ilfllto, ].
Then L(yl,ya, o)>=O, L(y2,y2,o)NO holds for all o[0,1]. Thus Yl,Y2 are lower and
upper solutions respectively of the equation L(y,y,o)=O for arbitrary o>__0
(( d/dy)(axeY- bxe-Y.t-f(x))-- aleY--[ bxe-Y.O holds!).
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Therefore all possible fixed points y of M(.,o) fulfill the a priori estimate [lYllt0.11
max(lyll, ly21) for all o [0,1] and the Leray-Schauder theorem implies the existence of
a fixed point w of M(-, 1).

Assume now that (3.1) has the solutions w and w2. Then g= w w2 fulfills

g"= ( a(x)e(x)+n+ b(x)e-:(x)-n) g,

g(0) =g(a)=0
O_<x_<l,

where l(x), ((x) are between wl(x) and w(x), g 0 follows immediately. The
problem (3.1)is therefore uniquely soluble.

To prove the complete continuity of the map w, we take /[_,], 0[0,g0],
/1 [1’ 1] and denote

a’= min a(x), := max a(x)
O_.<x < O<_xl

(analogously for b). Then the unique solution w of

+ wW 6ew -_be -n_+ II/[It0, l,
w(0) =_0, Wl(1)=

O=<x__< 1,

is a lower solution of (3.1) and the unique solution w2 of

w’= aew2 +n__ be-W2-r_ Ilfllto,l,
w2(0) =0, w_(1)

O<x<l

is an upper solution of (3.1), i.e. w w w2 on [0,1] holds. Since

liw’[It0,11 - eW2 d- .3f_ )e-W, -n_ + Ilfl[t0al

holds, Ascoli’s theorem implies that w: R3 C([0,1]) CX([0,1]) maps bounded sets
into precompact sets. The continuity of w is immediate.

Now we prove the basic
THEOREM 3.1. For any >=0 the solution set C-of (1.11)-(1.13), (1.17) contains an

unbounded continuum - (in the (- oe, 0] (C2([0,1]))3-topology) emanating from the
equilibrium solution (0, qe, 1,1) whose projection into ( oe, 0] equals ( oe, 0] (i.e. (-
contains a solution ( J, , u, v) or every J <= 0).

Proof. We regard V= V( J, q (given by (2.5))as functional V: (-o,0] C([0,1])
R. The continuity of I implies the continuity of V. Using (2.3)-(2.5) we rewrite

Poisson’s equation (1.11) as

(3.2a) t2/"=82e+V(S’+)-82e-q-v(J’+)-l +lJIG(q)(x ), 0=<x=<l,
(3.2b) b (0)= 0, b (1) be(1 ) V(J,)

with

(3.3) G(ff/)(x) e q(x) fxl e-/(s) ds + e +(x)/lr

(note that J,(x)/JI, IJp(x)/JI are independent of J, they only depend on a(b’) and on
x). G: C1([0,1])---, C1([0,1]) is continuous since a: C1([0,1]) [0, 3’] is continuous.
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We set l//=e-b and rewrite (3.2) as the fixed point problem q=T(J,q)where
y T(J, z) is defined as the unique solution of the problem

(3.4a) k2y"=62exp(y+be+ V(J,le-l-2))
(3.4b) 82exp(_y_e_ V(j,/e+Z))_ 1_ 2X e /lJIa(q  /z), 0_<x__< 1

y(0) 0, y(1) V(J,+e+Z )

(T is well defined since Lemma 3.1 implies the unique solvability of (3.4)). Lemma 3.1
and the continuity of V and G imply that T: ( , 0] C1([0,1]) is completely continu-
ous. V(0, w)= 0 and therefore y T(0, z) is given by the solution of

(3.5a) k2y"--2eY+g’e--2e-Y-ke--l--X2dJtt 0<X<l

(3.5b) y(0) =y(1)=0.

y 0 follows. From Rabinowitz (1971, Thm. 3.2) we conclude that the solution set of
T(J, 0)=q contains an unbounded continuum E- (in the ( , 0] C1([0,1])-topology).
Theorem 2.1 and Lemma 2.3 imply

and

Lemma 2.10 yields

-’eZt Z g6elVl([J[ + 1)-’e"
We conclude from these estimates

I[qllt0al + Ilq’l[t0.xl__< M(1 + IJI + e Il/c + elJI/c’lJI)
where M> 0 is independent of J (and V). Since E- is unbounded, it has to contain
solutions (J,) for all J__< 0. The statement of the theorem follows by observing that u
and v as given by (2.4) are continuous as functions of (J, +) in the ( , 0] C([0,1])-
topology.

The most important implication of Theorem 3.1 is:
THWOREM 3.2. For any "f >= 0 the current-ooltage characteristic J- contains a continu-

ous curoe F- emanating from (0, O) whose projection Ff into the J- axis equals ( , 0]
and whose projection F into the V-axis fulfills

1
(3.6a) forO<__v<__

1
(3.6b) (-,0]___F, _(--(X),lPe(1)] for’> -.

Proof. Theorem 3.1 implies that J- contains a continuum 0- emanating from (0, 0)
whose projection into the J-axis equals (- o, 0]. From Lemma 2.9 we conclude that
(1)=be(1)- V is positive and unbounded as J---,-. Lemma 2.1, (ii) implies that
V=< 0 and J =< 0 and 0 =< 3’-< 1/2. Therefore (3.6a) follows. (3.6b) is concluded by noting
that p(1)= qe(1)- V>=0 for J=<0 holds (see Lemma 2.3).
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The obvious consequence for the solution set

(3.7)

D-= {(U, +, u, v) (- o, 0] (C2([0,1]))31(q, u, v) solves (1.11)-(1.14) for V= U )
of the voltage-controlled diode is

COROLLARY 3.1. D- contains an unbounded continuum b- emanating from
(0, 4,*, v*, u*) whose projection into (-,0] equals (--O,0]’(q*,U*,V*)=(+e,l,1) if
the equilibrium solution is unique (e. g. for 0 <_ y <= 1/2). J <= 0 holds for every ( V, , u, v) )
(b- contains a solution for every V_< 0).

We now show that multiple solutions of (1.11)-(1.14) for V=0 can occur.
TnWOREM 3.3. Assume that a(+’e)>H(> 1/2) where H>0 only depends on ) and .

Then there is a solution (q*,u*,v*) of (1.11)-(1.14)for V=0 which is different from the
equilibrium solution (qe, 1, 1) and J* 2e+*( u*)’ i 2e-+*( v*)’ < 0 holds.

Proof. We obtain from (2.6)

I() =2(f01 cosh/(s)ds- fo h,(s)sinh/(s)ds)
where

1
2ax O <= x < --dah,(x) 1
e 2ax-1 <x < 1

2a

1(for a(’) > ).
Obviously h (x)>= 2ax on [0,1] and therefore

/(g,)__< 2 coshq,(s)ds-2 ssinh/(s)ds

holds. Choosing such that

1 fcoshe(S) dsa(te) >
fdssinh+e(S)ds

implies I(e)< 0. Thus there is a neighbourhood N of 0 in C1([0,1]) with I(e+b)< 0
for ,/, N. (2.5) implies V(J, q +)> 0 for (J, q,) o, 0) N. Since the continuum
E- (used in the proof of Theorem 3.1) emanates in (0, 0), the intersection of E- and
(-o,0)N is not empty. This implies that there are solutions of (1.11)-(1.13), (1.17)
for J < 0 for which V> 0 holds. Since V is negative for J < 0, IJI sufficiently large, there
has to be (J,,h*)E-, J4:0, with I( aPe W qb*) 0. This gives V(J,/e+*)=O and
Theorem 3.3 follows.

The condition i(+e)<0 implies that J- is not contained in (-c,0]2 (see Fig. 2).
However, I(+e)=<0 is physically unreasonable and it is not clear whether the non-
uniqueness of.the equilibrium solution prevails if l(+e)> 0.

We conclude from the Theorems 2.1 and 3.2 that the avalanche case , > 1/2 is
distinguished from the nonavalanche case 0 <_ , =< 1/2 by a more rapid decrease of the
current J as V -c (see Fig. 3).

We remark that an investigation of (1.11)-(1.13), (1.17) for nonnegative current
can be done in a similar fashion. A relation of the form (2.5) (with a different
functional i) holds and the existence of an unbounded continuum of solutions E/

follows as in the proof of Theorem 3.1. To conclude that E/ contains solutions for all
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V

FIG. 2. Qualitative structure of the J- V-characteristic for l(@e)< 0.

J _>_ 0, additional a priori estimates have to be obtained (since the estimates in 2 only
hold for J =< 0). For the case a 0 these estimates are given in Mock (1983), Markowich
(1983).

Finally, assume that is not a functional on CI([0,1]) but simply a continuous and
nondecreasing function : N-[0,,/], such that the ionization rate o(g,’(x)) is space-
dependent. Then (2.4)-(2.6) have to be modified by substituting ’s’ in the integrands
by ff)(q’(s))ds and "1/2c" in the integration intervals by that value [0,1] for
which fa(+’(s))ds 1/2 holds. Theorem 3.1 still holds. By estimating (2.12) in terms of
y, an analogue of (2.18), (2.20) (also in terms of y) implying ’p(1) as J--- t:’ is
obtained and Theorem 3.2 and Corollary 3.1 follow. The estimates of the current-
voltage characteristic given in Theorem 2.1 for 0__< 3’ < 1/2 still hold. The avalanche-
estimate (2.25) (with a in the upper bound substituted by ,) holds if for example
et(-)>= ole -2/11 with o sufficiently large and o2 sufficiently small.

FIG. 3. Qualitative structure of the J- V-characteristic for various y’s /(@,,)> 0 is assumed) for reverse

bias.
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EXTREMAL PROBLEMS FOR EIGENVALUE FUNCTIONALS*

DAVID C. BARNES

Abstract. We consider the eigenvalues, X,,(0), of self-adjoint Sturm-Liouville systems to be real valued
functionals of certain coefficient functions in the differential equation. We introduce a classical (in general
nonlinear) functional K(0) which is tangent to X,,(0) at a fixed function p*. That is, Xn(p*)= K(p*) and
3X,, =3K at 0". Then by using classical calculus of variations on K(0) we show how to find extremals of
X,, (0) over certain classes of functions .

1. Introduction. Consider the eigenvalue problem

(1.1) (fy’)’ +(tg+q)y O, O<x<l,

with the self-adjoint boundary conditions of the form

(1.2)
aly(O) + ct2Y’(0) +a3y(l) + ct4y’([) =0,
/lY(0) + fl2Y’(0) +/3Y(l) + flaY’(l) O.

The coefficient functions f,g,q may depend on x as well as some other function p(x)
and its derivative O’(x). Following Troutman [21], we will sometimes abbreviate (abuse?)
notation so that, for example,

f=f(x) =f [O(x)] =f(x,o(x),o’(x)),
with similar meanings for g[o(x)], q(x), etc. We will also allow the coefficients ai,/3 in
(1.2) to depend on the values of 0 and O’ at x- 0 and l. Thus boundary conditions like
O’2(x)y’(x)O as x --, may be used.

Assume that f, g, q are continuously differentiable functions of the three indepen-
dent variables (x,o,O’). We define a class of functions O(x) by the following
conditions:

1. O(x) is piecewise continuous on 0 <x < l;
2. f[o(x)]> 0 and g[o(x)]> 0 for 0 < x < l;
3. self-adjointness, for any functions y,z which satisfy (1.2),

(1.3) f [O(x)l yz’- zy’)l’o--O;
4. two boundary conditions on the values of O(x) and O’(x) may (or may not) be

prescribed at x 0,1.
Thus for any 0 the eigenvalues of (1.1) are real valued functionals on and we

denote them by kn(0).
In this paper we will show how to use many of the tools of classical calculus of

variations to study extremals of the functionals kn(0) for O. For example, we will
develop an Euler equation for Xn(0 ) and show how to use natural boundary conditions,
Weierstrass-Erdmann corner conditions, Lagrange multipliers and so on to obtain
information about the extremals of kn(0).

Received by the editors March 1, 1984, and in final revised form January 14, 1985.
Mathematics Department, Washington State University, Pullman, Washington 99164-2930.
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In an earlier work D. C. Barnes [8] considered a special case of this problem where
the coefficients were allowed to depend only on x,o(x) but not on O’(x). See also E. R.
Barnes [9], Banks [4], Keller and Niordson [14] and Nehari [17].

2. Some examples of eigenvalue problems. Consider a horizontal vibrating string,
having density a(x), total mass M, and constant tension T. The characteristic frequen-
cies of vibration are determined by the eigenvalues of [10] the equation;

Ty" + Jka( x ) y O, O<x<l.

If the string is held in a vertical position, then the tension is no longer constant and the
frequencies are determined by

where

O(x)= a(t)dt.

The function O(x) will satisfy boundary conditions O(0)=0, 0(1)=M. Many different
boundary conditions can be imposed on y at x 0 and l. Equation (2.1) is of the form
(1.1) withf= T+ p, g=p’, q=0.

Consider a slender untwisted vertical column, clamped at x 0, and free at x- l,
subject to an axial compressive load. The critical buckling load of the column is
determined by the first eigenvalue of the system [13], [14], [18], [20],

(2.2) [a(x) y’]’+)t[K+ ]a(t)dt y=O, y(O)=am(l)y’(l)=O.

The interesting values of m are 1, 2, and 3, where (see [18, p. 136]) m= 3 corresponds to
a column made of thinwall tubing. The case m 2, which was considered by Keller and
Niordson [14], assumes the column is solid but that all cross-sections have a similar
shape. The case m 1 corresponds to a "profile" column which is formed from a flat
slab of material having constant thickness, but variable width a(x). Columns of the last
type have been considered by D. C. Barnes [8]. Introducing O(x) defined by

(2.3) p(x) fx a(t)dt

into (2.2) yields

(2.4) [(-p’(x))’y’]’+)[K+ p(x)] y=0, y(O)=[p’(l)]my’(l)=O.

Assuming a given mass M yields 0(0)= M, 0(1)= 0.
Now (2.4) is of the form (1.1) with g[p]-[--p’(X)] m, g[o]=K+ O, q[0]=0. The

extremals of hi(o) determine the shape of the tallest column having a fixed total mass
M.

Finally, we introduce a constrained extremal problem. Consider the simple equa-
tion

(2.5) y"+)tO(x)y=O, y(O)=y(l)=O, O<x<l,
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where the coefficient p is subjected to a constraint of the form

f0’ (’ ()’ ’())d=M.

A large number of works have maximized or minimized eigenvalues of this problem
using various constraints on p(x). See for example [2]-[9], [13], [14], [16], [17], [19], [23].
In 4 below we will show how to find extremals of these eigenvalues using a Lagrange
multiplier.

3. Tangent functionals. Let p be any fixed element of and let,y* be an eigen-
function corresponding to k.(p*). Define functionals J(p) and K(p) on 6 by

J(P)= fo (X,,(p*)g[p]+q[p])Y*2-f[p](Y*’)2dx,
(3.1)

K(O) X,(O*)-fto*lY*’Y*lZ0-J(o).
We will show that under certain conditions, the functional K(O) is "tangent" to Xn(O )
at O- O*. To be more precise about this, let e be a small parameter and let &(x) be
any one parameter family of functions in of the general form

(3.2) &(x)=o*(x)+eh(x)+O(e2)=O*(x)+O*(x)+O(e2).
We will show in {}5 below that

(3.3) o+AJ+O(e2)

where

It follows from (3.3) that

(3.4) -AX--][O*](Y’Y* Y*’Y)I’o + Afy*’y*[o+ AJ+ O(2)

where Af=f[&]-f[O* ]. The two relationships (3.3) and (3.4) are the basis of our entire
analysis.

If the boundary terms were not contained in (3.3), then dividing by e and letting
e 0 shows that -8X, M, so a function O* g is an extremal of X n(O) if and only if
it is also an extremal of J(0). Now, however, J(0) is a standard example of a functional
and the entire theory of calculus of variations applies directly to J(o), and thus
indirectly to Xn(O). There are various ways to eliminate the boundary terms in (3.3) and
to implement this idea.

THEOREM 1. Let p* be an extremal of kn(p) for p. Then, except at its corner
points, p* satisfies the first and second Euler equations

eo o*(x)] -e/ xeo, o*(x)] -0,

F[o*(x)] -o*(x)F[o*(x)] foXFx[O*(t)] dr+ C,

where F[p] is defined by

(3.6) r[ o (), (o*)g[ O]+ q[ O 1) y,2_f[p ](y,,)2.
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At each corner point, both functions

(3.7) Fo,[p*(x)] andFo[p*(x)]-p*(x)F#[p*(x)]

are continuous.
To prove Theorem 1 we take a variation in p* which does not move the end points.

Thus we assume that if either x 0 or x 1, then

(3.8) p---) p* and p*’ p*’

Thus the coefficients a and /3 in (1.2) are the same for either function p. or p*.
Therefore, the self-adjoint condition (1.3) may be used and it implies that the first
boundary term in (3.4) drops out. Furthermore, (3.8) implies that Af=f[p(x)]-
f[p*(x)]oO if x--)0 or l, so (3.4) yields --An=AJWO(e2). Therefore, 6J=O at
p--p* so p* is an extremal of J(p) and standard calculus of variations [21, Chap. 6]
finishes the proof.

As an example of Theorem 1, consider Keller and Niordson’s [14] tallest column
problem (2.4) with m=2. We see g[p]=p, f[p]=p,2, q[p]=0, so

F[ p 2,,( O. )p( x) y.2_ ( p,( x))2( y.,)2.
Then (3.5) implies that, between corner points,

(3.9) hl(,O*)y*2 + 2d/dx[p*’(x)(y*’)2] =0.
The optimality condition used by Keller and Niordson [14, p. 437, Eq. 8] is equivalent
to (3.9) (using a change of notation y* (--)q0, a(--)-p*’ and taking a derivative). The
corner condition (3.7) implies that 2p*’(x)(y*’) 2 is continuous. Since y*’ :/:0 for 0 <x
< l, we see that p*(x) has a continuous derivative and furthermore, [21, p. 217], [10,
p. 200] it even follows that p* has a continuous second derivative and satisfies (3.9) for
all x.

Although Theorem 1 shows that an extremal of 2,(p) is also an extremal of J(p)
that relationship assumes no variation in p*(x) at the end points, that is (3.8). We
would now like to investigate the behavior of p* at the end points so we need to relax
the assumption (3.8). This can be done if we specialize the boundary conditions a little
bit.

THEOREM 2. Suppose the coefficients oli, #i in the boundary conditions (1.2) are
constants independent of p(x). Let* and let y* be the eigenfunction corresponding to
,,(p*). Then p* is an extremal of,(p) for if and only if 0" is an extremal ofJ(p)
and in addition p* satisfies the four "compatibility" conditions:

fo[p*(x)] y*y*’=O at x=O,l,
(3.10) fo,[p*(x)] y*y*’=O at x=O,l.

To prove Theorem 2, we note that since ai, are constants, the self-adjoint
condition (1.3) can be used with (3.4) and any family of functions p(x) to obtain

(3.11) A2,= Afy*y*’lZO + AJ + O(e2).
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Suppose that p* is an extremal of kn(p). Dividing (3.11) by e and letting e0 and
using (3.5) shows that at e=0, d/def[p]y*y*’[o=O. This implies that at e=0,

L[o* y*y*’d/de O(x)+f[o* y*y*’d/de p:(x)lto 0,

which yields the four conditions (3.10) since O(x) was arbitrary. This proves the "only
if" part of Theorem 2. The "if" part follows from (3.11).

The four compatibility conditions (3.10) are trivially satisfied if f[o] is indepen-
dent of O and 0’. If, however, f[o] involves O or 0’ then they restrict the kinds of
boundary conditions that one may expect to use in extremal problems for Xn(0).

Suppose, for example, that f[o]=O)+ 0’2. Then (3.10) gives 4 distinct end point
conditions. In general, the differential equation (1.1) has two boundary conditions
associated with it and two more boundary conditions (natural or otherwise) are associ-
ated with 0 for a total of 8 conditions. The Euler equation (3.5), together with (1.1),
forms a coupled system of two second order equations which will have 4 constants in
the general solution and one more constant is available in the eigenvalue parameter .
This total of 5 constants cannot in general be used to fit 8 distinct end point conditions.

These difficulties can be overcome if boundary conditions like y or y’ 0 at x 0,
are used. It is, however, not unusual for extremal problems for Xn(O) to have no
extremal function O*.

As another example of nonexistence of O*, consider the tallest profile column
problem, (2.4) with m 1,

(3.12) (-O’y’)’+Xoy=O, y(0)=0, y’(1)O’(1)=0.

In this case,

J(o) =fo X(p*)O(x)y*a+O’(x)(y*’)-dx.

The Euler equation i,s )kl(10*)y*2 2y*’y*"= 0. Normalizing y* so that y*’(0)= 1, we
integrate to find y* =[Xl(0*)y* +1] 1/3. Thus y*’>l>0. Now (3.12) implies that
0"(1)=0 and (2.3) implies 0"(1)=0. However, O*(x) is the solution of a second order
linear homogeneous equation (3.12), so O*(x)= 0, a contradiction. Thus such a function
O*(x) cannot exist. This curious state of affairs is still under investigation, but it might
be the case that the tallest column is obtained by concentrating most of the mass at the
bottom of the column and erecting a tall thin spike on top of the mass, then letting the
width of the spike go to zero while increasing its length.

Theorem 2 deals with the case in which ai, fli are constants. In many applications
O(x) may in fact occur in the boundary condition. Separated boundary conditions of
the form

(3.13)
aly(O) +a2f [p(0)] y’(0) =0,
fl3Y(l) + flaf [P(1)] Y’(I) =0,

where ag, fli are constants, are sometimes used. See (2.2). In other applications, periodic
boundary conditions of the form

(3.14)
y(O)-y(l)=O,

f [p (0)] y’(O)-f [p(l)] y’(l)=0
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might be used. For these kinds of boundary conditions we are able to give an analogue
of Theorem 2.

THEOREM 3. Suppose the boundary conditions are either of the form (3.13) or (3.14).
Then a function p* is an extremal of t,(p) for p G if and only if it is also an
extremal of the functional J(p) defined by (3.1).

The proof of Theorem 3 is based on (3.3). Let p(x)6. Using either (3.13) or
(3.14), it follows that the boundary term in (3.3) is zero. Therefore, A)tn= AJ+ O(e2).
Dividing by e and letting e 0 proves the theorem

A relationship of the form (2.3) automatically provides a boundary condition on
p(x). However, not all extremal problems must incorporate such a relationship and for
some problems, no boundary condition may be given on p(x). In such a case we look
for a natural boundary condition. Theorems 2 and 3 show that p* must be an extremal
of J(p), so classical theory implies:

THEOREM 4. Suppose the boundary conditions on y are either of the form (3.13) or

(3.14) or else of the form (1.2) where a and fli are constants independent of p(x). If
boundary conditions are not prescribed on p*(x) at one of the end points, then p*(x) will
satisfy the natural boundary condition

(3.15) Fo,[O*(x)] =0
at that endpoint. Here F[ p] is given by

F[ol=(X,(o*)g[ol+q[ol)Y*-f[o](Y*’)a.
4. Constrained extremal problems. We now consider the problem of finding ex-

tremals of X(O) when O 6 and in addition is constrained by a condition of the form

(4.1) H(0) f0’ 0’(x))dx=M.

Using ideas similar to those used for Theorem 1 and introducing a Lagrange multiplier,
it follows that

TnoFN 5. Let O* be an extremal of X,(0) for 0 and suppose that O* is not an
extremal of H(O). Then there exists a constant t such that, between corner points, O*
satisfies

d
(4.2) G[0I=0oo
where

,,)2G[ol=(x,[o*]g[ol+q[ol)y*2-f[ol(y +t,/,[0l.

At a corner point Go,[O* and G[O*]-o*G[o*lare continuous functions of x.
The other theorems can also be modified to take account of (4.1). Thus it follows

that the compatibility conditions (3.10) hold if ai, fii are constants and the natural
boundary condition is @[O*(x)]=O at the end points even if O* is required to satisfy
(4.1).

As an example of Theorem 5 we will calculate the extremals of h.(p) for the
system

(4.3) y"+ XO(x)y=O, y(0) =y(1) 0
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subject to the constraints

(4.4) H(p)=f01 (O’(x))-dx =1 and 0(0)=0.

Although there can be little doubt that the extremal 0* of X,(0) is, in this case, a global
minimum, we will not prove this.

No boundary condition on p at x 1 is prescribed so we will use a natural one. In
this case G(O) n(p*)y*Zp(x)+ (iOt(X)) 2. The natural boundary condition is 0"(1)
0 and the Euler equation (4.2) implies X*y .2- 2/O*"(x)= 0. Using C= 1/2X*//z and
(4.3), we obtain the coupled system:

(4.5) P*" + Cy*2 0’ p*(0) p*’(1)=0,
y*"+X*O*y* =0, y*(0)=y*(1)=0, y*’(0)= .75.

Here we have chosen to normalize y* so that y*’(0)-.75. This gives a "pretty" graph
of y* and 0* and also 3 boundary conditions on 0* and y* at x =0. Now in order to
start the Runge-Kutta numerical solution, we need a boundary condition for 0*’(0).
We will arbitrarily take 0*’(0)= 1 and, after the solution is complete, we will renormal-
ize O*(x) so that (4.4) is satisfied. This leaves the two constants C, )t to be determined
in such a way as to satisfy the two equations 0*’(1)=y*(1)= 0. A 4-point Runge-Kutta
method was used to solve (4.5), and a two-dimensional version of Newton’s method

n 3, X3(p*) 156.29.-. n 4, X4(p*) 281.94...

FIG. 1. Plots of the extremals y* and O* for n 1,2, 3,4.
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was used to solve for C, X (see [1, p. 92]). The Jacobians involved were approximated
with difference quotients. The first guess for C, X determined which of the eigenvalues
X,(0*) the method would converge to. The equations were solved for step sizes ranging
from 2 -4 to 2 -9 and strong convergence was observed. Computer-generated plots of
the extremals p*, y* for n 1, 2, 3, 4 are reproduced in Fig. 1.

These results may also be expressed as isoperimetric inequalities which hold for
any p in the following form:

p(O)=O and p(=:kn(p)[f0/ ()t(X))2dx 1/2An,
A=15.398..., A=67.44..., A=156.29..., A4--281.94.-..

5. Equation (3.3) and tangent functionals. Let p(x), p*(x) and let y and y* be
eigenfunctions corresponding to X (P), X (P*)" Thus

(5.1) (f[P*]Y*’)’+(Xn(P*)g[P*] +q[p*])y*=O,
(.2) (f[oly’)’+(x.(o)g[o]+q[o])y=O.
Suppose y and y* are normalized so

(5.3) f0’ fo’g[o*ly*=dx= g[oly dx=l.

Multiply (5.1) by y and (5.2) by y*. Subtract the two equations and integrate. A little
manipulation yields

f[&lY’Y*-f[P*lY*Y’[’ fo’o+

where we have used the notation

Af=f(&)-f(o*),
Solving for A yields

(5.4) AX fo’ g[o*lyy*dx

Ag=g(&)-g(p*),
Ay=y-y*.

Aq=q(&)-q(p*),

-f o* y*>l’ fo’o + ()tn(p*)Ag+Aq)yy*-Ay’y*’dx.

Interchanging the order of the operations A and f and using (3.1) gives (3.3).
Similar manipulations can be used to show that J(p*)+f[p*]Y*Y*[o=O, which

implies that K(p*)=n(p*). Furthermore, when subject to appropriate boundary con-
ditions, it follows from (3.1) and (3.3) that hn AK+ O(e2). Thus the two functionals
K(p) and X,(p) are indeed tangent to each other at p= p*.

fo-AXn=f[&ly’y*-f[o*ly* ylo+ (.n(O*)Ag+Aq)y*2-Af(y*’)2dx+O(e2).

Replacing y with y*+ hy and collecting some terms which are O(e2) and using (5.3)
yields
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6. Some extensions. Many generalizations of these results are possible. For exam-
ple, one might allow the coefficient functions f,g,q or the constraint function to
depend on x, p(x), p’(x) and p"(x). Theorems 1-5 can be generalized in obvious ways.

Theorem 4 can be generalized in many different ways by appealing to more
general isoperimetric theorems for classical functionals. See, for example, Hestenes [12,
Chap. 7]. Thus one might consider multiple constraints on p(x) of the forms

fo’ $’ [()] d t,

fo’ o[o(xl] dx<_,,

%.[o(x)l -o,
%[o(x)] _<o,

i=1,2,. .,p,

i=p+l,p+2,...,q,

j-1,2,. .,r,

j-r+l,r+2,...,s.

It appears that such an approach might be used to solve problems similar to those
considered by Bandle [2], Banks [3], [4], [5], D. C. Barnes [6], [7] and others.

One could also consider 4th (and higher) order eigenvalue problems

(6.1) -[r[oly"]"+ [/[oly’]’+ [Xg[ol+q[ollY=O,

where, for example, r[0] r(x,o(x),o’(x),o"(x)). The function F[O] becomes

.,). .,,)F[ol=(2t,(p*)g[ol+q[ol)y*-f[ol(y -r[ol(y

and, with H(O) defined by (4.1),

J[ol=fo’F[o(x)l dx,

G[ol=F[o]+IO[p].

Generalizing Theorem 1, we see that an extremal 0* of J[o] will, between corner points,
satisfy:

OF d OF + =0.
Op dx Op’ dx2

The other theorems can also be modified to deal with (6.1).
Eigenvalue problems for partial differential equations can also be dealt with using

these methods. Consider the equation

(fUx) + (fUy) y+ (Xg + q) u 0, (X,y)

where ) is a two-dimensional domain and self-adjoint boundary conditions are given
on

u+o-0-=0 on 0.



EXTREMAL PROBLEMS FOR EIGENVALUE FUNCTIONALS 1293

In this case the coefficients f, g, q, depend on x,y, O (x,Y), Px(x,Y) and Oy(x,Y). The
appropriate analogues of the preceding formulas are:

F[O]=(X (o*)g[o]+q[o])u*2-f[o](u*Z+u .2)y

J(o)= ff F[o]dxdy,

I4(o)= ff
The compatibility conditions corresponding to (3.10) are in this case

Another extension would be to consider functions of eigenvalues along the lines of
the works by Keller [15], Gentry [11], Willner and Mahor [22]. This problem is under
investigation and will, perhaps, be published later.
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A LYAPUNOV FUNCTIONAL FOR
A RETARDED DIFFERENTIAL EQUATION*

J. C. F. DE OLIVEIRA" AND L. A. V. CARVALHO $

Dedicated to the memory of Professor Dr. Walter de Bona Castelan

Abstract. Consider the autonomous linear retarded differential equation

f0 A012(t)=Aox(t)+AlX(t-r)+ (O)x(t+O)dO

A positive definite quadratic functional is given that yields an equivalent norm in the phase space, which
measures the exact asymptotic behavior of its solutions, providing the best estimate for the rate of growth or

decay of the said solutions.

1. Introduction. For ordinary differential equations

(1.1) 2(t)=Aox(t ),

where A0 is an n n constant real matrix, the following result, due to A. M. Lyapunov,
is true.

THOWM. Let ,=max{Re):det(I-A0)=0}. For any e>0, let 8=-(,+2e)
and let W be any positive definite matrix. Then, there exists a unique positive definite
matrix M such that

(1.2) (Ao+8I)rM+M(Ao+8I) W,

where (Ao + I)r denotes the transpose ofAo + I.
In fact, M is given by

2iteAtWeaotM= e dt.

Moreover, if V:R R is defined by

V( x ) xrMx,
then:

(i) (V(x))1/2 is an Euclidean norm on Rn, equivalent to the canonical norm;
(ii) the derivative of V with respect to (1.1) satisfies the inequality

(1.3) l(x) __< 28V(x).
Therefore, from Gronwall’s inequality, it follows that

(1,4) {V(x(t))}x/2<=e-t{V(x(O))} 1/2, t>0,

for any solution x(t) of (1.1); this last inequality gives the best estimate for the rate of
growth or decay of these solutions as goes to infinity.
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The above theorem was extended to retarded differential equations of the form

(1.5) +/- ( ) AoX( ) +AlX ( t- r)

by Infante and Castelan [2].
Our purpose here is .to complete this extension to equations of the form.

where r is a positive real constant,A 0, A and Ao(O ) are n x n real matrices with Ao
square integrable in [-r, 0].

We construct for (1.6) a positive definite quadratic functional V on an appropriate
phase space, satisfying bounds analogous to (1.3) and (1.4); therefore, the functional V
gives the best estimate for the asymptotic behavior of the solutions of (1.6).

As in [2], the construction of V relies upon the computation of the solutions of the
matrix functional differential equation

(1.7) (a)=(A0+iI ) rQ(a)+eAQr(r-)

+ e-Al(O)Qr(-a-O)dO+ e-Ao(O)Q(a+O)dO,

satisfying the properties that Q(0) is positive definite and

(1.8) Q(0) + 0T(0) W,

where W is a given positive definite matrix.

0__<a=<r,

Equation (1.8) is the analogue of (1.2). Equation (1.7), despite its functional
appearence, is finite dimensional. In fact, we will prove in {}3 that (1.7) has a unique
solution for any prescribed value of Q(0). Moreover, in several cases, (1.7) can be
reduced to a linear system of ordinary differential equations with constant coefficients
and, therefore, it can be, in theory, completely integrated. This happens, for example,
when the kernel Ao(O is a finite sum of terms of the form P(O)ex, where is a
complex number and P(O) is a matrix with polynomial entries.

We apply the results to the scalar equation

(t)= -afx(t+OldO,
where a is a positive constant, after we make a detailed analysis of its characteristic
equation. Another application is presented to the equation

f02(t) -a (l+0)x(t+0)d0,

where a is a positive constant.

2. Preliminaries. Let r > 0 be a given real constant, denote by L2 ,the space of the
Lebesgue square integrable functions defined on [-r, 0] with values in R", and consider
the Hilbert space X R"L2 with inner product

((1,1), (2,b2))=(2+ frf(O)+2(O)dO._
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If x" r, 0] ---) R" and >= 0, we denote by x the function xt" r, 0] ---) R" given by
xt(O)=x(t+O).

For a given (, q) X, a solution of (1.6) with initial value

(2.1) x(0) , x0=p a.e.,

is, by definition a function x" r, c) - R such that x satisfies (2.1), is absolutely
continuous and satisfies (1.6) almost everywhere on any interval [0, ], > 0.

It is known [1], [2], that (1.6)-(2.1) has a unique solution, which we denote by
x(., j, q), and defines a C0-semigroup of linear operators on X given by

(2.2) T(t)(,)=(x(t,,),xt(.,,)).
The infinitesimal generator of this semigroup is the operator A defined by

A(,)= Aol+Al(-r)+ Ol(O)(O)dO,

whose domain is the dense subspace of X given by

D(A) { (, q ) X "P is absolutely continuous in r, 0], + L and p (0) }.
The spectrum o(A) of A consists of those complex numbers X which satisfy the

characteristic equation det A (X) 0, where

A(X)=,I-Ao-A1e-xr- frA01(0) exOdO"

Moreover, there exists a maximum 3’ R of the set Re o(A), and for every e > 0
there exists a constant K-K(e)>= 1 such that

(2.3) T( )11 =< Ke (v +

for all >= 0, where IIT(t)ll is the uniform norm of the operator T(t).
Relation (2.3) gives the best estimate for the rate of growth or decay of the

solutions of (1.6), or, in other words, it gives the order of the semigroup defined by
(2.2).

Finally, we observe that the solutions of (1.6)-(2.1) can be written in the following
form

(2.4) x(t,l,+)=S(t)l+ _?(t-a-r)Alq(a)da
+ (t-u)Am(a-u)du b(a)da

for any >__ O, where the matrix S is the unique solution of the initial value problem

S(u)=S(u)Ao+ S(u-r)A + -frS(U+O)Ax(O)dO’_ u>O,

(2.5) S(0) =I
S(u)=0 foru<0.

3. A quadratic functional. Our objective in this section is to find a quadratic
positive definite functional for (1.6) on X in the spirit of the direct method of Lyapunov.
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By analogy with the case of the ordinary differential equations, we define, for each
e > 0, (5,) X and a given positive definite n n matrix W,

(3.1) U(,q.,) e u,f, ) Wx( ) du,

where 8 (y + 2e) and 7 max(ReX X o(A)).
In view of (2.3), it is easy to see that the above integral converges. Also, it defines a

continuous nonnegative quadratic form on X.
The time derivative of (3.1) with respect to equation (1.6) is given by

(3.2) /)(, +) 2U(,+)-rW, (li,/)D(A),

and, therefore,/)(, q) _< 21U(, q) for all (, q ) X [41.
This inequality implies that for any (, q) X we have

(3.3) U(x(t,l,/), xt(. ,,+)) <= U(l,/)e-2t.
If we write

(3.4)

we have

(v(t,q,))

(3.5) IT(t)(li,/)l =< e-Znl(,+)], (,+) x.
We now define

eauS r( s(u- a) du a(3.6) Q( a) u) We ")S( u- R,

where Sr denotes the transpose of S, S defined as in (2.4)-(2.5). Again, the integral is
well defined and it is easy to check that Q(a)=Qr(-a) for all aR and that Q is
continuously differentiable in ct (0, m) with Q(0) positive definite.

We wish now to express the functional in (3.1) in terms of Q in (3.6). In order to
do that, we will find a differential equation that is satisfied by Q(ct), a > 0.

By taking the derivative of Q at a (0,r), we get, after some rearrangements of
integrals and repeated use of (3.6) together with the property Qr(a)=Q(-a), for
0<a<r,

(3.7) (a)=(Ao+6I ) rQ(a)+eAQr(r-a)

+ f- e 1(0) Qr( a-O)dO+ f e_OAo (o)O(a+O)dO.

THEOREM 3.1. Equation (3.7) has a unique continuously differentiable matrix solution
Q( a) on [O,r]for each prescribed initial value Q(O) andfor each r > 0 sufficiently small.

Proof. Finding a solution of (3.7) with Q(0) prescribed is equivalent to finding a
fixed point of the transformation Q TQ given by

TQ(a)=Q(O)+ fo’[(Ao+I)TQ(u)+eSrAQT(r-u)] du

fo"f-r
u

fo f.e+ e-Aro(O)Qr(-O-u)dOdu+ -Aol(O)O(u+O)dOdu
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from C([0, r], L(Rn)) into itself, where L(R) is the space of all n n real matrices and
C([0,r], L(Rn)) is the Banach space of the continuous functions from [0,r] into L(R)
with the supremum norm. It is easy to see that T is a contraction for m sufficiently
large.

Therefore, we are led to consider the solutions of (3.7) with initial condition

Q(O) e2uST( u) WS( u) du,

which is nothing but the function given by relation (3.6).
Let us now write the functional U in terms of Q. Using the representation formula

(2.4), we have for t> 0 and any (,q) X,

V(,) e-2t S(t)+ + f rs(t-u)Aol(a-u)du t(a)da W
--r

S(t)+ + fo rs(t-u)Al(fl-u)du b(fl)dfl dt,

or

(3.8)

u(, q) Q(0)+2f ,+_y r)Q(a+r)Al+(a)da

+2srfo fa+ enUQ(u)Aol(a-u)t(a) duda
0

+ f-r --r
()]

+ 2fOrfOr[_ TATI{ fo[:l+re (U+a+r)Q(u-ot-r)Aol(l -u)du) (fl)do d 
+ frfr[q (a)]r{fo +rfo#+rAT l(a-u)en(U+V)_

Q(v-u)Aol(-v)dudv} q(fl)dad.
If we compute (,q) from (3.8), we get

/(, +)= 28V(, p)+T[0(0) + 0T(0)] ,
so that (3.2) implies that

(3.9) 0(0) + 0(0) w.

Remarks. We observe that whenever Aol(0 ) is a finite sum of terms of the form
P(O)ex, where is a complex number and P(O) is a matrix with polynomial entries,
(3.7) can always be reduced to a homogeneous system of ordinary differential equations
with constant coefficients and, therefore, can be, in theory, explicitly integrated. We
also observe that, in general, U is not positive definite. In fact, if A =0 and Aol--0,
U(0, q)= 0 for arbitrary q.
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Let us now proceed to complete the functional U given by (3.8) in order to obtain
V. Let M, R and N be n x n positive definite matrices and define the functional V as
follows:

(3.10)

V(,b) U(ld,+)+’Mld+ f_ O)R+(O)dO+
"-rO

e s)N+(s)dsdO.

It is easy to see that there exist constants C > 0 and C2 > 0 such that

(3.11) CIII( )ll = v(;,+)_< c211(;,+)ll
2

for all (, k ) X.
Relation (3.11) shows that (V(&qJ))1/2 is a Hilbertian norm in X which is equiva-

lent to II’ll.
We now compute the derivative of V with respect to (1.6). We have that, for any

(ld, qJ) D(A),

P(, k )= 28V(, + )+ Z(, qJ ),
where,

Z(,qJ) r( W+28M+R+AM+MAo+rN)Id-e-2arqJT(-r)R+(-r)

+ 2rMAlqJ(-r)+2ld;’MfAol(O)k(O)dO fre-Z8%r(O)Nq(O)dO’_
We claim that the positive definite matrices W, M, R and N can be chosen such

that

z(tz,)<=o
for all (,q,) D(A).

Suppose W, M, R and N are scalar multiples of the identity matrix. Using the
same letters W, M, R and N to denote both the matrices and the corresponding scalars
and using the inequality

for all a, b R", we get

1 12 2)a"b (la + Ibl

which imply that

= W-M 28+21Ao[+IA + IAo (O)12dO -rN-R

I+(-r)l:(2$rR-M) fo
We can choose N>0 arbitrary. Then, we take M>0 such that M<

min( Ne-280 r =< 0 =< 0 }. Once this is done, we take R > 0 such that R > Me 23r and,
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finally, we take W> 0 such that

-]" O1 ( 0 )12dO rN- R.

With these choices, we have Z(,+)=<0 for all (,q)D(A) and, as a conse-
quence, it follows that l(,q)__< 28V(,p) for all (,+)D(A). By [4, Thm. 3.9] this
last bound for 1 extends to all X- Gronwall’s inequality then implies that

(/( x( ),x,) <= e-2’tV( x(O),xo)
for any solution of (1.6) and so, we can state the following extension of the theorem
given in [5]:

THEOREM 3.2. Consider the retarded equation

2(t)=Aox(t)+Alx(t-r)+ o(O)x(t+O)dO

and the functional gioen in (3.10)./f

Y max(Re’det[I-Ao-A1e-xr -_fOro(O)e x0 ]d0 =0}
and e > O, then there exist constant positive definite matrices M, R and N, and a differen-
tiable matrix Q(a), O<=a<=r with Q(0)=QT"(0)such that the functional V is positive
definite, bounded above and (<= 2(T + e)V. Of course, if 7 < O, the above result implies
exponential asymptotic stability; moreover, the rate of decay is precisely as expected.

4. Applications. Let us now study the scalar equation

(4.1) +/-(t)= -afx(t+O)dO, t>__O,

where aR is a constant. We will investigate its asymptotic behavior through an
analysis of its characteristic equation

(4.2) X + af eXdO=O,

and the solution of the corresponding equation (3.7).
Equation (4.1) is a special case of the scalar equation

(4.3) 2(t)= --o xt(O)dl(O), t>=0,

where a R is a constant and is a nondecreasing function. In [3], it is shown that if

o

then all roots of the characteristic equation of (4.3), namely,

eXo(4.4) X+a d?(0) =0,

satisfy Re, =< 0. This result, when applied to (4.1) states that when 0 < ar 2 < 2, the roots
of (4.2) satisfy Re__<0. We improve this result by showing that a necessary and
sufficient condition for all roots of (4.2) to have negative real part is that 0 < ar 2 <



1302 J.C.F. DE OLIVEIRA AND L. A. V. CARVALHO

In order to do that, we first note that (4.2) can be written as

(4.5)
or, letting a + fli, as the system

a2 fl a + ae-cos fir,
(4.6) 2aft= ae-rsin flr,

(o,o).

Then, we have"
THEOREM 4.1. If 0 < ar2 < 92/2 then every root of (4.2) has negative real part, and

conversely.
Proof. Suppose that 0<ar<r/2 and that =a+fli, with a>=0, is a root of

(4.2). Then, in view of (4.6), fl cannot be zero, for otherwise we would have a+ a
ae -r, which implies a0, a contradiction. Therefore, fl0 and we can suppose,
without loss of generality, that fl> 0. Suppose then that a =0. In this case, the second
of equations (4.6) tells us that fir= kr, where k >= 1 is an integer. Hence, the first of
equations (4.6) becomes

kr - a+a(-1) k,

which implies that k is an odd integer and (2ar2)/rr 2= k 2 __> 1, a contradiction.
Suppose now that a>0. Then, since sin flr=-(2afler)/a<O, we must have

fir > rr. Therefore,

9/.4 < fl4/,4 _. IXl4r’4 a2r4(1 2e-,rcos fir + e-’r) <= 4a2r 4,

which implies that r < 2ar 2, a contradiction.
To prove the converse, we note first that for (2ar)/r2= k, k odd, there is a pair

of conjugate purely imaginary roots of (4.5) given by + (kr/r)i. Also, these are the
only purely imaginary roots of (4.5). Secondly, we note that a + fli is a root of (4.6)
if and only if /r is a root of

012 2 + ar 2 ar2e-%os fl 2aft ar2e-sin ft.
Next, we introduce the parameter p--ar E and consider the equations

F( a fl p ) a2 fl 2 + p pe ’cos fl O G ( a fl p ) =- Eafl + pe s n fl O

We have, for any odd k,

F 0,krr,
2

=0,

G(O,kr, kr )2
=0,

O(F,G) ( k2-2 k4 4

(ifl) 0,kcr,
2 =--+4kcr24:0"

Therefore, the system F= 0, G= 0 defines, for each odd k, a unique curve F’a
a(p), fl=fl(O) about the point o=(kZrr2)/2 with a((kZ’n’2)/2)= 0 and fl((kLn-2)/2)
k’n’.
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It is not difficult to verify that

da [ k E’tr 2 4
(4.7) dfl 2 16+kr

>0"

Hence, (4.5) has roots with positive real part for 0 in a neighborhood of (kr)-)/2, for k
odd.

Let us see now that for any 0 > ra/2 there is at least one root of (4.5) with positive
real part. Since, by (4.6), we have

aE(o)-f12(O)<__20
for any of the curves Fk, we see that I’, can be continued to 0 + . Each of these
curves must stay in the first quadrant for p in the maximal interval of existence,
because, they cannot touch or cross the imaginary axis in view of the fact that the only
purely imaginary roots of (4.5) are X=kri, for odd k, at 0= (kcr2)/2, and (4.7) shows
that at these roots the curves cross the imaginary axis from the second to the first
quadrant.

Finally, it is easy to verify that for 0 < 0 there is always a positive real root to (4.5).
This finishes the proof of Theorem 4.1.

Remarks. It follows from the above proof that every root of (4.2) has nonpositive
real part if and only if 0 =< ar 2 < r 2/2.

We now proceed to find the solution Q(a) to the equation corresponding to (3.7).
In this case, (3.7) reduces to the scalar equation

(4.8)

fe- Q-a e (-a-O)dO-a (a+O)dO, O<a<=r.

Any solution of (4.8) also solves

(4.9) Q(Z)(a)=26Q(a)-(a+2)Q(a)+aeQ(r-a), O<=a<=r
and

Q(4)(a)+Z(a-82)Q(2)(a)+ [(a+82)2-a2e2r] Q(a)=O,
whose characteristic equation is

(4.10) m4+ 2(a-8)m2+(a+,)2 eTM--a =0.

Letting + , and _+/ denote the roots of (4.10), we can write the general (real)
solution of (4.9) as

(4.11) Q(ct)=Cleh(a-r/2)+C2e-h(a-r/2)WC3e’(a-r/2)+C4e-(a-r/2),

if X and are nonzero and distinct, where Cx,..., C4 are arbitrary constants with

C2= C and C4= C if and/ are nonreal complex numbers. On the other hand, if
X 0 and = O, which happens when 3 =0, then the general real solution of (4.9) is
given by

Q(a)= C + C(a- r/2) + C3e("-r/) + 3e-(’-r/2).
The remaining cases can be handled similarly.
Now, in order to use (4.11) to solve (4.8), it is necessary and sufficient that

C=N(6,X)Cx, C,=N(8,)C3 and C3,,--M(8)C,
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where

N(3 /z) (u-6)2+a
8rae

and M(3)= (X/(X-2))[e-Xr/2-N(6’X)eX"/2]
(/Z/(#2-- ))[e-tr/2_ N(I la’) etr/2

so that the general solution of (4.8) is given by

Q(a)= C{ eX(-r/2)+N(8,X)e-X(-r/-)-M(8)[e(-r/z)+N(6,1)e -’(-r/2) },
0_<a=<r,

where C is an arbitrary real constant.
The particular solution we are interested in is the one. for which the value of C is

determined by condition (3.9), i.e., 2(0)=-w, w a positive real number. If this
solution is inserted into (3.8), one gets a functional U, which, along the solutions of
(4.1) is given by (3.1) and/Q is given by (3.2). Hence, if , < 0 then we can choose 8 > 0
and positive scalars M, N, R and W so that V as in (3.10) is a Lyapunov functional,
which proves the asymptotic stability of (4.1). But, if y < 0, we can also take =0 in
(3.8) and this choice yields a simpler.functional which, together with the invariance
principle [1] proves the asymptotic stability of (4.1). In this case, U assumes the form

V(’)-- Q(O)2-2af-r[fod+rQ(u)du] l(Ot)ldOt

-}’a2fO-rfO-r[+rfo+rQ(l’l-u)dldu](l)()dld’
where Q is now the solution of the integro-differential equation

{)(a) -a Q(u)du-a Q(u)du,

that satisfies the condition 2(0)= -w.
Proceeding as before, one gets

Q(a) c( v/a r (a-r))cos 2vS + sin 2xS 0 < a < r
ar 2

where C= w(22 cos2v/--(r/2)).
As another application, consider the scalar equation

(4.12) k(t)= -a (1 +O)x(t+O)dO, tO,

where a > 0 is a constant.
A Lyapunov functional was presented by Levin and Nohel in [5] for this equation,

namely,

12 afofoo
2

dO,W(,+) -- q---
-1

whose derivative along the solutions of (4.12) is given by

a f_, /(O)dO



LYAPUNOV FUNCTIONAL FOR A RETARDED EQUATION 1305

By using this functional and the invariance principle, it was shown in [4] that all
solutions of (4.12) are bounded and that, if a 4:4m2,r 2 for all integers m, then (4.12) is
asymptotically stable.

Hence, if a4: 4m2,r 2 for all integers m, Theorem 3.2 can be applied to provide a
positive definite quadratic Lyapunov functional V for (4.12) with Ik strongly negative
definite. Equation (3.7), with 8 0, becomes, in this case,

(4.13) (a)=-a ’(1-a-u)Q(u)du-a (1-a+u)Q(u)du, 0=<a=<l.

Any solution of (4.13) also satisfies

1--aQQ(2)(a)=-aQ(a)+a (u)du+a Q(u)du
(4.14)

Q(3)(a) aO( a) + aQ( a)-aQ(1 a).

Putting g( a)= Q(a)- Q(1- a) and h(a)=Q(a)+Q(1-a), we have

(4.15) g(3)(t) ag(X)(o), h(3)(o) -ah(1)(ot)+2ag(o).

Using the relations g(1/2)=g(2)(1/2)=h(1)(1/2)=O in the general solution of the system
(4.15) and the fact that 2Q(a)=g(a)+h(a), it follows that the general solution of
(4.14) is given by

(4.16) Q(a)=El+E2cosv/-d a-- +E a- 5 sinv/-d a--
where El, E2 and E are arbitrary real constants. Upon forcing (4.16) to satisfy (4.13)
one gets the final expression for the solution of (4.13), depending on just one multi-
plicative real constant. This multiplicative constant can be chosen such that 20(0)= w,
w > 0, since 7-/2r is not an integer.
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A THEOREM FOR THE UNIFORM BOUNDEDNESS OF A FAMILY
OF COMPACT OPERATORS*

LI RONGHUAj"

Abstract. A kind of sufficient condition for uniform boundedness of a family of matrices Gn(O, At),
which was given by the present author and Zhou Changlin, has been generalized to a family of compact
operators T 8, A t).

1. Introduction. It is well known that the stability problem of difference schemes
for an initial value problem with constant coefficients can be reduced by means of
separation of variables to the problem of uniform boundedness of a family of matrices

(1) { Gn(O,At), a<=O<=b, O<=nAt <= T ),

where At>0 is the time stepsize. A necessary condition for the family (1) to be
uniformly bounded is the von Neumann condition, namely, that the spectral radius
p(0,At) of G(O, At) satisfies

(2) IP (0, At)[__< 1 + MAt,

where M is a constant independent of n and At. Another necessary condition is that the
family of matrices

(Gn(O,O),a=O=b)

is uniformly bounded. Yet another is the following condition, for the boundedness of
powers of each individual matrix, by Oldenburger [4]"

The eigenvalues ?i(8, 0) of G(O, 0) satisfy

I ;(o,o)lzl if ?i(O, O) only has linear elementary divisors,

otherwise.

The present author and Zhou Changlin, considered in [3] (cf. [5]) a kind of
sufficient condition for the stability in which only the eigenvalues of G(O, At) are
involved. This condition is formulated in the following theorem.

THEOREM 1. The family of matrices (1) is uniformly bounded if the following condi-
tions (i), (ii) and (iii) are satisfied:

(i) The matrices G(O, At) of order p satisfy the following Lipschitz condition with
index ( a, fl )

IlG ( O,t) G( O1, At )I]<= M1]Oz Otl + Mz ( At ) , a,B>O.

(ii) The eigenvalues )t(O,t),...,3p(O, At) of G(O, At) and X(O,0),. .,)p(0,0) of
G( O, O) satisfy the yon Neumann condition and the R. Oldenburger condition respectively.

(iii) For any given 0o [a,b], if G(Oo, O) has a k-ple eigenvalue with modulus I and
linear elementary divisors, for example X (0o, 0) ? ,(Oo, 0), then when 0 0o and

*Received by the editors September 25, 1981, and in final revised form March 1, 1984.
Department of Mathematics, Jilin University, Changchun, People’s Republic of China.
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At 0, the following condition holds:

(4)

IO-Ool +(At)t=O At+ 1- max Ix,(o,At)l
<i <_k

min

_<_i, j _k

In this paper we shall generalize the result of Theorem 1 to the case of a family
consisting of compact operators.

2. Uniform boundedness of the compact operator family. In this section we shall
make use of some known results in the spectral and perturbation theory of compact
operators which can be found in [2, Chap. 7].

Let H be a Hilbert space; T is a compact operator on H. It is well known that the
eigenvalue set of T is finite or countable, and in the latter case its only accumulation
point is zero. Thus the elements of this set can be written as a sequence
l’k2’’" ",’n,’’’, decreasing in absolute value (with multiple eigenvalues repeated).
We denote the spectrum of T by o(T)=(;k;)(0) and ’N is the complement of
ON= (1,,2,"" ",)iN). Let N(ON) and N(,rN) denote some neighborhoods of oN and ’with empty intersection respectively. Set

1 iftN(ou), { 1 iflN(u),
eu(/)= 0 ifN(’v ), eu(/’t)= 0 iflN(ou).

Then E(ON)=eou(T) and E(zN)=e,N(T ) are projection operators from H into E(ON)H
and E(ZN)H respectively, and H can be written as a direct sum of E(ON)H and
E(ZN)H, where the subspaces E(ON)H has finite dimension and is an invariant sub-
space of T.

Let f(z) be analytic in a neighborhood of o(T). Then

f(T) =f(TE(ou) ) +f(TE( zN)).

Choosing a circle C" [ZI--R < 1 such that X--dC(i= 1,2,... ) and an integer N suffi-
ciently big such that IXl =< o < R for n > N, we thus have

In particular,

(6)

f(T)=f(rE(ON))+--i (z)(zI- TE(’N))-Xdz.

T ( rE ( ou ) ) +- (zI TE (N) ) -14z

It can be seen that the second term on the right-hand side of (6) tends to zero
when n- m, and the first term is a power of the operator TE(ON) which maps the
finite-dimensional space E(ON)H into itself. Therefore by the Oldenburger theorem we
obtain the following result.

THEOREM 2. A necessary condition for the family { T } of compact operators to be
uniformly bounded is that IX,I =< 1 and when the index ofN is greater than 1, I;ki[ < 1.

We now consider the uniform boundedness of the family

(7) (T"(O,At), a<=O<__b, O<=nAt<___T}.



1308 LI RONGHUA

For this purpose it suffices to prove that the family (7) is uniformly bounded in a
neighborhood of any Oo[a,b]. Assume that T(O, At) is continuous in 0 and At. Then
Xi= 3i(O, At) also will be continuous in 0 and At. Let N be sufficiently big such that
I,n(0o, 0)1 < 0 < 1 for n > N. Then there exists a t5 > 0 such that when 10 001 < tS, 0 < At
<6 and n>N, [n(O, At)[<__O. Since [,i(O, At)[ decreases with respect to i, we can
choose R1, R 2 such that p < R < R 2 < 1 and that the region: ( z R < Iz < R 2 ) contains
no , ;(0, At) when [00 00[ < t5 and 0 < At < 6. Hence we have by formula (6)

(8)

Tn(O’At)=(T(O’At))E(ON(O’At)) +i n(zI- T(O’At)E(zu(O’At)))-ldz"
Obviously, the second term on the right-hand side is uniformly bounded (in fact,

when n --0 o it tends to zero uniformly). Further, from perturbation theory (see [2, pp.
584-587]) weknow that when 8 is sufficiently small, the dimension of the subspaces
E(ON(O, At))H equals a finite integer p>0. Hence the operator T(O; At)E(oN(O, At))
can be expressed as a pp matrix whose eigenvalues are ,(0,At),...,,u(O, At),
N__<p. If T(O, At)E(oN(O, At)) satisfies the conditions of Theorem 1, the first term on
the right hand side of (8) will be uniformly bounded. We have then proven the
following theorem.

THEOREM 3. Assume that the operator T(O, At)E(oN(O, At)):E(oN(O, At))H
E(ON(O, At))H and its eigenvalues k(O, At),. .,,p(O, At) satisfy the conditions of Theo-
rem 1, where N is sufficiently big that ]X,(0,0)l< p < 1 for n> N. Then the family (7) of
compact operators is uniformly bounded.

Remark 1. From the proof of [2, Lemma 6, Chap. 7, 6] (consider the restriction of
T(O, At) to E(ON(O, At))H) we see that E(ON(O, At)) has the same smoothness as
T(0, At). Therefore, we can check the condition (i) of Theorem 1 for T(0, At) instead
for E(ON(O, At)).

Remark 2. In particular, if the compact operators T= T(O, At) do not depend on 0
and At, then we can deduce from (6) that limn_o T"= T exists if and only if all
eigenvalues ,; (i= 1,2,... ) of T satisfy I;1=< 1; if there is an eigenvalue, for example
1, with modulus 1, then all its elementary divisors must be linear. By using this fact we
can obtain the convergence theorem of stationary iterative process for the operator
equation x-Tx= b. In the case of matrix equations, corresponding results can be
found in [6].
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A NEW SET OF POLYNOMIAL MEANS
RELATED TO THE MEANS OF MACLAURIN*

J. L. BRENNER

.A comparison theorem is proved for a one-parameter set of symmetric means in k
variables, homogeneous of degree 1. If the parameter has the value 1, the inequalities
specialize to certain inequalities proved by Maclaurin. Generalizations are given.

1. Introduction. The means M, M2,... studied in this article are all symmetric
and homogeneous of degree 1. The program proposed is to find all comparison theo-
rems of the form Mx > M)_ among them. Special cases of comparison theorems are
Theorem 1.1" The theorem of the (power) means; Theorem 1.2" Maclaurin’s theorem
concerning the elementary symmetric functions; Theorem 1.3" Muirhead’s theorem.

Let ax,...,a, be a set of k positive numbers, not all equal. Let a(1),...,a(k) be a
set of real numbers with nonzero sum ]a Ea(i). The mean

a(1)...a’(’) /k! =M(al... akla(1).., a(k))
symmetric

is symmetric and homogeneous of degree 1’ M(?ta[... )=7tM(a[... ). An example is
the power mean, a-= (r, 0,..., 0), with the well-known comparison theorem"

THEOREM 1.1. THEOREM OF THE (POWER) MEANS. M(a r, 0,..., O) < M(a s, 0,..., O)
if r < s [4]. If r= 1, tke mean is tke aritkmetic mean. If r=0, tke mean is tke geometric
mean.

Another set of examples are the means based on the elementary symmetric func-
tions: a =(1,1,..., lt,0,..-,0). If t= 1, this mean is the arithmetic mean; if k, this
mean is the geometric mean. The comparison theorem of Maclaurin is:

TI-IO 1.2. (TI-IOR or MaCLaUIN). M(all, 1,- .,lt,0,. .,0) >
M(all, 1,...,1.,0,--.,) /f l<__t<s<=k [4].

A further example is the theorem of Muirhead; this theorem relates two means
M(ala), M(a,) provided 11=1/31

THORV,M 1.3. (TH,ORM Or MUIRHED). If the components of , are all nonnega-
tioe and nonincreasing, and if there is a doubly stochastic matrix D 4:1 such that aD,
then M(ala)> M(alfl) [4].

A further comparison theorem, new at the time it was published, is based on the
vectors a (1,1,..., lt, 0,..., 0), fl (1,1,..., It, e, 0,..., 0) with 0 < e <= 1.

THEOREM 1.4 [2]. With a, fl defined as in the preceding paragraph, the relation
M(ala)> M(alfl) holds.

We conclude this section with some general remarks. We call the means M(ala)
polynomial means, since if a(i) are nonnegative integers, MI1 is an ordinary poly-
nomial. A comparison theorem (Mx >M2 for all positive vectors a with a 4: a) is rare.
It can be shown that a pair of polynomial means is usually incomparable. For example

*Received by the editors January 27, 1984.
+10 Phillips Road, Palo Alto, California 94303.
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with fl--fl(e) defined as in Theorem 1.4, two means M(alfl) will be incomparable in
general, when e takes two different values. See [2] for a detailed analysis.

Ordinary mathematical experience also suggests that (true) theorems in analysis
are hard to come by. In view of the remark at the end of the preceding paragraph, the
results of this article are unexpected. A special case of what will be proved is"

THEOREM 1.5. Define flt,= (1,1, .,It, e,0,.- .,0), flt+l,= (1,1, .,lt+l,e,0,...,0),
0<e__< 1. Then Lt, =- M(alfl,)>__M(alflt+,)= L+,.

The inequality is undoubtedly strict; I can prove strict inequality only if e is
rational. The method of proof is somewhat novel. According to a suggestion of Hardy,
Littlewood, and Pblya [4], it is entirely "elementary." (So also are the methods of [2].)
In fact the method used here appears rarely, if at all, in the literature. (Correspondence
[1] indicates that the method has been applied before, for instance to prove the Cauchy
inequality.)

The conjecture that L_, decreases monotonically on the range 0 _< e =< 1 is false.
Taket=2, 0.5=<e<l,a1=a2=l,a3=1/2,a4=a5 ak=0 +.

Note that if 1 -= (1,1,..., 1), then M0 la) 1.

2. Discursum. Special results when k= 2. The results discussed here are special.
They cannot be generalized to k > 2.

LEMMA 2.1. Ilk=2, <__e (but not ifO<e< ) the relation L0,> L,holds [3].

COUNTEREXAMPLE 2.2. If k- 3, e 1/2, the relation L0,> LI, no longer holds. Take

al=a2-- 1, a . Then Lo,-- 36,2-5 Le=(2)2/3, But L3/20, 2--125 < L3/2, because
(2)216 126. Counterexamples also exist if k > 3.

LEMMA 2.3. If k=2, 0<e<l, or if e<-l, y=(1-e+e2)/(e-e3),
then L1, < 2 YLo,.

Proof. The inequality of H/31der gives

1 1( aa[ + a[a 2
<_ - ( a[ + a_) 1/e (a(1 -e)+ a[(1- e))1/(1-e).

Therefore L
LEMMA 2.4. If k 2, -1 < e < O, the relation LI,> Lo, holds.

Proof. L,> G > Lo,e
LEMMA 2.5. If k 2, e > 1, the relation Lo, > L1, holds.

REARK. This assertion is stronger than 2.1, since Lo, > Zo,1.

Proof ofLemma 2.5. The two inequalities

1 )]2(alaa)e< (a+aa

[1 12_e) (X-e)/(X-e)[1 ]l-e-(al-+a < -(a +a2)

are special cases of the power-mean inequality. If they are multiplied, the result is

L +e < +e
1,, Loa
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REMARK 2.7. Lemma 2.5 is not valid if k= 3. Take a a 2 1, a 4, e . Then

L0a=2, LI,= [z] 2/7 9La 1152<1369 9L1,

3. Proof that L 1, > L2," An outline of the proof that Ll,e> L2, is as follows. First
the putative inequality is transformed to an inequality between powers of ratios:

[K(e)/P(e)] r+s [6/K(e)]S, where K(e), P(e) are certain polynomials and e= r/s, r,s
being positive integers, 0 < r < s. Then each ratio is written as a (collapsing) product of
a number of fractions. Finally, each fraction in the left member is compared with a
corresponding fraction in the right member. The details are given in full in case k 3;
these details are followed by an explanation of the modifications needed when k > 3.

The symbols used in the sequel are defined as follows"

(3.01)
(3.02)

(3.03)
(3.04)

Recall that 0 < r < s. The first set of inequalities is given by 3.05.

LEMMA 3.05. The inequalities

(3.06) H(t- 1)Q(i)> H(t)Q(i- 1)

hold, provided r + >__ t; in particular if t.

1H(t_l)Q(i)_l H(t)Q(i-1)

-A --2--3At-I(A _A3)(A+i-t_AS3+i-t )

+ AI-1AS2At3-1 ( A1- A3) ( A+i-’- Ar+ i-’ )

+AAt- At3- (A 2 A )( Az+ i- t- A3+i-t)

+AA1A-1(A2-A3)(AI+i-t-A+i-t )

+A- IAt2-1A A1-A2)(A{+i-t-A+i-t)

r+i-t_Ar+i-t )+AI-1AI-1AS3(A1-A2)(A1 2

Each line is nonnegative, and at least one line is positive.
The next inequalities needed are given by 3.07.
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LEMMA 3.07. The inequalities

(3.08) H(t-1)T(j)>H(t)T(j-1) hold,

provided r + >=j; thus for allj, t.

Proof. H(t-1)T(j)-H(t)T(j-1) is a sum of 72 terms, since each of H(t-1),
T(j), H(t), T(j- 1) is a sum of 6 terms. These 72 terms, when properly combined, give

A "AJ- IA- (A 2 A ) ( Ar2+ ’-jAr3+ ’-j )
-t- A + sAJ2-1a-1( A2 A3 )( a;+ t-j_ As3+ t-j)
+A-AJ2- A23 ( A -Az)(A+t-J-Ar2+t-a)
-k-A-1A- 1A+ (a A2)(A+ t-j_ AS2+ t-j)
+A(- a )( Ar + )

2

Again each line is nonnegative, and at least one line is positive.

The inequality L,> L2, can now be proved when k= 3. This inequality comes
down to the relation

z) > [6/e1, 1 F,

where Ez,e alaza + aaza + aaza + aaza3 + a.a2a + aaza3.

The ratio E,e/E2,, can be written as a collapsing product:

(3.a0) el,je , = IeI/-/(t-a)//-/(t); thus
t=l

(3.11) D= H(t-1)/H(t) H(t-1)/H(t) =GU", say.
t--1 t=I

On the other hand, the fraction 6/E1, can be written as a collapsing product of r + s
partial fractions"

(3.12) 6/El’e-- [ fiQ(i-1)/Q(i)l [ fi T(j-1)/T(j)] V. W, say.

Thus F-VW. It must be proved that D> F. Lemma 3.05 compares corresponding
factors of U and V, so that U> V and U> Vs. Lemma 3.07 states that each (partial)
factor of G exceeds every (partial) factor of W, so that the product of the rs factors in
G exceeds the product of the rs factors in W: Gr> W. This completes the proof that
L,> L, in case k 3.

The extension to the case k > 3 requires no new ideas; the modifications needed
are as follows. Definition (3.01) is expanded to read

1/s(3.13) A,:= a v=l,...,k;

(3.02) becomes

t.(3.14) H(t) Y’A,A,Ao,
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there are 6C3 k(k- 1)(k- 2) terms in the sum. (3.03) is changed to read

(3.15) Q(i)" 2 ZAi.

Finally, (3.04) metamorphoses to

(3.16) T(j)’= 2 A;A{;

there are k(k- 1) terms in this sum. The proof of Lemma 3.05 is

1 H(t_l)Q(i)_l H(t)Q(i-1)
t-- s+i--t s+i--t)_EA,1_A,Aor t-I(A,_Ao)(A -Ao

r+i--t r+i--t+_A. AAoS ,-1(A,-Ao)(A -Ao ).
The proof of Lemma 3.07 is

H(t- 1)T(j)-H(t)T(j- 1)
EAr+sA-IA{ l(A_Ao)(AS+t-J_ASo+t-j )

2 j- (A_Ao _Ao+ EA.. 1A{-1 )(Ar+t-j r+t-j).

(The sum is extended over all 3-sets /,v,p.) After these modifications, the formal
definitions of D,F,G, U, V, W remain unchanged. The inequality LI,> L2, is estab-
lished for 0 < e < 1.

LEMMA 3.17. If e > 1, the relation LI, > L2,. is valid.

Proof. Only a sketch of the argument is given. The definitions of D, G, U, are
unchanged. The definitions of F, V, W must be changed to read" F= Vsws, V=
1-[;=xQ(i- 1)/Q(i), W=I-IT(j- 1)/T(j), where

jr jr AJA3T(j)=A;AJ2+A1A2+AIA’ +AIA3+ArzA +

Remaining details are omitted. El

LEMMA 3.18./f e > 0, k _> 2, then Ll,e> Loa_ e
)/:> [1/2(al-+ a-)] /(x-) leads to the result a{a. +Proof. The inequality (aa2

aa > [1/2(aI- + a-)]( +)/(1-). The inequality bi/l > [Zb}-)/(+)/l](+)/(1-)
establishes the result (l= C2)

1 gj1 ](1+ e)/(1- )

Ll+e> ( 1-e l-e)1,e 7.. ai -+-aj

COROLLARY 3.19./f 0 < e < 1, then

A Lo, > Ll,e> Lo,I_ e.

11 +e
z-’0,1 e"

This assertion is an improvement (near ---1) over the known fact that the power
mean [ani/k] 1/n increases with 4.
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LEMMA 3.20. If 1 < e < O, k >= 2, the relation LI,< 21/(1 +)L1,0 holds.
Proof.

+a )/2*-l,e iaj iaj
<j

e-1 e-1

)
_

aaj
a +a.

<j
2

ai+aj
2

2 ai + aj }
+e

<k(k-1) k(k-1) 2

k( k-1) { ,a,/k } 1+. cq

LEMMA 3.21. /f e < 1, k _>_ 2, the relation Ll,e> Zl,0 holds.

THEOREM 3.22. If e > 1 is rational, the relation Lo, > L1, holds.

Proof. It is enough to illustrate the proof for the case k 3, since the proof for
a1/s Thenk > 3 follows the same lines. Set e r/s, A -i

ne(1 + e)s EAri/k] s+r

Or

Le(I+e)s-" E AAr’AA; )/(k(k 1))] r.
To prove T(1 + Os > ire(1 + e)s, transform the latter into the inequality---’0,

(3.23) 1 .E(AiA;+AriA; )k" 1

The first step in establishing this is to write the bracket on the left-hand side as the
collapsing product of s factors, namely

A =l-IH(t_ l)/H(t)
2

with

1 i.j(t rt)n(t)=k---2--. AiAj+AiAj, t=l,2,...,s.

(Here, k-1 2.) Similarly, the bracket on the right-hand side can be written as the
collapsing product of r factors: k/EAT=gIK(u-1)/K(u), with K(u)=EA, u=
1, 2,- .,r. (Here, k 3.) The next step is to prove that, if u >_ t, the inequality

(3.24) H(t-1)/H(t)>K(u-1)/K(u) holds if u>__ t.



POLYNOMIAL MEANS 1315

To see this, compute D=(k-1)[H(t-1)K(u)-H(t)K(u-1)]. This difference
can be written in the form

r+u-t__Ar+u-t )A-A-(A1-A2)(A 2

u-tm u-t)+A-IAt-IA(A1 A2)(A A2

+Ai- lAr2At3-1 A -A3) A;-t-A -t)

+A- IA3- a( AI -A3 )( A+,-t-A+U-t

+A-1A- ( A 2 A3) ( hrz+U-t-Ar3+u-t )

+AAt2 At3-( A2-A3)(A-t-A-’).

This proves (3.24).
Now note that the rs factors of [FIH(t-1)/H(t)] can be matched with the rs

factors of [K(u-1)/K(u)] in such a way that each factor of the left-hand side of
(3.23) exceeds the corresponding factor of the right-hand side. The way to do this is to
use the result, just established, that the relation H(t- 1)/H(t)> K(u- 1)/K(u)
holds as long as u>=t. First, for each u, l<=u<=s, match [K(u-1)/K(u)] with
[H(u-1)/H(u)] . The remaining factors on the left-hand side are
[I-IH(t-1)/H(t)] r-s, and on the right-hand side the remaining factors are
[1-Isr+lK(U 1)/K(u)]. The matching is complete, and all details have been given for
the case k- 3. If k > 3, the modification of (3.25) that is needed is clear to anyone who
inspects (3.25). []

The relations Lz,e> L3,e> L4,t> can be proved by an elaboration of the meth-
ods already given. The argument still involves collapsing products; however each
collapsing product involves not just one type of fraction (such as K(u-1)/K(u)) but
several types of fraction. See [2].

Here is a further extension.

DEFINITION 3.26.

1
aiaj a ajL"" 2C

E( +
<j

THEOREM 3.27. ff 0 < e, ,/, then L0,t, >= Ll,e,n, with strict inequality if e, *1 are rational.

The proof follows lines already adumbrated.

PROBLEM 3.30. If 0<e< 1, do the relations Lo,/L,<L,/L,t<... hold?
(These inequalities are valid for e 1.)

Acknowledgment. I acknowledge with thanks extensive numerical calculations that
H. P. Robinson carried out at my request.
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WEIGHTED ZERO DISTRIBUTION FOR POLYNOMIALS
ORTHOGONAL ON AN INFINITE INTERVAL*

WALTER VAN ASSCHE"
Abstract. The distribution of the zeros of orthogonal polynomials on an infinite interval is studied by

means of a distribution function Z. that makes a jump at each zero of the n th polynomial. The jumps are
chosen properly in order that the function Z. converges as n---> c. The asymptotic behaviour is given for the
special case of (generalized) Laguerre and Hermite polynomials.

1. Introduction. The study of the distribution of the zeros of orthogonal polynomi-
als has already led to a great variety of results. For orthogonal polynomials associated
with a compact interval (say [- 1,1]) it was found that, for a great class of polynomials,
the zeros behave according to the arcsine-law ([3], [4], [9]). The study of the zeros of
orthogonal polynomials on an infinite interval is somewhat more complicated, due to
the fact that the zeros spread out over the entire interval and cannot be kept within a
compact subset. This means that the sequence of distribution functions { Jn } (n=
1, 2,... ), where J,(t) makes a jump of size 1In at each zero of the n th orthogonal
polynomial, is not uniformly tight. A sequence of distribution functions { Fn } (n
1, 2,.-- ) with F ( ) 0 and F() 1 is uniformly tight if for every e > 0 there exists
a compact interval [a,b] such that F(b)-F,(a)> 1-e for every n>0. It is well-known
that a necessary and sufficient condition for a sequence of distribution functions to
contain subsequences that converge weakly to a proper distribution function is that this
sequence is uniformly tight ([1, Thms. 6.1 and 6.2]). The fact that the above defined
sequence { J } is not uniformly tight therefore means that there are no convergent
subsequences. The problem can be solved as follows: there is a unique linear function
which maps the first zero to -1 and the last zero to 1. Denote the images of the zeros
by y,,, then

1 =Yl,n<Y2,n < <Yn,n 1.

Then we define J, (t) as the distribution function that makes a jump of size 1/n at each
y,,, (k 1,---,n), and this function is called the contracted zero distribution. Clearly
this sequence {J,} (n=l,2,-..) is uniformly tight. For this sequence Ullman [10]
found the limiting distribution for the orthogonal polynomials associated with the
weight functions

Wp,m ( X ) IxlPexp( p>-l, m=2,4,6.

Rakhmanov [7] obtained the limiting contracted zero distribution for polynomials
orthogonal with a weight function w(x) on (- ,) that has a particular behaviour at
infinity

lim Ixl-Xlogw(x)=-r (r>O,X>l).

*Received by the editors December 6, 1983, and in revised form August 6, 1984.
*Katholieke Universiteit Leuven, Departement Wiskunde, B-3030 Heverlee, Belgium. Aspirant van het

Belgisch Nationaal Fonds voor Wetenschappelijk Onderzoek.
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Similar results have been obtained by Mhaskar and Saff [6] for the weight function
w(x)=exp(-Ix]) with >0 (notice that these last authors therefore also have results
for 0 < __< 1, which is a case not included in Rakhmanov’s results).

In this paper we give another method to obtain a sequence of distribution func-
tions that is uniformly tight. Again let Z.(t) be a distribution function that makes a
jump at each zero of the n th orthogonal polynomial. Instead of making equal jumps of
size 1/n we let the jumps be dependent of the zeros in such a way that large zeros have
small weights. In {}3 appropriate weights are given for polynomials orthogonal on
(-,) and (0, o0) with respect to a weight function with a particular behaviour at
infinity and the limit distribution is found. In {}4 the rate of convergence is given for the
case of Laguerre and Hermite polynomials.

2. Definitions and preliminary results. Let w(x) be a weight function on an in-
finite interval I such that all the moments exist. Then there exists a unique sequence of
orthogonal polynomials (p,(x)) (n =0,1,2, ) with

fPn(X)Pm(X)W(x) dx=Smn,
p.(x)=k. H (x-xj,.), k.>0.

j=

The zeros of p. are real, simple and belong to I:

Xl,n<X2,n< <Xn,n"

We define the weighted zero distribution as

(2.1) Z.(x)= flj,.U(x-x,.),
j=l

where

U(x)= (0, x<0,
1, x>=0.

The proof of our results is based on the Stieltjes transform

(2.2) S(F;z)= dF(t)_
z-t

where F is a function of bounded variation. This transform is a very useful one,, due to
the following continuity theorem of Grommer and Hamburger:

THEOREM 2.1. Suppose that { F.(x)} (n= 1,2,.-. ) is a sequence of functions of
bounded variation such that their total variations are uniformly bounded.

i) If F.(x) converges weakly to F(x), then S(F.; z) converges to S(F; z) uniformly
on every compact subset ofC\.

ii) If S(F.;z) converges to a function S(z) uniformly on every compact subset of, then S(z) is the Stielq’es transform of a function F(x) of bounded variation
and F. (x ) converges weakly to F(x ).

A proof of this theorem can be found in [11, pp. 104-105]. Weak convergence of
F.(x) to F(x) means that for every bounded continuous function f(x) the relation

Z(xlee (x  /(x ee(xl
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holds as n . This is denoted by F,(x) F(x). Theorem 2.1 means that the Stieltjes
transform behaves, in a way, better than the Fourier transform since the limit of
Stieltjes transforms is again a Stieltjes transform, which is in general not true for
Fourier transforms (take for example F.(x)= U(x-n)). Another consequence of this
theorem is that we do not need to investigate the tightness of a sequence of distribution
functions explicitly: once we have the limiting Stieltjes transform, we can see whether
mass has flown to infinity or not. For the Stieltjes transform there is an explicit
inversion formula, namely

(2.4) 1/2{F(x+)+F(x-)}-1/2(F(y+)+F(y-)}
1

lim Im S(F; u + iv) du
’ff v0

[11, pp. 93-95].
Recently Rakhmanov [7] proved some asymptotic formulas for polynomials or-

thoonal with respect to a weight function on an infinite interval that has some sort of
regular behaviour at infinity. We recall the result in

THEOREM 2.2. Let w(x) be a weight function on (- ,) such that for some ) > 1

lim Ixl-Xlogw(x)=-I
Ixl--, o

and let (p,,(x) ) be the orthogonal polynomials belonging to this weight; then the following
limit relation is valid uniformly with respect to z in any compact subset ofC\

(2.5) lim lg[P"(Z)l-D(A)]Imzl
n-+ oo n1-1/

where

) (1 F((+l)/2)}
x/x

D())=)-I vf r(x/2)

From this theorem one can easily obtain an asymptotic formula for orthogonal poly-
nomials with a weight function on (0, oo) with the same kind of behaviour at infinity.
For the classical Laguerre polynomials there 6xists a stronger limit relation, known as
Perron s formula:

THEOREM 2.3. Let a > 1; then

1 z/2( -(2a+ 1)/4n (2a(2.6) L{")(z) 2 e -z) -1)/4exp(2x/-nz )

E Cj(l;z)n-J/2-}-O(FI-p/2)
j=O

where the boundfor the remainder holds uniformly on every compact subset of C \[0, z);
(_ z)-(2,,+ 1)/4 and v/-z must be taken real andpositioe if z <0.

This theorem can be found in Szeg/5’s book [8, Thm. 8.22.3], and in this formula
we have C0(a; z)= 1. However, to prove the results in {}5 we also need to know what
Cx(a; z) is. In the appendix we use the method of steepest descend to obtain

1 {_3z+1 2 1_a2 }(2.7) Ct(a; z)- 4_7 -5z +-
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In this paper we will use two "roots": let z re; then

zl/Z=rl/2e i/2 if0[0,2r)
(2.8)

vf rl/Zei/2 if 0 -r, r).

Notice that one always has (-z -iz/.

3. Weighted zero distribution for weights on an infinite interval. In this section we
will use the asymptotic formula of Rakhmanov (Theorem 2.2) to obtain the weighted
zero distribution of polynomials orthogonal on either (-, o) or (0, ). The con-
tracted zero distribution for such polynomials has already been obtained by Rakhmanov
himself [7] and special cases were found by Mhaskar and Saff [6] and Ullman [10].

THEOREM 3.1. Let w(x) be a weight function on (- , o) such that

(3.1) lim [xl-Xlogw(x) -1 (X> 1)

and let (p,(x)) be the orthonormal polynomials corresponding to this weight and xl, <
x 2, < < Xn,n its zeros. Put

1 i U(x-xj,.)
(3.2) Zn(x)--D(k)nl-1/x 1 +xf,j=l

where

D(X)= X-1
F((X + 1)/2)

r(x/2)

then as n

(3.3) Z.(x)= Z(x)
1 fx dr 1 1

arctanx +
r _o l+t2 r "

so that for every bounded continuous function f(x) on (- ,)
lim

1 f(xj,.) 1 fo f(t) dr.
no n(X) n!-l/xj=l l+xj2,. " -o l+t 2

Proof. Denote by ’n a discrete measure defined by

1

.o(A)=,0

j=1,2,...,n,

if A contains no zeros of pn (x)

then the relation (2.5) is equivalent to

(3.4) f loglz-xld,,,(x)D(X)[lmz[

uniformly on compact subsets of C\. Both sides of this asymptotic relation are
harmonic functions both in {Imz < 0} and (Imz > 0). If we decompose z into z u + iv

(u,v R), then the partial derivatives )/Ou and O/Or of the left-hand side of (3.4) will
tend to the partial derivatives of the limit, uniformly on compact subsets of C\R [5, p.
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249], so that

u )x-o (--X /)2

--o U-- X --["I.) 2

d(x)-,O,

dvn(x)D(X)signv,

uniformly on compact subsets of C\R. Therefore we obtain that

fo u_.S._x_-_ i_v. dvn(X) _iD(X)signva..(x)= - (u_x)+o

and in particular we find

f= 1
dv.(x)--+-iD(X),(3.5)

from which

1 fo 1
dr.(x) 1Z"(e)-D(X) -o 1 -t-X 2

Let us now calculate the Stieltjes transform of Zn:

1 fo 1 dun(x)
S(Z";Z)-D(X) -o l+x z-x

2dvn(x)}
Because of (3.5) the last term will tend to zero as n increases, so that

1
lim S(Zn; z)
,,- 1 +z

1
if Imz > 0

t l lrz-’sZ’nv= z+i
2 1

if Im z < O.
z--i

This limit is the Stieltjes transform of the distribution function Z given in (3.3) (see the
following lemma), and Theorem 2.1 then leads to the conclusion of this theorem, t

It remains to prove that the Stieltjes transform of Z is indeed the function we
found above:

LWMMA 3.2. Let Z(t)= 1/r arctan + 1/2; then

1

S(Z;z)= z+i
/flm z > 0,

1
z-i iflmz<O.
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Proof. We will use the inversion formula (2.4). Take 0 < v < 1, then

1 v+l
u+ iv+

v+l

U2+(Vq-1)2

U2q-(o+l)2’

2

u2+l

so Lebesgue’s theorem is applicable and

1 1 fx 11
lim Imdu=- du=Z(x)

r v,o - u+iv+i " -o l+u2

The same reasoning holds for 1 < o < 0. D
Now we prove a similar result for orthogonal polynomials associated to a weight

function on (0, ).
THEOREM 3.3. Let w +(x) be a weight function on (0, ) such that

(3.6) lim x-Vlogw+(x) -1 (3,>1/2)
X OO

and let { Pn(x) } be the orthogonal polynomials corresponding to this weight and x + < x +
1,n 2,n

<... < x + its zeros. Put

(3.7) Zn+ (x) 2 U(x-x+j,n)
D(2y)(2n)1-1/" i=1

1 +xf,,,

then as n o

(3 8) Z+ (x)=Z+(x)=l__ foX dt
r v/-(1 + t)

and as a consequence one finds that for every bounded continuous function f(x) on [0, )

lim
2 f(_j’,_2) 1 f(t)

n--,o D(2y)(2n)1-1/2v j=l
1 +xfn r v/7(1 + t)

Proof. Consider the weight w(x)--lxlw+(x 2) on (-o, o). Obviously this weight
satisfies condition (3.1) of Theorem 3.1 with X 27. The zeros xj,, corresponding to the
weight w(x) are related to the zeros x / byj,n

+( Xn+ l_j,n ) 1/2

j,n

ifj<n,

ifj> n,

so that

0

Zn+(X)= 2

D(2y)(2n)-1/2
2n

j=n+l

g(v[- xj,2n )
l+x 2

j,2n

ifx__<O,

if x>0.
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For x > 0 we thus have that Z+(x) 2Z2n(v%-)- 1 and by Theorem 3.1

Z2(xl--,2z(v )-l.
A simple change of variable then gives the result.

4. Rate of convergence for Laguerre and Hermite polynomials. Let w(x)= x%
(a > 1; x [0, )); then the orthogonal polynomials associated with w are (up to a
factor) the (generalized) Laguerre polynomials (L)(x)} (n=0,1,2,...). Obviously
this weight satisfies condition (3.6) of Theorem 3.3 with , 1, so that the weighted zero
distribution (3.7) converges weakly to the distribution function Z+(x). The following
theorem gives the rate of convergence for this asymptotic relation in terms of Stieltjes
transforms:

THEOREM 4.1. Let Z+(x) be as in (3.8) and Z+(x) be the weighted zero distribution

of the Laguerre polynomial L)(x), given by (3.7) with y 1; then as n

(4.1) s(v (z: z 2a+1 1
4 z

uniformly on compact subsets ofC \[0, ),
Proof. We will write p.(x)= L)(x). Start with the well-known identity

At(na)(Z)-- /" (a+l)(z)-n-dz

With the use of Perron’s formula (2.6) we have for z C\[0, o)

exp 2v nz 1--1 1/2_1
p.(z) n n

.{1/ Cl(a+l;z)
1-

Cl(a z)
+o

v/n-1 Vch nn
Now

1
1 )(2a+ 1)/4 2a + 1
n 4n

nz -- -1

(1)t-0
n

(1)
so that we easily find that

1 p(z) 1

7r pn ( Z ) f-
1 -[-7[C1(o/+ 1;z)-C(a;z)-f-ZT] +o -n

We will calculate the Stieltjes transform of Zn:

S(Zn+’z)= fo dZ+ (t)z-t
1 f l+t+z-t

l+z Jo z-t
dZ+(t)

fo l+ta
Z.()+l+z z-t



1324 WALTER VAN ASSCHE

But we also have

p.(z) j= z-x +
j,n

vc-d
. l +

Jo z-t
dZn+(t)

and if we put z 1 in this expression

1 p,(- 1)Zn+() Pn(--1)

The Stieltjes transform of Z+ is given by

1 1
S(Z+;zl=l+z x/-z (l+z)

zC\[0,)

(see Lemma 4.2) so that by combining these equations we obtain

1 1 p,(- 1)v/-d 1 p,(z)S(x/-d[Z+-Z+];Z)=l+z f-d p,(z) x/C- f-d p,(-1)

Now we use (4.2) to get

1 {C(a+l;-1)-C(a’-l)s([z.+-z+l;Z)=l+ z

1 }1
C(a+l"z)+ C(a’z) +o(1)-z W

Next we can use the expression of C1 obtained in (2.7) to conclude that as n --,

s([z:-z+l;z)- 1 {2a+lx/-z (1 +z)4x/-Z
2a+l 1

4 z

LEMMA 4.2. Let Z+(x) be as in (3.8); then

1 1
S(Z+;Z)=l+z v/_z (l+z)

zeC\[0,)

where the square root is as in (2.8).
Proof. By Lemma 3.2 we have that for Imw > 0

1 t 1 dx
r
_

l+x2 w--x w+i

and this integral on the left can easily be rewritten as

1 dx fo 1 dx
-W- 1 "+’X 2 W--X X/-(1 +X) W2--X

SO that

1 1
S(Z+;w2)"-W w+i

(Imw > 0).
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Now let z C\[0, oo); then there exists a unique w with Imw > 0 such that w2= z. This
w is equal to z1/2 and therefore

1 1 1
s(z/;z)=

Z1/2 Z1/2-4;- +1 z1/2(1 + z)

The result now follows since v-z -iz/2. E]

Let w(x)--lxl2e-x= (a> -1/2; x); then the orthogonal polynomials associated
to w are (up to a factor) the (generalized) Hermite polynomials { H()(x)} (n O, 1,... ).
It is easy to prove the following relations to the Laguerre polynomials:

(4.3)

where C and D,, are constants depending on m. It is clear that this weight function
satisfies condition (3.1) of Theorem 3.1 (with 2) so that the weighted zero distribu-
tion converges weakly to the Cauchy distribution Z(x) given by (3.3). The rate of
convergence is given by

THEOREM 4.3. Let Z(x) be as in (3.3) and Zn(X) be the weighted zero distribution of
the Hermite polynomial H<)(x), given by (3.2) (with = 2); then as n--+

Z

uniformly on compact subsets ofC\.
Proof. We will prove the theorem only for n=2m; the proof is only slightly

different for n= 2m+ 1. Writepm(X)= "’.mt4(’O(x); then from (4.3) we get

Pm( z ) 2 t (a + 1/2)2:"-’m- (Z)
pzm(Z) L(ma-1/2)(z 2 )

We will first consider those z in C\R for which Imz > 0, so that 0 < argz < r. Now
because of the definition (2.8) we then have v/-z2= -iz. Combining (4.5) with
Perron’s formula (2.6) yields

1 Pm(Z)
2Vr- P2m(z)

1/2
-1

1. 2 C1 0--";Z2 1C a--l-- --,z
1- +o1+

v/m_ 1 -m
Since

(1 lm ) a/4 o (1)=l----m+ --m

exp( 2izv/- 1- L)1/2

m
-1 =l+---m + ---m
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we obtain for Imz > 0

(.6)
1 p,(z) -i{1+ 1 ( 1 2

2f p(z) -m C + - ;z

When Imz < 0 then -z iz. Modifying the calculations for this z gives for Imz < 0

-C a--;z 2 +iz +o

(4.7) 1 P’zm(Z) =i{1+ 1

2- p:(z) C a+;z -C a-
1

Now we calculate the Stieltjes transform of Z2,,,"

S(Z2;z)= z-t

1

l+z

+o l+t2+z2_t 2

dZ (t)
2 z-t

l+z 2 zZ2"()+ tdZ2m(t)+ -z-’t- dZm(t)

The second term on the right vanishes because the zeros of P2m are symmetric with
respect to the origin; therefore

S(Z2m;Z)--
l+z 2 ZZ2m(O)+

-o -z--t- dZ2m(t)

For the last integral we have

fo 1+ 2 1 P;m ( Z ) 1 2;1 1
-o z-t

dZ2m(t)-
2V- P2,(z) 2v- .=

By considering this last expression at + we easily find

Zm()-
4iv/- P2m(-i) P2m(i) 2- l +x

If we combine all this, together with Lemma 3.2, then we find for Imz > 0

z 1 p’m(-i)S(2v/--[Z-Z];z)=2V
l+z 2 4iv/- p(-i)

z 1 p’m(i)
1 + z 4iv/- P2m(i)

1 1 p’zm(Z)
1 + Z

2 2- P2m (z) 1)z+i
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Now we use (4.6) and (4.7) to obtain

S(2/--[ Z2m-- Z] z ) 1+z2
z C a+-;-1-C a-
-i C ol--[- - ;2 -C10g-- -’ ;2 +iz +o(1).

Again we take the explicit form (2.7) of C1, and recalling that for Imz > 0 the equality
V/- z 2 iz holds, we finally find that as m oo

S(2V[-- Z2m- Z];z) .--+

l+z2
-z -+1-i -iz + iZ

z

where Imz > 0. A similar reasoning holds when Imz < 0. []

We should be careful and not conclude from the result of Theorem 4.1 and
Theorem 4.3 that the functions R +(x) { Z+(x) Z+(x) } and R(x) 2v/ { Z,(x)
-Z(x)) converge weakly to some function. This is not true. Although we can identify
the limits in (4.1) and (4.4) as Stieltjes transforms of functions that make only one jump
at the origin, the statement of the Grommer-Hamburger theorem is not applicable,
since the functions R+(x) and R,(x) are not uniformly bounded in total variation.
However, we can conclude a result that looks like (2.3), but which is weaker:

THEOREM 4.4. i) Let Z+(x) and Z+(x) be as in the case of generalized
Laguerre polynomials and put R (x) Vr { Z+(x)- Z+(x) }. Let f(x) be such that
f((1 +y)/(1 -y)) is analytic in some open set containing [- 1,1]; then as n - oo

f(xfn) v f(x)
dx= f(x)dR+(x)

2a+ 1

j=l i7X7+n "/7" V/-(1 + x) -4f(O)-f()"

ii) Let Z’,(x) and Z(x) be as in the case of generalized Hermite polynomials and put
R’,(x)= 2v/- { Z’,(x)-Z(x)}. Let f(x) be such that f(+_((1 +y)/(1-y))1/2) is analytic
in some open set containing [-1,1], where the root is as defined in (2.8); then as n--+ o

j=l l+xj2,
/n f(x. dx= f(x)dR (x)--af(O)-f(oo)-f(-oo).

rr - 1+ x -
Proof. i) Define the function g(y)=f((1 +y)/(1-y)); then g will be analytic in

some open set containing [- 1,1]. An obvious substitution and Cauchy’s theorem leads
to

f(x)dR+(x) g(y)dR+ l +y
-1 i-y

dR,, i-y
dz,

2ri
g( z )

-1 z y
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where F is a closed graph encircling [-1,1] in the open set mentioned. A new
substitution yields

f(x)R+(x)= 1 ,g(z) (1 +x)dR+(x)
dz

z-1 x-(l+z)/(1-z)

f. ( )2 g(z) S R+’,l+z dz+
2ri (z-l)2 1-z 2ri z-1

Now use (4.1) and let n--, oe (note that S(R +" (1 + z)/(1-z)) converges uniformly for
zF)"

fof(x)dR+.(x) 2"+1 1 fr (Z:2dz+ limR+(oe)1 fr g(Z)
dz

z-12 2ri n--

An application of the theorem of residues and the fact that

R+() V- ( Z+()-Z+())

{ 1 p,(-1)p,(_l) }-V/- -n + 1

Cl(a + 1; 1)- Cx(a; 1)-1 + o(1)
2a+5

4

then leads to

fomf(x)dR+(x) 2a+4 1
tg l) g,ill 4

--g(1).

Now g(1)=f(m) and g(- 1)=f(0), which establishes case i.
ii) We give the proof only for n 2m, again the other case is similar. Suppose first

that f is an even function: f(x)=f(-x). Since R,(-x)=R,,(m)-R,,(x-) it follows
that

f +mf(x)dR,(x)=2 f(x)dR,,(x).

Define g(y)=f(((1 +y)/(1 _y))1/2); then as in the previous case

f+ 2frflf(x)dR.(x)= g(z)

This is easily seen to lead to

f f(x)dR (x)=2fr g(z) fo (l+_x2)dR.(X) dz_ z-1 2 l+z
x

1--z

g(z) (1 +x2)dR.(x)
dz"

z-1 _ 2 l+z
x

1--z
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the last equation follows from the symmetry of R’,(x). Easy algebra gives

Use

x2-(l+z)/(1-z)

.{ 1

x-((1 q"z)/(1--Z)) 1/2

1 }x+((1 +z)/(1-z))/

with the root as in (2.8), to obtain

fo fi, g(z ) fp ( l_z )l/2 g(z) S(R (1+z )1/2)f(x)dR’,(x)=R’,(o) z"l dz+
l+z (z 1) "’ i’} dz

1-z 1/2 g(z))2S R
l+z 1/2

l+z (z-1
",’ 1-z

Now let n--. o, where we notice that S(R’,; +((1 + Z)/(1--Z))1/2) converges uniformly
for z F to the limit given in (4.4):

lim R frf(x)dR (x) ()g(1) +2a Zz_
)

dz.
--oo n---* 1

Now since n 2m

R’,(o) 2q ( Z2m(OO)-Z(oo)}

1 [pm(--i)=2V- 4iV/- pzm(_i )

=2{C1 a+-;-1-C a--;-1-1 +o(1)

--* -(a+2)

so that, together with the theorem of residues,

f_+ f( x) dR,,( x) ( o + 2) g(1) + a[ g(1)-g(- 1)1

af(0)- 2f(),

and this is true whenever f is an even function. When f is odd, f(-x)= -f(x); then it
is easily seen that

f f(x)dR’,(x)=O.
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The general case follows by defining

f+(x)=f(x)+f(-x),

f-(x)=f(x)-f(-x),

SO that f+(x) is even, f-(x) is odd and f(x) 1/2 (f+(x) +f-(x)).
5. Concluding remarks. In 3 we proved that the weighted zero distribution, mak-

ing a jump of size flj.,, at the zero xj.,n of the n th degree orthogonal polynomial,
converges weakly for weight functions on (-,) and (0, ) having a particular
behaviour at infinity. For both cases the limit was found to be independent of the
weight function from which we started, so that we can say that the zeros have invariant
or weight-free asymptotic behaviour. Such an invariant zero behaviour was already
known for orthogonal polynomials on a finite interval.

In the second order asymptotic behaviour more information on the weight func-
tion w(x) was found, more precisely the index a, which appears in the weight function
for Laguerre and Hermite polynomials, can be found in investigating the second order
zero behaviour. This has been shown in 4.

Now, if we compare in Theorem 3.1 the function Z,(x) with the Riemann sum of
the limit Z(x), then we can heuristically say that the sequences of measures (
(n 1, 2,.-. ) defined by

1
v, ({ xj, })= nl_ l/h

if x., is a zero of pn (x),

if A contains no zeros of p.(x)

behave in the limit like Lebesgue measure on R. In the same way we can reason from
Theorem 3.3 that the sequence of measures (/, } (n 1, 2,. ) defined by

#,((x+ 1
if x +

.j,, is a zero of p, (x),

if A contain no zeros of p, (x)

behaves in the limit like the measure

dt.(A)=

These assertions cannot be proved properly because of the fact that these sequences of
measures are not uniformly tight. Hence our approach of compactifying these measures
using appropriate weights, which enabled us to prove convergence.

Appendix. In SzegS’s book [8] only the first term in Perron’s asymptotic expansion
for the Laguerre polynomials is explicitly given. By using the same method of proof we
will give the second term in Perron’s formula (Theorem 2.3) which was needed in 4 to
find the rate of convergence for the weighted zero distribution of Laguerre and Hermite
polynomials.

LEMMA. In Perron’s formula (Theorem 2.3) we have

{ 1212}1
-3z+ z + -tC(t; z)

4x/_Z - -
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Proof. We need the following results: if z C \[0, ) then

e-Zz/2L,()(z)= -.1 f0 e-ttn+/2j(2(tz)1/2 } dt

where J is the Bessel function with index a ([8, formula (5.4.1)]). For the Bessel
function J the asymptotic relation

(2)1/21 ( art
Jo(z)= -g  cos z

2
"I1" ] 2j 2p

4 E ajz +O(z )
j=O

+ --rr -zSin z
2 4 E bja-2j-l-- O(Z-2p-1)

j=O

holds for z C\(-o, 0] ([8, formula (1.71.8)]). Here

aj.= (- 1)J(a, 2j),
( a 2j+ 1)

where (a, v) is Hankel’s symbol

(a v)= 2-2" ]}v! { (4a2-1)’’" [4a2-(2v-1)
F(a+v+l/2)
v!F(a-v+l/2)

([2, p. 85 and p. 23]).
Substituting the asymptotic expression in the integral representation for the

Laguerre polynomials leads to

where

Azk(Z)=a/,z

e-Zz/2L()(z)= 7 ’ Am(a)q-RP(Z
m=O

-k-l/42-2k fo
O0 -ttn-k+(2a-1)/4COS{g(tz)l/2 0ggr

n! e
2 4

dr,

A2k+ ( Z ) bkZ-k- 3/4 2.2k2l fo e-ttn-k+(2a-3)/4sin{2( tz ) 1/2 owl’2
Iep(z)l { [zlP-1/4n! fo e-tt"-p+(2-)/%xp Re [2i( tz)/2]

The Am(z ) are integrals of the type

I f _tt7-( "0
e rexp[tl/21] dt

If we put ry, then this gives

rr+ le
r! fO (el-yy)rexp[rl/2yl/2] dy.
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Now (el-yy)r=exp[r(logy+l-y)], and the "essential" saddle point is the solution
of (logy+ I-y)’--0, so that y=l. The critical directions are those yC such that
y(y-1)2<0, where ,=(logy+l-y)"ly=a=-1, so that the real axis is the critical

direction. Therefore we put y 1 + 0/qr-, where r __< O -<_ r (3 < 1/6) and integrate
over the positive real axis. Furthermore we have (ql(O) and qz(P) being polynomials
in 0)

(el-Yy) =e-2/2 l+r +-ql(p)+’’’r

exp[rl/y/ti =exp Vg-+ 1- + -q(p)+....

Using these considerations, we find that

fo ( el-yy)rexp[ rl/yt/2t] dy

1 /2{1 + p3 eye+o;/2{1 p2 1

V/- f-re- -r } --r }(-q(p)+...}dPr
1

where q(p) is a polynomial in p. Putting

Iq exp -- + zthen

pqdp

so that

I0 e2/8ffq./

11- e /8 2V/-

I=e/8 2 1+ -313=e2/8 2( + --)

fo ( el-yy)rexp[rl/yl/] dy

vf2 exp [x/-(+ - 1

Stirling’s formula then leads to

1 fo tt(A.2) E(r;)= . e- rexp[t/] dt

exp[_f +
___

(1+ 8_r (3 + 2 7
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Now if we take z t2 \[0, ) and if we recall that v- z iz1/2, then

cos(2(tz) 1/2 ar2
sin(2( tz ) 1/2 07/’2

rr } 1 1)(2a+1)/44 -(- (exp(-2tl/Zx/-z)+exp(2tl/2x/--))’
a

4

furthermore we find that Re((- z )= Imz1/2 > 0 so that lexp( 2r1/2v/- z )1 0 as r- .
Calculating Ao in (A.1), we obtain

ao (2,,+ 1)/4 (/’/q- C/2 1/4)!Ao(Z)= 2 1/4(-1) n!

2 4’ 2 4’

where r! is to be interpreted as F(r+ 1). If we use (A.2), Stirling’s formula and the
considerations just taken, then

1 1/4( a/2nAo(Z) (-z) -1) (2-l)/4exp(Zv/-nz)e -z/2

.{1+ 4 3-- n +O

Similarly we find

bo 3/4 + 1)/4 (n + a/2 3/4)!

a_._ 3 _2Z-- -E n+"En2 4’ 2

4i
b z 3/4 ( 1) (2 + 1)/4n (2or- 3)/4 exp(2v/, nz ) e- z/2

Now bo= -(4c2- 1)/4 so that

a,(z)= 16 (Z) 1/4(1/--) ( 1)a/2 (2a- 1)/4 -z/2n exp(2v/- nz ) e

Also we have

[RII O( n(2’-1)/4
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so that finally

1 -(2,,+ (2,,- 1)/4 exp(2v/ )eL() (z)
2x/

z) 1)/4// --//Z z/2

( 1 ( -3z+1 2 1-a2)l+4f_Z_
_

z +- n-1/2+0(1)}
and if we compare this with (2.6) we get (2.7) and the lemma is proved.
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to the referee for drawing my attention to Rakhmanov’s results, which enabled me to
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A GENERALISED HANKEL CONVOLUTION*

J. DE SOUSA PINTO"
Abstract. The classical Hankel convolution defined by Hirschman and Cholewinski is extended to a class

of generalised functions. Algebraic properties of the convolution are examined and the existence and
significance of an identity element are discussed.

1. Introduction.
1.1. A Hankel-convolution operation has been defined in the classical sense by

Hirschman, [4], and by Cholewinski, [5]. We consider here an extension of that defini-
tion to a class of generalised functions analogous to that introduced by Zemanian, [2].
This extension has useful applications when dealing with continuous linear systems
which can be characterized by a Hankel-convolutional representation; such systems,
which we call "Hankel-translation invariant continuous linear systems", may thereafter
be considered when developing sampling expansions for inverse J-Hankel transforms
of distributions of compact support on the positive half-line.

1.2. Throughout we work in terms of the Hankel transform of order zero;
straightforward generalization can be made as required to deal with the case of the
transform of order v, for any u > 2.

We use the following definition for the (classical) Hankel transform of order u > 2

(01) F(r)=-H,[f l(r) xf(x)J(rx)dx, 0<r< ,
(02) f(x)=-H-l[Fl(x) $F()J(x)dr, 0<x < .

Since this differs from the definition used by Zemanian, we begin with a brief
review and translation of some of the essential results obtained by him for the gener-
alised Hankel transform. We remark that it is a classical result (cf. Sneddon, [1]) that if
xl/2f(x) is piecewise continuous and belong to LI(0, ), then the direct transform is
well defined by (01), and the inversion formula (02) holds almost everywhere. Further,
for f(x) and g(x) both satisfying these conditions we have the Parseval relation

(03) xf(x)g(x)dx= rF(r)G(r)dr.

Finally we shall need results involving the linear differential operator, N+ 1, v > 2,

defined by

(04) N+ If(x)] x"D[x-f( x)]
and the Bessel operator of order v 0, A, defined by

(05) A [f( x )] -= D2f(x)+x-lDf(x)
where D stands here for the usual differentiation operator.
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if x+-f(x)O as x c, where f(x) is a sufficiently smooth H0-transformable
function, then integration by parts shows that

(06) H,+ 1N+ 1[ f ](r) -tHai f ](r)

or, setting g= H[f] and changing r into x,

(07) H,+ [(- x)g(x)](r) N+ 1Hu[ g ](’r).
In general, for sufficiently well behaved O(x) and nonnegative integers i, j we can

obtain from (06) and (07)

(08) Hi+jNi+j... Ni+i[(-x)i+(x)](’r)=(-’r)a.N... Nil{I) (’r)]

or, taking the defining formula (04) into consideration,

(09) Hi+j[xi+J(x-lDx)Jdp(x)](’r)=(-1)i+jri+J(’r-lDr)i[o(r)].
Similarly, for any sufficiently smooth function f(x) on (0, oo) it can be shown that

(10) H0 Af( x)] (r)= -r-H0 f ](r)

provided that f is H0-transformable and that x 2f(x) and xf’(x) both tend to 0 as
X ---+ OO.

2. Spaces of fundamental and generalized functions.
2.1. A complex-valued function if, defined and infinitely differentiable on (0, c),

is said to belong to the space H0(0, ) if and only if the numbers ’ia.() defined by

(11) )’i()= sup [xi(x-lD)a.(x)[
0<x<

are finite for every pair i, j of nonnegative integers.
H o(0, ) is a testing-function space with the topology generated by the multinorm

(Via) i, a.=0 and we have

(12) .@(0, oo)c H o(0, oo)ce(0,
where (0, m) and g(0, m) denote respectively the restrictions of (R) and (R) to the
positive real axis. Using (09) and following the same lines of Zemanian [2], it can
readily be shown that the H0-transformation is a topological isomorphism of H0(0,
onto H0(0, m).

Denote by (0, m) the linear space of all infinitely smooth functions 0(x),
0 < x < m such that for each nonnegative integer m there exists a nonnegative integer
k k(m) for which

(13) (1+ X/)-l( X 1D)mO(x)
is bounded on (0, oo). By using the generalised Leibnitz formula it can be shown that
the map q,--+ 0 is an endomorphism of H0(0, m) for each 0 M(0, oo); M(0, oo) is the
space of multipliers on H0(0,

2.2. We denote by H ’(0, oo) the space of all complex-valued functions q, defined
and infinitely smooth on (0, oo) which are of the form

(14) g,(x)=x(x).
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H ’(0, oc) is again a (complete) testing-function space, with topology generated by
the sequence of multinorms

As usual we denote the dual of H ’(0, c) by "(0, ).
For any g/(x)=x(x)H(O, ), and any nonnegative integer r, set

*(k) max ,,(q,)= max ,,j(q))=ar(q) ).Olr
O< ,j < O< i,j < x

Then, for each/ H "(0, c) there will exist constants C and r such that

(16) o(0, )= I<(),()>1- C’lr().

In particular, let f(x) be any locally integrable function on (0, oo) which is such
that xf(x) LI(O, oo) and f(x) does not grow more rapidlly than a polynomial when
x oo. Thenf(x) generates a regular generalised function in H "(0, oo) by the formula

(17) (f(x),xq(x))= xf(x)qS(x)dx.

Any generalised function in "(0, oo) not generated by a formula of the type (17)
will be described as singular.

In general, the derivative of a generalised function in H’(0, oo) (defined in the
usual sense of Schwartz), is not a generalised function in H"(0, oo). However, in
certain cases the result of applying a differential operator to a generalised function in
"(0, oo) does yield a generalised function in "(0, oo). In particular, using for
differential operators in a generalised sense the same notation as the one used for the
corresponding operators when applied in a classical sense, we have the results:

(i) / d’(O, o)c IH! "(0, o)D#H"(O, o);
(ii) / H"(0, )(x-ID).JlHS’(O, );
(iii) / "(0,)A/ "(0,

for any nonnegative integersj and v.

2.3. We can now define the generalised H0-transform of any /H"(0,) by
using the analogue of the Parseval relation:

(18) ((x), x,(),)) (/-/o [1(),())

and clearly we have that

, n 8’(0. oo)= n0[,] n 8’(0. ).

Moreover, we can establish that

(19) Ho[ a". ]() (-:)"Ho [.

for any nonnegative integer ,.
The generalised H0-transform of anY distribution o #’(0, oo), in the sense of (18),

is a regular generalised function in "(0, oo) generated by a smooth function f(x)
defined on (0, oo) by

(20) f()= ((),Jo()) (o(),()Jo(),))
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where A @(0, ) is such that A(r)=l on the support of o. The function f extends
onto the finite complex-plane as an entire function of exponential type which grows no
faster than a polynomial on the positive real axis; it is easy to show thatf(x) (0,

3. Ho-convolution.
3.1. We denote by _(0, oo), l<p< c the space of measurable functions on

(0, ) such that

and by _(0, ) the space of measurable functions on (0, oo) such that

[Ifll0, Ilfllo sup If(x)l< -0<x<o

Consider the kernel D0(x,y, z), 0 < x,y, z < m, defined by

(21) DoCx,y,z)= JoCx)JoCY)JoCz)d

for which (cf. Watson [3], Hirschman [4], and Cholewinski [5]) we can establish the
following properties:

(i) for 0 < x,y < oo and 0 < r < oo, we have

(22) fo ZJo( rZ)Do(x,y,z) dz=JoC rx)JoC ry )

and, in particular, taking r 0, gives

(23) (ii) fo ZDo(x,y,z)dz= l

that is, for fixed x,y > 0, Do(x,y,z ) as a function of z belongs to _x0(0, );
(iii) for O<x,y,z < , Do(x,y,z)>O, and
(iv) o(x,y,z)=o(Z,x,y)=o(y,z,x)=etc.
The classical Ho-convolution is now defined, for any two functions f(x), g(x),

0<x< , as

(24) f#og(x) yzf(y)g(z)Do(x,Y,z)dydz

whenever the integral exists. In fact, it can be shown that (Hirschman [4], Cholewinski
[5]) if l<_p,q,r<, r-l=p-l+q-l-1 and f_(0, ) and g_(0,z), then the
integral in (24) converges for almost all x (0, ), and

(25) I[f#0gil0, [[jql0,p" Ilgll0,"

Furthermore,

f#og=g#of

and, for f, g, h -0(0, oo),

(f#og) #oh =f#o ( g#oh )
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while if f and g are such that both Ho[f] and Ho[g exist, we have the convolution-
product property

Ho[f#og]=Ho[f ]’Ho[g].

3.2. If the Ho-convolutionf#og exists, then using Fubini’s theorem we can write it
in the form

(26) f#og yf(y) zg(z)Do(x,y,z)dz dy= yf(y)g(xo y)dy

where we write

(27) g(xo y)= zg(z)Do(x,y,z)dz

with x y denoting the H0-translation on the positive real line (the analogue of the
translation considered for the definition of the usual convolution, .). The function
g(x y) will be called the Ho-translate of g(x); provided g(x) is locally bounded on
0 < x < oo, g(x y) is well defined and continuous on (0, o)x (0, oo), (Nussbaum [7]).
The Ho-translation is a particular case of the translations of Delsarte [6], subsequently
studied by Braaksma [8].

If g Lao(0, oo) q L (0, oo) and a [0, oo), then a simple calculation using Fubini’s
theorem shows that

(28) Ho[g(xo a)]()=Jo(a)Ho[g](z).

4. Generalised Ho-eonvolution.
4.1. For fixed x,y(O,o), the function Do(x,y,z), 0<z< oo defines a regular

generalised function in HI"(0, oo) which we denote by Do(x y,z). In fact for fixed
x,y’(O, ) and H0(0, oo) we have that

(29) (Do(x y,z),zq(z))=(Do(x,y,z),zq(z))

z+,(z),oCx,y,z)z=v,(xo y)

and since

(30) I+(xo y)l_< Voo(,) zDoCx,y,z)dz=7oo(Ck),

then Do(X y, z), 0 < z < oo truly generates a continuous linear functional on HI ’(0, oo)
through (29).

Moreover, since

qCxo y)=(Jo(r(xo y)),rOO(r))=(Jo(rX)JoCry),rO()),

then we can write

(31) Ho[Do(X y,z)] =Jo(rX)Jo(rY), 0<x,y<

in the sense of HI ’(0, oo) and even in the classical sense.
We now show that, for any fixed y > 0, the following implication

(32) (x) no(0, o) =(x y) o(0, oo)



1340 j. DE SOUSA PINTO

holds. In fact, since ff Ho(0, o) then =Ho[] Ho(0, o). On the other hand,

Ho[+Cx Y)] =JoCY)tb(r);

but Jo(ry) (O o) and so

Jo(’y) O(’) tl o(0 o).

Hence, since the Ho-transformation is an automorphism on H o(0, ), the function
of x given by

m’[A(y)+()] =+(xo y)

also belongs to H o(0, m).
Next, for any Ho(0, m) and 0<x,y< m, following from a well-known prop-

erty of the De!sarte translation, we also have that

(33) A(x y)= hy(X y)

for any nonnegative integer

4.2. If x,o(0,) then

(a) 1#o(x) exists for all 0 < x <

(34) (b) lO2(x) o(0
(c) [0,l [,l 0,=,0[,l.

In fact (34a) follows since 1, E(0, ) for anyp such that 1p; (34b) is
justified by the fact that the function

no[o]=.
belongs to o(0, ) and similarly for its HLtransform; (34c) follows from (33) and
differentiation under integral sign.

Note finally that for any 1,

lO(x) (l( y ),y x

,() ,()o( ,
z,(zl,(oz)dz

,(z),z( z))=0()

where the interchange of the orOer of integrations is justified by Fubini’s theorem in
view of the fact that both ar 2 belong to L(O, ).
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4.3. If X No(0, m), then for each fixed x(0, c), we have X(x y) Ho(0 m); it
follows that for any o d’(0, ) the convolution O#oX(X ) is well defined by

(35) O#oX(X) (o(y),yX(xo y)).

Further,

(36) Ho[o#oX(X)](r)=(o(y),yHox[X(xo y)])

(o(Y),YJo( ry) A ( r))
(o(y),yJo(ry)). a(r)= Ho[ o ]( r).a (r)

where A=Ho[h]. Now Ho[o#oh]Ho(0, o), and therefore O#oh(X)eHo(0, m).
Hence O#oh generates a regular generalised function in H"(0, m), and for any

o(0, ) we get

(37) (O#oX(X),X(X))=(Ho[ol().a(),())

(no[ o ](,), a()O(,)) (o(x), XX#o (x)).

This could be taken as the definition of the generalised Ho-convolution, and this in
turn allows another form analogous to the direct product definition of the generalised
ordinary convolution"

(38) (O#oX(X),Xrk(x)) (o(x),XX#oq(x))

(o(x),x(X(y),y(xo y)))

(oCx)(R)XCY),xyq(xo y)).

4.4. For/, H "(0, m) and X H o(0, m) the convolution is again well defined as a
generalised function in H "(0, m) by

(#oX(X),X(X)) ((x),xX#o(X))

since )t#o Nl o(0, oo) by (34b). Using (18), we get

(o #0x 1(,), ,()) (#oX(X),X(X))

=((x),xX#o(X))

(Ho[tx l( r), ra ( r)d( r))

<Ho [/, (’r) A ( r),r(

so that, in the sense of ’(0, m)

(39) Ho [#oX =/-/o [.]’/-/o[X I.
4.5. Finally, let H"(0, m) and o#’(0, m). Since, for any qH0(0, c), we

have O#oq(x) Ho(0, z), it follows that ##oo is well defined as a generalised function
in HI "(0, m) by

(40) (,#oO(X ),X,( X ) ) (, ( x ),xo#o,(X )).



1342 J. DE SOUSA PINTO

As before, this may also be expressed in the form

(41) (l#oO(X),Xq(x)) (l(X)(R)o(y),xy(xo y))

and, using (18) again, we can derive the analogue of (39)

(42) H0 [/.t#0o H0 [/, .H0 o

(note that Ho[o] (0, m), so that the product in (42) makes sense in H "(0, m)).

5. Algebraic properties of the generalised H0-eonvolution. As already remarked,
the classical Ho-convolution defined in _10(0, m) is commutative and associative; how-
ever, it possesses no identity element. We consider in turn these properties with respect
to generalised H0-convolution.

51. Commutativity.
(i): o ’(0, ), o(0, ).
We have

(O#oX(X),X(X))

(Uo(O)()A(),())
<A(), /0[o]()())

(a(x),xO#o(X)) (a#oO(X),X(X))

where the last manipulations make sense since Ho[o] (0, m) and

Then

(#oX(X),(x))

(t/o[](),1()())
(Ho[l](r).+(r),a(r))

(#o(X),Xa(X),) (X#o(X),X(X))

where )#o is understood in the sense of the last equality. This is justified because
every function in Ho(0, m) is also a multiplier in H "(0, m).

(iii)" t H a’(0, m), o eg’(0, m).
The same kind of argument gives:

(#oO(x),x(x)) ((x),xO#o(X))

(/0[]()-/4o[O](),()).

But since Ho[/X](r ) does not necessarily belong to (0, m), no general commutativity
property can be deduced. If, in addition, we have ’(0, m), then H0[/,] (0, m),
and the argument to establish commutativity proceeds as before.

5.2. Associativity.
(i): o d’(0, (X)), Xl, X2 - 0(0, .(X) ).
We can establish the result

(43) ( O#0)k ) #0)k2 O#0 ( k1#02 )
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in the following sense, for anyq Ho(0,

(( o:Zo 1) ZZo 2 (x

o(),o(Xo()))

(OO(alOa()),()).
The equality o(o0)=.(o)o0 is justified by the fact that 1,
belong to (0,

(ii)" ’(0, ), o g’(0, ), o(0, ).
We have that

(44) (oO)oa o
since, for any 0 o(0, )

((.o0) oa(),()) (.o0(),ao())

(o(Ooa()),())
where the equality Oo(o0)=(Oo)o0 is justified by (43).

(iii)" ’(0, ), o, o2 g’(0, ).
We show, finally, that

( o)oO o(1o0)(45)
since we have

((),Oo(Oo()))

where the equality O#o(O#o)= (O1#oO2)#o is justified by (44) in the particular case
when both generalised functions belong to g’(0, m).

S.3. Identi element. For a, b strictly positive we know that o(a,b,z) defines a
regular generalised function o(a b,z) in ’(0, m). If either of a, b takes the value
zero then o(a, b, z) is no longer defined as an ordinary function since

0(a,0,z)= Jo(a)Jo(z)d, a>0,

is only a formal identity because the integral fails to converge for any z. Instead, for
any fixed a > 0, we consider the integral

(46)

which, for each R > 0 is uniformly convergent on 0 < z <
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Define the generalised function Do(a,z ) in H "(0, ) by

lim Jo(a)Jo(lz)dlDo(a z)
R_+

in the sense that for any@o(0, o),

=lim (folJo(al)Jo(lz)dl,zC,(z)).(47) <Do(a z) z(z))
R

For each finite R > 0 the integral (44) defines a function which generates a regular
generalised function in H J’(0, ) (cf. Sneddon, [1, p. 303]). Therefore,

( R ,Jo(a,)Jo(,z)d,,z,(z))= z,(z)Z ,Jo(a,)Jo(,z)d,dz

or, by Fubini’s theorem

( ’Jo(a’)Jo(’z)d’,z’(z)>= ’Jo(a’) z,(z)Jo(,z)dzd,

Thus

(48)
R

lim ldp(gS)Jo(a)dgs=,(a )<D0(a,z) z@(z))=
R_+o+

and so

I<DoCa,:),:q’(:)>l<  oo(O)

which shows that Do(a,z)H’’(O, o). Moreover, since

(Do(a,z),z@(z)>=dp(a)= ( Jo (a,r), "r (I)( "r)>,
we obtain

(49) no
Now let (a,),+= be a monotone decreasing sequence of positive real numbers,

tending to zero as n---> , and consider the sequence of generalised functions
(Do(a,,z))= in 1’(0, o). Since H"(0, m) is complete, this limit is again a gener-
alised function in "(0, m). For each n and any o(0, )

(Do(a,,,z),z@(z)> =@(a,)

and therefore we define the generalised function Do(Z ) by:

(so) <Do(Z),zfCz)>= lim <DoCa,+,z),zfCz)>= lim +(a.)=+(0 +)

(independently of the particular sequence (a.).= chosen).
Moreover, since

(Do( z),z@( z)> @ (0 +) <1, "r (I) ( "r)>
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we have

(51) Ho[ Do( z)] ( r) l

the equality being understood in the sense of H 3’(0, o).
The generalised function Do(X)e H"(0, o) is the required identity element with

respect to the generalised Ho-convolution. In fact, it is easy to show that Do(X-)
g’(0, o) and therefore for any /H’(0, c) and every qHo(0, c), by using the
results in 4.5 we obtain

(#oo(),+(x))=(C)(R)oCY),Y*(X Y))
=(t(x),x(o(y),y+(xo y)))=(l(x),xq(x))

which shows that

(2) .#oo() =.()

in the sense of H "(0, oo), as asserted.

6. Differentiability properties of the Ho-eonvolution. We conclude with a brief
remark on the differentiabilty properties of the generalised Ho-convolution. Let v be
any nonnegative integer, /H"(0, oo) and XHo(0, o). Then, since for any
Ho(0, )

we have that

(3)

in the sense of H "(0, ).
"[,#oX =,#o[.Vx

If now #H"(0, o) and ag’(0, o), then by the same kind of argument, and
using (53), we derive the double equality

(54) a" [,#oO =,#oa" o ]= a", #oO
in the sense of H "(0, o).
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